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SECLEDS: Sequence Clustering
in Evolving Data Streams via Multiple

Medoids and Medoid Voting

Azqa Nadeem(B) and Sicco Verwer

Delft University of Technology, Delft, The Netherlands
{azqa.nadeem,s.e.verwer}@tudelft.nl

Abstract. Sequence clustering in a streaming environment is challeng-
ing because it is computationally expensive, and the sequences may
evolve over time. K-medoids or Partitioning Around Medoids (PAM)
is commonly used to cluster sequences since it supports alignment-based
distances, and the k-centers being actual data items helps with cluster
interpretability. However, offline k-medoids has no support for concept
drift, while also being prohibitively expensive for clustering data streams.
We therefore propose SECLEDS, a streaming variant of the k-medoids
algorithm with constant memory footprint. SECLEDS has two unique
properties: i) it uses multiple medoids per cluster, producing stable high-
quality clusters, and ii) it handles concept drift using an intuitive Medoid
Voting scheme for approximating cluster distances. Unlike existing adap-
tive algorithms that create new clusters for new concepts, SECLEDS fol-
lows a fundamentally different approach, where the clusters themselves
evolve with an evolving stream. Using real and synthetic datasets, we
empirically demonstrate that SECLEDS produces high-quality clusters
regardless of drift, stream size, data dimensionality, and number of clus-
ters. We compare against three popular stream and batch clustering algo-
rithms. The state-of-the-art BanditPAM is used as an offline benchmark.
SECLEDS achieves comparable F1 score to BanditPAM while reducing
the number of required distance computations by 83.7%. Importantly,
SECLEDS outperforms all baselines by 138.7% when the stream con-
tains drift. We also cluster real network traffic, and provide evidence
that SECLEDS can support network bandwidths of up to 1.08 Gbps
while using the (expensive) dynamic time warping distance.

Keywords: Sequence clustering · K-medoids · Data streams ·
Concept drift · Network traffic

1 Introduction

Stream clustering is the problem of clustering a potentially unbounded stream of
items in a single pass, where the items arrive sequentially without any particular
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order, e.g., network traffic, financial transactions, and sensor data. Stream clus-
tering algorithms must have low memory overhead, be computationally efficient,
and robust to concept drift, i.e., evolving data distributions [25]. Maintaining
high cluster quality in a fully online setting is extremely difficult. Therefore,
hybrid online-offline algorithms are popular among existing approaches, e.g.,
CluStream [2], StreamKM++ [1], DenStream [6], BIRCH [31]. These algorithms
have an online component that summarizes the data stream, and an offline com-
ponent that periodically uses that information to create the final clusters. There
also exist algorithms that store part of the stream for handling outliers, e.g.,
BOCEDS [15], MDSC [9]. Existing stream clustering algorithms handle concept
drift by having variable number of clusters: they add new clusters for newly
observed behavior and discard clusters that contain too many old data items.
This leads to higher memory requirements for managing buffers and intermedi-
ate solutions. Batch clustering algorithms can also be used in a streaming setting
by considering a batch size of one, e.g., Minibatch k-means [24]. However, they
start to under-perform when the stream contains drift.

In recent years, sequential data has increasingly become popular because
of the powerful insights that it provides regarding behavior analytics [5], e.g.,
for attacker strategy profiling [21], fraud detection [13], human activity recogni-
tion [7]. Clustering sequences in an offline setting is challenging in itself because
sequences are often out-of-sync, requiring expensive alignment-based distance
measures, which are often not supported by many clustering algorithms. K-
medoids or Partitioning Around Medoids (PAM) has often been used to cluster
sequences because the k-centers are represented by actual data items, called
medoids or prototypes [27,28]. This has multiple benefits: i) it makes the clus-
ter interpretation simpler; ii) it enables the use of non-metric distances such
as dynamic time warping (DTW); and iii) it allows to estimate exact storage
requirements based on the k-fixed clusters. Although the state-of-the-art offline
k-medoids algorithms, i.e., FastPAM1 [23] and BanditPAM [26] have reduced
the runtime complexity to O(nlogn), they are still not efficient enough to be
used in streaming settings, and the cluster quality will degrade over time as the
stream evolves. To the best of our knowledge, there exists no streaming version
of the k-medoids algorithm that can efficiently cluster sequential data.

Contributions. In this paper, we propose SECLEDS, a lightweight streaming
version of the k-medoids algorithm with constant memory footprint. SECLEDS
has two unique properties: Firstly, it uses p-medoids per cluster to maintain
stable high-quality clusters. Note the difference from IMMFC [30], which uses
the information of multiple medoids in independent sub-solutions to select the
final medoids. We initialize the p-medoids using a non-uniform sampling strategy
similar to k-means++. Secondly, a Medoid Voting scheme is used to estimate
a cluster’s center of mass. The offline k-medoids has a Swap step that tests
each point in a cluster to determine the next medoid. SECLEDS cannot do this
because it does not store any part of the stream. Instead, it maintains votes for
each medoid that estimate how representative (valuable) it is given the data seen
so far. A user-supplied decay factor enables SECLEDS to slowly forget the votes
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Fig. 1. An illustration of SECLEDS’ clusters following an evolving data stream. The
medoids close to recent data gain more votes, while the medoids with the least votes are
replaced with new data items from the stream. In effect, the k-clusters handle concept
drift by capturing different concepts in the stream at different time steps.

regarding past data. The least representative medoids are then replaced with
new data items. This way, rather than creating new clusters for new concepts,
the k-clusters themselves evolve with the data stream. Figure 1 shows how the
clusters follow a data stream as it evolves. Thus, the k-clusters represent different
concepts in the stream at different time steps. SECLEDS addresses the following
real-world constraints:

I. A runtime efficient medoid-based clustering algorithm with a fixed memory
footprint that can handle high-bandwidth data streams,

II. An algorithm that produces high-quality clusters in a streaming environ-
ment while being able to deal with concept drift,

III. Accurate sequence clusters using alignment-based distances, and
IV. Minimal parameter settings to support ease-of-use.

Empirical Results. We experiment on several real and synthetic data streams
that contain 2D points and univariate sequences. We empirically demonstrate
that SECLEDS produces high-quality clusters regardless of drift, stream size,
and number of clusters. We use the following state-of-the-art and popular cluster-
ing algorithms as baselines: a) Streaming: CluStream, StreamKM++; b) Batch:
Minibatch k-means; c) Offline: BanditPAM. Particularly, BanditPAM is used as a
benchmark for the best achievable clustering on a static dataset. The results show
that i) SECLEDS achieves comparable F1 score to BanditPAM, while reducing
the required number of distance computations by 83.7%; ii) SECLEDS outper-
forms all baselines by 138.7% when the stream contains drift; iii) SECLEDS is
faster than BanditPAM and CluStream on most clustering tasks.

We also discuss a use-case from the network security domain where network
traffic is often randomly sampled to keep the storage requirements within a pre-
defined budget. Consequently, temporal patterns in the network traffic are lost
that could have been useful for downstream tasks, e.g., behavior analytics. We
propose a smarter sampling technique that uses medoid-based stream clustering
(SECLEDS) to summarize the network traffic: SECLEDS clusters sequences of
network traffic and periodically stores the medoids of each cluster, thus reducing
the storage needs while preserving temporal patterns in the data. By clustering
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real-world network traffic, we provide evidence that SECLEDS (and SECLEDS-
dtw) can support network bandwidths of up to 2.79 Gbps (and 1.08 Gbps),
respectively. We release SECLEDS as open-source1.

2 Preliminaries

Stream. Given a sensor that receives an unbounded stream of multi-dimensional
data points X = {x1, x2, . . . } with dimensionality d, arriving at time steps T =
{t1, t2, . . . }, a sequential data stream is defined as S = {s1, . . . sn, . . . }, where
si is a time window w over X such that si = {xi, xi+1, . . . xi+w}, and yi is
its associated class label. Traditional point clustering considers w = 1, while
for sequence clustering, we consider w > 1. We use two configurations, i.e.,
d = 2, w = 1 (2D point clustering) and d = 1, w = 100 (univariate sequence
clustering). A case of bivariate variable length sequences is given in appendix.

Concept Drift. Real-world data streams often change unexpectedly over time.
This shift alters the statistical properties of their underlying distribution. In
machine learning, this is called concept drift [18,32]. Concept drift is typically
categorized into four types [17]: (i) Sudden drift where a new concept arises
abruptly; (ii) Gradual drift where an old concept is slowly replaced by a new
one; (iii) Incremental drift where a concept incrementally turns into another
one; and (iv) Recurring concepts are old concepts that reappear from time to
time. Years of research has gone into developing concept drift detectors that
either monitor the underlying data distribution, error rate or perform hypothesis
testing to trigger model retraining [4,17]. Typical stream clustering algorithms
handle concept drift by introducing new clusters for new concepts, and discarding
old irrelevant clusters [14]. Although intuitively appealing, this requires user-
supplied parameters that define what ‘new’ means.

3 SECLEDS: Sequence Clustering in Evolving Streams

SECLEDS is a lightweight streaming variant of the classical k-medoids (PAM)
algorithm. To support high bandwidth data streams, SECLEDS does not store
any part of the stream in memory—it receives an item, assigns it to one of the
k-clusters, and then discards it. This way, SECLEDS has a guaranteed constant
memory footprint [I]. However, this requirement cannot be achieved using the
offline Build and Swap steps of PAM. Instead, SECLEDS performs a non-
uniform sampling (similar to k-means++) on an initial batch of the stream to
initialize the medoids. It also makes use of multiple medoids per cluster to provide
a stable cluster definition in a streaming setting where noise and concept drift
are common properties [II].

The efficiency of a chosen distance measure is usually the primary perfor-
mance bottleneck in sequence clustering. Thus, minimizing the number of dis-
tance computations is key to scaling SECLEDS to large data streams. This is
1 SECLEDS: https://github.com/tudelft-cda-lab/SECLEDS.

https://github.com/tudelft-cda-lab/SECLEDS
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Fig. 2. The effect of cluster initialization and concept drift on medoid selection of
a cluster, where p = 5. (Top): Given a uniformly distributed stream, every medoid
becomes popular at some point. (Middle): For an incrementally drifted stream, the
medoid close to drifted data becomes popular. (Bottom): For a class-ordered stream,
all clusters start from one class, until one medoid migrates to the correct class. In
this case, the correct class is observed from t1300. Medoid-3 migrates first and becomes
popular, while medoid-1 migrates last.

achieved by introducing a Medoid Voting scheme whose purpose is twofold: (i) it
determines the center of mass of a cluster, thus is able to estimate how represen-
tative a medoid is given the data seen so far; and (ii) by using this information,
old irrelevant medoids are replaced by new ones that are located near recent
data. Hence, better medoids can be found without having to perform additional
distance computations [I]. This also allows SECLEDS to support robust but
computationally expensive distance measures specifically meant for sequential
data, e.g., dynamic time warping [III]. Finally, SECLEDS handles concept drift
by regularly forgetting past data and occupying newer regions/concepts in the
data stream. This is achieved by applying exponential decay λ to the medoid
votes at each time step [II].

SECLEDS has a modular implementation in Python. The k-clusters, p-
medoids per cluster, and decay rate λ are the only three user-supplied parameters
needed for the algorithm, making it useful for exploratory data analysis [IV].
We believe these parameters are easier to tune compared to many radius- or
density-based hyperparameters in existing clustering algorithms, which require
a deeper understanding of the data distribution in advance.
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3.1 Stable Cluster Definition via Multiple Medoids

A new data item s is assigned to a cluster cid with the least average distance to
its medoids. With multiple medoids per cluster, this provides a robust cluster
assignment. Additionally, the medoid voting scheme encourages the medoids to
represent different sections of a class so they can gain votes: if they are too close
together, some of them do not receive votes and get replaced eventually. It also
ensures that outliers are quickly replaced because of fewer votes.

Concept drift and cluster initialization determine how the medoids behave.
Figure 2 illustrates three scenarios with varying medoid behavior for a single
cluster as a function of votes gained over time: (a) Assuming no concept drift,
when the stream is roughly evenly shuffled, all the medoids receive uniform votes
on average. This is because all medoids are close to parts of the stream at different
time steps. At a specific time step, the medoid close to the most amount of recent
data becomes popular. The top figure shows that each medoid becomes popular
at some point in the stream, indicating that the medoids represent different
sections of the underlying class. (b) When the stream incrementally drifts, the
cluster follows the evolving stream by replacing the least popular medoids with
recent data items from the stream. Since the new medoids are now closer to new
data, they gain more votes and become popular. This has roughly the same effect
as the first case. (c) When the data arrives one class at a time, all clusters are
initialized in a single class. As data from a new class appears, one medoid from
the closest cluster migrates to it and starts gaining votes. Over time, the older
popular medoids lose their votes because of exponential decay, and eventually
migrate to the new class. This is shown from t1300 onward in the bottom figure,
highlighting the importance of multiple medoids in noisy streams.

3.2 Center of Mass Estimation

The voting scheme provides an estimate of a cluster’s center of mass by assigning
more votes to recently observed data in the stream S, while exponential decay
helps to forget votes regarding older data. Without decay, older clusters with
popular medoids never evolve. Thus, these properties help to replace irrelevant
medoids, e.g., those that are located i) close to the least amount of recent data,
or ii) in a region where new data no longer arrives. Note that we only apply
exponential decay to the most recently updated cluster, so that we do not forget
valuable information about other clusters while the data from this class arrives.

4 The SECLEDS Algorithm

SECLEDS has three modules: an initialization module (Init), an assignment
module (Assign), and an update module (Update). The task is to assign each
item in S to one of the k-clusters. SECLEDS maintains and updates a model
of the stream seen so far in the form of k-clusters, C = {C1, . . . Ck}. For clarity,
we use t to denote the clusters at time t. These superscripts are removed from
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Algorithm 1. Each cluster is represented by a set of p-medoids and their votes,
i.e., for 1 ≤ i ≤ k, Ct

i = {(mt
i,1, v

t
i,1) . . . (mt

i,p, v
t
i,p)}, where for 1 ≤ j ≤ p:

mt
i,j ∈ S is the jth medoid of the ith cluster at time t having vt

i,j ∈ R votes.
Init. A batch B from the start of S is used to initialize the clusters. The batch

can be small but enough to select k · p medoids. In the experiments, we used a
batch size of (1.5 · k · p). We use a non-uniform sampling strategy, similar to the
Lloyd’s algorithm [16], to select the primary medoid of each cluster: SECLEDS
selects the first medoid of the first cluster (m1

1,1) arbitrarily from the batch.
Another k−1 medoids are sampled with a probability proportional to the squared
distance between m1

1,1 and other items in B. This initializes the primary medoid
of each cluster. The other p-1 medoids for each cluster C1

i are the items in B that
are closest to its primary medoid m1

i,1. This way, the medoids maintain cluster
separation by reducing the risk of medoids from multiple clusters overlapping
each other. All medoids start with 0 votes.

Assign and Update. With the clusters initialized, the stream processing
begins. Assign and Update are called for each item in S. Assign has 3 steps:
(i) An incoming item s at time t is assigned to the cluster Ct

cid for which its
previous medoids Ct−1

cid have the least average distance to s, formally defined
in Eq. (1) for any given distance function d(., .). (ii) The closest medoid to s
receives a vote, while exponential decay λ is applied to the other medoids i.e.,
for all 1 ≤ j ≤ p and j′ �= j: vt

cid,j = (vt−1
cid,j + 1) if j = arg minj d(s,mt−1

cid,j),
otherwise vt

cid,j′ = vt−1
cid,j′ · (1 − λ). This way, the medoids maintain an estimate

of their centers of mass without storing any part of the stream. (iii) The votes of
all other clusters remain the same, i.e., vt

i,j = vt−1
i,j for all i �= cid and 1 ≤ j ≤ p.

Ct
cid = arg min

1≤cid≤k

∑p
j=1 d(s,mt−1

cid,j)
p

(1)

At every time step t, the new data item s is promoted to be a medoid of Ct
cid:

the medoid having the least votes which is not the newest medoid is replaced by
s, i.e., {mt

cid,j = s, vt
cid,j = 0} where j = arg minj vt−1

cid,j and mt−1
cid,j �= ηt

cid, where
ηt
cid keeps track of the newest medoid of cluster cid at time t. Inspired by Tabu

search [11], including ηt
cid ensures that the most-recently updated medoid is not

selected to be replaced each time. Tabu search is a local search meta-heuristic
that selects which values to change except for the last δ ones (δ = 1 in this case).

Time Complexity. Given k clusters, p medoids, b batch size, and n items in
the stream, SECLEDS has a time complexity of O(n): SECLEDS selects the
first medoid at random from the initial batch, and then performs b distance
computations to find the other k-1 primary medoids. The rest of the k(p-1)
medoids are also selected using the same distance information. In total, this
requires O(kb) distance computations. For every s ∈ S, SECLEDS computes
the average distance to each cluster, which requires kp distance computations.
Over an entire run, this gives nkp distance computations. In the Update module,
SECLEDS reallocates medoid votes without any distance computations, making
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Algorithm 1: SECLEDS for clustering sequences in evolving streams
Input: Data stream, nclusters, nprototypes: S, k, p

1 function SECLEDS(S, k, p)
2 b ← 1.5 · k · p
3 B ← Collect b items from S
4 C ← Init(B, k, p) // Init

5 forall s in S[b :] do
6 cid ← arg min1≤cid≤k

1
p

· ∑p
j=1 d(s, mcid,j) // Assign

7 j ← arg minj d(s, mcid,j) for all 1 ≤ j ≤ p

8 vcid,j ← (vcid,j + 1), vcid,j′ ← vcid,j′ · (1 − λ) for j′ �= j
9 j ← arg minj vcid,j where mcid,j �= ηcid for all 1 ≤ j ≤ p // Update

10 mcid,j ← s, vcid,j ← 0
11 yield cid

12 function Init(B, k, p)
13 Choose m1,1 ∈ B arbitrarily. Let C1 ← {(m1,1, 0)}
14 for i ← 2 . . . k do
15 Choose mi,1 ∈ B with probability d(mi,1, m1,1)

2, mi,1 �= m1,1

16 Let Ci ← {(mi,1, 0)}
17 for i ← 1 . . . k do
18 dist ← d(b, mi,1) for all b ∈ B and b �= mi,1

19 Choose {mi,2 . . . mi,p} having smallest values in dist
20 Update Ci ← {(mi,1, 0) . . . (mi,p, 0)}
21 return {C1, . . . , Ck}

the runtime negligible. Since k and p are small user-supplied parameters, the
overall runtime complexity is O(n).

Space Complexity. After initialization, SECLEDS only stores the p medoids
and their votes for the k clusters. Since these are (small) user-defined parameters,
the space complexity of SECLEDS is O(1).

5 Experimental Setup

Datasets. We use three synthetic and a real dataset containing 2D points
and univariate sequences, see Table 1. The data generation process is given in
appendix. The synthetic datasets are released in the SECLEDS code repository.

Blobs: The blob dataset was created using scikit-learn [22]. The dataset
contains n = 100, 000 two-dimensional points (d = 2), equally distributed in
k = 10 classes, with varying standard deviations.
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Table 1. Summary of experimental datasets.

Dataset Type Drift Stream size (n) Clusters (k) Dimensions (d,w)

Blobs Synthetic No 100,000 10 (2,1)

Sine-curve Synthetic No 50,000 4 (1,100)

Sine-curve-drifted Synthetic Yes 50,000 4 (1,100)

CTU13-9 Real-world Yes 213,386 2 (1,100)

Sine-Curve: A sine-curve generator was used to create k = 4 synthetic uni-
variate sine curves of length 1, 250, 000 each, using varying frequency, phase and
error (see appendix). Each curve is partitioned using a non-overlapping window
of length w = 100 to obtain the experimental dataset. In total, n = 50, 000
curves are obtained, equally divided across k = 4 classes.

Sine-Curve-Drifted: Incremental concept drift is added to the Sine-curve
dataset by shifting the phase of each curve by a factor of (drift · c id), where
c id is the curve index in the stream, and drift = 0.05. Note that adding drift
to the frequency of the sine curves produces similar results.

CTU13-9: CTU13 [10] is an open source dataset composed of network traf-
fic (netflows) coming from real botnet-infected hosts and normal hosts. We
use scenario-9, containing 10 bot-infected hosts and 6 benign hosts. A total
of 2, 087, 509 (normal and botnet) netflows were captured over 5 h and 37 min.
We obtain n = 213, 386 univariate sequences of length w = 100 using a sliding
window model [33] with step size = 1 (see appendix).

We use Euclidean distance for all datasets. For the Sine-curve and network
traffic datasets, we additionally use Dynamic time warping (DTW). Note that
Euclidean distance can only be used with fixed-length sequences and often pro-
duces less accurate results compared to DTW [12,29].

Stream Configuration. A data stream S of size n is constructed from a chosen
experimental dataset. For each experiment, the clustering task is executed trials-
times, randomly shuffling the stream each time, to make the results data-order-
invariant. A clustering task invokes SECLEDS and the baselines such that each
algorithm observes the exact same order of data arrival. In this paper, we set
trials = 10, unless otherwise reported. All experiments are run on Intel Xeon
E5620 quad-core processor with 74 GB RAM.

Evaluation. We use two metrics for performance evaluation: i) runtime to clus-
ter a stream size of n; ii) F1 score computed from the pairwise co-occurrences
of items in the stream using Eq. (2), as originally defined in [19].

eval(a, b) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ya = yb ∧ Cx = Cy, true positive
ya = yb ∧ Cx �= Cy, false negative
ya �= yb ∧ Cx = Cy, false positive
ya �= yb ∧ Cx �= Cy, true negative

(2)
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Fig. 3. Clustering Blobs and Sine-curves: SECLEDS’s runtime grows approximately
linearly with stream size, while maintaining competitive F1 score with the best-
performing baselines, i.e., BanditPAM and Minibatch k-means. SECLEDS consistently
performs better than all baselines in the presence of concept drift.

where ya and yb are labels of items a and b that are placed in clusters Cx and
Cy. Since clusters do not have pre-defined labels, data from one class may be
assigned to arbitrary clusters in different runs. Thus, instead of looking at the
predicted label, we measure F1 using the pairwise co-occurrences of true labels.

Baselines. We compare SECLEDS with state-of-the-art open-source partition-
based clustering algorithms with k-fixed clusters: a) Streaming: CluStream,
StreamKM++; b) Batching: MiniBatch k-means; c) Offline: BanditPAM. Mini-
Batch k-means and StreamKM++ are online versions of k-means, while
CluStream is an adaptive, online-offline algorithm. BanditPAM (v1.0.5) is
used as a benchmark for the best achievable clustering on a static dataset.
We set time window=1, max micro clusters=k · p, halflife=0.5 for CluStream;
chunk size=1, halflife=0.5 for StreamKM++; batch size=1, max iter=1 for
Minibatch k-means.

6 Empirical Results

Key Findings. In this section, we empirically demonstrate the following results:

1. SECLEDS produces high-quality clusters, regardless of concept drift, stream
size n, data dimensionality (d,w), and number of clusters k. SECLEDS shows
competitive F1 compared to the best performing baseline (BanditPAM), while
reducing the number of required distance computations by 83.7%.
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2. SECLEDS outperforms all baselines by 138.7% when the stream contains
concept drift. SECLEDS outperforms the best-performing streaming baseline
by 58.2% on Blobs, 33.3% on Sine-curve, and 143.7% on Sine-curve-drifted.

3. SECLEDS-dtw clusters ∼5.5 h of network traffic in just 8% of the time.
Thus, it can handle networks with bandwidths of up to 1.08 Gbps, which is
significantly higher than the requirements of a typical enterprise network.

Point vs. Sequence Clustering. We use Blobs with k = 10 on stream
sizes n = (5000, . . . 50, 000), and Sine-curve with k = 3 on stream sizes
n = (2000, . . . 30, 000). For both, we set p = 5, λ = 0.1, trials = 10. The
mean and standard deviation of the F1 scores and runtimes are given in Fig. 3.
The benchmark (BanditPAM) achieves a mean F1 of 0.95 and 1.0 for Blobs and
Sine-curve, respectively.

SECLEDS outperforms both CluStream and StreamKM++ on the Blobs
dataset, and additionally outperforms Minibatch k-means on the Sine-curve
dataset. Minibatch k-means performs exceptionally well on point clustering, but
loses its edge on sequence clustering. This is because the centroids are com-
puted by collapsing temporally-linked dimensions into single values that do not
adequately represent the sequences. An improvement in F1 score is observed
for CluStream and StreamKM++ on the higher dimensional Sine-curve dataset
because of fewer clusters (k = 10 vs. k = 3).

We also compare the effect of euclidean and dynamic time warping dis-
tance on the Sine-curve dataset. Although, they both produce equivalent
results, it must be noted that euclidean distance only works with fixed-length
sequences. An example of SECLEDS-dtw on clustering bivariate sequences
d = 2, w =(min:15, max:121) from UJI Pen Characters [8] is given in the
appendix.

Initialization Quality. Stream clustering algorithms are greatly impacted by
the quality of cluster initialization. To test this, we compare SECLEDS against
SECLEDS-rand (initialized with randomly selected medoids from the initial
batch B). Evidently, the clusters take a long time to converge, regardless of
the stream size. The cumulative F1 score over time for these configurations is
given in the appendix, showing that although the impact of poor initialization is
reduced over time, SECLEDS-rand does not completely recover from it. Thus,
the distance-based non-uniform sampling strategy proves to be extremely helpful
in initializing good clusters.

Clustering with Concept Drift. We use Sine-curve-drifted with k = 3, p = 5,
λ = 0.1, trials = 10 on stream sizes n = (2000, . . . 30, 000). SECLEDS outper-
forms all baselines by 138.7%, and outperforms the best-performing streaming
baseline by 143.7%, on average. BanditPAM no longer serves as a benchmark
because it only has a static view of the data, i.e., it does not distinguish between
class distributions at T = tx and T = tx+y. Both SECLEDS and CluStream
maintain their F1 scores with concept drift, but SECLEDS is 161.8% better
than CluStream. StreamKM++ and Minibatch k-means observe a significant
reduction in their performance. We hypothesize that it might be due to the lack
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Fig. 4. Scaling with n, k, and p: (a) Empirical results; (b) Theoretical estimate.

of exponential decay in k-means, which limits the movement of the centroids
towards newer data. This experiment provides strong evidence for SECLEDS’
ability to handle concept drift with only k-fixed clusters.

Runtime Analysis. StreamKM++ and Minibatch k-means are among the
fastest clustering algorithms on all datasets, which is expected since they are
based on k-means. CluStream does not scale well for high-dimensional datasets,
and is much slower than SECLEDS on sequence clustering. As the stream size
n grows, SECLEDS also becomes faster than the high-performance implemen-
tation of BanditPAM on both point and sequence clustering. Interestingly, the
runtimes of BanditPAM, CluStream and StreamKM++ seem to be affected by
concept drift: given the same dataset and constant parameters, their runtimes
increase approximately twofold when there is drift in the data. We hypothe-
size that this is a side effect of the sampling strategy used to speed up these
algorithms.

Scaling with n, k, and p. We use Sine-curve with k = 4, p = {1, 3, 5, 10},
λ = 0.1, trials = 10 on stream sizes n = (2, 000, . . . 30, 000). The mean and
standard deviation of the F1 and runtime of SECLEDS is reported in Fig. 4a.
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Table 2. Clustering real network traffic: Compared to BanditPAM, SECLEDS requires
fewer distance computations, is faster, and has a better cluster quality. SECLEDS-dtw
is slower but produces better clusters than SECLEDS. Overall, ∼5.5 h of network traffic
is clustered in under 27min (Bold = best scores).

Stream config. # Distances
(k = 2)

Run time
(k = 2)

F1
(k = 2)

F1
(k = 5)

BanditPAM Time-ordered 10.3 × 106 978.03 s 0.64 0.38

Cross-validated 984.8 s 0.64 0.38

SECLEDS Time-ordered 2.1 × 106 629.39 s 0.85 0.82

Cross-validated 631.84 s 0.79 0.76

SECLEDS-dtw Time-ordered 2.1 × 106 1623.05 s 0.85 0.88

Cross-validated 1626.89 s 0.81 0.80

Fig. 5. Visualizing the medoids of BanditPAM, SECLEDS & SECLEDS-dtw on k =
2, p = 5. Each row is a medoid. The label denotes curve identifier and yi.

A single medoid per cluster, which is standard for PAM-based algorithms, does
poorly in a streaming setting. Intuitively, more medoids help to improve the
stability of the clusters, but the relationship is not linear. If p is set too low,
the medoids keep jumping to various regions in the dataset, and if it is set too
high, the medoids slow down the evolution of the clusters, having an equally
detrimental effect on the performance. The optimal value of p with respect to
performance and runtime is dataset-dependent. For Sine-curve, p = {3, 5} are
good alternatives. Additionally, although SECLEDS has multiple medoids per
cluster, it performs significantly fewer distance computations compared to the
(almost linear) BanditPAM. Figure 4b shows this for increasing stream size n,
number of clusters k, and number of medoids p, with BanditPAM as reference.

6.1 Use Case: Intelligent Network Traffic Sampling via SECLEDS

A typical enterprise network has a bandwidth of 25 Mbps2, which produces
about 17,000 packets per second, consuming 2 terabytes of storage space each
day ! To conserve space, the packets are aggregated into network flows (netflows)
at the router level, and only a fraction of them are stored for analysis i.e., 1
2 https://mosaicnetworx.com/it-challenges/bits-bytes-understanding-enterprise-

network-speeds/.

https://mosaicnetworx.com/it-challenges/bits-bytes-understanding-enterprise-network-speeds/
https://mosaicnetworx.com/it-challenges/bits-bytes-understanding-enterprise-network-speeds/
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in N netflows are stored. Naturally, randomly sampled network traffic does not
preserve the temporal patterns of the data, thus limiting the efficacy of traffic
profiling and behavior analytics.

We propose to cluster sequences of netflows using SECLEDS, and to peri-
odically store a medoid snapshot of each cluster, since they are representative
of the network traffic seen so far. This way, each snapshot stores an overview of
temporally-linked netflows. The number of clusters k can be chosen depending
on the required granularity of behaviors captured by the clusters. It can also be
approximated from an initial batch using, e.g., [3]. The number of medoids p
can be configured according to available storage space, network bandwidth, and
the intervals at which to store the medoids.

We demonstrate this use case by generating a stream from the CTU13-
9 netflows. The construction and feature engineering processes are given in
the appendix. In short, the ground truth provides two classes, i.e., yi ∈
{botnet, normal}. Univariate sequences of average bytes per netflow are used
to separate the two classes. We use two configurations for the stream: i) Time-
ordered: the sequences arrive in order of their timestamps; ii) Cross-validated:
we shuffle the stream. We run SECLEDS and SECLEDS-dtw with k = 2, p = 5,
trials = 5, and compare the performance against BanditPAM. The results are
given in Table 2.

SECLEDS is faster and produces better medoids compared to BanditPAM.
Figure 5 visualizes the final medoids produced by all three algorithms in the
form of temporal heatmaps. Temporal heatmaps have previously been used to
visualize temporal similarities in [20]. Each row shows a sequence (medoid), and
the colors indicate the magnitude of the curve at each time step. Both medoids of
BanditPAM are from the normal class. Although the medoids of SECLEDS-dtw
are all from the botnet class, it is evident that they capture distinct behaviors of
the malicious hosts. SECLEDS finds medoids from both classes, but the clusters
are impure, i.e., more medoids on average are from different classes. As such, the
cluster quality of SECLEDS-dtw is significantly better than that of SECLEDS.

The results indicate that there are many smaller classes in the network
stream, reflecting the various behaviors of benign and infected hosts. When k is
set to a larger number, the clustering algorithms find smaller, purer data regions,
e.g., for k = 5, SECLEDS-dtw produces 4 pure clusters (2 normal and 2 botnet),
while SECLEDS only produces 1 pure (normal) cluster, see appendix for their
temporal heatmaps. Table 2 shows the F1 scores for k = 5. Note that although
the clustering results for k = 5 are better than k = 2, the former obtains a lower
F1 score as a side-effect of the metric: it penalizes higher number of clusters when
less class labels are available by lowering the recall. As such, we recommend to
over-estimate k in order to sample many regions from the network traffic.

Finally, SECLEDS is faster than SECLEDS-dtw, as expected. SECLEDS
clusters the entire stream in 3.1% of the traffic collection time, and SECLEDS-
dtw in 8% of the collection time. This experiment provides evidence that
SECLEDS can handle much larger network bandwidths.
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Network Bandwidth Support. SECLEDS-dtw can handle networks with a
bandwidth of up to 1.08 Gbps, which is more than sufficient for small to
medium enterprises. The experiments in Table 2 show that SECLEDS spends
1626.89
213386 = 0.0076 seconds on average to cluster a single sequence of length
w = 100. Thus, SECLEDS can cluster 131.58 sequences per second. Assum-
ing that the sequence windows w are non-overlapping over the traffic stream,
SECLEDS can process 13, 158 individual netflows per second. The CTU13-9
dataset is composed of 115, 415, 321 packets aggregated into 2, 087, 509 net-
flows. Assuming uniform distribution, each netflow contains about 55.2 packets.
SECLEDS can, thus, process 726, 315.79 packets per second. Given that each
network packet is about 1500 bytes, this makes a total of 1.089 Gigabytes per
second. Similarly, SECLEDS can handle network bandwidths of up to 2.79 Gbps.

7 Conclusions

We propose SECLEDS, a streaming version of k-medoids with constant mem-
ory footprint. SECLEDS uses a combination of multiple medoids per cluster
and a medoid voting scheme to create k-clusters that evolve with evolving data
streams. Testing on several real and synthetic datasets and comparing against
state-of-the-art baselines, we demonstrate that i) SECLEDS achieves compet-
itive F1 score compared to the benchmark (BanditPAM) on streams without
concept drift; ii) SECLEDS outperforms all baselines by 138.7% on streams with
concept drift; iii) SECLEDS reduces the number of required distance computa-
tions by 83.7% compared to the benchmark, making it faster than BanditPAM
and CluStream for several clustering tasks, iv) SECLEDS can support high-
bandwidth network streams of up to 1.08 Gbps using the expensive dynamic time
warping distance. These results reinforce the importance of designing lightweight
medoid-based stream clustering algorithms.

Acknowledgements. We thank Ruben te Wierik, Silviu Fucarev, and Rami Al-
Obaidi for their contributions to the SECLEDS algorithm.
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32. Žliobaitė, I., Pechenizkiy, M., Gama, J.: An overview of concept drift applications.
In: Japkowicz, N., Stefanowski, J. (eds.) Big Data Analysis: New Algorithms for
a New Society. SBD, vol. 16, pp. 91–114. Springer, Cham (2016). https://doi.org/
10.1007/978-3-319-26989-4 4
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