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I. Introduction

OVER the past century, aircraft have become increasingly more

efficient. During the 1960s, improvements in engine technol-

ogy and wing design lead to significant improvements in aircraft fuel

economy. In recent years, this trend of increasing efficiency has

started to stagnate. To further reduce both the cost of flying and

environmental pollution, more radical departures from the conven-

tional aircraft design are needed. One promising technology is active

morphing, which enables shape transformation in-flight [1,2]. The

Wright Flyer, the first successful heavier-than-air powered aircraft,

relied on twist morphing of its fabric-wrapped flexible wings to

achieve roll control [3]. However, as aircraft flew with ever-increasing

speeds, higher wing rigidity was required, which made morphing

fade out in the 1940s to 2000s. In recent years, morphing has

again been made possible by advanced developments in material

science such as shape memory alloys, compliant mechanisms, and

piezoelectrics [1,4].

The ability to reshape the wing in flight introduces the problem of

determiningwhat that shape should be for awide range of operational

conditions. The current method for cruise drag minimization is the

scheduling of configuration settings through lookup tables as a

function of gross weight, airspeed, and altitude. These lookup tables

generally depend on analytical models, validated with wind tunnel or

test flight data. However, different operating conditions, aircraft

production variances, and repairs can result in uncertainties in the

table-lookup method.

Online optimization has the potential to tailor the wing shape to
any specific flight condition for achieving the best aerodynamic
performance based on in-flight measurements. Much like birds, a
smart morphing-wing aircraft could sense its environment and adapt
its wings’ shape to achieve the best performance in any condition,
making it fully mission-adaptive. However, many challenges remain
on the path toward operational smart morphing aircraft wings.
To beginwith, any online optimizationmethod is reliant on the ability
to accurately evaluate the aircraft’s performance using on-board
sensors. Furthermore, only a very limited amount of search space
exploration could realistically be afforded on a typical commercial
flight. Ideally, a global optimum in the optimization landscape should
be found with limited and local explorations.
A real-time adaptive least-squares dragminimization approach has

been proposed for the variable camber continuous trailing edge flap
(VCCTEF) described in [5,6]. This strategy uses a recursive least-
squares algorithm to estimate the derivatives of the aerodynamic
coefficients with respect to the system inputs. The optimal wing
shape and elevator deflection are then calculated from a constrained
optimization problem using the Newton–Raphsonmethod. Improve-
ments to the model excitation method, on-board model, and optimi-
zation methods were demonstrated in wind tunnel experiments to
achieve up to 9.4% drag reduction on the common research model
(CRM) with the VCCTEF at off-design conditions at low subsonic
speeds [7]. Simulations have also indicated that a 3.37% drag reduc-
tion is achievable on the CRM with a distributed mini-plain flap
system at Mach 0.85 [8].
While the coefficients of the linear-in-the-parameters multivariate

polynomial model adopted in [7,8] can be estimated with relatively
low computational cost, the model is only valid in the local region
around the trim condition. This means that in order to perform real-
time drag minimization across the entire flight envelope, the model
parameters need to be re-identified at every operational point. More-
over, the required model excitation maneuvers that comprise both
angle-of-attack and flap deflection inputs would induce undesirable
bumpiness, structural loads, and increased fuel consumption. Last
but not least, the use of a local model together with a gradient-based
optimization method makes the solution prone to converge onto a
local optimum. By contrast, a global on-board model, while more
difficult to identify online, could allow for continuous drag minimi-
zation throughout the flight envelope.Additionally, when pairedwith
a global optimization method, global optima with even better perfor-
mance could potentially be found.
The main contributions of this paper are the first presentation and

demonstration of a novel adaptable in-flight black-box performance
optimization strategy for morphing wings. The proposed strategy
integrates an online trained global artificial neural network (ANN)
surrogate model [9], also referred to as the on-board model, with an
evolutionary optimization algorithm [10,11]. The covariance matrix
adaptation–evolutionary strategy (CMA–ES) black-box optimiza-
tion method was adopted because of its robustness to noise, ability
to optimize nonconvex and multimodal problems, and desirable
global performance [12]. To reduce the time required for optimiza-
tion and to effectively retain the knowledge gained from historical
measurements, an on-board model is adapted online. For the online
identification of this on-board model, radial basis function neural
networks (RBFNNs) were employed because of their local sensitiv-
ity, robustness to noise, and effectiveness on scattered data [13,14].
The integration of these methods allows for the optimization of the
morphing wing’s shape based on scattered and noisy flight data in
real time.
This data-driven approach is more adaptable and potentially able to

realize higher performance than conventional shape schedulingby look-
up tables. The morphed wing shape could be tailored in-flight to
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maximize the performance of the particular aircraft under consideration,
rather than the performance of a model, built from previous test fight
data on a similar aircraft. Moreover, compared to the state-of-the-art
local gray-boxmethods that require additionalmodel excitationmaneu-
vers and re-identifications at each operational condition, the proposed
approach retains the information learned in a global radial basis function
neural network on-board model such that smooth and direct transitions
to well-performing wing shapes can be achieved throughout the entire
flight envelope. Furthermore, by integrating a derivative-free evolu-
tionary optimization strategy with a global on-board model, global
optima can be found. The proposed method has been validated on a
model of a seamless active distributed morphing wing: SmartX-Alpha
[15,16] (Fig. 1).¶

The structure of this paper is as follows. The morphing wing
system is modeled in Sec. II. The optimization architecture is pro-
posed in Sec. III. In Sec. IV, the simulation results are presented and
discussed. Finally, the main conclusions are drawn in Sec. V.

II. System Modeling

A. Virtual Inputs

Themorphingwing system consists of 13 inputs: the deflections of
the 12 actuators and the wing angle of attack α. However, instead of
using the actuator angles θ directly as system inputs, the optimizer
and on-board model use a total of five virtual shape functions to
describe thewing’s shape. The virtual inputs u1; : : : ; u5 scale the five
basis shapes described by the first five Chebyshev polynomials of the
first kind, rescaled onto the �0; 1.80� m domain, where 1.8 m is the
half-wing span. The spanwise distribution of the local actuator
deflection is a linear combination of the virtual inputs and the Cheby-
shev polynomials Ti as a function of the spanwise location y as stated
in Eq. (1).

θ�y� �
X5
i�1

uiTi�y� (1)

The virtual inputs and their contributions to the actuator deflection

at each actuator location are shown in Fig. 2, where the triangular
markers indicate the actuator positions. The translation-induced
camber morphing mechanisms are modeled as a series of twistable

plain flaps, whose local deflections vary linearly between the actua-
tors. The deflection of each actuator is in turn dictated by the virtual
inputs.
The virtual shapes reduce the 13-dimensional optimization

domain for the real system to a 6-dimensional one for the model,

which significantly reduces the computational cost. Moreover, the
basis shape functions enforce a certain degree of smoothness in the
final morphed wing shape. Their use generally leads to smoother
shapes than those resulting from 12 independent actuator deflections

as they avoid shapes with large and frequent jumps in spanwise
camber.
The choice of the number of virtual functions is determined by the

tradeoff between reducing the shape approximation error and reduc-
ing the number of measurements required to identify an on-board

model. As we show in Fig. 3, increasing this number can indeed
reduce the shape approximation normalized root mean square error
(NRMSE). However, on the one hand, the reduction rate (slope)

decreases as this number increases; on the other hand, the computa-
tional load significantly increases as this number increases because
1) the size of the on-board neural network model increases, which

required a longer time to train, evaluate, and update, and 2) the search
space of the optimization algorithm also increases, requiring longer
searching and optimization time as well as more measurements.

Based on these reasons, we choose five virtual shape functions in
this research, which results in reduced computational loads without
compromising the shape smoothness. As shown in Fig. 3, this
number can approximate an elliptical distribution well while making

the NRMSE below 1.15%.

Seamless morphing
modules

Piezoelectric
actuators

Actuator pair
(module 1)

Intermodular elastomeric
skin

a) Overview of wing components b) Wind tunnel setup

Fig. 1 Overview of the SmartX-Alpha wing demonstrator (0.5 m × 1.8 m).

Fig. 2 Virtual shape functions that dictate the amount of camber morphing at each actuator location.

¶The project video can be found via https://www.youtube.com/watch?
v=SdagIiYRWyA&t=319s.
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B. Aerodynamic Model

The actuator deflections described by the virtual inputs are trans-
formed to local flap deflections to produce the geometry that is to be
evaluated by the aerodynamic model. First, the local vertical dis-
placement of the trailing edge zte is computed as zte � θkθ. Using the
digital image correlation measurements of symmetric morphing on

SmartX-Alpha [15], kθ is estimated as 5.6 × 10−4. The local plain
flap deflection angle δf is then computed usingEq. (2), where xhinge is
the location of the flap hinge as a fraction of the chord length c.
Between the actuator locations, where the local flap angle is specified
by the virtual inputs, the local flap angle varies linearly.

δf � sin−1
�

zte
c ⋅ �1 − xhinge�

�
(2)

The aerodynamic performances of wing shape and angle-of-attack
combinations are evaluated using a vortex lattice method (VLM) [17]
model implemented in the Aerosandbox python package [18]. This
method is used because of its high computational efficiency and
scriptability. Since Aerosandbox is a relatively new open-source
aerodynamic solver, and only one publication using this package
exists in literature [19], its VLM implementation is verified against
that of XFLR5 using the geometry of SmartX-Alpha. Figure 4
shows results from the Aerosandbox and XFLR5 VLM solvers,
and wind tunnel measurements for constant spanwise actuator angle
of −22 deg. It can be observed from Fig. 4 that the outputs of
Aerosandbox and XFLR5 VLM have a high consistency.
However, VLM neglects the effects of viscosity and thickness, and

can only be used to estimate lift and induced drag. As a result, the

models slightlyoverestimate the lift slope, although their lift predictions

remain close to the wind tunnel measurements for the linear part of the

lift curve. The drag on the other hand is consistently underestimated due

to the lack of viscous drag effects in the model. Furthermore, while

asymmetric flap deflections affect the lift-to-induced-drag ratio L∕Di

through reshaping of the spanwise lift distribution, constant flap deflec-

tions along thewingspan do not affectL∕Di at all. However, in order to

optimize the morphing wings aerodynamic efficiency, both the total

drag and the effects of flap deflections on the lift-to-drag ratio L∕D
should be modeled. Therefore, the model is augmented with an

estimation of the zero-lift-drag coefficient CD0
and a correction to the

Oswald efficiency factor e based on data from a previous wind

tunnel campaign with SmartX-Alpha. Furthermore, the use of the

corrected model is restricted to the linear part of the lift curve,

i.e., −5.0 < α < 10.0 deg. Wind tunnel measurements from seven

angle-of-attack sweeps at different spanwise constant actuator angles

were used to estimate CD0
and e using the least-squares method and

Eq. (3).

whereCL andCD denote the lift and drag coefficients, respectively. The

estimates for CD0
and e were interpolated by first- and second-order

polynomials, respectively (Fig. 5). With these corrections and the

induced drag from the Aerosandbox model, the total drag is then

estimated with Eq. (4):

CD � CD0
��δf� � CDi

e0∕e��δf� (4)

Fig. 4 Comparison of VLM solvers with wind tunnel measurements for a constant actuator angle of −22 deg.

a) Relation between the NRMSE of a Chebyshev polynomial
and the model order

b) Comparison of an elliptical distribution function and
its 5thorder Chebyshev approximation

Fig. 3 The impacts of the number of virtual functions on the shape approximation error.
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in which represents the aspect ratio, and �δf represents the mean flap

angle. The Oswald efficiency factor of the constant deflection wing
shape from the Aerosandbox model, denoted as e0, is estimated using
the least-squares method with Eq. (3). Using simulated lift and induced
drag measurements from an angle-of-attack sweep with the Aerosand-
box model, e0 is estimated as 0.95. For the case of a constant−22 deg
actuator angle, the effects of the corrections functions are shown in
Fig. 6. Comparedwith the uncorrected drag polar from Fig. 4, the zero-
lift-drag correction yields a result that is much closer to thewind tunnel
measurements. However, the drag is still underestimated consistently.
After correcting the drag predicted byAerosandbox with both the zero-
lift-drag and the Oswald efficiency corrections, the resulting drag polar
closely matches the wind tunnel measurements. Since the corrections
were estimated using wind tunnel data, their validity is limited to the
wing geometry and flow conditions that these measurements corre-
spond to. Nevertheless, the presented correction method is widely
applicable to other cases.

C. Secondary Model

For future real-world operations, the use of white-box aerodynamic
models such as the corrected model described abovewould be limited
to training of the on-board model beforehand. In this manner, a priori
knowledge about the system is transferred to the on-board model

through the network weights. Although these will be adjusted during

the online learning process, fewer adjustments are required thanwould

be in the case of learning from scratch. In later stages of the technology,

the network weights would hold the knowledge from previous flights,

which is superior in quality compared to anymodel-based predictions.

To demonstrate the ability of the online learning shape optimiza-

tion procedure to adapt to a change in the system to be optimized, a

secondary aerodynamic model is used in the online shape optimiza-

tion. The secondarymodel represents a comparable, but yet distinctly

different morphing wing system. In this research, this model is

comprised of the same wing planform as the nominal model, but

with a NACA4312 airfoil instead (the SmartX-Alpha airfoil is

NACA6510). As the VLM solver does not model the effects of airfoil

thickness, only the maximum camber and location of maximum

camber are different between the nominal and secondary models.

Because equivalent wind tunnel data for this wing do not exist, the

correction function estimation procedure cannot be repeated for the

secondary wing model. Instead, the correction functions are altered

directly. Therefore, the secondary model does not accurately model

the aerodynamics of a known wing anymore. Instead, the secondary

model represents the aerodynamics of an unknown wing, which are

relatively close to those of the nominal model. The correction func-

tions for both models are shown in Fig. 7.

Fig. 6 Drag polar of the corrected aerodynamic model for a constant actuator angle of −22 deg.

Fig. 7 Two correction functions for the nominal and secondary model.

Fig. 5 Two correction functions estimated based on wind tunnel measurements.
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D. Noise Simulation and Filtering

Real-world measurements were simulated by adding noise to the
aerodynamic model outputs. The noise realizations used were derived
from noise measurements from a previous wind tunnel experiment.
The power spectral density (PSD) of the original noise signal, sampled
at 1000 Hz, was approximated by its periodogram. The PSD S�fn� is
sampled at n positive frequencies fn � �Δf 2Δf : : : nΔf �T .
First, these power spectral densities are converted to amplitudes

using A�fn� �
���������������
2S�fn�

p
, where A�fn� is the n × 1 amplitude

vector. Subsequently, the n × 1 phase vector ϕ�fn� is built by
assigning each spectral component a random phase between 0 and
2π radians. Next, a frequency domain signal Z�fn� is constructed
as Z�fn� � A�fn� ⋅ eiϕ�fn�.
Second, the frequency domain signal is transformed to a time-

domain signal using the inverse fast Fourier transform, with the
results shown in Fig. 8. These noise realizations, although unique
in the time domain, all are made of the same spectral components. As
such, the power spectral densities of both signals are nearly identical.
Finally, the measured outputs are simulated by averaging over the

50 s noise realization for noise attenuation.

III. Optimization Architecture

In this section, the online shape optimization strategy and frame-
work are proposed. First, an overview of the complete optimization
architecture is presented. Then each of the individual components is
elaborated upon in the following subsections. The architecture of the
proposed online shape optimization framework is shown in Fig. 9.
The optimization procedure involves a fast and a slow loop. The

optimizer, on-board model, and cost function work together in the
fast loop, marked by the shaded arrows. The optimizer evaluates
angle-of-attack (α) and wing shape combinations (u) on the on-board
model with a high frequency. The resulting lift and drag coefficients
from the on-board model are valued with a cost function (J), which is

also based on the target lift coefficient (CLt
). These cost values are in

turn used by the optimizer to produce a more promising set of inputs

for the next iteration of the optimization loop. Once the optimizer has

converged onto the most promising set of inputs, they are evaluated

on the system itself in the outer loop.

The on-board model and optimizer describe the wing shape in

terms of fivevirtual inputsu1; : : : ; u5 forwing shape smoothness and

computational load reduction. However, since the shape of the

morphing wing is controlled by 12 actuators θ1; : : : ; θ12, the virtual
input vector u ∈ R5 needs to be mapped to the actuator input vector

θ ∈ R12. Next, the actuator inputs are limited to their saturation limits

of �25 deg. Subsequently, the wing shape and angle of attack are

actuated on the system. In this study, the camber-morphingwing was

simulated with an aerodynamic model of a wing with continuously

distributed flaps. The resulting lift and drag coefficients are then

contaminated with noise to simulate real-world measurements

CLm
; CDm

. The inputs and outputs of the latest evaluation are added

to the replay buffer, with a replacement strategy aimed at maintaining

a global coverage of the input domain in memory. The model inputs

Xi and model outputs Yi in the buffer make up the training set that is

used to train the on-board model. The training of the artificial neural

networks that make up the on-board model results in new network

weightsW i�1. The process of the model update when new measure-

ments become available is indicated by the diagonal gray arrow

laying behind the on-board model block shown in Fig. 9. From here

on, a new optimization cycle is initiated with an improved on-

board model.

To evaluate the adaptability of the method, weights from previous

training on a differentwing, and no initial buffer datawere used on the

first iteration. To partly fill the empty buffer with data spread out

over the input domain, the first 100 iterations (wandering phase)

were performed with quasi-random inputs instead of the optimizer-

computed optima.

Fig. 8 Measured and simulated lift force noise signals.

On-board modelOn-board model

Optimizer

Cost function On-board model

Input mapping Actuator saturation

System

MeasurementReplay bufferTrainer

M

u

L D

L D

Lt

Lm DmX ,Y

X −1,Y −1

W +1

Fig. 9 Online shape optimization architecture.
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As depicted in Fig. 9, the optimizer does not work with the system
directly, but rather on the on-board model, which can be evaluated
with much lower computational costs. The genetic optimization
algorithm queries the on-board model with a population of inputs
to be evaluated. The quality of these inputs is then determined from
the model’s outputs using a cost function. The optimizer in turn uses
this information to generate a new group of candidate solutions. This
loop is continued until the optimizer converges, after which this most
promising input can be tested on the actual system.
The objective of the optimizer is to find the set of inputs

α; u1; : : : ; u5 that maximizes CL∕CD while meeting the target lift
coefficient CLt

without violating the angle-of-attack or actuator

limits. The mathematical representation is

max
α;u

CL�α; u�
CD�α; u�

; subject to α ∈ �αmin;αmax�;

θmin < θ�u� < θmax; CL�α; u� � CLt
(5)

This problem is nonlinear and nonconvex because CL and CD are
nonlinear and nonconvex functions of α and u.

A. Cost Function

As the optimizer queries the system with certain inputs, the corre-
sponding outputs from the system need to be valued to in turn inform
the optimizer how well the input performed. The inputs cannot
simply be scored on their associated drag, as this would tempt the
optimizer into minimizing the drag, by minimizing the lift produced.
Instead, a promising angle-of-attack and wing shape combination
should result in both a low drag coefficient and a lift coefficient that is
very close to the target lift coefficient. This is achieved with the cost
function shown in Eq. (6).

J�CL; CD;CLt
� � −

CL

CD|{z}
efficiency

⋅
k2

k1 � �CL − CLt
�2|������������{z������������}

deviation from lift target

(6)

The cost of any set of system outputs is dependent on the lift and
drag coefficients, as well as on the target lift coefficient. The cost
varies linearly with the aerodynamic efficiency CL∕CD and is
inverse-quadratically related to the difference between the target

and actual lift coefficients. A small quantity k1 � 1 × 10−4 is added

to prevent singularities for small error values. The parameter k2 �
2 × 10−5 is used to scale the output to �−1; 0�. Two- and three-dimen-
sional plots of the cost function for CLt

� 0.50 are shown in Fig. 10.

Note that the cost increases rapidly for any deviation from the target
lift coefficient, while steps in the drag-coefficient axis generally
result in smaller cost variations as indicated by the isolines on the
right side of this figure. In other words, this cost function prioritizes
matching the target lift coefficient over reducing the drag coefficient.

This is important because the lift and drag coefficients are not
independent variables, but are related through lift-induced drag.
Hence, the optimizer needs to be discouraged from minimizing drag
by reducing the amount of lift produced.
Additionally, the angle-of-attack and actuator constraints are also

handled by the cost function. Since the actuator angles are inter-
mediate variables that are unknown to the black-box optimizer, their
constraints can only be enforced indirectly through penalties to the
cost function. In the case of the angle-of-attack limits, direct min/max
constraints on the input variable may be used instead, which has been
found to lead to comparable results in this study.

J � �αi − α⋆�2 � CJ; J � �θi − θ⋆�2 � CJ (7)

If a set of inputs violates any constraint, then its cost becomes as
shown by Eq. (7). In the case that a set of inputs α to be evaluated is
outside the bounds �−2.5; 10.0� deg, the associated cost will be the
square of the difference between the angle of attack α and the middle
of the domain α⋆ � 3.75 deg plus a large constant CJ . The valid

range of θ is �−25; 25� deg so θ⋆ � 0 and Eq. (7) reduces to

J � �θi�2 � CJ . This cost penalty constant is set to CJ � 10 to
ensure that the cost will always be higher than that of an input set
that is not in violation of these constraints. The square term serves to
provide a gradient toward the middle of the parameter domain to
direct the optimizer back to the feasible region of the input space.
Note that this cost penalty is only incurred by solution candidates that
breach the actuator or angle-of-attack limits, and thus does not bias
the optimizer to favor the middle of the input domain when these
limits are not reached.

B. Optimizer

The optimizer’s goal is to find inputs to the on-board model that
minimize the cost of the model outputs as determined by the cost
function. This optimization is performed with the covariance matrix
adaptation–evolutionary strategy (CMA-ES) algorithm [12]. CMA-
ES is an evolutionary strategy for black-box optimization of non-
linear, nonconvex, and continuous problems. It can handle multi-
modality and discontinuities in the function to be optimized and has
desirable global performance.
In the proposed framework, CMA-ES operates by iteratively gen-

erating populations of inputs that are subsequently evaluated on the
on-board model. Based on the returned costs of these candidate
solutions, the mean and covariance matrix of the next generation’s
population are adapted. This process is repeated until the variation of
the cost function converges to a threshold, selected as 1 × 10−6. In the
online shape optimization procedure, a population size of 150 was
used. The middle of the input domain was used as the initial solution
point x0. Furthermore, the initial standard deviation σ0 and the
scaling of the inputs were selected such that x0 � 2σ0 spanned the
width of the inputs domains.

Fig. 10 Isometric (left) and top-down (right) view of the cost function for CLt
� 0.50.
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The total required number of function evaluations is dependent on
the population size used, and also varies naturally due to the stochas-
tic nature of the evolutionary strategy. Optimization with higher
population sizes generally requires fewer optimizer iterations, but
also requires more system evaluations per iteration. With a popula-
tion size of 150, on average 180 optimizer iterations were needed
with a total number of system evaluations of 27,000.

C. On-Board Model

The on-board model consists of two radial basis function artificial
neural networks (RBFNNs) that model the mapping of the system
inputs α; u1; : : : ; u5 to the lift and drag coefficients. The CL and CD

networks consist of a single hidden layer with 500 and 940 centers,
respectively. More approximation power is needed for the CD net-
work than for the CL network because of the higher degree of non-
linearity of the drag relation compared to the lift relation.
The training of the neural networks is donewith mini-batch online

training, with a batch size of 32. During training, the networkweights
are updated using the Adagrad algorithm proposed by Duchi et al.
[20],with an initial learning rate of 0.01 and amean squared error loss
function.
The neural network models are not initialized with random

weights, but rather with stored weights from a previous training
session. In future applications, such a previous training session
would be the online training performed during the most recent
flight. For the simulations in this study, the starting weights for
the online shape optimization will be weights from offline training
on the nominal aerodynamic model. It is noteworthy that the simu-
lated online optimization operates with the secondary model in the
loop. Therefore, the initial weights serve only as a starting point and
do not yet constitute a model that is representative of the system to
be optimized.
For the initial offline training of the on-board model, a data set

consisting of 261,360 wing shape and angle-of-attack combinations
and their resulting lift and drag coefficients on the nominalmodelwas
used, with 10% of the data being reserved for validation. Both neural
nets were trained from scratch for 2000 epochs, which equated to
roughly 23 h of training time on a laptop (Intel® Core™ i7-4510U
CPU, 8.00 GB RAM). Figure 11 shows the corresponding training

and validation losses, converted to normalized root mean square
errors (NRMSEs) for ease of comparison.
Even with the higher approximation power of the CD network, the

NRMSE of the CL network is lower because of the lower degree of
nonlinearity in the lift relation. The loss curves of both networks still
exhibit a decreasing trend toward the end of the training session. The
training cutoff at 2000 epochs is a tradeoff between computational cost
and starting point quality. The increased computational costs of further
training yield an increasingly diminished return in accuracy, and the
networks are only to serve as a starting point for the on-board model.
The main benefit of using the on-board model instead of direct

system evaluations is the low computational cost. The CMA-ES opti-
mizer typically requires thousands of function evaluations to converge
on an optimum. On the neural network models, hundreds of input
combinations can be evaluated in less than 1 s, whereas on the aerody-
namicmodel each evaluation takes 1.5 s on average. In other words, the
indirect optimization using the on-board model is approximately 2500
times faster than the direct optimization on the aerodynamic model.
On a real-world aircraft, considerablymore timewould be required

because of transients and noise filtering, making direct optimization
unfeasible. Both direct optimization using the nominal aerodynamic
model, and indirect optimization using the offline-trained on-board
model were performed for a number of target lift coefficients. To
make the computational time of the direct optimizationmore feasible,
a population size of 9was used for both. The resulting optimal shapes
as computed by the CMA-ES optimizer are shown in Fig. 12.
The optimal shapes computed by indirect optimization are very

close to those computed using the system directly. On average, the
direct optimization took 44.7 minutes per target lift coefficient,
whereas the average computational time of the indirect optimization
was only 3.9 s (about 688 times faster).

D. Replay Buffer

During the online mini-batch training, the on-board model is
trained on a set of training data kept in memory in the replay buffer.
This buffer consists of a history of evaluated inputs and their corre-
sponding lift and drag measurements. Since the on-board model is
adjusted to adapt to these data, the contents of the buffer are of critical
importance. If the training data set lacks data points in a region of the

Fig. 11 Training and validation losses for the lift (left) and drag coefficient networks (right) in offline training.

Fig. 12 Optimal wing shapes computed directly and indirectly on the system, for various target lift coefficients.
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domain, then the neural nets will unlearn the previously learned from
points in this region. This phenomenon, known as catastrophic for-
getting, was first described in [21]. Therefore, a simple first-in-first-
out training set buffer will not be sufficient to learn and retain a
globally accurate on-board model.
Instead, the replacing of old data points when the buffer is full is

based on a nearest neighbor search on all points in the buffer inspired
by the coverage maximization strategy described in [22]. The data
point with the lowest mean Euclidean distance to its 10 closest
neighbors is replaced with the latest available data point. This
replacement strategy aims to maximize the coverage domain of the
training set by replacing the data points in regions of high data density
and holding onto samples in data scare regions of the domain.

IV. Results and Discussion

In this section, the results from two simulation experiments are
presented. Both experiments start with 100 iterations of input space
exploration through pseudo-random actuation in a phase known as
the wandering phase. In this phase of the experiment, measurements
are collected and the on-board model is trained. This exploratory
phase, duringwhich no actuation of the computed optima takes place,
is needed to prevent the optimizer from falsely identifying regions of
high model error as regions of low drag. In future applications, this
data gathering phase would be replaced by measurements from
previous flights, or from high-fidelity simulations. During the fol-
lowing phase, the computed optimal inputs are actuated on the
system. This phase is referred to as the optimization phase and is
the nominal mode of operation of the algorithm. The selection of the
length of the wandering phase represents a tradeoff between the time
spent in thewandering phase and the accuracy of the on-boardmodel
at the start of the optimization phase. The minimum number of
wandering phase iterations required is dependent on the number of

measurements needed to train an acceptable on-board model across

the entire domain. This in turn depends on the complexity of the real

mapping, the dimensionality of the input space, and the distribution

of the samples over the domain.

During the first experiment, the online optimization algorithm

operated in optimization mode for 15 iterations with a fixed target

lift coefficient of 0.75. During the second simulation, 275 iterations

of online shape optimization were simulated with a target lift coef-

ficient varying between 0.25 and 1.25. The aerodynamic efficiency of

the resulting wing shapes was compared to that of thewing jig shape.

The wing jig shape is defined as the shape of the wing at rest, with all

morphing actuators set to zero deflection. Thewing jig shape does not

have any pretwist.

A. Single-Target Lift Coefficient

The first online shape optimization experiment was run for 115

iterations, of which the first 100 were performed in wandering mode

and the rest in optimization mode. The inputs that were evaluated on

the system are shown in Fig. 13, where the optimization phase is

marked with a red background. As expected, both the angle of attack

and the virtual inputs vary within their bounds with no recognizable

pattern during the wandering phase. The cost associated with these

pseudo-random inputs is generally high, with one notable exception

at iteration 26, where the resultingCL was relatively close to its target

by coincidence. Shortly after the algorithm enters the optimization

phase at iteration 101, the inputs plateau. At iteration 102, a shape is

tried that results in higher cost than the shape from the previous

iteration. Subsequently, the inputs move away from this location and

the associated cost falls down and converges.

More insight into the inner mechanisms of the optimization algo-

rithm is provided by the optimal inputs as calculated by the optimizer,

shown in Fig. 14. The optimal angle of attack and optimal virtual

Fig. 13 Input history for wandering and optimization (red background) with CLt
� 0.75.

Fig. 14 Optimal inputs as calculated by the optimizer for a target lift coefficient of 0.75.
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inputs remain unchanged for the first 32 iterations of the wandering
phase. During this period, measurements are collected and the train-
ing buffer is partially filled. Training of the on-board model is only
started after the training set size exceeds the batch size used for
training.
At iteration 32, the online training is started and the algorithm’s

estimation of the optimal input changes with a sudden jump for the
first time as the global minimum of the on-board model has shifted.
Subsequently, the estimation of the optimal inputs changes repeat-
edly as the on-boardmodel keeps training on an increasing number of
data points and starts to represent the system more accurately. The
fact that the optimal inputs only change slowly during the optimiza-
tion phase, where estimated optimal inputs are evaluated on the
system, indicates that the on-board model has captured the trends
in the exploratory data quite well during the wandering phase. Two
spikes in estimated optimal input can be observed at iterations 99 and
102, which correspond to inputs that seemed promising based on the
on-boardmodel at the end of thewandering phase, but once tested on
the system actually yielded a lower performance than expected. After
evaluation on the system, this input combination does not show up in
the optimal inputs in later iterations.
The wing shapes evaluated on the system during both phases are

shown in Fig. 15. The pseudo-random shapes, shown in blue, span
the full actuator domain. The optimal wing shape, shown in orange,
starts out with only minor changes in camber near the wing root, as
compared to the wing’s jig shape. Toward the tip of the wing, the
camber of the wing is decreased until the actuators in the tip module
hit their maximum negative deflection angles of −25 deg. This

morphing shape brings the spanwise lift distribution of this zero-
twist rectangular planform wing closer to the theoretically ideal
elliptic lift distribution and thereby reduces the induced drag. One
of the optimization phase shapes looks rather different from its
counterparts. This is the shape that was tried on iteration 102 and
resulted in an increase in cost compared to the previous iteration. In
the following iterations, it was not repeated.

B. Various-Target Lift Coefficients

To investigate the ability of the online shape optimization algo-
rithm to find optimal inputs for different target lift coefficients with-
out repeated exploring, the optimization phase was extended to
include two repeated series of steps and awindow of gradual changes
in the target lift coefficient as depicted in Fig. 16. The quality of the
solutions actuated on the system was also evaluated by comparing
their lift-to-drag ratios to those of the wing jig shape.
From iterations 100–160, the target lift coefficient is increased by

0.25 every 15 iterations. The steps in target lift coefficient are marked
with dashed vertical lines. As a direct result of the steps in target lift
coefficient, steps in the computed optimal angle of attack and virtual
inputs can be seen at the corresponding iterations. For the duration of
the steps, the optimal inputs are stable. The cost associated with the
corresponding system outputs is also stable, although it is noisier due
to the added measurement noise.
Between iterations 175 and 275 the target lift coefficient is

decreased from 1.25 to 0.25 in steps of 0.01. As expected, the optimal
angle of attack and mean camber of the optimal shape decrease as
the target lift coefficient decreases. The first virtual input, which

Fig. 15 Morphing shapes evaluated on the system in the wandering and optimization phases.

Fig. 16 Optimal inputs computed during the wandering and optimization (red background) phases.
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contributes a constant amount of camber morphing along the wing-
span, decreases until it nears the negative actuator limit of −25 deg
between iterations 175 and 248.Meanwhile, the second virtual input,
which represents a linear increase in spanwise camber morphing,
becomes less negative. Here the optimizer increases the negative u2
input because the lower u1 input leaves less room for spanwise lift
reduction before the actuators at the wingtip hit their maximum
negative deflections. Between iterations 248 and 275, virtual inputs
u2 through u5 are decreased to zero so that u1 can all the way to the
−25 deg actuator limit. In other words, for the target lift coefficient
of 0.25, the optimizer sacrifices the increased lift induction efficiency
of a more elliptical spanwise lift distribution for an overall less
cambered airfoil. This makes sense since the airfoil already is rela-
tively highly cambered, which is more efficient for producing higher
lift coefficients.
After iteration 275, the same steps in target lift coefficient are

repeated. The optimal inputs are almost the same between the runs,
with the exception of CLt

� 0.50 during iterations 290–305. Even
though the inputs are different in this case, the costs are very similar.
The average cost during iterations 115–130 is−0.475with a standard
deviation of 0.011, whereas the average cost during iterations 290–
305 is −0.481with a standard deviation of 0.018. Hence, on average
the performance of the inputs evaluated during iterations 290–305
was slightly more desirable than those evaluated during iterations
115–130. Nevertheless, this again highlights the importance of accu-
rate lift and drag estimations. Any combination of inputs can only be
determined to be more efficient as long as the difference is measur-
able. In simulations without simulated measurement noise, the revis-
ited target lift coefficients yielded the same inputs.
The lift coefficients and lift-to-drag ratios measured during the

wandering and optimization phases are shown together with those of
the jig shape in Fig. 17.As shown in Fig. 17, the quasi-random shapes
from the wandering phase, shown in blue, produce lower lift-to-drag
ratios than the jig shape, shown in green, in roughly 80% of the cases.
Many possible shape variations exist that are aerodynamically inef-
ficient, whereas only a smaller subset of shapes yield better aerody-
namic performance. By chance, some random inputs perform
comparably or even better than the jig shape.
With the exception of only two data points, the optimization

points, shown in orange, all outperform the jig shape in terms of
aerodynamic efficiency, although, for those two data points, the
aerodynamic model output without simulated measurement noise
does outperform the jig shape. Another effect of the measurement
noise can be observed in the decreasing spread of the optimization
point cloud with increasing lift coefficients. Naturally, as the lift and
drag coefficients become larger, the lift-to-drag ratio becomes less
sensitive tomeasurement noise. The clustering of optimization points
at the target lift coefficients that were repeated for multiple iterations
indicates that the optimizer is able to achieve the target lift coefficient
very closely while also outperforming the jig shape.
An overview of the improvements in aerodynamic performance at

various target lift coefficients achieved is shown in Table 1. As
discussed before, the relatively highly cambered airfoil is naturally
efficient at inducing higher lift coefficients. This is why the highest

performance increases from active wing morphing are observed for
low lift coefficients (0.25–0.50). AtCL � 0.25 the lift-to-drag ratio is
increased with approximately 14.6%. At higher target lift coeffi-
cients, less increase in aerodynamic efficiency can be gained from
changing the average amount of camber. At CL � 1.00 the lift-to-
drag ratio is increased with approximately 2.5%. Due to the rectan-
gular planform, and absence of twist in the jig shape, reshaping of the
spanwise lift distribution closer to an elliptical distribution yields an
aerodynamic performance increase at all target lift coefficients.

V. Conclusions

In this paper, a novel online learning-based black-box approach to
active morphing wing shape optimization was presented. Its objec-
tive is to maximize the steady-state lift-to-drag ratio for a given target
lift coefficient using lift and drag measurements. The presented
method integrates an online-trained radial basis function neural net-
work on-board model with an evolutionary optimization algorithm.
This optimization strategy was validated on a seamless camber
morphing wing, and its performance was compared to the perfor-
mance of the wing jig shape. Before optimizing, the algorithm was
allowed to explore the optimization space with pseudo-random
inputs in the wandering phase. Subsequently, in the optimization
phase, the on-board model was used by the optimizer to find the
optimal wing shape and angle of attack to achieve the target lift
coefficient on the surrogate wing model.
During the wandering phase, the radial basis function neural net-

works were able to sufficiently learn the mapping between the angle
of attack, wing shape, and the resulting aerodynamic forces to
facilitate the optimizer to find wing shapes that outperformed the
jig shape. Moreover, the presented evolutionary optimization strat-
egywas able to bring the zero-twist rectangular planformwing closer
to the theoretically ideal elliptic lift distribution. Furthermore, due to
the global character of the neural network on-board model used, the
optimizer was able to find wing shape and angle-of-attack combina-
tions with lift-to-drag ratio increases of up to 14.6% for a wide range
of target lift coefficients without requiring further exploration.
In the present case, the input space of the on-board model is

comprised only of the wing shape and angle of attack. In actuality,
the mapping of these parameters to the lift and drag coefficients is
also influenced by the Reynolds number and Mach number. Never-
theless, due to the black-box nature of the neural network on-board
model, theReynolds andMach numbers can be easily incorporated as
additional inputs to expand its scope to the full flight envelope of any
camber morphing platform.

Fig. 17 Performance comparison of the jig shape and the online optimization shapes.

Table 1 Efficiency improvements of the optimized wing shapes
compared to the jig shape

CLt
CD L∕D L∕D increase, % CD reduction, %

0.25 0.02995 8.35 14.6 12.8
0.50 0.05108 9.79 5.6 5.3
0.75 0.08420 8.91 2.9 2.8
1.00 0.12906 7.75 2.5 2.4
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