

Delft University of Technology

Scope Graphs
The Story so Far
Zwaan, Aron; van Antwerpen, Hendrik

DOI
10.4230/OASIcs.EVCS.2023.32
Publication date
2023
Document Version
Final published version
Published in
Eelco Visser Commemorative Symposium, EVCS 2023

Citation (APA)
Zwaan, A., & van Antwerpen, H. (2023). Scope Graphs: The Story so Far. In R. Lammel, P. D. Mosses, & F.
Steimann (Eds.), Eelco Visser Commemorative Symposium, EVCS 2023 Article 32 (OpenAccess Series in
Informatics; Vol. 109). Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing.
https://doi.org/10.4230/OASIcs.EVCS.2023.32
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.4230/OASIcs.EVCS.2023.32
https://doi.org/10.4230/OASIcs.EVCS.2023.32

Scope Graphs: The Story so Far
Aron Zwaan #

Delft University of Technology, Netherlands

Hendrik van Antwerpen #

GitHub, Amsterdam, Netherlands

Abstract
Static name binding (i.e., associating references with appropriate declarations) is an essential aspect
of programming languages. However, it is usually treated in an unprincipled manner, often leaving
a gap between formalization and implementation. The scope graph formalism mitigates these
deficiencies by providing a well-defined, first-class, language-parametric representation of name
binding. Scope graphs serve as a foundation for deriving type checkers from declarative type system
specifications, reasoning about type soundness, and implementing editor services and refactorings.
In this paper we present an overview of scope graphs, and, using examples, show how the ideas
and notation of the formalism have evolved. We also briefly discuss follow-up research beyond type
checking, and evaluate the formalism.

2012 ACM Subject Classification Theory of computation → Program semantics; Theory of compu-
tation → Program specifications; Theory of computation → Program analysis

Keywords and phrases scope graph, name binding, reference resolution, type system, static semantics

Digital Object Identifier 10.4230/OASIcs.EVCS.2023.32

Acknowledgements We thank Casper Bach Poulsen, Douglas A. Creager, and the anonymous
reviewers for their helpful comments to improve this paper.

1 Introduction

Formal presentations of type systems often abstract over surface language features. For
example, names are assumed to be unique, or module systems are omitted. Although this
yields concise and elegant calculi, it does not cover all the concerns real-world language
implementations, such as compilers, interpreters and editors, have to deal with. Part of
Eelco Visser’s legacy is his work on principled and comprehensive approaches to specify
name binding that do support those real-world programming language features. In his
vision, language implementations should be derived from high level specifications expressed
in meta-languages [23, 24].

Visser’s meta-language research is reflected in the development of the Spoofax Language
Workbench [7]. Initially, name binding and type checking were expressed in an imperative style,
using the Stratego term rewriting language [2, 6]. The introduction of the NaBL (pronounced
enable) language [8] was the first step towards declarative name binding specification. NaBL
supports defining name binding rules for AST patterns for a whole range of common binding
constructs, such as namespaced declarations and references, lexically nested scopes, transitive
and non-transitive imports opening in the surrounding or subsequent scope, and type-
dependent name resolution with overloading support. From these rules, an incremental name
resolution algorithm was automatically generated [8, 25]. However, the semantics of NaBL
were implementation-defined, documented by examples [10]. Attempts to define a declarative
semantics for NaBL failed. Visser wrote: “[We] had a hard time explaining exactly how it
worked. We kept getting the question ‘but what is the semantics of NaBL?’ and we didn’t
have a good answer. Our attempts at formulating a high-level concise formalization of the
semantics underlying the implementation proved that this was a non-trivial problem.” [22]

© Aron Zwaan and Hendrik van Antwerpen;
licensed under Creative Commons License CC-BY 4.0

Eelco Visser Commemorative Symposium (EVCS 2023).
Editors: Ralf Lämmel, Peter D. Mosses, and Friedrich Steimann; Article No. 32; pp. 32:1–32:13

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:a.s.zwaan@tudelft.nl
https://orcid.org/0000-0002-1818-4245
mailto:hendrik@van-antwerpen.net
https://orcid.org/0000-0001-5117-0921
https://doi.org/10.4230/OASIcs.EVCS.2023.32
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

32:2 Scope Graphs: The Story so Far

The resulting research, discussed in this paper, was guided by the goal to design a
meta-language for name binding that (i) has a clear and clean underlying theory (principled);
(ii) can handle a broad range of common language features (expressive); (iii) is declarative, but
realizable by practical algorithms and tools (executable); (iv) is factored into language-specific
and language-independent parts, to maximize re-use (reusable); and (v) can be applied to
erroneous programs as well as to correct ones (resilient) [17].

Traditionally, type systems deal with names using environments: finite mappings from
names to types [13]. A declaration extends the environment, which is then used to type
check the part of the program in which the declaration is in scope. A reference is type
checked by looking up its name in the environment. This process of associating references
with declarations is called name binding1. Environments work well for lexical binding such
as lambdas, where names are scoped in subtrees of the binding construct, because they
closely follow the structure of the abstract syntax tree (AST). However, it is more tedious
to encode non-lexical binding such as imports or type members, where names are visible in
parts of the AST that are not descendants or close siblings of the binding construct, this way.
Therefore, environment-based type system formulations do not meet the goals set out before.
Non-lexical binding feature are encoded in either a high-level style that is hard to translate
to an executable type checker (as exemplified by the effort taken to formalize Scala’s type
system [1]), or in a more low-level style that is hard to reason with (cf. Hedin [5] for a similar
observation about canonical attribute grammars). In both styles, the encoding is often very
specific to the object language and difficult to reuse (cf. Pierce [13, ch. 15, 19, 20, 23, and
24], which all introduce custom encodings for particular new features). As a result, type
checker implementations use other techniques, such as multiple passes over the program, to
stage construction and use of environments [16, sect. 2.3]. In the end, the formalization and
implementation differ in a way that makes it challenging to co-develop them, or verify their
correspondence [3].

Luckily, although the details of name binding semantics differ across languages, there is a
significant commonality below the surface. Recurring concepts are scopes, the “regions that
behave uniformly with respect to name resolution” [10], namespaces, which categorize names
based on their position in the program, and shadowing, strategies to disambiguate between
multiple candidate declarations. Scope graphs [10] capture this uniformity using a reusable
representation of name binding structure. In scope graphs, nodes represent scopes and
declarations, which are connected by labeled edges. References are resolved by finding paths
to eligible declarations, subject to visibility and shadowing policies expressed in terms of edge
labels. Using this formalism, many different (non-lexical) binding patterns can be encoded.

Scope graphs have been embedded in type system specification meta-languages such as
NaBL2 [17] and Statix [18, 16], implemented as part of the Spoofax language workbench [7].
Type checkers can be derived automatically from declarative type system specifications
written in these languages. Type checker execution is performed by language-parametric
algorithms that take care of operational aspects such as scheduling name lookups and scope
graph construction, and are guaranteed to be sound with respect to the specification.

This paper gives an overview of published work related to scope graphs to date (visualized
in Figure 1). First, we provide an introduction for readers without much background on
scope graphs (Section 2). Next, we give an overview of all approaches that use scope graphs
to derive sound type checkers from type system specifications, and the way the scope graph
formalism has evolved (Section 3). Furthermore, we discuss how scope graphs are used

1 We consider name binding to be static name binding, unless noted otherwise.

A. Zwaan and H. van Antwerpen 32:3

Scope Graphs Type Checking Editor Services Dynamic Semantics
Theory of Name

Resolution
Néron et al., 2015 [10]

Constraint Language for Static Semantics
van Antwerpen et al., 2016 [17]

Scopes as Types
van Antwerpen et al., 2018 [18]

Knowing When to Ask
Rouvoet et al., 2020 [16]

Scope States
van Antwerpen and Visser,

2021 [19]
Incremental

Type-Checking
Zwaan et al., 2022 [28]

Specializing Queries
Zwaan, 2022 [27]

Towards Semantic Editor
Services

Pelsmaeker et al.,
2019 [12]

Static Semantic Code
Completion

Pelsmaeker et al.,
2022 [11]

Scopes Describe Frames
Bach Poulsen et al.,

2016 [14]
Intrinsically-Typed

Interpreters
Bach Poulsen et al.,

2018 [15]
Meta-Interpreter

Specialization
Vergu et al., 2019 [21]

Figure 1 Overview of publications related to scope graphs.

beyond type checking for editor services and reasoning about type soundness (Section 4).
Finally, we reflect on the development of the formalism (Section 5). This paper is necessarily
brief, but we hope it can serve as an introduction and starting point to learn more about
scope graphs.

2 A Model for Name Binding: Néron et al., 2015

Scope graphs were introduced as a language-independent theory of name binding [10]. The
goal is a model for the specification of name binding structure and name resolution behavior
that lends itself to formal reasoning as well as practical implementation. While aiming
for broad coverage of name binding features, the focus is on strong support for non-lexical
binding. Name binding structure is described as a graph consisting of nodes and edges that
represent scopes, references, declarations, and named imports. The theory is instantiated for
specific languages by a mapping from programs to scope graphs and a resolution policy.

We use the example program and scope graph demonstrating module import in Figure 2
as a running example. Names in the program are annotated with a unique position, written
as xi, which allow us to conveniently refer to specific occurrences of names. These positions
are not part of the program source and do not influence resolution behavior. The example
program consists of three top-level definitions, a value a, and two modules A and B, where the
latter imports the former. The modules contain a definition of a record type R, and values
initialized by a constant, a reference, and a projection on a record instance.

In the scope graph, scopes are depicted by circular nodes si : s0 represents the scope of
the whole program, and sA and sB represent the bodies of modules A and B, respectively. The
edges from sA and sB to s0 indicate that s0 is the lexical parent of sA and sB, and make the
declarations in s0 available inside the module bodies. Occurrences of names are depicted as
square nodes xi . The closed arrow s0 a1 indicates a declaration (cf. A2 and x5). Reverse
arrows, such as a9 sB , indicate a reference (cf. A7 and x12). The open arrow A2 sA

indicates that sA is the associated scope of A2 (cf. B6). The arrow sB A7 indicates an
import of the (still to be resolved) module A.

EVCS 2023

32:4 Scope Graphs: The Story so Far

def a1 = 3
module A2 {

def a3 = 21
record R4 { x5: Int }

}
module B6 {

import A7
def p8 = a9
def q10 = new R11 { x12 = 7 }.x13

}

s0

a1

A2

sA

a3

R4

sR x5

B6

sB

A7

p8

a9

q10 R11 s1

x12

Reachability P∗I∗

Visibility I<P D<P D<I

Figure 2 Example program in LMR [17] and its scope graph à la Néron et al., 2015. Dashed
arrows show the resolution path of a9, which depends on the dash-dotted resolution path of A7.

References are resolved to declarations of the same name by finding paths in the graph
that respect the global resolution policies. A path consists of steps: P when traversing a
lexical parent edge, and I when traversing an import (after which the path continues from
the associated scope of the resolved declaration). Declarations are reachable from a scope if
the path matches the regular expression P∗I∗, which allows declarations from lexical parents,
as well as declarations from (transitive) imports, but not from the lexical parents of imported
scopes. Multiple reachable declarations are disambiguated to the set of visible declarations
using the order on paths, which, in a particular scope, prefers imported declarations over
parent declarations (I<P), and local declarations (represented by the terminal step D) over
either of those (D < P and D < I). We can see the effect of the resolution policy on the
resolution of reference a9. Two declarations are reachable from sB: a1 via a P step to s0,
and a3 via an I step to sA (using import A7 which resolves to A2). The visibility policy prefers
I over P, resulting in a single resolution to declaration a3. This demonstrates that I < P
can be interpreted as: declarations from imports (e.g. a3) shadow declarations from lexically
enclosing scopes.

Scopes and imports can also be used to model other binding structures, such as nominal
record types. The record type declaration R4 is modeled similar to modules, with a scope sR

associated to the declaration. Record instantiation is modeled using an instance scope s1,
which imports sR via import R11, which itself is resolved via import A7. Note that reference
x13, which is the right hand side of a record projection, is not modeled in this scope graph.
Indeed, resolving a projection requires knowledge of the type of the left-hand side, which
was not accounted for in the original scope graph framework, but was added in the work
discussed in the next section.

3 Formalizing Type Checkers based on Scope Graphs

The next step after the inception of scope graphs was incorporating them in a meta-
language for type system specifications. As discussed in Section 1, this meta-language
should be (i) principled; (ii) expressive; (iii) declarative; (iv) executable; (v) reuseable; and
(vi) resilient [17]. These goals have governed the research discussed in this section. This meant
evolving the scope graph formalism itself to increase the range of supported language features,
developing declarative and operational semantics for the meta-languages, and developing
reusable techniques for concurrency and incrementality that applied to all specifications
written in a meta-language.

A. Zwaan and H. van Antwerpen 32:5

s0

a1

A2

sA

I P

a3

R4

sR x5

I

B6

sB

IP

A7

I

p8

a9

q10 R11 s1

x12

Iς

s2

x13

I

Labels
{P, I}
Reachability
P∗I∗

Visibility
I<P
$<P $< I

· · ·
R4 : rec(sR)
R11 7→ δ

δ : τ

τ = rec(ς)
· · ·

Figure 3 Scope graph and some of the type constraints à la van Antwerpen et al., 2016 for the
example program of Figure 2. Dashed arrows show the resolution path of x13.

3.1 Scope Graph Constraints: van Antwerpen et al., 2016

The first step towards type checking based on scope graphs was NaBL2, a constraint language
with first-class support for scope graph construction and name resolution [17]. This language
consists of (i) scope graph constraints, which assert nodes and edges of the scope graph,
(ii) resolution constraints, which resolve references or check properties of sets of reachable
and visible declarations, and (iii) type constraints to associate types with declarations and
check type equality.

From early on, it was clear that name resolution and type checking cannot always be
separated into entirely distinct phases. The challenge is that type-dependent references have
to be resolved in a scope that is only determined during type checking, making interleaving
them inevitable. The overall approach that was chosen to support type-dependent name
resolution is to allow for some variability in the structure of the scope graph: edge targets
could be variables that are instantiated during type checking. This resulted in a two phase
approach: first constraints are generated for a program, and then these constraints are solved
by a solver which ensures correct sequencing of resolution and variable instantiation.

To accommodate this approach, the paper expanded the scope graph formalism in two
ways. Looking at the scope graph in Figure 3, we see some notable differences compared
to Figure 2. First, scope-to-scope and import edges are explicitly labeled in the graph
(l and l), generalizing the notion of fixed P and I steps. Consequently, reachability and
well-formedness are expressed in terms of labels (where $ takes the place of D). Custom labels
are useful because they allow multiple name resolution policies to be composed. For example,
using the regular expression P∗(TI∗|I?), transitive (TI) and non-transitive (I) imports can
co-exist in the same specification. Second, the graph contains a scope variable, depicted
as ς , that represents the context in which x13 must be resolved. As the value of ς depends
on the type of the record instantiation, it is identified during type checking (phase 2) rather
than at constraint generation time. This is demonstrated using some of the constraints of
the program (shown on the right side of Figure 3). The first constraint indicates that R4 has
type rec(sR). The second constraint instantiates δ to the declaration R11 resolves to. The
third constraint indicates that τ is the type of δ. Finally, the fourth constraint asserts that τ

must be a record type with scope ς. During constraint solving, the solver instantiates δ with
R4, τ with rec(sR), and ς with sR, which allows the reference x13 to resolve to declaration x5
in sR. This illustrates how variable scopes enable type-dependent name resolution.

Despite being very expressive, this version of name resolution suffered from both theoretical
and practical problems with imports. The theoretical problem, already noted by Néron et
al. [10] as “anomalies”, is the behavior that a single import reference might have different
interpretations depending on the reference being resolved through it – not in line with the
usual expectation that names have a single meaning consistent with all uses. The practical

EVCS 2023

32:6 Scope Graphs: The Story so Far

s0

a1 : int

var

A2 · sAsA mod

P

a3 : int

var

R4 · sRsRx5 : int recvar B6 · sB sBmod

P

A7

I

p8 : int

a9

var

q10 : intR11x12 x13

var

Labels {P, I} Relations {var, mod, rec}
Queries Relation Reachability Visibility Data
A7 mod P∗ $< I xi : τ matches yj if x = y
a9, x12, x13 var P∗I∗ $< I<P xi : τ matches yj if x = y
R11 rec P∗I∗ $< I<P xi : τ matches yj if x = y

Figure 4 Scope graph à la van Antwerpen et al., 2018 for the example program of Figure 2.
Dash-dotted arrows show the resolution path of a9.

problem is that the common pattern where a reference is imported in the same scope (such
as sB A7) led to run times proportional to the factorial of the number of such imports in
a scope. These problems were solved by the developments described in the next section.

3.2 A Logic with Scope Graphs: van Antwerpen et al., 2018
While an important step forward, the previous work was mostly limited to languages with
simple and nominal types. The constraint language was insufficient to model, for example,
structural types and subtyping, or something like Java’s nominal subtyping. This led to
a radical attempt to generalize the ideas of the constraint language to a full logic. The
result was a logic language, Statix, with first class support for scope graph construction and
querying, which could be used to write the judgments necessary for type checking [18].

With these developments also came several substantial changes to the scope graph
formalism, illustrated in Figure 4. First, the scoped relation s0

var a1 : int generalizes
declarations and type constraints. The declaration is labeled with a relation (var for variables)
and can hold arbitrary data (a pair of an occurrence and its type). The other relations (mod
and rec, for modules and record types, respectively), hold pairs of an occurrence and a scope
reference. Second, references, which were part of the graph, are replaced by queries, which are
ephemeral, but depicted here as on top of the graph2. Parameters that previously
were global to the formalism are now specified per query: the relation, reachability and
visibility, and the predicate that matches data. The latter provides the ability to match only
part of the data (ensuring we resolve a name, while ignoring its type or scope). In addition,
having a single relation for each query also simplifies namespacing. These generalizations led
to a great increase in expressivity, evidenced by case studies for structural records, nominal
subtyping and parametric polymorphism.

One significant change to the scope graph formalism is the elimination of explicit imports.
It was noticed that one could write predicate rules that mimic imports by querying the import
reference, and asserting a direct edge to the resulting associated scope. The semantics of
Statix then ensure that every reference will get a single interpretation, thereby side-stepping
both the anomalies and the performance issues of NaBL2. Yet, as a consequence, the graph
resembles the original program less: imports become simple edges between scopes, and their
dependency on import references is no longer visible.

2 Contrary to [18], we use dashed lines to emphasize that queries are not part of the graph.

A. Zwaan and H. van Antwerpen 32:7

s0

sa1 7→ a1 : int

var

sA 7→ A2 · sA
mod

P

sa3 7→ a3 : int

var

sR 7→ R4 · sRsx 7→ x5 : int recvar sB 7→ B6 · sB
mod

P

A7

I

sp 7→ p8 : int

a9

var

sq 7→ q10 : intR11x12 x13

var

Labels {P, I, var, mod, rec}
Queries Reachability Visibility Data
A7 P∗mod mod<P xi : τ matches yj if x = y
a9, x12, x13 P∗I∗var var< I<P xi : τ matches yj if x = y
R11 P∗I∗rec rec< I<P xi : τ matches yj if x = y

Figure 5 Scope graph à la Rouvoet et al., 2020 for the example program of Figure 2. Dash-dotted
arrows show the resolution path of a9.

3.3 Sound Scheduling: Rouvoet et al., 2020
A major challenge resulting from the development of Statix was how to ensure sound execution
of Statix programs. Recall that one goal was to develop meta-languages that were both
formal and declarative, as well as executable. The fact that Statix allows edge construction
to depend on query resolution is a challenge for the latter. Compared to NaBL2, where only
edge targets might be unknown, Statix execution might need to resolve queries when large
parts of the graph are still missing. The idea of critical edges, which are edges that are part
of the final graph, but not yet present in the current, partial graph, provides a strategy for
execution and allows reasoning about its soundness. These edges are sufficient to determine
if a query result in the partial graph is sound (i.e., equal to its result in the final graph).
This idea is developed into an execution strategy for Statix that over-approximates critical
edges using a static analysis of a specification to delay query resolution until soundness is
guaranteed. Due to the over-approximation, the algorithm is incomplete, and it can get
stuck on typeable programs. While generally not a problem in practice, there have been a
few cases where some parts of the specification needed to be rewritten to work around this.

To aid reasoning, Rouvoet et al. present a leaner formalization of both scope graphs
and Statix, called Statix-core. We illustrate this with the example scope graph in Figure 5.
Instead of scopes and declarations, there is just a single node type, which combines identity
and an optional data term, depicted as si 7→ d . Edge and relations labels are combined,
and the relation parameter of the query becomes part of the reachability regular expression.
The query algorithm is simplified by disambiguating after, instead of during, resolution.

3.4 Concurrency: van Antwerpen et al., 2021
Although Statix is an expressive specification language, its type checkers turn out to be
rather slow. The first attempt to mitigate this problem was to execute type checkers
concurrently [19]. A concurrent execution model based on scope graphs is developed, that
can serve as the basis for Statix execution. The scope graph formalism is extended with a
notion of first-class compilation units, where each unit “owns” part of the scope graph. Units
are organized hierarchically, with shared scopes connecting parent and child units’ scope
graphs. Usually, the root unit corresponds to the whole project, the leaves to files, and the
units in between to packages or modules. Compilation units are mapped to actors, the units
of parallel computation, each of which runs its own type checker. The type checkers use an
API to construct and query their scope graph, while resolution queries in other units are

EVCS 2023

32:8 Scope Graphs: The Story so Far

implemented using message passing. Query scheduling is coordinated using scope states, a
generalization of the critical edges of Rouvoet et al. [16]. Type checkers initialize fresh scopes
with a set of open (critical) edges, which monotonically decreases as the type checkers closes
edges (i.e., marks them non-critical). By translating changes in the set of critical edges to
scope state operations, the Statix solver was ported to use the concurrent model easily. The
concurrent execution can also suffer from incompleteness if open edges are over-approximated.
Termination is ensured using a deadlock detection and resolution scheme.

3.5 Incrementality: Zwaan et al., 2022
This concurrent framework was extended to have compilation unit level incrementality as
well [28]. When type checking a project incrementally, edited units compute a diff of their
scope graphs (i.e., a set of added and removed scopes and edges), which is used to compute
differences in query answers (i.e., added or removed paths) of unchanged units. Such units
require reanalysis only when an answer to an outgoing query changed. By extending the
deadlock resolution of the concurrent solver, the algorithm can deal with mutually recursive
dependencies correctly. Case studies resulted in speedups up to 150x on synthetic Java
projects and up to 20x on real-world commits from Java and WebDSL projects.

3.6 Partial Evaluation: Zwaan, 2022
Statix describes name resolution using some high-level declarative parameters, such as
reachability regular expressions and label orders. This allows expressing reachability and
visibility policies concisely, but induces significant overhead when resolving queries. As
these parameters are known statically (i.e., no query parameters are computed dynamically),
partial evaluation [4] can be applied to the query resolution algorithm [27]. This yields
imperative query resolution functions, that implement a query with fixed parameters. As
such, these specialized queries do not induce overhead from interpreting query parameters
anymore. In case studies on Java projects, the type checker runtime decreased 38% to 48%.

4 Beyond Type Checking

In this section, we discuss how declarative specifications based on scope graphs have been
used for the dynamic semantics of a language, editor services, and refactorings.

Dynamic Semantics. The layout of runtime heaps often corresponds to the static bind-
ing structure of a program. This notion is made precise in the “scopes describe frames”
paradigm [14], in which a heap is defined as a collection of frames. Each frame corresponds to
a scope, with links to other frames that correspond to edges in a scope graph, and slots with
values that correspond to declarations. This establishes a systematic, language-parametric
relation between runtime memory layout and static binding. The correspondence between
scopes and frames is used to prove language properties such as type soundness, as well as
providing a framework for safe garbage collectors.

The “scopes describe frames” paradigm has been used to define intrinsically-typed
definitional interpreters for imperative languages [15]. While type-safety proofs for languages
with mutable state are usually challenging, using this framework, most of the proof work
could be delegated to the (dependently-typed) host language. Finally, Vergu et al. [21] show
that mapping scopes and frames to the Truffle Object Storage Model allows a significant
speedup of meta-interpreters.

A. Zwaan and H. van Antwerpen 32:9

Editor Services. Interactive editor services are as important as a compiler to a modern
development experience. Declarative meta-languages, which can be understood independent
of their implementations, allow us to derive such editor services as alternative interpretations
of a specification [12]. For example, Statix is used for a language-parametric, sound and
complete approach to code completion [11]. Type-sound proposals are generated by turning
the proposal position into a unification variable, and applying search strategies to the
constraint problem, to find possible instantiations. These instantiations are then translated
back to completion proposals. The implementation is language-parametric, and can be reused
as an off-the-shelf component for actual language implementations.

Applying scope graphs as the backbone of language-parametric implementations of com-
mon refactorings has been explored as well. This resulted in approaches for renaming [9] and
function inlining [20]. While this demonstrates that scope graphs can facilitate refactorings,
they have shown a limitation of Statix’ queries. In particular, one cannot express a query
that resolves all names that would result in capture. Thus, these refactorings perform a
full reanalysis of the program during or after the transformation, which yields significant
performance overhead.

Cross-Language Type Checking. Since scope graphs provide a uniform representation of
name binding, exploratory research in cross-language type checking within a project has been
conducted [26]. This study suggests that scope graphs generated by specifications of different
languages are composable when the specifications agree on an “interface”, which is a shared
collection of labels, declarations and resolution policies. However, approximating critical
edges [16] and determining rule selection order in Statix require whole-program analyses.
Therefore, Statix’ specifications turn out to be composable only when the rule sets of the
fragments are disjoined, limiting the expressiveness of the approach. Perhaps this approach
can be adapted to use compilation units, which executes each unit with its own type checker,
making specification composition unnecessary.

5 Evaluation

The work discussed in the previous sections shows the historical development from imperative
approaches to name binding using Stratego to a family of meta-languages and language-
parametric sevices based on the scope graph formalism. But to what extend has the goal of
declarative specification of rich name binding patterns been achieved? In this section, we
evaluate the formalism using the goals from Section 1.

Principled. We first consider whether the developed theory is “clear and clean”. As these
criteria are a little subjective, and no user evaluation has been conducted at the moment
of writing, we mainly base this evaluation on informal feedback acquired over the years.
First, the scope graph theory is small, has a well-defined semantics, and closely relates to
well-known notions from graph theory. For good scope graph models, the elements of a scope
graph (nodes, declarations and edges) can intuitively be related to the original program.
Its main weakness is its formulation in terms of individual references, which leads to the
anomalous behavior that allows multiple interpretations of import references depending on
the the reference resolved through the import. Second, the meta-languages are relatively
small, have well-defined semantics, and stay close to existing concepts of constraint and logic
programming. Specifications can be understood despite the complexity that is necessary to
execute them.

EVCS 2023

32:10 Scope Graphs: The Story so Far

Expressive. We begin to consider the expressiveness of scope graphs as a model of name
binding. Case studies show that many different name binding patterns can be encoded,
ranging from sequential, parallel and recursive let-bindings to transitive and non-transitive
module imports using full or partial qualifiers [10] as well as nominal and structural records
with extension and subtyping [17, 18]. Some important limitations we observed so far:
First, substructural type systems are hard to encode, because scope graphs cannot express
constraints on declaration access count and ordering. Second, more complex shadowing
policies, such as Scala’s preference of outer named imports over more closely nested wildcard
imports, cannot be expressed with simple label orders. Third, the work on renaming and
inlining suggests that scope graph queries are not expressive enough to accommodate concise
implementations of refactorings, although precise requirements are still unclear.

Next we consider the expressiveness of the meta-languages, in particular Statix. Case
studies show that a variety of typing relations can be expressed, ranging from type-dependent
names [17], to parametric polymorphism [18], as well as disambiguation of qualifiers [19].
In addition, major limitations exist around inference. First, the absence of support for
reasoning about or abstracting over free unification variables makes it impossible to specify
Hindley-Milner-style type inference. Second, it is not possible to infer bits of scope graph,
not even for fairly local cases such as a record type based on its usage in a function body.

Declarative. The meta-languages abstract over implementation concerns such as staging
and scheduling constraint resolution. Their specifications can be understood in terms
of declarative semantics [16, fig. 7], which are free of the complexities required for the
operational semantics. However, as we will see in the next section, there are rare cases where
the specification was changed to accommodate the incompleteness of the solver algorithm.
Although the declarative semantics were intended to support formal reasoning, we have only
seen that for soundness of the meta-languages themselves, and for definitional interpreters
that use customized scope graph representations [14, 15]. Reasoning about properties of
individual language specifications, other interpreters, or proving properties of individual
programs based on language semantics, is still mostly unexplored.

We also consider whether specifications have a desirable level of abstraction. For many of
the motivating use cases that we already mentioned, Statix allows clean and concise encodings,
and the rules are quite close to traditional pen-and-paper inference rules. For some cases,
the encodings can be very verbose, and the intent gets lost. Examples are parametric
polymorphism (e.g., Featherweight Generic Java), which requires explicit substitution logic,
and the disambiguation of syntactically ambiguous references in Java, which requires verbose
decision procedures that lack the conciseness of the scope graph shadowing primitives.

Executable. The need for practical algorithms has always been the sword of Damocles,
hanging over us when we consider new theories. While all the research presented before
has always addressed both theory and practice, each has sometimes suffered for the others
sake. Regarding scope graphs we consider the following points. First, the original resolution
algorithm [10, 17] could perform very poorly when multiple imports were present in a single
scope. Circumventing this problem by dropping imports from scope graphs solved this,
but has weakened scope graphs as a stand-alone model for name binding: name-based
dependencies are not clearly reflected in the graph anymore, and it depends more on the
embedding meta-language for common patterns. Second, the scope graph theory has always
assumed path orders to be lexicographical orders based on edge labels, and the resolution
algorithms handle shadowing locally decided based on outgoing edge labels. The Scala case

A. Zwaan and H. van Antwerpen 32:11

study [16] shows that local shadowing is not sufficient. Allowing full path ordering would be
an innocuous change to the theory, but the performance impact on the resolution algorithms
is unclear. Third, the resolution algorithm operates on single references or queries. This
inhibits caching, resulting in poor performance, as many parts of the graph are traversed
multiple times. This is a problem in practice, since a significant part of meta-language
runtime is determined by scope graph resolution. It is an open question whether a resolution
algorithm is possible that supports explicit imports without suffering from “anomalies”, and
what the impact on the theory would be.

Both NaBL2 and Statix allow deriving executable type checkers, which are provably
correct (i.e., return results sound with respect to the declarative semantics). However,
the need to interleave graph construction and graph querying in Statix because of the
absence of imports, has greatly complicated its operational semantic. Additionally, the
over-approximation of critical edges can lead to a stuck solver on type-correct programs.
Most notably, this was observed when studying the module system of Rust, which was
expressible in Statix, but could not be made executable. Regarding performance, Statix has
been designed to avoid excessive run times, for example by eliminating backtracking, but so
far Statix-based type checkers are still an order of magnitude slower than hand-written ones.

Reusable. Scope graphs and Statix abstract over common type checker implementation
concerns, such as implementing name binding operations, first-order unification, as well as
staging and scheduling, which are reusable through their implementations. In addition, the
formalism enabled reuse of editor services such as code completion and refactorings. Still,
specifications sometimes have significant boilerplate, due to the lack of sharing possibilities in
the meta-language itself. This is a limitation of the current implementation rather than the
approach. In the future, we envision supporting polymorphic predicates in the Statix surface
language to facilitate reuse of constraints. In addition, a notion of “specification libraries”,
where we can standardize and reuse particular type system features, could encourage reuse,
not just of code, but also language concepts, beyond individual specifications.

Resilient. Scope graph resolution is resilient to erroneous and incomplete programs, and
will simply return partial or ambiguous results. The meta-languages, in a similar manner,
try to solve as much of the type checking problem as possible, while collecting error messages
for failed constraints. This is useful when iteratively developing a language. However,
the behavior on erroneous programs is not formalized. Thus, there are no guarantees on
the behavior of these type checkers on incorrect programs. Similarly, the clarity of the
reported errors varies a lot. Especially the combination of unification and dynamic constraint
scheduling can result in unexpected errors, that are hard to debug. Improving the quality of
error messages is therefore an important open research question.

6 Conclusion

In this paper, we have provided an overview of Eelco Visser’s research line related to scope
graphs and identified many of its strengths and opportunities for future improvement. While
many interesting questions remain, scope graphs have shown to be a solid and reliable
foundation for both understanding and implementing name binding related components of
language implementations.

EVCS 2023

32:12 Scope Graphs: The Story so Far

References
1 Nada Amin, Samuel Grütter, Martin Odersky, Tiark Rompf, and Sandro Stucki. The essence

of dependent object types. In Sam Lindley, Conor McBride, Philip W. Trinder, and Donald
Sannella, editors, A List of Successes That Can Change the World, volume 9600 of Lecture Notes
in Computer Science, pages 249–272. Springer, 2016. doi:10.1007/978-3-319-30936-1_14.

2 Martin Bravenboer, Arthur van Dam, Karina Olmos, and Eelco Visser. Program transformation
with scoped dynamic rewrite rules. Fundamenta Informaticae, 69(1-2):123–178, 2006. URL:
https://content.iospress.com/articles/fundamenta-informaticae/fi69-1-2-06.

3 Atze Dijkstra and S. Doaitse Swierstra. Ruler: Programming type rules. In 8th International
Symposium on Functional and Logic Programming, volume 3945 of Lecture Notes in Computer
Science, pages 30–46. Springer, 2006. doi:10.1007/11737414_4.

4 Yoshihiko Futamura. Partial computation of programs. In RIMS Symposium on Software
Science and Engineering, volume 147 of Lecture Notes in Computer Science, pages 1–35.
Springer, 1982. doi:10.1007/3-540-11980-9_13.

5 Görel Hedin. Reference attributed grammars. Informatica (Slovenia), 24(3):301–317, 2000.
6 Zef Hemel, Lennart C. L. Kats, Danny M. Groenewegen, and Eelco Visser. Code generation

by model transformation: a case study in transformation modularity. Software and Systems
Modeling, 9(3):375–402, 2010. doi:10.1007/s10270-009-0136-1.

7 Lennart C. L. Kats and Eelco Visser. The Spoofax language workbench: rules for declarative
specification of languages and IDEs. In Proceedings of the 25th Annual ACM SIGPLAN
Conference on Object-Oriented Programming, Systems, Languages, and Applications, pages
444–463, Reno/Tahoe, Nevada, 2010. ACM. doi:10.1145/1869459.1869497.

8 Gabriël Konat, Lennart C. L. Kats, Guido Wachsmuth, and Eelco Visser. Declarative name
binding and scope rules. In Krzysztof Czarnecki and Görel Hedin, editors, 5th International
Conference on Software Language Engineering, volume 7745 of Lecture Notes in Computer
Science, pages 311–331. Springer, 2012. doi:10.1007/978-3-642-36089-3_18.

9 Phil Misteli. Renaming for everyone: Language-parametric renaming in spoofax. Master’s
thesis, Delft University of Technology, May 2021. URL: http://resolver.tudelft.nl/uuid:
60f5710d-445d-4583-957c-79d6afa45be5.

10 Pierre Néron, Andrew P. Tolmach, Eelco Visser, and Guido Wachsmuth. A theory of name
resolution. In Jan Vitek, editor, Programming Languages and Systems – 24th European
Symposium on Programming, ESOP 2015, Held as Part of the European Joint Conferences on
Theory and Practice of Software, ETAPS 2015, London, UK, April 11-18, 2015. Proceedings,
volume 9032 of Lecture Notes in Computer Science, pages 205–231. Springer, 2015. doi:
10.1007/978-3-662-46669-8_9.

11 Daniël A. A. Pelsmaeker, Hendrik van Antwerpen, Casper Bach Poulsen, and Eelco Visser.
Language-parametric static semantic code completion. Proceedings of the ACM on Programming
Languages, 6(OOPSLA):1–30, 2022. doi:10.1145/3527329.

12 Daniël A. A. Pelsmaeker, Hendrik van Antwerpen, and Eelco Visser. Towards language-
parametric semantic editor services based on declarative type system specifications (brave new
idea paper). In Alastair F. Donaldson, editor, 33rd European Conference on Object-Oriented
Programming, volume 134 of LIPIcs. Dagstuhl, 2019. doi:10.4230/LIPIcs.ECOOP.2019.26.

13 Benjamin C. Pierce. Types and Programming Languages. MIT Press, Cambridge, Massachusetts,
2002.

14 Casper Bach Poulsen, Pierre Néron, Andrew P. Tolmach, and Eelco Visser. Scopes describe
frames: A uniform model for memory layout in dynamic semantics. In Shriram Krishnamurthi
and Benjamin S. Lerner, editors, 30th European Conference on Object-Oriented Programming,
ECOOP 2016, July 18-22, 2016, Rome, Italy, volume 56 of LIPIcs. Schloss Dagstuhl – Leibniz-
Zentrum fuer Informatik, 2016. doi:10.4230/LIPIcs.ECOOP.2016.20.

15 Casper Bach Poulsen, Arjen Rouvoet, Andrew P. Tolmach, Robbert Krebbers, and Eelco
Visser. Intrinsically-typed definitional interpreters for imperative languages. Proceedings of
the ACM on Programming Languages, 2(POPL), 2018. doi:10.1145/3158104.

https://doi.org/10.1007/978-3-319-30936-1_14
https://content.iospress.com/articles/fundamenta-informaticae/fi69-1-2-06
https://doi.org/10.1007/11737414_4
https://doi.org/10.1007/3-540-11980-9_13
https://doi.org/10.1007/s10270-009-0136-1
https://doi.org/10.1145/1869459.1869497
https://doi.org/10.1007/978-3-642-36089-3_18
http://resolver.tudelft.nl/uuid:60f5710d-445d-4583-957c-79d6afa45be5
http://resolver.tudelft.nl/uuid:60f5710d-445d-4583-957c-79d6afa45be5
https://doi.org/10.1007/978-3-662-46669-8_9
https://doi.org/10.1007/978-3-662-46669-8_9
https://doi.org/10.1145/3527329
https://doi.org/10.4230/LIPIcs.ECOOP.2019.26
https://doi.org/10.4230/LIPIcs.ECOOP.2016.20
https://doi.org/10.1145/3158104

A. Zwaan and H. van Antwerpen 32:13

16 Arjen Rouvoet, Hendrik van Antwerpen, Casper Bach Poulsen, Robbert Krebbers, and Eelco
Visser. Knowing when to ask: sound scheduling of name resolution in type checkers derived from
declarative specifications. Proceedings of the ACM on Programming Languages, 4(OOPSLA),
2020. doi:10.1145/3428248.

17 Hendrik van Antwerpen, Pierre Néron, Andrew P. Tolmach, Eelco Visser, and Guido
Wachsmuth. A constraint language for static semantic analysis based on scope graphs.
In Proceedings of the 2016 ACM SIGPLAN Workshop on Partial Evaluation and Program
Manipulation, pages 49–60. ACM, 2016. doi:10.1145/2847538.2847543.

18 Hendrik van Antwerpen, Casper Bach Poulsen, Arjen Rouvoet, and Eelco Visser. Scopes
as types. Proceedings of the ACM on Programming Languages, 2(OOPSLA), 2018. doi:
10.1145/3276484.

19 Hendrik van Antwerpen and Eelco Visser. Scope states: Guarding safety of name resolution
in parallel type checkers. In Anders Møller and Manu Sridharan, editors, 35th European
Conference on Object-Oriented Programming, ECOOP 2021, July 11-17, 2021, Aarhus, Den-
mark (Virtual Conference), volume 194 of LIPIcs. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2021. doi:10.4230/LIPIcs.ECOOP.2021.1.

20 Loek van der Gugten. Function inlining as a language parametric refactoring. Master’s
thesis, Delft University of Technology, June 2022. URL: http://resolver.tudelft.nl/uuid:
15057a42-f049-4321-b9ee-f62e7f1fda9f.

21 Vlad A. Vergu, Andrew P. Tolmach, and Eelco Visser. Scopes and frames improve meta-
interpreter specialization. In Alastair F. Donaldson, editor, 33rd European Conference on
Object-Oriented Programming, ECOOP 2019, July 15-19, 2019, London, United Kingdom,
volume 134 of LIPIcs. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2019. doi:10.
4230/LIPIcs.ECOOP.2019.4.

22 Eelco Visser. A theory of name resolution (blog), January 2015. URL: https:
//web.archive.org/web/20220925104204/https://eelcovisser.org/blog/writing/
2015/01/30/a-theory-of-name-resolution/ [cited 18-01-2023].

23 Eelco Visser. Understanding software through linguistic abstraction. Science of Computer
Programming, 97:11–16, 2015. doi:10.1016/j.scico.2013.12.001.

24 Eelco Visser. Fast and safe linguistic abstraction for the masses. In Marieke Huisman, Wouter
Swierstra, and Eelco Visser, editors, Tech Report UU-CS-2019-004: A Research Agenda for
Formal Methods in the Netherlands, pages 10–11. Department of Information and Computing
Sciences, Utrecht University, 2019.

25 Guido Wachsmuth, Gabriël Konat, Vlad A. Vergu, Danny M. Groenewegen, and Eelco
Visser. A language independent task engine for incremental name and type analysis. In
Martin Erwig, Richard F. Paige, and Eric Van Wyk, editors, Software Language Engineering
– 6th International Conference, SLE 2013, Indianapolis, IN, USA, October 26-28, 2013.
Proceedings, volume 8225 of Lecture Notes in Computer Science, pages 260–280. Springer,
2013. doi:10.1007/978-3-319-02654-1_15.

26 Aron Zwaan. Composable type system specification using heterogeneous scope graphs. Master’s
thesis, Delft University of Technology, January 2021. URL: http://resolver.tudelft.nl/
uuid:68b7291c-0f81-4a70-89bb-37624f8615bd.

27 Aron Zwaan. Specializing scope graph resolution queries. In Proceedings of the 15th ACM
SIGPLAN International Conference on Software Language Engineering, SLE 2022, New York,
NY, USA, 2022. Association for Computing Machinery. doi:10.1145/3567512.3567523.

28 Aron Zwaan, Hendrik van Antwerpen, and Eelco Visser. Incremental type-checking for
free: Using scope graphs to derive incremental type-checkers. Proceedings of the ACM on
Programming Languages, 6(OOPSLA2), 2022. doi:10.1145/3563303.

EVCS 2023

https://doi.org/10.1145/3428248
https://doi.org/10.1145/2847538.2847543
https://doi.org/10.1145/3276484
https://doi.org/10.1145/3276484
https://doi.org/10.4230/LIPIcs.ECOOP.2021.1
http://resolver.tudelft.nl/uuid:15057a42-f049-4321-b9ee-f62e7f1fda9f
http://resolver.tudelft.nl/uuid:15057a42-f049-4321-b9ee-f62e7f1fda9f
https://doi.org/10.4230/LIPIcs.ECOOP.2019.4
https://doi.org/10.4230/LIPIcs.ECOOP.2019.4
https://web.archive.org/web/20220925104204/https://eelcovisser.org/blog/writing/2015/01/30/a-theory-of-name-resolution/
https://web.archive.org/web/20220925104204/https://eelcovisser.org/blog/writing/2015/01/30/a-theory-of-name-resolution/
https://web.archive.org/web/20220925104204/https://eelcovisser.org/blog/writing/2015/01/30/a-theory-of-name-resolution/
https://doi.org/10.1016/j.scico.2013.12.001
https://doi.org/10.1007/978-3-319-02654-1_15
http://resolver.tudelft.nl/uuid:68b7291c-0f81-4a70-89bb-37624f8615bd
http://resolver.tudelft.nl/uuid:68b7291c-0f81-4a70-89bb-37624f8615bd
https://doi.org/10.1145/3567512.3567523
https://doi.org/10.1145/3563303

	1 Introduction
	2 A Model for Name Binding: Néron et al., 2015
	3 Formalizing Type Checkers based on Scope Graphs
	3.1 Scope Graph Constraints: van Antwerpen et al., 2016
	3.2 A Logic with Scope Graphs: van Antwerpen et al., 2018
	3.3 Sound Scheduling: Rouvoet et al., 2020
	3.4 Concurrency: van Antwerpen et al., 2021
	3.5 Incrementality: Zwaan et al., 2022
	3.6 Partial Evaluation: Zwaan, 2022

	4 Beyond Type Checking
	5 Evaluation
	6 Conclusion

