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Output Controllability of a Linear Dynamical
System With Sparse Controls

Geethu Joseph

Abstract— In this article, we study the conditions to be
satisfied by a discrete-time linear system to ensure output
controllability using sparse control inputs. A set of neces-
sary and sufficient conditions can be directly obtained by
extending the Kalman rank test for output controllability.
However, the verification of these conditions is computa-
tionally heavy due to their combinatorial nature. Therefore,
we derive noncombinatorial conditions for output sparse
controllability that can be verified with polynomial time
complexity. Our results also provide bounds on the mini-
mum sparsity level required to ensure output controllability
of the system. This additional insight is useful for designing
sparse control input that drives the system to any desired
output.

Index Terms—Controllability, discrete-time system, gen-
eral linear systems, Kalman rank test, linear dynamical sys-
tems, minimal input, optimal sparse control, output control-
lability, sparsity, time-varying support.

I. INTRODUCTION

W ITH THE widespread acceptance and use of networked
control systems, various new challenging theoretical

issues have emerged in control theory. One such problem is
the analysis of a network system with sparse control inputs.
In particular, the controllability of systems under the sparsity
constraints on the input is a relatively new concept [1], [2]. This
article characterizes output controllability of a linear system with
sparse control, i.e., the input applied at every time instant has a
few nonzero entries compared to its dimension.

A. Practical Context and Examples

Constraining the inputs to be sparse is often necessary to select
a small subset of the available sensors or actuators at each time
instant, due to bandwidth, energy, or physical constraints. The
sparse control inputs arise in several areas, such as multiagent
systems [3]; optimal actuator placement [4], [5]; nodes selec-
tion [6], [7]; opinion dynamics [8]; environmental monitoring
systems [1], [9]; and robotics [10], to name a few.
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In the following, we discuss two examples of systems,
wherein the input is sparse and its support is time varying.

1) Networked Control Systems: Networked control sys-
tems, where the controller and plant communicate over a net-
work, are often constrained by energy and bandwidth. In energy-
constrained networks, energy-aware scheduling of actuators can
help to extend the battery life of the nodes [11]. In this case,
choosing the same support for a longer time drains the battery
of the selected set of nodes. Therefore, using a different set of
nodes at each time instant can result in a longer network lifetime.
Further, in networked control systems, the control inputs are
required to meet the bandwidth constraints imposed by the links
over which they are exchanged [12], [13]. The sparse vectors ad-
mit compressed representations, and consequently, using sparse
inputs helps to reduce the bandwidth requirements [14]–[16].
Also, restricting the control inputs to a fixed support may
severely limit the set of admissible inputs to the system. On
the other hand, using different supports provides much greater
flexibility without significantly increasing the communication
requirements. Thus, this approach combines the benefits of the
other two methods.

2) Social Networks: A social network is often modeled
using a graph, whose vertices represent the individuals in the
network, and the edges represent the social connection between
the individuals. A popular model for the evolution of network
opinion is the DeGroot model that uses a linear dynamical
system [17], [18]. Here, the system state is denoted by a vector
containing the opinion of each individual in the network, and the
state matrix is the adjacency matrix of the graph. Further, it is
assumed that an external agent, such as an election candidate, a
paid blogger, or a marketing agent, desires to drive the network
opinion to a particular state by influencing only a few people
on the network [19]–[21]. For example, consider an election
candidate visiting the voters as part of a political campaign [8].
At each time instant, the candidate can only visit and influence a
small group of people. Also, for better campaigning, the candi-
date does not visit the same set of people at each time. As a result,
the support of the sparse control input (due to the candidate)
also varies with time. Moreover, the goal of the candidate is not
to influence all the voters, but it is enough if the candidate can
influence the majority of the voters. Hence, the candidate designs
the campaign strategy such that a subset of the network opinion
can be driven to the desired value. This problem can be solved
via the analysis of the output controllability of the network
opinion.

2325-5870 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
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B. Related Literature

Before we present our model and results, we provide a brief
review of the existing literature on sparse control.

1) Structural Controllability of Networks: The characteri-
zation of controllability of networks by using a few nodes is a
well-studied problem [22]–[30]. However, these papers focused
on structural controllability or strongly structural controllability.
On the contrary, we deal with output controllability by assuming
the knowledge of the system matrices. Also, in such problems,
sparsity refers to the number of driver nodes and not the number
of nonzero entries in the control input.

2) Minimal Controllability Problem: The minimal control-
lability refers to the problem of selecting a small set of input
variables so that the system is controllable using the selected
set [31]–[33]. This model is similar to ours except that the
support of the control inputs does not change with time. Here, the
support refers to the indices of the nonzero entries of the input.
However, the time-varying support model is more flexible and
offers better control over the system while incurring similar cost
(in terms of energy and bandwidth) as that of the time-invariant
support model [1]. Therefore, we analyze the controllability of a
linear system with inputs having supports that change with time.

3) Time-Varying Actuator Scheduling: The time-varying
actuator scheduling problem deals with the control of linear
systems using sparse inputs with a time-varying support model
[6], [7], [34]–[40]. However, previous studies on this problem
mainly focused on the design of sparse control inputs and the
optimal actuator scheduling (choosing the support of the control
inputs at every time instant) problems. Such problems were for-
mulated as optimization problems with an �0-norm constraint on
the input. The �0-norm-based problems are NP-hard and, thus,
they were solved using �p-norm-based relaxations (0 < p ≤ 1)
or greedy algorithms. While these studies attempted to devise
approximation algorithms to design the control inputs, our focus
in this article is to gain new fundamental insights into the
conditions for output controllability of a system using sparse
inputs that follow the time-varying support model.

4) Sparse Controllability: Sparse controllability defined
in [1] refers to the controllability of a linear system when the
inputs are sparse, and their supports are time-varying. Joseph and
Murthy [1] derived the necessary and sufficient conditions for
sparse controllability that are noncombinatorial. In particular,
they established that any controllable system is sparse control-
lable if and only if the sparsity level exceeds the nullity of the
state matrix.1 This work was also extended to controllability
using non-negative sparse control inputs [2]. However, Joseph
and Murthy [1] only dealt with state controllability. A similar
algebraic characterization of output sparse controllability is not
straightforward. This is because the results on sparse controlla-
bility in [1] are based on the Popov–Belevitch–Hautus (PBH)
test [41] for controllability. However, an analogous PBH test
for output sparse controllability is not available in the literature.
Consequently, the proof technique used in [1] is not applicable
for output sparse controllability.

1The precise statements of the results are presented in Section III-E.

In a nutshell, in this article, we derive the conditions for output
sparse controllability of a linear system using the fundamental
tools from linear algebra and matrix theory.

C. Our Contributions

The rest of this article is organized as follows. We present a
discrete-time linear time-invariant dynamical system with sparse
control inputs and a time-varying support model in Section II.
We then show that the direct extension of the Kalman-type
rank test for output sparse controllability leads to a verification
procedure with exponential time complexity. In Section III, we
show that any linear system that is output controllable is also
output sparse controllable if and only if the sparsity level exceeds
a certain bound which we present in Theorem 1. Hence, our
result also provides the minimum sparsity level that ensures out-
put controllability. In addition, we present several implications
and insights from our result and compare it with the existing
results on controllability and sparsity in Sections III-A–III-E. We
discuss the design of sparse control inputs that drive the system
output to a desired value in Section III-F. Finally, Section IV
concludes this article.

Notations: In the sequel, boldface lowercase letters denote
vectors, boldface uppercase letters denote matrices, and calli-
graphic letters denote sets. The ith column of the matrix A
is denoted by Ai while the submatrix of A formed by the
columns indexed by the set A is denoted by AA. The symbols
(·)T, Rank{·}, (·)−1, (·)†, and CS{·} denote the transpose, rank,
inverse, pseudoinverse, and column space of a matrix, respec-
tively. Also, the cardinality of a set is denoted using | · |, and
the ceiling function is denoted using �·�. Further, the notations
I and 0 represent the identity matrix and the zero matrix (or
vector), respectively. Finally, we use R to denote the set of real
numbers and C for the set of complex numbers.

II. OUTPUT SPARSE CONTROLLABILITY

We consider the discrete-time linear dynamical system de-
scribed by the triple (A,B,C) in which the state and output
evolve as follows:

xk = Axk−1 +Buk and yk = Cxk. (1)

Here, xk ∈ RN denotes the state vector, uk ∈ Rm denotes the
control input vector, and yk ∈ Rn denotes the output vector at
time k. Also, A, B, and C are the state matrix, input matrix,
and output matrix of the system, respectively. We assume that
the control vectors are constrained to be s-sparse, i.e., at most
s entries of uk are nonzero, for all values of k. Under this
sparsity constraint on the input, we revisit the classical output
controllability problem. To be specific, our goal is to check if it is
possible to drive the output to any final state yf ∈ Rn, starting
from any initial state x0 ∈ RN , using s-sparse control inputs
within a finite time. This notion of controllability is referred to
as output s-sparse controllability, henceforth.

Using (1), the output at any time K > 0 is

yK = C

K∑
k=1

AK−kBuk +CAKx0. (2)

Authorized licensed use limited to: TU Delft Library. Downloaded on April 11,2023 at 09:43:18 UTC from IEEE Xplore.  Restrictions apply. 
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So the system is output s-sparse controllable if and only if there
exists an integer 0 < K < ∞ such that⋃
{Sk⊆{1,2,...,m}:
|Sk |≤s,1≤k≤K}

CS
{
C
[
AK−1BS1

AK−2BS2
. . .BSK

]}
=Rn.

(3)
However, a vector space over an infinite field cannot be a finite
union of proper subspaces [42]. Then, from (3), output s-sparse
controllability holds if and only if there exist an integer N <
K < ∞ and index sets {Si, |Si| ≤ s}Ki=1 such that

CS
{[

CAK−1BS1
CAK−2BS2

. . . CBSK

]}
= Rn.

(4)
The direct evaluation of the condition (4) requires computation

of the column spaces of
(
N
s

)K
matrices of size n×Ks. Thus,

the verification of the condition is computationally expensive.
Motivated by this, in Section III, we present some noncombina-
torial conditions that help to test output sparse controllability.

III. NECESSARY AND SUFFICIENT CONDITIONS

The results of this section are based on the controllability
matrix W and a new metric Ri as defined in the following:

W �
[
AN−1B AN−2B . . . B

]
∈ RN×Nm (5)

Ri� Rank
{
CAiW

}− Rank
{
CAi+1W

}
(6)

where i ≥ 0 is an integer. The main result of this section is as
follows.

Theorem 1: Consider the discrete-time linear dynamical sys-
tem (A,B,C) defined in (1) whose controllability matrix W is
given by (5). Then, for any integer 0 < s ≤ m, a set of necessary
conditions for output s-sparse controllability is

Rank {CW } = n and max
0≤i≤N−1

∑i
j=0 Rj

i+ 1
≤ s, (7)

and a set of sufficient conditions is

Rank {CW } = n and max
0≤i≤N−1

Ri ≤ s. (8)

Here, Ri is as defined in (6).
Proof: See Appendix I. �
In the following sections, we discuss the geometric intuition

and insights from Theorem 1.

A. Geometric Intuition

The rank condition in (7) and (8) is straightforward from
the Kalman rank test for (nonsparse) output controllability (see
Theorem A). The bounds on the sparsity in Theorem 1 can be
intuitively explained as follows.

1) Necessary Condition: From (4), the system is s-sparse
output controllable if and only if the columns of the matrix given
in (4) span Rn. Thus, the last (i+ 1)s columns of the matrix in
(4) span the subspace orthogonal to the column space Ui of the
remaining Ks− (i+ 1)s columns, namely, the column space

given by

Ui = CS
{[

CAK−1BS1
. . . CAi+1BSK−i−1

]}
(9)

⊆ CS {CAi+1W
}
. (10)

Thus, (4) holds only if the last (i+ 1)s columns of the matrix in
(4) span the left null space of CAi+1W . So, we arrive at

(i+ 1)s ≥ n− Rank
{
CAi+1W

}
=

i∑
j=0

Ri. (11)

The above relation leads to the bound on sparsity given in the
necessary condition (7). The bound is not sufficient because it
only considers the possibility of spanning the smaller subset
of the left null space of CAi+1W , which is a subset of the
subspace orthogonal to Ui (see Example 1).

2) Sufficient Condition: We first observe that the column
space of CAiW contains that of CAi+1W . Let Vi be the col-
umn space ofCAiW , which is orthogonal to that ofCAi+1W .
Consequently, when x0 = 0, Vi contains the subspace of output
vectors that can be reached at the time instant i but not at time
i+ 1. Also, the dimension of Vi is Ri. One case where the set
of all possible output vectors forms Rn starting from x0 = 0
is when the column space of CAiBSK−i

∈ Rn×s contains the
subspace Vi, for each value for i. This case leads to

Ri ≤ Rank
{
CAiBSK−i

} ≤ s. (12)

The above relation results in the bound on sparsity given in (8)
of Theorem 1. However, the condition is not necessary because
it considers only the possibility of spanning the larger set Vi (see
Example 2).

Refer to Appendix I for a rigorous proof of the above intuitive
explanation. We illustrate our idea using the following examples.

Example 1: Consider the system (A,B,C) in (1) with

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0

0 0 1 0 0

0 0 0 0 0

0 0 0 0 1

0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦
B =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 1

0 0

1 0

0 0

0 1

⎤
⎥⎥⎥⎥⎥⎥⎦
C =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0

0 1 0

0 0 0

0 0 1

0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

T

.

(13)
For this system, we have Rank{CW } = 3 = n

max
0≤i≤N−1

Ri = 2 and max
0≤i≤N−1

∑i
j=0 Rj

i+ 1
= 1. (14)

Therefore, when s = 1, the system satisfies the necessary con-
dition, but it does not satisfy the sufficient condition. Using the
brute force verification of output sparse controllability [given by
(4)], we see that the system is not output 1−sparse controllable.
Thus, this example shows that the necessary conditions of Theo-
rem 1 are not always sufficient for output sparse controllability.
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Example 2: Consider the system (A,B,C) in (1) with

A =

⎡
⎢⎢⎢⎣
0 1 0 0

0 0 0 0

0 0 0 1

0 0 0 0

⎤
⎥⎥⎥⎦B =

⎡
⎢⎢⎢⎣
1 1

1 0

0 0

0 1

⎤
⎥⎥⎥⎦C =

⎡
⎢⎢⎢⎣
1 0

0 0

0 1

0 0

⎤
⎥⎥⎥⎦

T

. (15)

For this system, we have Rank{CW } = 2 = n

max
0≤i≤N−1

Ri = 2 and max
0≤i≤N−1

∑i
j=0 Rj

i+ 1
= 1. (16)

Therefore, when s = 1, the system satisfies the necessary con-
dition, but it does not satisfy the sufficient condition. However,
the system defined by (A,B2,C) is output sparse controllable,
where B2 ∈ R4 is the second column of B. Thus, this example
shows that the sufficient conditions of Theorem 1 are not always
necessary.

B. Simultaneous Necessity and Sufficiency

Both necessary and sufficient conditions in Theorem 1 be-
come identical under some mild assumptions on the system,
which we present in the following corollary. If the two sets of
conditions in Theorem 1 are not identical and the sparsity level
of the system lies between the necessary bound and the sufficient
bound given by Theorem 1, our sparse-output controllability test
fails (as presented in Examples 1 and 2). Then, we use the brute
force test given by (4) to check the output controllability using
s-sparse control inputs.

Corollary 1: Consider the discrete-time linear dynamical sys-
tem (A,B,C) defined in (1), whose controllability matrixW is
given by (5). The necessary conditions (7) are also sufficient for
s-sparse output controllability if max0≤i≤N−1 Ri = R0, where
Ri is as defined in (6). Also, in this case, (7) and (8) reduce to

Rank {CW } = n and s ≥ n− Rank {CAW } . (17)

Proof: When max0≤i≤N−1 Ri = R0, the relation (8) reduces
to

Rank {CW } = n and s ≥ R0 = n− Rank {CAW }. (18)

Since (7) also implies that s ≥ R0, and the necessary conditions
are less stringent than the sufficiency conditions, we conclude
that both (7) and (8) reduce to (17). �

We note that the assumption in Corollary 1 is satisfied by a
large class of matrices, for which the output controllability test
in Theorem 1 never fails for any value of s. For example, suppose
that Rank{A} = Rank{A2}. In this case, the row space and
the column space of Ai are the same as those of A, for i ≥ 1.
As a result, we obtain

Rank {CAW } = Rank
{
CAiW

}
. (19)

Consequently, from (6), we get Ri = 0 ≤ R0 for all values of
i ≥ 1. Hence, max0≤i≤N−1 Ri = R0, and by Corollary 1, the
necessary and sufficient conditions of Theorem 1 reduce to (17).
Here, the condition Rank{A} = Rank{A2} implies that the
algebraic and geometric multiplicities of the eigenvalue 0 of A
are the same [43, ch. 3]. This condition is satisfied by the families

of matrices, such as the diagonalizable matrices and the matrices
with rank greater than or equal to N − 1. In such cases, using
the inherent special structure of the matrix A, we can verify if
max0≤i≤N−1 Ri = R0 holds without specifying B and C.

The above observation is particularly useful to analyze the
network opinion of social networks such as Facebook (see Sec-
tion I-A2). Such a network is modeled using an undirected graph,
and therefore, the state matrix A of the corresponding linear
dynamical system is the symmetric adjacency matrix of the
graph [8]. Since symmetric matrices are always diagonalizable,
(17) gives the necessary and sufficient conditions in this case.

C. Computational Complexity

The computational complexity to verify all the conditions of
Theorem 1 depends on the complexity to compute the rank of
matrices CAiW , for i = 0, 1, . . . , N . So, unlike the verifica-
tion of the combinatorial condition (4), the verification of the
conditions in Theorem 1 possesses polynomial time complexity
(in N and n), and the complexity is independent of s. Moreover,
the complexity of the verification test can further be reduced by
using a simpler condition which does not involve the computa-
tion of {Ri}N−1

i=0 as presented in the following.
Corollary 2: Consider the discrete-time linear dynamical sys-

tem (A,B,C) in (1) whose controllability matrix W is given
by (5). The system is output s-sparse controllable for any s > 0
if

Rank {CW } = n and s ≥ N − Rank {A} . (20)

Proof: See Appendix III. �
Clearly, the relaxed bound on s given in (20) is easy to calcu-

late. So, if the system satisfies the bound in Corollary 2, we can
avoid the more computationally heavy conditions of Theorem 1.
Also, from the proof of the result, we notice that (20) in Corollary
2 can also be replaced with a more stringent condition

s ≥ Rank {W } − Rank {AW } (21)

which follows from the proof of Corollary 2 (see (99) in
Appendix III).

Further, Corollary 2 implies that if a linear system is re-
versible, i.e., A is nonsingular, then (output) controllability
implies and is implied by (output) s-sparse controllability, for
any 1 ≤ s ≤ m. This property also holds for sparse controlla-
bility [1].

D. Additional Insights

Some interesting observations from Theorem 1 are as follows:
1) Bound on Necessary Sparsity: If Rank{CW } = n,

the system is s-sparse output controllable when s = m. Thus,
s = m satisfies the necessary condition (7) of Theorem 1, and
we arrive at

m ≥ max
0≤i≤N−1

∑i
j=0 Rj

i+ 1
. (22)

This condition holds for any output (nonsparse) controllable
systems.
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2) Time-Invariant System: We note that the sparse inputs
having a time-invariant support are special cases of the sparse
inputs without any additional constraints. Hence, (7) is necessary
for output controllability using sparse inputs with time-invariant
support model.

3) Noncanonical Basis: If a system is output controllable
using control inputs which are s-sparse in the canonical basis, it
is output controllable using inputs that admit s-sparse represen-
tations under any other basis Φ ∈ Rm×m. This is because the
change of basis is equivalent to replacing B with BΦ which
does not change the condition in (4). Sparse controllability also
possesses a similar property [1].

E. Comparison With Existing Results

In this section, we compare Theorem 1 with the existing
results on controllability and sparsity.

1) Output Controllability Without Constraints: The clas-
sical result for output controllability is as follows.

Theorem A ([44]): Consider the linear dynamical system
(A,B,C) defined in (1) whose controllability matrix W is
given by (5). The system is output controllable if and only if
Rank{CW } = n.

From (70) and (74) in Appendix I, we see that when Rank
{CW } = n, we have

Ri = Rank
{
C̃(i) − C̃(i+1)

}
(23)

≤ Rank
{[

I − C̃(i+1)

]
CAiB

}
≤ Rank {B} (24)

≤ m (25)

where C̃(i) is defined in (39) using the Kalman decomposition
given by (43)–(45). Therefore, if we remove the sparsity con-
straint, i.e., when s = m, the sparsity bound in (8) holds true,
and as a result, Theorem 1 coincides with Theorem A.

2) Controllability With Sparse Inputs: The next result
gives the necessary and sufficient conditions for controllability
with sparse control inputs.

Theorem B ([1, Th. 1]): Consider the linear dynamical system
(A,B,C) defined in (1) whose controllability matrix W is
given by (5). The system is controllable using s-sparse inputs if
and only if the following conditions hold:

Rank
{[

λI −A B
]}

= N ≤ Rank {A}+ s ∀λ ∈ C.

(26)
The connections between Theorems 1 and B are as follows.
1) When C = I , the notion of output sparse controllability

and sparse controllability are the same. If we substitute
C = I in Theorem 1, the rank conditions of (7) and (8) are
equivalent to Rank{W } = N . Also, using the arguments
presented in the proof of Corollary 2 (see (99) in Appendix
III), for all 0 ≤ i ≤ N

Ri ≤ N − Rank {A} (27)

= Rank {W } − Rank {AW } = R0 (28)

which follows when Rank{W } = N . Hence, by Corol-
lary 1, the system is output s-sparse controllable if and

only if (17) holds which is equivalent to

Rank {W } = N and s ≥ N − Rank {A} . (29)

However, the condition Rank{W } = N is equivalent
to the rank condition in (26) due to the equivalence of
the PBH test [41] and Kalman rank test for controllabil-
ity [45]. In other words, whenC = I , Theorem 1 reduces
to Theorem B.

2) The proof of Theorem B given in [1] is based on the PBH
test for controllability, whereas our proof of Theorem
1 is based on the fundamental results in linear algebra.
Therefore, the proof of Theorem 1 provides an alternate
method to establish Theorem B.

3) Comparing Corollary 2 and Theorem B, we conclude
that when the sparsity s ≥ N − Rank{A}, the system
is output s-sparse controllable if it is output controllable
(i.e., CW is full row rank); and the system is s-sparse
controllable if it is controllable (i.e., W is full row rank).

3) Necessary Conditions for Output Sparse Controllabil-
ity: We next present a known set of necessary conditions for
output s-sparse controllability.

Theorem C ([1, Corollary 1]): Consider the linear dynamical
system (A,B,C) defined in (1) whose controllability matrix
W is given by (5). The system is output controllable using s-
sparse vectors only if the following conditions hold:

Rank
{
C
[
λI −A B

]}
= n ∀λ ∈ C (30)

Rank {CA} ≥ n− s. (31)

Our necessary conditions in Theorem 1 are stronger than those
in Theorem C. To verify this claim, suppose that (30) does not
hold, i.e., there exist λ ∈ C and z ∈ Rn such that zTCA =
λzTC and zTCB = 0. In this case, we obtain zTCW = 0,
which implies that the rank condition of (7) does not hold. Thus,
(30) is necessary for (7) to hold. Also, the necessary condition (7)
of Theorem 1 implies that if the system in (1) is output s-sparse
controllable,

R0 = n− Rank {CAW } ≥ n− Rank {CA} . (32)

As a consequence, (31) is necessary for the sparsity bound in
(7) to hold. Hence, we conclude that Theorem 1 is stronger than
Theorem C.

F. Design of Sparse Control Inputs

Theorem 1 focuses on the existence of a set of control inputs
that ensures output controllability while satisfying the sparsity
constraints. However, another problem related to output control-
lability is the design of this set of sparse vectors. The problem
can be cast as a sparse signal recovery problem using (2), where
we solve for the unknown sparse vectors {uk}Kk=1 [46], [47].

We first note from [1, Corollary 2] that to drive the sys-
tem from any given initial state x0 ∈ RN to any final output
yf ∈ Rn, we need at most n control inputs (K = n). Thus,
from (2), the design of control inputs reduces to solving for
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ũ =
[
uT
1 uT

2 . . . uT
n

]T
∈ Rnm using

yf −CAnx0 = C
[
An−1B An−2B . . . B

]
ũ. (33)

Here, the unknown vector ũ is formed by concatenating n
vectors which are s-sparse. This signal structure is known as
piecewise sparsity. Hence, (33) can be efficiently solved (in
polynomial time) using piecewise sparse recovery algorithms,
such as the piecewise orthogonal matching pursuit [9], [48].

IV. CONCLUSION

In this article, we derived a set of necessary and sufficient con-
ditions under which a discrete-time linear system is output sparse
controllable. Our results apply to any general linear system and
do not impose any restrictions on the system matrices. Both
necessary and sufficient conditions included a rank condition
on the output controllability matrix and a lower bound on the
sparsity bound. We also derived the conditions under which both
sets of conditions became identical and showed that the results
on output controllability (without any constraints) and controlla-
bility (with and without sparsity constraints on the inputs) can be
derived as a special case of our result. An important direction for
future work is to derive the conditions that are jointly necessary
and sufficient for output sparse controllability. Studying output
sparse controllability under other constraints on the systems,
such as bounded energy and nonnegativity, are also avenues for
future work.

APPENDIX I
PROOF OF THEOREM1

The key idea of the proof is to use the Kalman decomposi-
tion [49, Sec. 6.4] to prove the necessity of (7) and sufficiency
of (8). The proof also relies on the following results from linear
algebra.

Proposition 1 ([50]): For any matrix A and any orthogonal
matrix Q of compatible dimension, we have (QA)† = A†QT.

Proposition 2: Any matricesA andW of compatible dimen-
sions satisfy

Rank {AW } = Rank
{
AWW †} . (34)

Proof: The result follows because

Rank {AW } ≥ Rank
{
AWW †} ≥ Rank

{
AWW †W

}
= Rank {AW } . (35)

�
Proposition 3: For a given nonzero square matrix A ∈

RN×N , let R = Rank{AN}. Then, for any given integers
N ≤ p ≤ q, there exist real numbers {αi}Ri=1 such that

Ap = Aq
R∑
i=1

αiA
i. (36)

Proof: See Appendix II. �
Next, we prove the desired result using the above lemmas.

We first note that the necessity of the rank condition in (7)

is straightforward from Theorem A. Therefore, to prove (7),
it is enough to show that when the system is s-sparse output
controllable, the lower bound in (7) holds. The proof for the
necessity of sparsity bound in (7) and sufficiency of (8) is
presented next. At a high level, the proof has the following steps.

1) We first use the Kalman decomposition to construct two
matrices C̃ ∈ Rn×r and Ã ∈ Rr×r with r � Rank{W }
such that

Ri = Rank
{
C̃Ã

i
}
− Rank

{
C̃Ã

i+1
}
, i ≥ 0. (37)

2) Using (37), we show that when the system is output
s-sparse controllable, (7) of Theorem 1 holds. This proof
implies that (7) is necessary for output s-sparse control-
lability.

3) To prove the sufficiency of (8), we first prove that when
(8) holds, for any vector y ∈ Rn, there exists an s-sparse
vector u ∈ Rm satisfying[

C̃(i) − C̃(i+1)

]
y =

[
I − C̃(i+1)

]
CAiBu (38)

where we define C̃(i) ∈ Rn×n as

C̃(i) = C̃Ã
i
(
C̃Ã

i
)†

. (39)

4) When (8) holds, we prove that for any vector y ∈ Rn,
there exist s-sparse vectors {uk ∈ Rm}rk=1 such that

y =

r∑
k=1

CAk−1Buk + C̃(r)

[
y −

r∑
k=1

CAk−1Buk

]
.

(40)
5) Finally, when (8) holds, we also show that there ex-

ist an integer 0 < K < ∞ and s-sparse vectors {uk ∈
Rm}Kk=r+1 such that

C̃(r)

[
y −

r∑
k=1

CAk−1Buk

]
=

K∑
k=r+1

CAk−1Buk.

(41)
Combining Steps 4) and 5), we establish the sufficiency
of (8).

In the reminder of this section, we provide the details of each
step.

A. Equivalent Definition of Ri in (6)

By the Kalman decomposition [49, Sec. 6.4], there exists an
orthogonal matrix Q such that

Q =
[
Q̃ ∈ RN×r R ∈ RN×N−r

]
∈ RN×N (42)

W =
[
Q̃ R

] [ W̃ ∈ Rr×Nm

0 ∈ RN−r×Nm

]
(43)

A =
[
Q̃ R

] [ Ã ∈ Rr×r A(1)

0 ∈ RN−r×r A(2)

][
Q̃ R

]−1

(44)

B =
[
Q̃ R

] [ B̃ ∈ Rr×m

0 ∈ RN−r×m

]
(45)

Authorized licensed use limited to: TU Delft Library. Downloaded on April 11,2023 at 09:43:18 UTC from IEEE Xplore.  Restrictions apply. 



JOSEPH: OUTPUT CONTROLLABILITY OF A LINEAR DYNAMICAL SYSTEM WITH SPARSE CONTROLS 153

where r = Rank{W } = Rank{W̃ }. Then, for any integer i ≥
0, it is easy to see that

CAiWW † = CAiQ

[
W̃

0

] [
W̃

†
0
]
QT (46)

= C
[
Q̃ R

] [Ã A(1)

0 A(2)

]i [
I 0

0 0

]
QT (47)

= C
[
Q̃Ã

i
0
]
QT (48)

where to get (46), we use (43) and Proposition 1. Also, (47)
follows from (44) and the fact that W̃ is a full row rank matrix.
Consequently, we conclude that

Rank
{
CAiW

}
= Rank

{
CAiWW †} = Rank

{
CQ̃Ã

i
}

(49)
where we also use Proposition 2. Thus, we establish (37) by
defining

C̃ � CQ̃ ∈ Rn×r (50)

and Step 1) is completed.

B. Necessity of Sparsity Bound in (20)

Using (44), (45), and (50), we rewrite (4) as

CS
{
C̃
[
Ã

K−1
B̃S1

Ã
K−2

B̃S2
. . . B̃SK

]}
= Rn.

(51)
Here, for every integer 0 ≤ i ≤ N − 1, the first (K − i− 1)s

columns of the matrix in (51) belong to CS{C̃Ã
i+1}. As a

consequence, the last (i+ 1)s columns of the matrix span the

null space of C̃Ã
i+1

. Since the dimension of the null space of

C̃Ã
i+1

is n− Rank{C̃Ã
i+1}, we deduce that

(i+ 1)s ≥ n− Rank
{
C̃Ã

i+1
}
=

i∑
j=0

Rj (52)

where we use (37). Therefore, we obtain that when (4) holds, the
bound on s given by (7) is satisfied. Thus, we complete Step 2).

C. Characterizing CS{C̃(i) − C̃(i+1)}
To prove Step 3), we first show that

CS
{
C̃(i) − C̃(i+1)

}
⊆ CS

{[
I − C̃(i+1)

]
CAiB

}
. (53)

Then, it is enough to prove that

Rank
{
C̃(i) − C̃(i+1)

}
≤ s (54)

which implies that at most s columns of [I − C̃(i+1)]CAiB

are needed to span the column space of C̃(i) − C̃(i+1). Thus,
the goal of this step is to establish (53) and (54).

To prove (53), we start with two observations. First, from (5)
and using the fact that r = Rank{W } from Step 1), we have

r = Rank
{[

AN−1B AN−2B . . . B
]}

(55)

= Rank
{[

Ã
N−1

B̃ Ã
N−2

B̃ . . . B̃
]}

(56)

which follows because AN−1B = Q[(Ã
N−1

B̃)T 0]T. There-
fore, the system defined by (Ã, B̃) is controllable by the clas-
sical Kalman rank test for (nonsparse) controllability [49]. So,
for any z ∈ Rr, there exist (nonsparse) vectors {vk ∈ Rm}rk=1

such that

z =

r∑
k=1

Ã
k−1

B̃vk. (57)

The second observation is as follows. From the definition of C̃(i)

given by (39), when k > i[
C̃(i) − C̃(i+1)

]
C̃Ã

k

=

[
C̃Ã

i
(
C̃Ã

i
)†

−C̃Ã
i+1
(
C̃Ã

i+1
)†]

C̃Ã
i+1

Ã
k−(i+1)

(58)

=
[(

C̃Ã
i
)
Ã−

(
C̃Ã

i+1
)]

Ã
k−(i+1)

= 0. (59)

Here, we use the fact that by the definition of pseudoinverse, for
any matrix A, we have AA†A = A. Similarly, we can simplify
the same expression for the case when k = i to obtain

[
C̃(i) − C̃(i+1)

]
C̃Ã

k
=

{[
I − C̃(i+1)

]
C̃Ã

i
, if k = i

0, if k > i
.

(60)
Combining the above two observations, we premultiply (57)

with [C̃(i) − C̃(i+1)]C̃Ã
i

and simplify using (60) to show that
for any z ∈ Rr, there exists v1 ∈ Rm such that[

C̃(i) − C̃(i+1)

]
C̃Ã

i
z =

[
I − C̃(i+1)

]
C̃Ã

i
B̃v1. (61)

Here, we note that all the terms in the summation of (57) except
the term corresponding to k = 1 vanish when premultiplied with

[C̃(i) − C̃(i+1)]C̃Ã
i
. The relation (61) leads to the following:

CS
{[

C̃(i) − C̃(i+1)

]
C̃Ã

i
}
⊆ CS

{[
I − C̃(i+1)

]
CAiB

}
(62)

which follows because CAiB = C̃Ã
i
B̃ from (44), (45), and

(50). Next, we show that

CS
{[

C̃(i) − C̃(i+1)

]
C̃Ã

i
}
= CS

{
C̃(i) − C̃(i+1)

}
(63)

to arrive at (53). To this end, we have

Rank
{[

C̃(i) − C̃(i+1)

]
C̃(i)

}
≤ Rank

{[
C̃(i) − C̃(i+1)

]
C̃Ã

i
}

(64)

because C̃(i) = (C̃Ã
i
)(C̃Ã

i
)†. Here, from the definition of the

matrix C̃(i) given by (39) and symmetry of C̃(i) and C̃(i+1),
we derive[

C̃(i) − C̃(i+1)

]
C̃(i)

= C̃Ã
i
(
C̃Ã

i
)†

C̃Ã
i
(
C̃Ã

i
)†

− C̃
T
(i+1)C̃

T
(i) (65)

= C̃(i) −
[
C̃(i)C̃(i+1)

]T
(66)

Authorized licensed use limited to: TU Delft Library. Downloaded on April 11,2023 at 09:43:18 UTC from IEEE Xplore.  Restrictions apply. 



154 IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, VOL. 10, NO. 1, MARCH 2023

= C̃(i) −
[
C̃Ã

i
(
C̃Ã

i
)†

C̃Ã
i+1
(
C̃Ã

i+1
)†]T

(67)

= C̃(i) −
[
C̃(i+1)

]T
= C̃(i) − C̃(i+1). (68)

Thus, from (64), we get

Rank
{
C̃(i) − C̃(i+1)

}
≤ Rank

{[
C̃(i) − C̃(i+1)

]
CAi

}
.

(69)
However, we also know that

CS
{
C̃(i) − C̃(i+1)

}
⊇ CS

{[
C̃(i) − C̃(i+1)

]
C̃Ã

i
}

(70)

and as a result, we derive (63), which leads to (53).
Next, we complete Step 3) by establishing (54). For this, we

note from (68) that

Rank
{
C̃(i) − C̃(i+1)

}
= Rank

{[
C̃(i) − C̃(i+1)

]
C̃(i)

}
(71)

= Rank
{[

I − C̃(i+1)

]
C̃(i)

}
(72)

= Rank
{
C̃(i)

}
− Rank

{
C̃(i+1)

}
(73)

= Ri ≤ s (74)

where (72) follows from (60) with k = i. Also, (73) is because
CS{C̃(i)} ⊇ CS{C̃(i+1)}, andI − C̃(i+1) is the projection onto
the subspace orthogonal to CS{C̃(i+1)}. Finally, (74) follows
from (37) and assumption (8).

D. Sparse Representation of the Null Space of C̃Ã
r

We prove a more general result: for any vector y ∈ Rn and
integer 1 ≤ i ≤ r, there exist s-sparse vectors {ũk ∈ Rm}ik=1

such that

y =

i∑
k=1

CAk−1Bũk + C̃(i)

[
y −

i∑
k=1

CAk−1Bũk

]
. (75)

We prove (75) using mathematical induction, and for this, we
first verify this result for i = 1. Using (38) of Step 3), for any
given y ∈ Rn, there exists an s-sparse vector ũ1 ∈ Rm such
that [

C̃(0) − C̃(1)

]
y =

[
I − C̃(1)

]
CBũ1. (76)

However, we observe from (43) that CS{W } = CS{Q̃}, and
this observation combined with (8) leads to the following:

Rank
{
C̃
}
= Rank

{
CQ̃

}
= Rank {CW } = n. (77)

As a result, we get

C̃(0) = C̃C̃
†
= I. (78)

Therefore, (76) yields that for any y ∈ Rn, there exists an s-
sparse vector ũ1 ∈ Rm such that

y = CBũ1 + C̃(1) (y −CBũ1) . (79)

Consequently, (75) holds for i = 1.
By inductive hypothesis, we assume that (75) holds for some

integer 1 ≤ i < r. So, we again apply (38) by substituting y
as C̃(i)[y −∑i

k=1 CAk−1Bũk] to deduce that there exists an
s-sparse vector ũi+1 ∈ Rm such that

[
C̃(i) − C̃(i+1)

]
C̃(i)

[
y −

i∑
k=1

CAk−1Bũk

]

=
[
I − C̃(i+1)

]
CAiBui+1. (80)

Combining (80) and (68), we deduce that

C̃(i)

[
y −

i∑
k=1

CAk−1Bũk

]

= CAiBui+1 + C̃(i+1)

[
y −

i+1∑
k=1

CAk−1Bũk

]
(81)

where the term C̃i+1CAiBui+1 is absorbed into the summa-
tion term on the right-hand side. Adding (81) and the inductive
hypothesis (75), we get

y =
i+1∑
k=1

CAk−1Bũk + C̃(i+1)

[
y −

i+1∑
k=1

CAk−1Bũk

]
.

(82)
In conclusion, we obtain that the desired result (75) holds for

i+ 1, and thus, the relation (75) is proved. Finally, we choose
i = r in (75).

E. Sparse Representation of the Column Space of C̃Ã
r

Using (57), for any z ∈ Rr, there exist (nonsparse) vectors
{vk ∈ Rm}rk=1 such that

C̃Ã
r
z = C̃

r∑
k=1

Ã
r+k−1

B̃vk. (83)

Here,vk ∈ Rm can be represented asvk =
∑�m/s�

j=1 u
(k)
j ,where

{u(k)
j ∈ Rm}j,k are all s-sparse vectors. Therefore

C̃Ã
r
z = C̃

r∑
k=1

�m/s�∑
j=1

Ã
r+k−1

B̃u
(k)
j . (84)

However, from Proposition 3, there exists a set of real numbers

{αi
(j,k) ∈ R}Rank{Ãr}

i=1 such that

Ã
r+k−1

B̃u
(k)
j = Ã

r+qk,j

Rank{Ãr}∑
i=1

αi
(j,k)Ã

i
B̃u

(k)
j (85)

where we define the quantity qk,j ≥ k − 1 as

qk,j �
[
(k − 1)

⌈m
s

⌉
+ (j − 1)

]
Rank

{
Ã

r
}
. (86)
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Substituting (85) into (84), we deduce that

C̃Ã
r
z = C̃Ã

r
r∑

k=1

�m/s�∑
j=1

Rank{Ãr}∑
i=1

Ã
qk,j+i

B̃
(
αi

(j,k)u
(k)
j

)
(87)

= CAr
r∑

k=1

�m/s�∑
j=1

Rank{Ãr}∑
i=1

Aqk,j+iB
(
αi

(j,k)u
(k)
j

)
(88)

which follows from (44), (45), and (50). Here, the powers
of A in each term of the summation are distinct, and αi

(j,k)

u
(k)
j is s-sparse for all values of i, j, and k. Consequently, for

any vectorz ∈ Rr, there exists an integer0 < K = r + r�m/s�
Rank{Ãr} < ∞ and s-sparse vectors {uk ∈ Rm}Kk=r+1 such
that

C̃Ã
r
z =

K∑
k=r+1

CAk−1Buk. (89)

Finally, we choose

z =
(
C̃Ã

r
)† [

y −
r∑

k=1

CAk−1Buk

]
∈ Rr (90)

in (89) to complete Step 5).

APPENDIX II
PROOF OF PROPOSITION 3

To prove the result, we consider the real Jordan canonical
form [43] of A

A = P−1

[
J 0

0 N

]
P (91)

where P ∈ RN×N is an invertible matrix. Also, the square
matrices J and N are formed by the Jordan blocks of A corre-
sponding to the nonzero and zero eigenvalues ofA, respectively.
In other words, J is an invertible matrix and N is a nilpotent
matrix, i.e., NN = 0. Consequently, the desired result (36) is
equivalent to

P−1

[
Jp 0

0 0

]
P = P−1

[
Jq 0

0 0

](
R∑
i=1

αi

[
J i 0

0 N i

]
P

)

(92)

= P−1

[
Jq∑R

i=1 αiJ
i 0

0 0

]
P (93)

which follows because p, q ≥ N . Hence, to prove Proposition
3, it suffices to show that for any N ≤ p ≤ q, there exist real
numbers {αi}Ri=1 such that

Jp−q =

R∑
i=1

αiJ
i. (94)

For this, we first note that

R = Rank
{
AN

}
= Rank

{
JN
}
= Rank {J} (95)

which is due to the invertibility of J . Consequently, by Cayley–
Hamilton theorem, we know that the characteristic polynomial
of J has degree at most R. Hence, for any integer p− q, the
relation (94) holds.

APPENDIX III
PROOF OF COROLLARY 2

From Step 1) of the proof of Theorem 1 given in Appendix I,

Ri = Rank
{
C̃Ã

i
}
− Rank

{
C̃Ã

i+1
}

(96)

where Ã ∈ Rr×r and C̃ ∈ RN×r are as defined in (44) and
(50), respectively, and r = Rank{W }. Using the Sylvester rank
inequality [43, Sec. 0.4.5], we deduce that

Ri ≤ r − Rank
{
Ã
}
= Rank {W } − Rank

{
Ã
}
. (97)

Here, we simplify the second term as follows:

Rank
{
Ã
}

= Rank

{[
Ã A(1)

0 A(2)

][
I 0

0 0

]}

= Rank

{
Q

[
Ã A(1)

0 A(2)

]
Q−1Q

[
I 0

0 0

]
Q−1

}

= Rank
{
AWW †} = Rank {AW } (98)

where A(1) and A(2) are defined in (44) and Q is defined in
(42). Also, (98) follows from the arguments similar to those
in (46)–(48) and Proposition 2. Substituting (98) into (97), we
obtain

Ri ≤ Rank {W } − Rank {AW } ≤ N − Rank {A} (99)

where we use the Sylvester rank inequality [43, Sec. 0.4.5].
Hence, using the condition in Corollary 2, we arrive at

s ≥ max0≤i≤N−1 Ri. This relation implies that the sufficient
condition (8) of Theorem 1 holds, and the desired result follows.

REFERENCES

[1] G. Joseph and C. R. Murthy, “Controllability of linear dynamical systems
under input sparsity constraints,” IEEE Trans. Autom. Control, vol. 66,
no. 2, pp. 924–931, Feb. 2021.

[2] G. Joseph, “Controllability of a linear system with nonnegative sparse con-
trols,” IEEE Trans. Autom. Control, vol. 67, no. 1, pp. 468–473, Jan. 2022.

[3] M. Caponigro, M. Fornasier, B. Piccoli, and E. Trélat, “Sparse stabilization
and control of alignment models,” Math. Models Methods Appl. Sci.,
vol. 25, no. 3, pp. 521–564, Mar. 2015.

[4] G. Stadler, “Elliptic optimal control problems with L1−control cost and
applications for the placement of control devices,” Comput. Optim. Appl.,
vol. 44, no. 2, pp. 159–181, Nov. 2009.

[5] P. V. Chanekar, N. Chopra, and S. Azarm, “Optimal actuator placement for
linear systems with limited number of actuators,” in Proc. Amer. Control
Conf., May 2017, pp. 334–339.

[6] T. Ikeda and K. Kashima, “On sparse optimal control for general linear
systems,” IEEE Trans. Autom. Control, vol. 64, no. 5, pp. 2077–2083,
May 2019.

[7] T. Ikeda and K. Kashima, “Sparsity-constrained controllability maximiza-
tion with application to time-varying control node selection,” IEEE Control
Syst. Lett., vol. 2, no. 3, pp. 321–326, Jul. 2018.

[8] G. Joseph, B. Nettasinghe, V. Krishnamurthy, and P. Varshney, “Control-
lability of network opinion in Erdos-Renyi graphs using sparse control
inputs,” SIAM J. Control Optim., vol. 59, no. 3, pp. 2321–2345, Jun. 2021.

Authorized licensed use limited to: TU Delft Library. Downloaded on April 11,2023 at 09:43:18 UTC from IEEE Xplore.  Restrictions apply. 



156 IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, VOL. 10, NO. 1, MARCH 2023

[9] C. Sriram, G. Joseph, and C. R. Murthy, “Control of linear dynamical
systems using sparse inputs,” in Proc. IEEE Int. Conf. Acoust., Speech
Signal Process., May 2020, pp. 5765–5769.

[10] G. Vossen and H. Maurer, “On L1−minimization in optimal control and
applications to robotics,” Optim. Control Appl. Methods, vol. 27, no. 6,
pp. 301–321, Nov. 2006.

[11] M. Siami, A. Olshevsky, and A. Jadbabaie, “Deterministic and randomized
actuator scheduling with guaranteed performance bounds,” IEEE Trans.
Autom. Control, vol. 66, no. 4, pp. 1686–1701, Apr. 2021.

[12] M. Nagahara and D. E. Quevedo, “Sparse representations for packe-
tized predictive networked control,” IFAC-PapersOnLine, vol. 44, no. 1,
pp. 84–89, Jan. 2011.

[13] Z. Li, Y. Xu, H. Huang, and S. Misra, “Sparse control and compressed sens-
ing in networked switched systems,” IET Control Theory Appl., vol. 10,
no. 9, pp. 1078–1087, Jun. 2016.

[14] D. L. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory, vol. 52,
no. 4, pp. 1289–1306, Apr. 2006.

[15] E. J. Candes, J. Romberg, and T. Tao, “Robust uncertainty principles: Exact
signal reconstruction from highly incomplete frequency information,”
IEEE Trans. Inf. Theory, vol. 52, no. 2, pp. 489–509, Feb. 2006.

[16] R. G. Baraniuk, “Compressive sensing [lecture notes],” IEEE Signal
Process. Mag., vol. 24, no. 4, pp. 118–121, Jul. 2007.

[17] M. H. DeGroot, “Reaching a consensus,” J. Amer. Statist. Assoc., vol. 69,
no. 345, pp. 118–121, Mar. 1974.

[18] B. Golub and M. O. Jackson, “How homophily affects the speed of
learning and best-response dynamics,” Quart. J. Econ., vol. 127, no. 3,
pp. 1287–1338, Aug. 2012.

[19] M. Nabi-Abdolyousefi, “Social control and optimal marketing,” in Con-
trollability, Identification, and Randomness in Distributed Systems. Berlin,
Germany: Springer, 2014, pp. 137–146.

[20] K. Shu, H. R. Bernard, and H. Liu, “Studying fake news via network
analysis: Detection and mitigation,” in Emerging Research Challenges
and Opportunities in Computational Social Network Analysis and Mining.
Berlin, Germany: Springer, 2019, pp. 43–65.

[21] M. Cremonini and F. Casamassima, “Controllability of social networks
and the strategic use of random information,” Comput. Soc. Netw., vol. 4,
no. 10, pp. 1–22, Dec. 2017.

[22] Y.-Y. Liu, J.-J. Slotine, and A.-L. Barabási, “Controllability of complex
networks,” Nature, vol. 473, no. 7346, pp. 167–173, May 2011.

[23] M. Egerstedt, S. Martini, M. Cao, K. Camlibel, and A. Bicchi, “Interacting
with networks: How does structure relate to controllability in single-leader,
consensus networks?,” IEEE Control Syst. Mag., vol. 32, no. 4, pp. 66–73,
Aug. 2012.

[24] A. Chapman and M. Mesbahi, “On strong structural controllability of
networked systems: A constrained matching approach,” in Proc. Amer.
Control Conf., 2013, pp. 6126–6131.

[25] A. Chapman, M. Nabi-Abdolyousefi, and M. Mesbahi, “Controllability
and observability of network-of-networks via Cartesian products,” IEEE
Trans. Autom. Control, vol. 59, no. 10, pp. 2668–2679, Oct. 2014.

[26] S. Pequito, S. Kar, and A. P. Aguiar, “A framework for structural in-
put/output and control configuration selection in large-scale systems,”
IEEE Trans. Autom. Control, vol. 61, no. 2, pp. 303–318, Feb. 2016.

[27] A. Chapman and M. Mesbahi, “State controllability, output controllability
and stabilizability of networks: A symmetry perspective,” in Proc. IEEE
54th Conf. Decis. Control, 2015, pp. 4776–4781.

[28] S. S. Mousavi, M. Haeri, and M. Mesbahi, “On the structural and strong
structural controllability of undirected networks,” IEEE Trans. Autom.
Control, vol. 63, no. 7, pp. 2234–2241, Jul. 2018.

[29] S. S. Mousavi, M. Haeri, and M. Mesbahi, “Strong structural control-
lability of networks under time-invariant and time-varying topological
perturbations,” IEEE Trans. Autom. Control, vol. 66, no. 3, pp. 1375–1382,
Mar. 2021.

[30] C. Commault, J. van der Woude, and P. Frasca, “Functional target control-
lability of networks: Structural properties and efficient algorithms,” IEEE
Trans. Netw. Sci. Eng, vol. 7, no. 3, pp. 1521–1530, Jul./Sep. 2020.

[31] Z. Liu et al., “Minimal input selection for robust control,” in Proc. IEEE
56th Annu. Conf. Decis. Control, 2017, pp. 2659–2966.

[32] V. Tzoumas, M. A. Rahimian, G. J. Pappas, and A. Jadbabaie, “Minimal
actuator placement with bounds on control effort,” IEEE Trans. Control
Netw. Syst., vol. 3, no. 1, pp. 67–78, Mar. 2016.

[33] A. Olshevsky, “Minimal controllability problems,” IEEE Trans. Control
Netw. Syst., vol. 1, no. 3, pp. 249–258, Sep. 2014.
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