
 
 

Delft University of Technology

On a novel approach for the investigation and approximation of solutions to the systems
of higher order nonlinear PDEs

Marynets, Vasyl; Marynets, Kateryna; Kohutych, Oksana

DOI
10.1007/s00605-022-01771-5
Publication date
2022
Document Version
Final published version
Published in
Monatshefte fur Mathematik

Citation (APA)
Marynets, V., Marynets, K., & Kohutych, O. (2022). On a novel approach for the investigation and
approximation of solutions to the systems of higher order nonlinear PDEs. Monatshefte fur Mathematik, 200
(2023)(4), 835-848. https://doi.org/10.1007/s00605-022-01771-5

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1007/s00605-022-01771-5
https://doi.org/10.1007/s00605-022-01771-5


Monatshefte für Mathematik (2023) 200:835–848
https://doi.org/10.1007/s00605-022-01771-5

On a novel approach for the investigation and
approximation of solutions to the systems of higher order
nonlinear PDEs

Vasyl Marynets1 · Kateryna Marynets2 ·Oksana Kohutych1

Received: 7 March 2022 / Accepted: 3 September 2022 / Published online: 16 September 2022
© The Author(s) 2022

Abstract
We study a boundary value problem for a system of the third order semi-linear partial
differential equations with nonlocal boundary conditions. We establish sufficient con-
ditions of existence, uniqueness, regularity and sign-preserving property of solutions
of the studied problem and construct an iterative method for its approximation.

Keywords Vector-functions · Functional matrices · Non-local boundary conditions ·
Comparison functions · Integro-differential equations · Differential inequalities

Mathematics Subject Classification 35G30 · 35C15 · 35B05

1 Introduction

Mathematical modeling of the processes of water filtration through the double-layered
porous media [1], heat distribution in the heterogeneous environment [2], dampness
distribution in the soil [11] lead to a scalar linear differential equation (DE) of the
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form:

m(t, x)D(1.2)u(t, x) + α(t, x)D(1.1)u(t, x) + d(t, x)D(1.0)u(t, x)

+ η(t, x)D(0.2)u(t, x) + a(t, x)D(0.1)u(t, x) + b(t, x)u(t, x) = g(t, x), (1)

where D(i, j)u(t, x) = ∂ i+ j u(t,x)
∂ i t∂ j x

– denotes a mixed partial derivative of the function
u(t, x) of the order i with resprect to t and of the order j with respect to x , m(t, x),
α(t, x), d(t, x), η(t, x), a(t, x), b(t, x) and g(t, x) are given continuous functions in
the domain of consideration.

Questions of existence and uniqueness of solutions to the mixed problems for
the DE (1) under different local and nonlocal boundary conditions are studied in [5,
13, 14]. In [8, 9] the authors investigate and construct approximate solutions to the
boundary value problems (BVPs) in the case of systems of the third order semi-linear
DEs under local and nonlocal boundary constraints. Authors also obtain sufficient
conditions of existence and uniqueness of solutions to the studied BVPs, their sign-
preserving property and prove theorems about the differential inequalities.

The current paper is an extention of the results obtained in [8–10]. In particular,
we study a BVP for a system of the third order semilinear partial differential equa-
tions (PDEs) coupled with the nonlocal boundary condition of the Nakhushev type.
We construct a modification of the two-sided method to approximate a solution of
the studied problem. In addition, we essentially improve the sufficient existence and
uniqueness conditions for the solution, obtained earlier in [8, 9].

2 Problem setting and auxiliary statements

Let us study the following problem: in the space of functions C∗(D) := C (1.2)(D) ∩
C (1.1)(D), with D = {(t, x) : t ∈ (0, b), x ∈ (0, a)} find a solution to the BVP

L3U (t, x) = f
(
t, x,U (t, x), D(0.1)U (t, x)

)
:= f [U (t, x)] , (2)

where L3 is a differential operator defined by the differential expression

l3U (t, x) := D(1.2)U (t, x) + A1(t, x)D
(0.2)U (t, x) + A2(t, x)D

(1.1)(t, x),

U (t, x) := (ui (t, x)), f [U (t, x)] := ( fi [U (t, x)]), i = 1, n are vector-functions,

A2(t, x) :=
(
δi j a

(r)
i j (t, x)

)
, r = 1, 2, j = 1, n, are givenmatrices, δi j is theKronecker

symbol, and the boundary conditions

U (0, x) = T (x), x ∈ [0, a],
D(0.1)U (t, a) = �(t), t ∈ [0, b],∫ a

x0
D(1.0)U (t, x)dx = �(t), t ∈ [0, b], 0 ≤ x0 ≤ x ≤ a,

(3)

123



On a novel approach... 837

and T (x) := (τi (x)), �(t) := (ψi (t)), �(t) := (ωi (t)) are given vector-functions,
DkU : D → Dk ⊂ R

n , k = (k1, k2), with Dk being some bounded domains,
f : B → R

n , B = D × ∏
k1,k2 D(k1,k2) ⊂ R

2(n+1), k1 = 0, 1, k2 = 0, 1, 2.
From now on we assume that T (x) ∈ C2[0, a],�(t) ∈ C1[0, b], A2(t, x) ∈ C(D),

A1(t, x) ∈ C (0.1)(D),�(t) ∈ C[0, b], the right hand-side of the DE (2) f [U (t, x)] ∈
C(B) and the condition

T ′(a) = �(0) (4)

holds.

Lemma 1 If f [U (t, x)] ∈ C(B), T (x) ∈ C2[0, a], �(t) ∈ C1[0, b], A2(t, x) ∈
C(D), A1(t, x) ∈ C (0.1)(D), �(t) ∈ C[0, b], then the BVP (2) and the system of
integro-differential equations

U (t, x) = S(t, x) +
∫ t

0

{
LF[U (η, ζ )] − 1

a − x0

∫ a

x0
LF[U (η, ζ )]dx

}
dη (5)

are equivalent.
Here

S(t, x) := 1

a − x0

{∫ t

0
�(η)dη +

∫ a

x0
[T (x) − �(t, x)] dx

}
+ �(t, x),

�(t, x) := (φi (t, x)) ,

φi (t, x) :=
∫ x

a
τ ′
i (ξ)exp

(∫ 0

t
a(1)
i i (η, ξ)dη

)
dξ +

∫ x

a

∫ t

0

[
a(1)
i i (η, a)ψi (η) + ψ ′

i (η)
]
kii (ξ, t; a, η)dη dξ,

kii (x, t; ξ, η) := exp

(∫ ξ

x
a(2)
i i (η, τ )dτ +

∫ η

t
a(1)
i i (τ, x)dτ

)
,

F [U (t, x)] :=
(
fi [U (t, x)] + [a(1)

i i (t, x)a(2)
i i (t, x) + D(0.1)a(1)

i i (t, x)]D(0.1)ui (t, x)
)

,

LF [U (η, ζ )] :=
∫ a

x

∫ a

ξ
K (ξ, t; ζ, η)F[U (η, ζ )]dζdξ,

and
K (ξ, t; ζ, η) := (

δi j ki j (ξ, t; ζ, η)
)

(6)

is a matrix.

Obviously, S(t, x) ∈ C (2.1)(D) ∩ C (1.1)(D) and it satisfies all of the boundary
conditions (3). Moreover, using the Ansatz Z(t, x) := U (t, x) − S(t, x) in the BVP
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838 V. Marynets et al.

(2) we obtain a problem with already homogeneous boundary conditions (3). Hence,
without loss of generality we let T (x) = �(t) = �(t) = 0, or in other words that
S(t, x) = 0.

Definition 1 We say, that a vector-function F[U (t, x)] ∈ C3(B), if it satisfies the
following conditions:

1. F[U (t, x)] ∈ C(B);
2. in the space of vector-functions C (0.1)(B1), B1 ∈ R

2(2n+1), projxOt B1 = D
there exists a vector-function

H(t, x,U (t, x), D(0.1)U (t, x); V (t, x), D(0.1)V (t, x)) := H [U (t, x); V (t, x)] :=
(hi [U (t, x); V (t, x)]), i = 1, n

such that

• H [U (t, x); V (t, x)] ≡ F[U (t, x)];
• for arbitrary in C∗(D) pairs of functions U (t, x), V (t, x) ∈ B1 satisfying
conditions

D(0.k2)[U (t, x) − V (t, x)] ≥ (≤) 0, k2 = 0 (k2 = 1), (t, x) ∈ D1

in the domain B1 the inequality holds

H [U (t, x); V (t, x)] ≥ H [V (t, x);U (t, x)]; (7)

3. vector-function H [U (t, x); V (t, x)] satisfies the Lipschitz condition, i.e. for arbi-
trary in C∗(D) vector-functions Ur (t, x), Vr (t, x) ∈ B1, r = 1, 2 an inequality
holds:

| H [U1(t, x);U2(t, x)] − H [V1(t, x); V2(t, x)] | ≤

L
2∑

r=1

(
| Wr (t, x) + D(0.1)Wr (t,x) |

)
,

where Wr (t, x) := Ur (t, x) − Vr (t, x), r = 1, 2 and L is the Lipschitz matrix.

Remark 1 It is straightforward that if the vector-function F[U (t, x)] ∈ C(B) and its
first order partial derivatives with respect to all of its arguments starting from the third
one are bounded, then F[U (t, x)] is always in the space of functions C3(B). The
inverse statement is false.

3 Constructivemethod of investigation and approximation of
solutions to the BVP (2)

Let us first introduce the following notations:
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On a novel approach... 839

Wp(t, x) := Z p(t, x) − Vp(t, x), (t, x) ∈ D, p ∈ N0;
f p(t, x) := H [Z p(t, x); Vp(t, x)];
f p(t, x) := H [Vp(t, x); Z p(t, x)];
Ap(t, x) := Z p(t, x) − T1 f

p(η, ζ ) − T2 f p(η, ζ );
Bp(t, x) := Vp(t, x) − T1 f p(η, ζ ) − T2 f

p(η, ζ );
T1 f

p(η, ζ ) :=
∫ t

0
L f p(η, ζ )dη;

T2 f
p(η, ζ ) := − 1

a − x0

∫ t

0

∫ a

x0
L f p(η, ζ )dxdη,

F p(t, x) := (F p
i (t, x)), Fp(t, x) := (Fi,p(t, x)) — are vector-functions;

D(0.k2)Z∗
p(t, x) := D(0.k2)Z p(t, x) − Cp,k2(t, x)D

(0.k2)Wp(t, x);
D(0.k2)V ∗

p (t, x) := D(0.k2)Vp(t, x) + Qp,k2(t, x)D
(0.k2)Wp(t, x);

Cp,k2(t, x) := (δi, j ci,p,k2(t, x));
Qp,k2(t, x) := (δi, j qi,p,k2(t, x));

(8)

— are functional matrices with non-negative coefficients satisfying the estimates:

0 ≤ ci,p,k2(t, x) ≤ 0.5;
0 ≤ qi,p,k2(t, x) ≤ 0.5,

(t, x) ∈ D, k2 = 0, 1, i = 1, n; (9)

Fi,p(t, x) := hi [v1,p+1(t, x), . . . , vi−1,p+1(t, x), v
∗
i,p(t, x), . . . , v

∗
n,p(t, x);

z1,p+1(t, x), . . . , zi−1,p+1(t, x), z
∗
i,p(t, x), . . . , z

∗
n,p(t, x)];

F p
i (t, x) := hi [z1,p+1(t, x), . . . , zi−1,p+1(t, x), z

∗
i,p(t, x), . . . , z

∗
n,p(t, x);

v1,p+1(t, x), . . . , vi−1,p+1(t, x), v
∗
i,p(t, x), . . . , v

∗
n,p(t, x)];

Rp(t, x) := T1F
p(η, ζ ) + T2Fp(η, ζ );

Rp(t, x) := T1Fp(η, ζ ) + T2F
p(η, ζ );

Let us construct sequences of vector-functions according to formulas:

Z p+1(t, x) = Rp(t, x);
Vp+1(t, x) = Rp(t, x),

(10)

where for a zero approximation we take arbitrary in the space C (0.1)(D) vector-
functions Z0(t, x), V0(t, x) ∈ B1 satisfying conditions:

D(0.k2)W0(t, x) ≥ (≤) 0, D(0.k2)A0(t, x) ≥ (≤) 0,

D(0.k2)B0(t, x) ≤ (≥) 0, (t, x) ∈ D, k2 = 0 (k2 = 1).
(11)
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840 V. Marynets et al.

Definition 2 Arbitrary from C (0.1)(D) vector-functions Z0(t, x), V0(t, x) ∈ B satis-
fying conditions (11) are called the comparison functions to the BVP (2).

Note, that due to (9), (11) we have

D(0.k2)V0(t, x) ≤ (≥)D(0.k2)V ∗
0 (t, x) ≤ (≥)D(0.k2)Z∗

0(t, x) ≤ (≥)

D(0.k2)Z0(t, x), (t, x) ∈ D, k2 = 0 (k2 = 1),

and thus, D(0.k2)V ∗
0 (t, x), D(0.k2)Z∗

0(t, x) ∈ B1.
From (8), (10) we obtain:

D(0.k2)[Z p(t, x) − Z p+1(t, x)]
= D(0.k2){Ap(t, x) + T1[ f p(η, ζ ) − F p(η, ζ )] + T2[ f p(η, ζ ) − Fp(η, ζ )], }

D(0.k2)[Vp(t, x) − Vp+1(t, x)]
= D(0.k2){Bp(t, x) + T1[ f p(η, ζ ) − Fp(η, ζ )] + T2[ f p(η, ζ ) − F p(η, ζ )], }

(12)

D(0.k2)Wp+1(t, x) = D(0.k2)[Rp(t, x) − Rp(t, x)]
= D(0.k2){T1[F p(η, ζ ) − Fp(η, ζ )] + T2[Fp(η, ζ ) − F p(η, ζ )]}. (13)

D(0.k2)Ap+1(t, x) = D(0.k2){T1[F p(η, ζ ) − f p+1(η, ζ )]
+ T2[Fp(η, ζ ) − f p+1(η, ζ )]},

D(0.k2)Bp+1(t, x) = D(0.k2){T1[Fp(η, ζ ) − f p+1(η, ζ )]
+ T2[F p(η, ζ ) − f p+1(η, ζ )]}

(14)

Taking into account inequalities (7), (9), (11), from (12)–(14) in virtue of themethod
ofmathematical induction it is easy to check that if on every iteration step (10), (11) we
pick components of the matrices Cp,k2(t, x) and Qp,k2(t, x) such, that the conditions

D(0.k2)[Z p(η, ζ ) − Z p+1(η, ζ )] − Cp,k2(t, x)D
(0.k2)Wp(t, x) ≥ (≤)0,

D(0.k2)[Vp(η, ζ ) − Vp+1(η, ζ )] + Qp,k2(t, x)D
(0.k2)Wp(t, x) ≤ (≥)0,

(t, x) ∈ D, k2 = 0 (k2 = 1)

(15)

hold, then the constructed vector-functions D(0.k2)Z p(t, x), D(0.k2)Vp(t, x) satisfy the
inequalities:

D(0.k2)Vp(t, x) ≤ (≥)D(0.k2)Vp+1(t, x) ≤ (≥)

D(0.k2)Z p+1(t, x) ≤ (≥)D(0.k2)Z p(t, x),

D(0.k2)Ap(t, x) ≥ (≤) 0, D(0.k2)Bp(t, x) ≤ (≥) 0,

(t, x) ∈ D, p ∈ N, k2 = 0 (k2 = 1).

(16)
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On a novel approach... 841

Lemma 2 If the vector-function F[U (t, x)] ∈ C3(B), A1(t, x) ∈ C (0.1)(D),
A2(t, x) ∈ C(D), and in the domain B1 there exist comparison functions Z0(t, x),
V0(t, x) to the BVP (2), then the set of functional matrices Cp,k2(t, x) and Qp,k2(t, x),
satisfying conditions (15), is non-empty.

Proof Let us pick on every iteration step of (10), (11), (14) elements of the matrices
Cp,k2(t, x), Qp,k2(t, x) in the form

ci,p,k2(t, x) =
{
D(0.k2)αi,p(t, x)ρ

−1
i,p,k2

(t, x), D(0.k2)wi,p(t, x) �= 0,
0, D(0.k2)wi,p(t, x) = 0,

(17)

qi,p,k2(t, x) =
{−D(0.k2)βi,p(t, x)ρ

−1
i,p,k2

(t, x), D(0.k2)wi,p(t, x) �= 0,
0, D(0.k2)wi,p(t, x) = 0,

(18)

ρi,p,k2(t, x) := D(0.k2)[αi,p(t, x) − βi,p(t, x) + wi,p(t, x)],
(t, x) ∈ D, k2 = 0 (k2 = 1), p ∈ N.

Obviously, such non-negative functions ci,p,k2(t, x), qi,p,k2(t, x) satisfy conditions
(9), and, due to (16), also the inequalities

D(0.k2)[Z p(t, x) − Z p+1(t, x)] − Cp,k2(t, x)D
(0.k2)Wp(t, x)

= D(0.k2){Ap(t, x) + T1[ f p(η, ζ ) − F p(η, ζ )] + T2[ f p(η, ζ ) − Fp(η, ζ )]}
− Cp,k2(t, x)D

(0.k2)Wp(t, x) ≥ (≤)D(0.k2)Ap(t, x) − Cp,k2(t, x)D
(0.k2)Wp(t, x)

= (E − Pp,k2(t, x))D
(0.k2)Ap(t, x) ≥ (≤) 0,

where Pp,k2(t, x) :=
(
δi j D(0.k2)wi,p(t, x)ρ

−1
i,p,k2

(t, x)
)
is a matrix, and

D(0.k2)[Vp(t, x) − Vp+1(t, x)] + Qp,k2(t, x)D
(0.k2)Wp(t, x) ≤ (≥)

(E − Pp,k2(t, x))D
(0.k2)Bp(t, x) ≤ (≥) 0.

The obtained inequalities prove the lemma. �
Theorem 1 Let F[U (t, x)] ∈ C3(B), A1(t, x) ∈ C (0.1)(D), A2(t, x) ∈ C(D) and in
the domain B1 there exist comparison functions Z0(t, x), V0(t, x) to the BVP (2).

Then the vector-functions D(0.k2)Z p(t, x), D(0.k2)Vp(t, x), constructed according
to the iteration scheme (10), (11), (14), satisfy in the domain B1 the inequalities (16),
for all (t, x) ∈ D and p ∈ N.

Let us show that the constructed sequences of vector-functions {D(0.k2)Z p(t, x)},
{D(0.k2)Vp(t, x)} uniformly converge to the same limit, that is a solution to the system
of integro-differential equations (5). In virtue of (16) it is sufficient to show that

lim
p→∞ D(0.k2)Wp(t, x) = 0.
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Proof Denote by

‖W0(t, x)‖C(0.1)(D) := max
i=1,n

sup
D

(
| wi,0(t, x) |+ | D(0.1)wi,0(t, x) |

)
≤ d;

‖L‖ := 0.5l;
max
i=1,n

sup
D×D

ki,i (x, t; ξ, η) ≤ K ;

‖E − Cp,k2(t, x) − Qp,k2(t, x)‖ := γp,k2;
max
p,k2

:= γ ≤ 1.

From (13) follows that

| ωi,p+1(t, x) |

≤ Klγ
∫ t

0

{∫ a

x

∫ a

ξ

n∑
i=1

[
| wi,p(η, ζ ) |+ | D(0.1)wi,p(η, ζ ) |

]
dζdξ

+ 1

a − x0

∫ a

x0

∫ a

x

∫ a

ξ

n∑
i=1

[
| wi,p(η, ζ ) |+ | D(0.1)wi,p(η, ζ ) |

]
dζdξdx

}
dη,

| D(0.1)wi,p+1(η, ζ ) |

≤
∫ t

0

∫ a

x
Klγ

n∑
i=1

[
| wi,p(η, ζ ) |+ | D(0.1)wi,p(η, ζ ) |

]
dζdη.

(19)
From (19) using the mathematical induction method we obtain the estimates:

| D(0.1)wi,p(t, x) | ≤ (At)p

p! 0.5d;
A = Klγρn;

1

2
ρ = sup

(
a,

a2

2

(
1 + a

3

))
,

for all p ∈ N, i = 1, n, (t, x) ∈ D.

Thus,

‖D(0.1)Wp(t, x)‖C(0.k2)(D) ≤ (Ab)p

p! 0.5d. (20)

From the estimates (20) it follows that

lim
p→∞ D(0.k2)Wp(t, x) = 0,

i.e.,

lim
p→∞ D(0.k2)Z p(t, x) = lim

p→∞ D(0.k2)Vp(t, x) = D(0.k2)U (t, x).

123
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It is easy to check that the limit vector-functionU (t, x) is the solution to the integro-
differential system (5) and hence, to the BVP (2).

Theorem 2 Let conditions of the Theorem 1 to be hold. Then the sequences of vector-
functions {Z p(t, x)}, {Vp(t, x)} constructed by (10), (11), (14) in the domain B1:

1. uniformly converge to the unique regular solution of the BVP (2) for (t, x) ∈ D;
2. estimates (20) hold;
3. in the domain B1 inequalities

D(0.k2)Vp(t, x) ≤ (≥)D(0.k2)Vp+1(t, x) ≤ (≥)D(0.k2)U (t, x) ≤ (≥)

D(0.k2)Z p+1(t, x) ≤ (≥)D(0.k2)Z p(t, x), (t, x) ∈ D, k2 = 0 (k2 = 1); (21)

hold;
4. convergence of the method (10), (11), (14) is not slower than the convergence of

the Picard method.

Proof Let

Z p+1(t, x) = T1 f
p(η, ζ ) + T2 f p(η, ζ );

V p+1(t, x) = T1 f p(η, ζ ) + T2 f
p(η, ζ ).

One can prove the uniqueness of solution to the BVP (2) and the inequality (21) by
contradiction. For a detailed proof we refer to (Marynets et. al. 2019).

Let us prove statement 4 of the theorem. For this purpose assume, that Z p(t, x) and
Vp(t, x) are the comparison vector-functions of the problem (2). Then

Z p+1(t, x) − Z p+1(t, x) = T1
[
f p(η, ζ ) − F p(η, ζ )

] + T2
[
f p(η, ζ ) − Fp(η, ζ )

]
.

In virtue of the inequalities (7) and (9)

f p(t, x) − F p(t, x) ≥ 0,

f p(t, x) − Fp(t, x) ≤ 0

and thus,

Z p+1(t, x) − Z p+1(t, x) ≥ 0.

Analogically we obtain that

V p+1(t, x) − Vp+1(t, x) ≤ 0.

Hence,

V p+1(t, x) ≤ Vp+1(t, x) ≤ Z p+1(t, x) ≤ Z p+1(t, x).

The last inequality finishes the proof.
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Remark 2 1. Functions Z p(t, x) andVp(t, x) satisty thefirst twoboundary conditions
in (3) and

∫ a

x0
D(1.0)Z p(t, x)dx = D(1.0)

∫ t

0

∫ a

x0
L[F p−1(η, ζ ) − Fp−1(η, ζ )]dxdη

= −
∫ a

x0
D(1.0)Vp(t, x)dx .

2. Since for the p-th approximation to the exact solution we take the vector-function

Ũp(t, x) = 1

2
[Z p(t, x) + Vp(t, x)],

then Ũp(t, x) will satisfy all boundary conditions in (3).
3. It isworthmentioning that someapproches for construction of the iterativemethods

with the improved convergence in the case of the operator equationswere studied in
[6, 7]. Similar results for different classes of problems in the theory of differential
equations were also obtained in [3, 4, 12].

Corollary 1 If the vector-function F[U (t, x)] ∈ C3(B), matrices A1(t, x) ∈
C (0.1)(D), A2(t, x) ∈ C(D), and in the space C∗(D) there exists such vector-function
V0(t, x) (Z0(t, x)) ∈ B1 that

D(0.k2) {−T1H [0; V0(η, ζ )] − T2H [V0(η, ζ ); 0]} ≥ (≤) 0;
D(0.k2)V0(t, x) ≤ (≥) 0;

D(0.k2) {−T1H [V0(η, ζ ); 0] − T2H [0; V0(η, ζ ) + V0(t, x)]} ≤ (≥) 0;
k2 = 0 (k2 = 1)⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

D(0.k2) {Z0(t, x) − T1H [Z0(η, ζ ); 0] − T2H [0; Z0(η, ζ )]} ≥ (≤) 0;

D(0.k2) {−T1H [0; Z0(η, ζ )] − T2H [Z0(η, ζ ); 0]} ≤ (≥) 0;

D(0.k2)Z0(t, x) ≥ (≤) 0;

k2 = 0 (k2 = 1),

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

then solution to the BVP (2) with the homogeneous boundary conditions (3) satisfies
the inequalities:

D(0.k2)U (t, x) ≤ (≥) 0

(D(0.k2)U (t, x) ≥ (≤) 0),

k2 = 0 (k2 = 1) (t, x) ∈ D.

Together with the BVP (2) we consider the following problem:

L3Z(t, x) = f1(t, x, Z(t, x), D(0.1)(t, x)) := f1[Z(t, x)]. (22)
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From now on we assume, that the right hand-sides of the problems (2) and (22)
satisfy conditions below:

1. f [U (t, x)] ∈ C3(B);
2. vector-function f1[Z(t, x)] ∈ C(B), and in the domain B it has bounded first

order partial derivatives with respect to Z(t, x) and D(0.1)Z(t, x), i.e.,

∂ f1,i [Z(t, x)]
∂z j (t, x)

:= b(0)
i, j (t, x) < ∞;

∂ f1,i [Z(t, x)]
∂D(0.1)z j (t, x)

:= b(1)
i, j (t, x) < ∞,

satistying conditions:

b(0)
i, j (t, x) ≥ 0,

b(1)
i, j (t, x) + δi, j

[
D(0.1)a(1)

i, j (t, x) + a(1)
i, j (t, x)a

(2)
i, j (t, x)

]
≤ 0;

(23)

3. for an arbitrary vector-function V (t, x) ∈ B from the space C (0.1)(D) it holds that

f1[V (t, x)] ≥ (≤) f [V (t, x)]. (24)

Theorem 3 Assume, that the matrices A1(t, x) ∈ C (0.1)(D), A2(t, x) ∈ C(D), the
right hand-sides of the problems (2), (22) satisfy conditions (1)–(3) above, and in the
domain B1 there exist the comparison vector-functions to the BVP (2), (22).

Then for the solutions of these problems the inequalities

U (t, x) ≤ (≥)Z(t, x).

hold, where (t, x) ∈ D.

Proof According to the Theorem 2 solutions to the BVP (2), (22) exist, are unique and
regular. Thus, by putting W (t, x) := Z(t, x) −U (t, x) and applying the Mean Value
Theorem, we get [10]

L3W (t, x) = A3(t, x)W (t, x) + A4(t, x)D
(0.1)W (t, x) + A5(t, x), (25)

where A3(t, x) :=
(
b̃(0)
i, j (t, x)

)
, A3(t, x) :=

(
b̃(1)
i, j (t, x)

)
, i, j = 1, n are matrices,

b̃(k2)
i, j (t, x) are derivatives of b(k2)

i, j (t, x) for some fixed D(0.k2)Z(t, x) ∈ B, k2 = 0, 1,
and due to (24)

A5(t, x) := f1[U (t, x)] − f [U (t, x)] ≥ (≤) 0. (26)
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It is straightforward that the vector-function satisfies the homogeneous boundary
conditions (3) and

F[W (t, x)] :=
[
A4(t, x) + D(0.1)A1(t, x) + A1(t, x)A2(t, x)

]
D(0.1)W (t, x)+

A3(t, x)W (t, x) + A5(t, x),
(27)

i.e., in virtue of (23) F[W (t, x)] ≡ H [W (t, x); 0] and

F[0] ≥ (≤) 0, (t, x) ∈ D. (28)

Taking into account (26)–(28) and due to the Corollary 1 solution of the system
(25) satisfies the inequalities:

D(0.k2)W (t, x) ≥ (≤) 0 (D(0.k2)W (t, x) ≤ (≥) 0), k2 = 0 (k2 = 1), (t, x) ∈ D.

This completes the proof.

4 Example

Let us consider an illustrative example: in the space of functions C∗(D0),

D0 = {(t, x) | t ∈ (0, 1), x ∈ (0, 1)} ,

find a solution to a scalar differential equation

D(1.2)U (t, x) − t(1 + 0, 5t2)−1D(0.2)U (t, x) − (1 + x)−1D(1.1)U (t, x)

= (1 + x)(1 + 0, 5t2)[U 3(t, x) + 0, 1t x]
− t[(1 + x)(1 + 0, 5t2)]−1D(0.1)U (t, x),

(29)

coupled with the boundary conditions of the form:

U (0, x) = 0, x ∈ [0, 1],

D(0.1)U (t, 1) = 0,
∫ 1

0,5
D(1.0)U (t, ξ)dξ = 0, t ∈ [0, 1]. (30)

Note, that in the case of non-homogeneous boundary conditions they can always
be reduced to the homogeneous ones.

For the BVP (29), (30) the kernel K (x, t; ξ, η), defined in (6), is given by

K (x, t; ξ, η) = (1 + x)(1 + 0, 5t2)

(1 + ξ)(1 + 0, 5η2)
.
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Table 1 Comparison characteristics Cp,k2 (t, x), Qp,k2 (t, x) of the iterative method (10)

N / p Cp,k2 (t, x) = 0, Qp,k2 (t, x) = 0, Cp,k2 (t, x) �= 0, Qp,k2 (t, x) �= 0,
sup
D0

∣∣Wp(t, x)
∣∣ sup

D0

∣∣Wp(t, x)
∣∣

0 1, 4 0, 75

1 1, 8 · 10−2 8, 5 · 10−3

2 0, 1 · 10−6 0, 6 · 10−7

For the comparison functions of the studied problem (29), (30), we take the fol-
lowing:

Z0(t, x) = (1 + 0, 5t2)t

(
95

192
− 0, 5x + 1

6
x3

)
,

V0(t, x) = (1 + 0, 5t2)t

(
− 95

192
+ 0, 5x − 1

6
x3

)
.

Obviously, W0(t, x) ≥ 0, D(0.1)W0(t, x) ≤ 0, (t, x) ∈ D0.
Let us now implement the iterative method (10) for the BVP (29), (30) in the case

of particlular values of Cp,k2(t, x), Qp,k2(t, x), defined by (17), (18), which are here
just scalar functions.

The comparison characteristics of our computations are given in the Table 1.
From the results, presented in the table, follows that the convergence of the iterative

method (10) in governed by Cp,k2(t, x) and Qp,k2(t, x). Depending on their choice
we can obtain different modifications to the considered method.

As one can see, already on the second iteration step we are able to obtain an
approximate solution to the BVP (29), (30) with a very high precision. This solution
is given by

Ũ2(t, x) = 1

2
[Z2(t, x) + V2(t, x)]

= 0, 5 · 10−2t2(1 + 0, 5t2)(1, 25x4 + 1, 67x3 − 2, 5x2 − 5x + 3, 9) + O(10−7).

If necessary, one can continue the iteration process and construct further approx-
imations to the exact solution with an even higher precision than those, obtained on
the second iteration step.
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