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Abstract. We want to find the convex combination S of iid Bernoulli random variables that max-
imizes P(S ≥ t) for a given threshold t. Endre Csóka conjectured that such an S is an average if
t ≥ p, where p is the success probability of the Bernoulli random variables. We prove this conjecture
for a range of p and t.

1. Introduction

We study tail probabilities of convex combinations of iid Bernoulli random variables. More
specifically, let β1, β2, . . . be an infinite sequence of independent Bernoulli random variables with
success probability p, and let t ≥ p be a real number. We consider the problem of maximizing
P(
∑
ciβi ≥ t) over all sequences c1, c2, . . . of non-negative reals such that

∑
ci = 1. By the weak

law of large numbers, the supremum of P(
∑
ciβi ≥ t) is equal to 1 if t < p. That is why we

restrict our attention to t ≥ p. As a motivating example, consider a venture capitalist who has a
certain fortune f to invest in any number of startup companies. Each startup has an (independent)
probability p of succeeding, in which case it yields a return r on investment. If the capitalist divides
f into a (possibly infinite!) sequence fi of investments, then the total return is

∑
rfiβi. Suppose

the capitalist wants to maximize the probability that the total return reaches a threshold d. Then
we get our problem with t = d

rf .
The problem has a how-to-gamble-if-you-must flavor as in Dubins and Savage (1965): the capi-

talist places stakes ci on a sequence of simultaneous bets. There is no need to place stakes higher
than t. The way to go all out, i.e., bold play, is to wager t on b1

t c bets, but this is not a convex
combination. That is why we say that placing stakes 1

k on k bets with k = b1
t c is bold play. In
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a convex combination
∑
ciβi we order c1 ≥ c2 ≥ c3 ≥ . . .. We denote the sequence (ci) by γ and

write Sγ =
∑
ciβi. We study the function

π(p, t) = sup {P (Sγ ≥ t) | γ} (1.1)

for 0 ≤ p ≤ t ≤ 1. It is non-decreasing in p and non-increasing in t. The following has been
conjectured by Csóka, in analogy of some well-known open problems in combinatorics:

Conjecture 1.1 (Csóka (2015)). For every p and t there exists a k ∈ N such that π(p, t) is realized
by ci = 1

k if i ≤ k and ci = 0 if i > k for some k ∈ N. In other words, the maximal probability is
realized by an average.

If the conjecture is true, then π(p, t) is a binomial tail probability and we still need to determine
the optimal k. Numerical results of Csóka suggest that bold play is optimal for most parameter
values. We are able to settle the conjecture for certain parameter values, as illustrated in Figure 1.1
below. It is natural to expect, though we are unable to prove this, that a gambler becomes bolder

Figure 1.1. The shaded region represents all (p, t) for which we are able to settle
the conjecture. In all these cases bold play is optimal. Our results can be divided
into three parts: favorable odds p > 1

2 , high threshold t ≥ 1
2 , and unfavorable odds

p < 1
2 .

if the threshold goes up or if the odds go down. In particular, if p′ ≤ p and t′ ≥ t and if bold play
is optimal for (p, t), then it is natural to expect that bold play is optimal for (p′, t′) as well. This is
clearly visible in Figure 1.1, in which the shaded area represents points at which bold play is optimal.
The shaded area is a union of rectangles with lower right vertices ( k

k+1 ,
k
k+1) and ( 1

2k+1 ,
1

k+1) for
k ∈ N, which are all points of bold play.

Our paper is organized as follows. We first lay the groundwork by analyzing properties of π(p, t)
and prove that the supremum in equation 1.1 is a maximum. Our analysis of the shaded region
in Figure 1.1 is divided into three parts: odds greater than one, threshold greater than half, odds
smaller than one. In the final section we recall an old result on binomial probabilities which would
imply that (assuming Csóka’s conjecture holds and bold play is stable in the sense that we just
explained) bold play is optimal if p ≤ 1

n ≤ t for all n ∈ N.
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2. Related conjectures and results

According to Csóka’s conjecture, if the coin is fixed and the stakes vary, then the maximum
tail probability is attained by a (scaled) binomial. If the stake is fixed and the coins vary, then
Chebyshev already showed that the maximum probability is attained by a binomial:

Theorem 2.1 (Tchebichef (1846)). For a given s and l, let Z = β1 + · · · + βl be any sum of l
independent Bernoullis such that E[Z] = s. Then P(Z ≥ t) is maximized by Bernoullis for which
the success probabilities assume at most three different values, only one of which is distinct from 0
and 1. In particular, the maximum P(Z ≥ t) is a binomial tail probability.

Samuels considered a situation in which the gambler does not necessarily select coins, but may
choose any non-negative random variable. He conjectured that coins remain a gambler’s best bet.

Conjecture 2.2 (Samuels (1966)). Let 0 ≤ c1 ≤ · · · ≤ cl have sum
∑l

i=1 ci < 1. Consider
supP(X1 + · · · + Xl ≥ 1) over all collections of l independent non-negative random variables such
that E[Xi] = ci. This supremum is a maximum which is attained by Xj = cj for j ≤ k and
Xj = (1 − b)βj for j > k, where k is an integer, the βj are Bernoulli random variables, and
b =

∑k
i=1 ci. In other words, the gambler accumulates b from the small constants before switching

to bold play.

If one assumes that Conjecture 2.2 holds, then one still needs to determine the optimal switching
index k. If c1 = . . . = cl = 1

l+1 then the optimal k is equal to zero Alon et al. (2012) and the
supremum is a binomial tail probability. This implies that another well-known conjecture is a
consequence of Samuels’ conjecture, see also Paulin (2017).

Conjecture 2.3 (Feige (2006)). For all collections of l independent non-negative random variables
such that E[Xi] ≤ 1 it is true that

P(X1 + · · ·+Xl < l + 1) ≥ 1

e
.

As a step towards solving this conjecture, Feige proved the remarkable theorem that there exists
a δ > 0 such that P(X1 + · · · + Xl < E[Sl] + 1) ≥ δ, where Sl = X1 + . . . + Xl. His original value
of δ = 1

13 has been improved gradually. The current best result is 0.1798 by Guo et al Guo et al.
(2020).

3. Properties of π(p, t)

We say that a sequence γ is finite if ci = 0 for all but finitely many i, and infinite otherwise.

Proposition 3.1. π(p, t) = sup {P (Sγ ≥ t) | γ is finite}

Proof : According to Jessen and Wintner’s law of pure type Breiman (1968, Theorem 3.5), either
P(Sγ = s) = 0 for each s ∈ R or there exists a countable set C such that P(Sγ ∈ C) = 1. In other
words, the random variable Sγ is either non-atomic or discrete. If X and Y are independent, and
if X is non-atomic, then the convolution formula implies that X + Y is non-atomic.

Suppose that γ is infinite. We prove that Sγ is non-atomic. Let (cij ) be a subsequence such that
cij > 2

∑∞
k=j+1 cik . Let I be the set of all ij and let J be its complement. Then both SI =

∑
I ciβi

and SJ =
∑

J ciβi are either discrete or non-atomic. By our choice of cij , SI has the property that
its value determines the values of all βi for i ∈ I. This implies that SI is non-atomic. Therefore,
Sγ = SI + SJ is non-atomic. In particular P(Sγ ≥ t) = P(Sγ > t) if γ is infinite.

Denote a truncated sum by Sγ,n =
∑

i≤n ciβi. By monotonic convergence we have that
P (Sγ > t) = limn→∞ P(Sγ,n > t). Therefore, for any infinite γ, P(Sγ ≥ t) can be approximated by
tail probabilities of finite convex combinations. �
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The function π(p, t) is defined on a region bounded by a rectangular triangle. It is easy to compute
its value on the legs of the triangle: π(0, t) = 0 and π(p, 1) = p. It is much harder to compute the
value on the hypothenuse.

Proposition 3.2. 1
2 < π(p, p) < 1 if 0 < p < 1.

Proof : By Proposition 3.1 we may restrict our attention to finite γ. We follow the proof of Arieli
et al. (2020, Lemma 1). The following Paley-Zygmund type inequality for random variables of zero
mean was proved in He et al. (2008, Lemma 2.2) and extended in He et al. (2010):

P(X < 0) ≥
(

2
√

3− 3
) E[X2]2

E[X4]
.

Applying this to Sγ − p we have

P(Sγ < p) ≥
(

2
√

3− 3
) E[(Sγ − p)2]2

E[(Sγ − p)4]
.

The second moment of Sγ − p is equal to p(1− p)
∑
c2
i and the fourth moment is equal to

3p2(1− p)2
∑
i 6=j

c2
i c

2
j + (p(1− p)4 + p4(1− p))

∑
c4
i

This can be bounded by

max

(
3,

1

p(1− p)
− 3

)
p2(1− p)2

(∑
c2
i

)2
.

The Paley-Zygmund type inequality produces a lower bound on P(Sγ < p). Its complementary
probability π(p, p) is bounded by:

π(p, p) ≤ 1− 2
√

3− 3

max
(

3, 1
p(1−p) − 3

) . (3.1)

It is possible to improve on this bound for small p. We write Sγ = c1β1 + S so that

P(Sγ < p) ≥ P(β1 = 0)P(S < p) = (1− p)P(S < p).

Since γ is finite, S is a finite sum and we can apply Feige’s theorem.

P(S < E[S] + pc1) = P (S/pc1 < E[S/pc1] + 1) ≥ δ

. Applying the best current bound 0.1798 of Guo et al. (2020) we find

π(p, p) ≤ 0.8202 + 0.1798p. (3.2)

We now have two upper bounds 3.1 and 3.2 on π(p, p). The first is more restrictive for large p and
the second is more restrictive for small p.

A lower bound follows from bold play. Let k ∈ N be such that 1
k+1 < p ≤ 1

k . If S̄k is the average
of k ≥ 1 Bernoullis, then P(S̄k ≥ p) = P(S̄k ≥ 1

k ) = 1− (1− p)k > 1− (1− 1
k+1)k. This is minimal

and equal to 1
2 if k = 1. �

Csóka conjectures that the tail probability P(Sγ ≥ t) is maximized by an average of n Bernoulli
random variables for an optimal n. In particular, the conjecture implies that the supremum in
equation 1.1 is a maximum. We are able to prove this if p < t.

Theorem 3.3. If p < t then π(p, t) = P(Sγ ≥ t) for some γ. Furthermore, π(p, t) is left-continuous
in t.



Optimizing stakes in simultaneous bets 157

Figure 3.2. Bounds on π(p, p) for 0 ≤ p ≤ 1. The upper bounds follow from the
Paley-Zygmund inequality and Feige’s theorem. The lower bound (red) follows from
bold play. If Feige’s conjecture holds, then the (black) upper bound would meet the
lower bound at p = 0 in this figure. In corollary 5.2 we find π(1

2 ,
1
2) = 3

4 , which is on
the zigzag graph for the lower bound. If Conjecture 1.1 is correct, then Theorem 7.1
implies that bold play is optimal for p = t = 1

n for all n. These are the tops of the
zigzag.

Proof : We write π(p, t−) = lims↑t π(p, s). Since π(p, t) is decreasing in t, it suffices to show that
there exists an Sγ such that P(Sγ ≥ t) ≥ π(p, t−). Let γn = (cn,i)i be such that P(Sγn ≥ tn)
converges to π(p, t−) for an increasing sequence tn ↑ t. Since we may replace the sequence (γn)
by any subsequence, we may assume that (cn,i)n is convergent for each fixed i, by the standard
diagonal argument. Let ci = limn→∞ cn,i and let γ = (ci)i. Then γ is a non-increasing sequence
which adds up to

∑
ci = 1 − c ≤ 1 for some c. Observe that γ cannot be the all zero sequence,

since this would imply that cn,1 → 0 and Var(Sγn) = p(1 − p)
∑
c2
n,i ≤ p(1 − p)cn,1 → 0, so Sγn

converges to p in distribution. Since we limit ourselves to p < t, this means that P(Sγn ≥ t) → 0
which is nonsense. Therefore, 1− c > 0.

We first prove that π(p, t−) ≤ P(Sγ ≥ t − cp). Fix an arbitrary ε > 0. Let i0 be such that∑
j≥i0 cj <

ε
4 and ci0 < ε4. Let n0 be such that

∑
j≤i0 |cn,j − cj | <

ε
4 and cn,i0 < ε4 for all n ≥ n0.

Now
{Sγn ≥ tn} ⊂

{∑
j≤i0 cn,jβj ≥ tn − cp− ε

} ⋃ {∑
j≥i0 cn,jβj ≥ cp+ ε

}
so by our assumptions

{Sγn ≥ tn} ⊂
{∑

j≤i0 cjβj ≥ tn − cp− 2ε
} ⋃ {∑

j≥i0 cn,jβj ≥ cp+ ε
}

⊂ {Sγ ≥ tn − cp− 2ε}
⋃
{Tn ≥ cp+ ε}

where we write Tn =
∑

j≥i0 cn,jβj . Observe that

E[Tn] = E[Sγn ]− p
∑

j<i0
cn,j < p− p

(∑
j<i0

cj − ε
4

)
< p− p

(
1− c− ε

2

)
< pc+ ε

2

and
Var(Tn) = p(1− p)

∑
j≥i0

c2
n,j ≤ cn,i0

∑
j≥i0

cn,j < ε4.
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By Chebyshev’s inequality, we conclude that P (Tn ≥ cp+ ε) < ε for sufficiently small ε. It follows
that

P(Sγn ≥ tn) ≤ P (Sγ ≥ tn − cp− 2ε) + ε.

By taking limits n→∞ and ε→ 0 we conclude that

π(p, t−) ≤ P (Sγ ≥ t− cp) .

Let γ̄ = 1
1−cγ. Then Sγ̄ = 1

1−cSγ is a convex combination such that

P (Sγ̄ ≥ t) = P (Sγ ≥ (1− c)t) ≥ P (Sγ ≥ t− cp) ≥ π(p, t−).

Therefore, π(p, t) = P(Sγ̄ ≥ t) and these inequalities are equalities. In particular, π(p, t−) = π(p, t)
so that this function is left-continuous in t. �

We now more or less repeat this proof to show that π(p, t) is continuous in p. Since we need to
vary p, we write βp for a Bernoulli with success probability p and Spγ =

∑
ciβ

p
i .

Theorem 3.4. π(p, t) is continuous in p.

Proof : For any ε > 0 choose a finite γ such that P(Spγ ≥ t) ≥ π(p, t)− ε. If pn converges to p then
βpn converges to βp in probability. Since γ is finite

lim sup
n→∞

π(pn, t) ≥ lim
n→∞

P(Spnγ ≥ t) = P(Spγ ≥ t) ≥ π(p, t)− ε.

It follows that lim supn→∞ π(pn, t) ≥ π(p, t) for any sequence pn → p. Since π(p, t) is increasing
in p, it follows that π(p, t) is left-continuous in p.

We need to prove right continuity, i.e., π(p+, t) = π(p, t). This is trivially true on the hypothenuse,
because this is the right-hand boundary of the domain. Consider p < t. Let pn ↓ p and γn be such
that limn→∞ P(Spnγn ≥ t) = π(p+, t). By the standard diagonal argument we may again assume
that the γn converge coordinatewise to a sequence γ, which may not sum up to one. It cannot
be the all zero sequence, i.e., not all entries in γ can be zero, by the same argument as in the
proof of Theorem 3.3. The sequence γ therefore sums up to 1 − c for some 0 ≤ c < 1. Again, we
split Spγ = H + T where H =

∑
j≤i0 cjβ

p
j and T =

∑
j>i0

cjβ
p
j . We choose i0 such that E[T ] < ε

4

and ci0 < ε4. Similarly, Sγn = Hn + Tn where Hn converges to H in probability, E[Tn] < pc + ε
2

and Var(Tn) < ε4 for sufficiently large n. As in the previous proof, Chebyshev’s inequality and
convergence in probability imply that

P(Spnγn ≥ t) ≤ P(Hn ≥ t− cp− ε) + ε ≤ P(H ≥ t− cp− 2ε) + ε.

for sufficiently large n. By taking limits n→∞ and ε→ 0 it follows that π(p+, t) ≤ P(Spγ ≥ t− cp).
If we standardize γ to a sequence γ̄ so that we get a convex combination, we again find that
π(p+, t) ≤ P(Spγ̄ ≥ t). �

4. Favorable odds

We consider 1
2 ≤ p < t. In this case, bold play comes down to a single stake c1 = 1. The

approach from this point on is combinatorial and we introduce some notation and notions from
combinatorial set theory. We say that I ⊂ Z/nZ is an interval of length a < n if I = [b, b + a) =
{b, b+ 1, . . . , b+ a− 1}, where addition is modulo n. We say that b is the initial element of I and
we say that two intervals I and J are separate if I ∪ J is not an interval. Note that if I and J are
disjoint, then they need not be separate. We denote the cardinality of a set by |S|. In particular,
|I| = a if I is an interval of length a. If F is a family of sets, then we write

⋃
F for the union of all

these sets. Two families F and G are cross-intersecting if I ∩ J 6= ∅ for all I ∈ F and J ∈ G.

Lemma 4.1. Let F be a family of k intervals of length a in Z/nZ such that
⋃
F is a proper subset

of Z/nZ. Then |
⋃
F| ≥ k + a− 1.
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Proof : By our assumption
⋃
F is a union of, say, c ≥ 1 separate intervals, all of lengths ≥ a. Any

interval of length b ≥ a contains b− (a− 1) intervals of length a. Since
⋃
F consists of c separate

intervals, it follows that it contains |
⋃
F|− c(a−1) intervals of length a. The k elements of F must

be among them, and it follows that |
⋃
F| − c(a− 1) ≥ k. �

Lemma 4.2. Let F be a family of k intervals of length k in Z/nZ. Let G be a family of intervals
of length a ≤ n− k such that F and G are cross-intersecting. Then |G| ≤ a.
Proof : Let I = [b, b + k) be any element in F . An interval [c, c + a) intersects I if and only if
c ∈ [b−a+ 1, b+ k), which is an interval of length k+a− 1. Therefore, the set I of initial elements
c of intervals in G is contained in an intersection of k intervals of length k+ a− 1. The complement
of I thus contains a union of k intervals of length n− k− a+ 1. By the previous lemma, this union
has cardinality ≥ n− a. Therefore, I contains at most a elements. �

Lemma 4.3. Let (V, µ) be a finite measure space such that µ(V ) = b and let Vi ⊂ V for i = 1, . . . , k
be such that µ(Vi) ≥ t. Then µ (

⋂
Vi) ≥ kt− (k − 1)b.

Proof :
µ
(⋂

Vi

)
= b− µ

(⋃
V c
i

)
≥ b−

∑
(b− µ(Vi)) ≥ kt− (k − 1)b.

�

Theorem 4.4. If k
k+1 < p ≤ k+1

k+2 < t for some positive integer k, then bold play is optimal.

Proof : Bold play has success probability p. Therefore, we need to prove that P(Sγ ≥ t) ≤ p for
arbitrary γ. By Proposition 3.1 we may assume that γ is finite. It suffices to prove that P(Sγ ≥ t) ≤ p
for rational p, since π(p, t) is monotonic in p.

Let n be the number of non-zero ci in γ and let p = a
b . Let Xi be a sequence of n independent

discrete uniform U{0, b− 1} random variables, i.e, Xi = c for c ∈ {0, . . . , b− 1} with probability 1
b .

Let B0
i = 1[0,a)(Xi) for 1 ≤ i ≤ n. Then Sγ and Y 0 =

∑
ciB

0
i are identically distributed. Think of

ciB
0
i as an assignment of weight ci to a random element in {0, . . . , b− 1} = Z/bZ. Let `(j) be the

sum of the coefficients – the load – that is assigned to j ∈ Z/bZ. Then Y 0 = `(0) + · · ·+ `(a− 1),
i.e., Y 0 is the load of [0, a). Instead of [0, a) we might as well select any interval [j, j + a) ⊂ Z/bZ.
If Y j is the load of [j, j + a), then Sγ ∼ Y j , and P(Sγ ≥ t) = 1

b

∑
P(Y j ≥ t). We need to prove

that
∑

P(Y j ≥ t) ≤ a.
Let Ω be the sample space of the Xi. For ω ∈ Ω, let J(ω) be the cardinality of J (ω) =

{j : Y j(ω) ≥ t} ⊂ Z/bZ. In particular, P(Sγ ≥ t) = 1
bE[J ]. It suffices to prove that J ≤ a. Assume

that J(ω) ≥ a for some ω ∈ Ω. Apply Lemma 4.3 to the counting measure to find∣∣∣∣∣
k⋂
l=0

(J (ω)− la)

∣∣∣∣∣ ≥ (k + 1)a− kb.

Note that i ∈ J (ω) − j if and only if [i + j, i + j + a) has load ≥ t. Therefore, there are at least
(k + 1)a− kb elements i such that the intervals [i, i+ a), [i+ a, i+ 2a), . . . , [i+ ka, i+ (k + 1)a) all
have load ≥ t. The intersection of these k + 1 intervals is equal to

Ii = [i, i+ (k + 1)a− kb).
It has load ≥ (k+1)t−k by Lemma 4.3. Its complement Ici has load ≤ k+1−(k+1)t < t. If j ∈ J (ω)

then [j, j+a) has load ≥ t and therefore it intersects Ii. The family F = {Ii : i ∈
⋂k
l=0(J (ω)− la)}

and the family G = {[j, j+a) : j ∈ J (ω)} are cross-intersecting. Lemma 4.2 applies since the length
of Ii is (k + 1)a− kb and since a ≤ b− ((k + 1)a− kb). We conclude that J(ω) ≤ a. �

The proof of Theorem 4.4 depends on showing that J is bounded by k+ 1, for which we need the
assumption that p < k+1

k+2 . If p = k+1
k+2 then J can no longer be bounded by k + 1. Yet, by a careful

analysis of J = k + 2 we can push the result to the hypothenuse p = t, as follows.
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Proposition 4.5. If p = t = k+1
k+2 for some positive integer k, then bold play is optimal if k > 1,

and c1 = c2 = c3 = 1
3 is optimal if k = 1.

Proof : By Proposition 3.1 we may restrict our attention to finite γ. We adopt the notation of the
proof of the previous theorem. Let n be the number of non-zero coefficients in γ. As before, we
assign weights ci uniformly randomly to elements of {0, . . . , k+ 1}. Let `(j) be the load of j and let
Y j = 1− `(j) be the load of the complement. Note that Y j is identically distributed to Sγ and that
it reaches the threshold if and only if `(j) ≤ 1

k+2 . For ω ∈ Ω let J(ω) be the number of Y j(ω) that
reach the threshold. We have 1

k+2E[J ] = P(Sγ ≥ t). In the proof above, we showed that J ≤ k + 1

if t > p = k+1
k+2 . This is no longer true now that we have t = p. It may happen that J(ω) = k+ 2 in

which case all Y j(ω) are equal to k+1
k+2 and all loads `(j) are equal to 1

k+2 . Note that this can only
happen if all ci are bounded by 1

k+2 , so n ≥ k + 2.
We think of the weights as being assigned one by one c1, c2, . . . , cn in increasing order. In par-

ticular, cn−1 and cn are assigned last. If J = k + 2, then either k or k + 1 of the loads are equal
to 1

k+2 before cn−1 and cn are assigned. In the first case, there are two remaining loads < 1
k+2 and

the probability that cn−1 are cn are assigned here is 2
(k+2)2

. In the second case, there is only one
remaining load < 1

k+2 and the probability that cn−1 and cn are assigned here is 1
(k+2)2

. We conclude
that P(J = k + 2) ≤ 2

(k+2)2
and therefore

E[J ] ≤ (k + 2)P(J = k + 2) + (k + 1)P(J < k + 2) = k + 1 + P(J = k + 2)

is bounded by k + 1 + 2
(k+2)2

. Thus we obtain P(Sγ ≥ t) ≤ k+1
k+2 + 2

(k+2)3
. This bound is reached if

k = 1 and c1 = c2 = c3 = 1
3 .

We restrict our attention to k > 1 and we prove that bold play is optimal. In other words,
we need to prove P(Sγ ≥ t) ≤ k+1

k+2 . We first consider the case that cn−1 6= cn. We may assume
that J(ω) = k + 2 for some ω, because the proof of Theorem 4.4 holds if there is no such ω. If
there are two remaining loads < 1

k+2 before cn−1 and cn−2 are assigned, then there is a unique
assignment of cn−1 and cn to complete all loads to 1

k+2 . Since k > 1, there are at least two loads
`(i1) = `(i2) = 1

k+2 before the final two weights are assigned. Let ω̄ assign cj for j < n − 1 in the
same way as ω, but it reassigns cn−1 to i1 and cn to i2. Then J(ω̄) = k, because the loads at i1 and
i2 exceed the threshold. We can reconstruct ω from ω̄ because the loads at i1 and i2 are the only
ones that exceed the threshold for ω̄, and their values are different because cn−1 6= cn. We have a
1 − 1 correspondence between ω ∈ {J = k + 2} and ω̄ ∈ {J = k}. Let E = {J = k + 2} and let
F = {ω̄ : ω ∈ E}. Then P(F) = P(E) and E ∩ F = ∅. This implies that

E[J ] ≤ (k + 2)P(E) + kP(F) + (k + 1)P(Ec ∩ Fc) ≤ k + 1.

In particular P(Sγ ≥ t) ≤ k+1
k+2 and bold play is optimal.

Finally, we consider the remaining case that cn−1 = cn and assume that J(ω) = k + 2. In this
case, we may switch the order of assigning cn−1 and cn. Let ω′ ∈ Ω represent this switch (it may
be equal to ω if the assignments are the same). Again, let i1 and i2 be two locations for which
the loads have already been completed before cn−1 and cn are placed. Let {ω̄, ω̄′} be the elements
which assign the first n−2 coefficients in the same way, but assigns the final two elements to i1 and
i2. In particular, J(ω̄) = J(ω̄′) = k. We can reconstruct {ω, ω′} from {ω̄, ω̄′}, the correspondence
is injective, so again P(E) = P(F) and we conclude in the same way that bold play is optimal. �

If bold play is stable, as discussed in the introduction of this paper, then Proposition 4.5 would
imply that bold play is optimal if p ≤ k+1

k+2 ≤ t for k > 1. We verify this in one very specific case in
the range p < k+1

k+2 = t.

Proposition 4.6. If p = 2k+1
2k+3 and t = k+1

k+2 , then bold play is optimal if k > 1.
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Proof : We again randomly distribute the coefficients of a finite γ over 2k + 3 locations. Let Y j =
`(j) + . . .+ `(2k+ j) be the load of the discrete interval [j, 2k+ j+ 1), where as before we compute
modulo 2k+ 3. Then Sγ ∼ Y j and the sum of all Y j is equal to 2k+ 1. Let J be the number of Y j

that reach the threshold. Not all Y j can reach the threshold and therefore J ≤ 2k + 2. Then

P(Sγ ≥ t) =
E[J ]

2k + 3
≤ 2k + 1

2k + 3
P(J ≤ 2k + 1) +

2k + 2

2k + 3
P(J = 2k + 2).

We need to prove that P(Sγ ≥ t) ≤ 2k+1
2k+3 . If P(J = 2k + 2) = 0 then we are done. Therefore, we

may assume that P(J = 2k + 2) > 0. If J ≥ 2k + 2 then only one of the Y j does not meet the
threshold and without loss of generality we may assume it is Y 2, which has load 1 − `(0) − `(1).
The other Y j reach the threshold, and since the sum of all Y j is equal to 2k + 1, we find that

2k + 1 ≥ (2k + 2)t+ 1− `(0)− `(1). (4.1)

In other words, `(0) + `(1) ≥ 2
k+2 . If `(0) > 1

k+2 then Y j only reaches the threshold if it includes
`(0). Only 2k + 1 of the Y j include `(0), contradicting our assumption that J = 2k + 2. Therefore
`(0) ≤ 1

k+2 and since the same applies to `(1) we have that `(0) = `(1) = 1
k+2 and we have equality

in 4.1. In particular, Y j = t for all j other than 2. It follows that `(j) + `(j− 1) = 1
k+2 for all loads

other than `(1) + `(0). In particular, `(2) = `(2k + 2) = 0 which implies that the loads alternate
between zero and 1

k+2 : `(i) = 1
k+2 if i is odd and `(i) = 0 if i > 0 is even. All non-zero loads are equal

and only two non-zero loads are consecutive. Obviously, the probability of this arrangement is low.
There are exactly 2k+ 3 such arrangements. There are also 2k+ 3 arrangements in which the non-
zero loads are consecutive. In this case J = k+ 2 ≤ 2k. It follows that P(J ≤ 2k) ≥ P (J = 2k+ 2),
which implies that E[J ] ≤ 2k + 1. Bold play is optimal. �

These results conclude our analysis of the upper right-hand block of Figure 1.1. An array of
triangles along the hypothenuse remains to be filled in that part. Numerical results of Csóka
(2015) suggest that bold play is optimal for all of these triangles, except for the one touching on
{(p, p) : 1

2 ≤ p ≤ 2
3}. In the next section we will confirm that bold play is not optimal for this

particular triangle.

5. High threshold

We now consider the case p ≤ 1
2 < t, when bold play again comes down to a single stake c1 = 1.

We introduce some further notation. If γ is finite and has ≤ n non-zero coefficients, then Ft,γ
denotes the family of V ⊂ {1, 2, . . . , n}, such that

∑
i∈V ci ≥ t. A family of sets is intersecting if no

two elements are disjoint. Two standard examples of intersecting families are F1, the family of all
V such that 1 ∈ V , and F>n/2, the family of all subsets such that |V | > n/2. Since t > 1

2 each Ft,γ
is intersecting. Note that F1 corresponds to Ft,γ with c1 = 1. In other words, F1 is the intersecting
family that corresponds to bold play. We write p(V ) = p|V |(1− p)n−|V | so that

P(Sγ ≥ t) =
∑

V ∈Ft,γ

p(V ). (5.1)

The problem of maximizing the tail probability then turns into determining the intersecting family
Ft,γ that has a maximal weighted sum over its elements V . Such problems are well studied in
extremal combinatorics, see e.g. Filmus (2017) for recent results. Fishburn et al. (1986) settled the
problem of maximizing

p(F) =
∑
V ∈F

p(V )

over all intersecting families F :
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Theorem 5.1 (Fishburn et al). For a fixed n, let F be any intersecting family of subsets from
{1, . . . , n}. If p ≤ 1

2 then p(F) is maximized by F1. If p ≥ 1
2 and n is odd, then p(F) is maximized

by F>n/2.
Proof : Following Fishburn et al. (1986). First suppose n is odd. At most one of V and V c can be
in F . If p ≥ 1

2 , then p(V ) ≥ p(V c) if |V | ≥ |V c|. Therefore p(F) is maximal if out of each V and
V c the largest set is in F . It follows that F>n/2 maximizes p(F) if n is odd and p ≥ 1

2 .
Now consider an arbitrary n and p ≤ 1

2 . Let ca = |Fa| be the cardinality of the subfamily
Fa = {V ∈ F : |V | = a}. Since at most one of V and V c can be in F , we have that ca + cn−a ≤

(
n
a

)
.

Since p ≤ 1
2 we now have p(V ) ≥ p(V c) if |V | ≤ |V c|. If a = n

2 then V and V c are equally large, we
just need to be sure that one of them is in F . For a < n

2 we want to maximize ca under the constraint
ca + cn−a ≤

(
n
a

)
. By the Erdős-Ko-Rado theorem, if a < n

2 then ca is maximized by a family of
subsets that contain one common element. Such a family satisfies ca + cn−a =

(
n
a

)
, maximizes each

ca, and contains one of each V and V c. It follows that p(F1) is maximal if p ≤ 1
2 . �

As an immediate corollary we can take care of the upper left-hand block in Figure 1.1.

Corollary 5.2. If p ≤ 1
2 < t then bold play is optimal.

Proof : If t > 1
2 then Ft,γ is intersecting and F1 corresponds to bold play. �

As another corollary, we can say something more about the upper right-hand block.

Corollary 5.3. If 1
2 < p ≤ t ≤ 2

3 then bold play is not optimal.

Proof : Choose k maximal such that t ≤ k+1
2k+1 and let n = 2k+ 1. The family F>n/2 corresponds to

Ft,γ for c1 = · · · = c2k+1 = 1
2k+1 , which is not bold play. It is the unique maximizer of p(F) among

Ft,γ for γ such that c2k+2 = 0. �

The remaining part of the upper left-hand block has t = 1
2 . In this case Ft,γ may no longer be

intersecting, but we can also use Theorem 5.1 to settle that part.

Corollary 5.4. If p ≤ t = 1
2 then bold play is optimal.

Proof : Note that we may restrict our attention to γ = (c1, c2, . . .) such that c1 ≤ 1
2 and that bold

play corresponds to (1
2 ,

1
2 , 0, . . .).

P(Sγ ≥ 1
2) = pP(Sγ ≥ 1

2 | β1 = 1) + (1− p)P(Sγ ≥ 1
2 | β1 = 0)

≤ p+ (1− p)P(Sγ ≥ 1
2 | β1 = 0)

If γ̄ = 1
1−c1 (c2, c3, . . .) then P(Sγ ≥ 1

2 | β1 = 0) = P(Sγ̄ ≥ 1
2(1−c1)) ≤ p by Theorem 5.1. We find

that P(Sγ ≥ 1
2) ≤ p+ (1− p)p with equality for bold play. �

6. Unfavorable odds

Finally, we consider the lower left-hand block p ≤ t < 1
2 , which appears to be the most challenging

choice of parameters for Csóka’s conjecture. We introduce some more notions and results from
extremal combinatorics. A family F ⊂ 2{1,...,n} has matching number k, denoted by ν(F) = k, if the
maximum number of pairwise disjoint V ∈ F is equal to k. In particular, F is intersecting if and only
if ν(F) = 1. Note that ν(Ft,γ) ≤ b1

t c. A family Fu is u-uniform if all its elements have cardinality u.
According to the Erdős matching conjecture Alon et al. (2012); Frankl (2013); Frankl and Kupavskii
(2019), if n ≥ (k+1)u then the maximum cardinality of a u-uniform family of matching number ≤ k
is either attained by Fuk , the family of all u-subsets containing at least one element from {1, . . . , k},
or by Fu[(k+1)u−1], the family containing all u-subsets from {1, . . . , (k + 1)u − 1}. Frankl (2013)
settled the matching conjecture for n ≥ (2k + 1)u− k, in which case Fuk has maximum cardinality.
For recent progress on the conjecture, see Frankl and Kupavskii (2019) and the references therein.
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Theorem 6.1. If p < 1
2k+1 and 1

k+1 < t for some positive integer k then bold play is optimal.

Proof : We need to prove that P(Sγ ≥ t) ≤ 1− (1− p)k for finite γ = (c1, c2, . . .). For a fixed γ let
n be such that cj = 0 if j > n and let F jt,γ denote the subfamily of sets of cardinality j. Then we
may write

P(Sγ ≥ t) =
∑
Ft,γ

p(V ) =
∑
j

|F jt,γ |pj(1− p)n−j .

By Frankl’s result, we can bound |F jt,γ | by
(
n
j

)
−
(
n−k
j

)
if (2k + 1)j − k ≤ n. For larger j we simply

bound by
(
n
j

)
. In this way we get that P(Sγ ≥ t) is bounded by∑

j≤ n+k
2k+1

((
n

j

)
−
(
n− k
j

))
pj(1− p)n−j +

∑
j> n+k

2k+1

(
n

j

)
pj(1− p)n−j

which is equal to

1−
∑

j≤ n+k
2k+1

(
n− k
j

)
pj(1− p)n−j = 1− (1− p)kP

(
X ≤ n+ k

2k + 1

)
for X ∼ Bin(n−k, p). By our assumptions, there exists a c < 1 such that p < c

2k+1 . If n→∞ then

P
(
X ≤ n+k

2k+1

)
→ 1 since E[X] = (n− k)p < (n−k)c

2k+1 . �

There is a gap between the shaded region and the hypothenuse in the lower left-hand block in
Figure 1.1. We are able to settle a few isolated cases by the same arguments as in the proofs of
Propositions 4.5 and 4.6.

Proposition 6.2. Bold play is optimal if t = 1
3 and p = 1

b for an integer b ≥ 3.

Proof : We assume that γ is finite and randomly assign its coefficients to {0, 1, . . . , b − 1}. The
random variable Y is equal to the load at zero `(0). We need to prove that

P
(
Y ≥ 1

3

)
≤ p+ (1− p)p+ (1− p)2p = r

which is the success probability of bold play. Let K be the number of loads reaching the threshold
of 1

3 before the last two coefficients cn−1 and cn are assigned. Obviously, K is either equal to 0 or
1 or 2. We will show that P(Y ≥ 1

3 |K = j) ≤ r for j ∈ {0, 1, 2}.
If K = 0 then Y can only reach the threshold if at least one of the last two coefficients is placed

in 0. This happens with probability p+ (1− p)p < r.
If K = 1 then one load has reached the threshold before the last two coefficients are placed.

This load is in 0 with probability p. If the load is not in 0, then at least one of the remaining two
coefficients has to be placed there. This happens with probability p+ (1− p)p. We conclude that

P
(
Y ≥ 1

3

∣∣∣∣K = 1

)
≤ p+ (1− p)(p+ (1− p)p) = r.

If K = 2 then two loads have already reached the threshold. The probability that one of these two
loads is in 0 is 2p. If none of the two loads is in 0, then `(0) can only reach the threshold if the two
last coefficients are assigned to 0. The probability that this happens is p2.

P
(
Y ≥ 1

3

∣∣∣∣K = 2

)
≤ 2p+ (1− 2p)p2 ≤ r

if p ≤ 1
3 . �

Csóka’s numerical results indicate that bold play is optimal if p ≤ 1
3 ≤ t. This problem has a

recreational flavor, see Berrevoets et al. (2020).
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7. Binomial tails

If Conjecture 1.1 holds, then the tail probability is maximized by a Bernoulli average X̄k and we
need to determine the optimal k. It is more convenient to state this in terms of binomials. For a
fixed p and t, maximize

P (Bin(k, p) ≥ kt)
for a positive integer k. Since the probability increases with k as long as kt does not pass an integer,
we may restrict our attention to k such that kt ≤ n < (k + 1)t for some integer n. In other words,
we need to only consider k = bnt c for n ∈ N. If t = 1

a is the reciprocal of an integer a, then the k
are multiples of a. Maximizing the tail probability for this case is a classical problem. In 1693 John
Smith asked which k is optimal if a = 6 and p = 1

6 . Or in his original words, which of the following
events is most likely: fling at least one six with 6 dice, or at least two sixes with 12 dice, or at least
three sixes with 18 dice. The problem was communicated by Samuel Pepys to Isaac Newton, who
computed the probabilities. Chaundy and Bullard (1960) gave a very nice historical description
(more history can be found in Koornwinder and Schlosser (2008, 2013)) and solved the problem. It
is a special case of a more general result by Jogdeo and Samuels (1968).

Theorem 7.1 (Chaundy and Bullard). For an integer a > 1, P(Bin(ka, 1
a) ≥ k) is maximal for

k = 1. Even more so, the tail probabilities strictly decrease with k.

In other words, if p = t = 1
a and if Csóka’s conjecture holds, then bold play is optimal. By stability,

one would expect that bold play remains optimal for p ≤ 1
a ≤ t. In other words, one would expect

that the following generalization of Chaundy and Bullard’s inequality holds: P(Bin(bk/tc, p) ≥ k)
is maximal for k = 1 if p ≤ 1

a ≤ t. This appears to be unknown.
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