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Abstract. Free-standing social conversations constitute a yet underex-
plored setting for human behavior forecasting. While the task of pre-
dicting pedestrian trajectories has received much recent attention, an
intrinsic difference between these settings is how groups form and dis-
band. Evidence from social psychology suggests that group members
in a conversation explicitly self-organize to sustain the interaction by
adapting to one another’s behaviors. Crucially, the same individual is
unlikely to adapt similarly across different groups; contextual factors
such as perceived relationships, attraction, rapport, etc., influence the
entire spectrum of participants’ behaviors. A question arises: how can
we jointly forecast the mutually dependent futures of conversation part-
ners by modeling the dynamics unique to every group? In this paper,
we propose the Social Process (SP) models, taking a novel meta-learning
and stochastic perspective of group dynamics. Training group-specific
forecasting models hinders generalization to unseen groups and is chal-
lenging given limited conversation data. In contrast, our SP models treat
interaction sequences from a single group as a meta-dataset: we condi-
tion forecasts for a sequence from a given group on other observed-future
sequence pairs from the same group. In this way, an SP model learns to
adapt its forecasts to the unique dynamics of the interacting partners,
generalizing to unseen groups in a data-efficient manner. Additionally,
we first rethink the task formulation itself, motivating task requirements
from social science literature that prior formulations have overlooked.
For our formulation of Social Cue Forecasting, we evaluate the empiri-
cal performance of our SP models against both non-meta-learning and
meta-learning approaches with similar assumptions. The SP models yield
improved performance on synthetic and real-world behavior datasets.
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1 Introduction

Picture a conversing group of people in a free-standing social setting. To con-
duct such exchanges, we transfer high-order social signals across space and time
through explicit low-level behavior cues—examples include our pose, gestures,
gaze, and floor control actions [1–3]. Evidence suggests that we employ antic-
ipation of these and other cues to navigate daily social interactions [1,4–8].
Consequently, for machines to truly develop adaptive social skills, they need to
have the ability to forecast the future. For instance, foreseeing the upcoming
behaviors of partners in advance can enable interactive agents to choose more
fluid interaction policies [9], or contend with uncertainties in imperfect real-time
inferences surrounding cues [3].

In literature, behavior forecasting works mainly consider data at two repre-
sentations with an increasing level of abstraction: low-level cues or features that
are extracted manually or automatically from raw audiovisual data, and man-
ually labeled high-order events or actions. The forecasting task has primarily
been formulated to predict future event or action labels from observed cues or
other high-order event or action labels [5,6,9–13]. Moreover, identifying patterns
predictive of certain semantic events has been a long-standing topic of focus in
the social sciences, where researchers primarily employ a top-down workflow.
First, the events of interest are selected for consideration. Then their relation-
ship to preceding cues or other high-order actions are studied in isolation through

Fig. 1. Conceptual illustration of forecasting approaches on an in-the-wild conversation
from the MatchNMingle dataset [16]. Top. A group leaving event [10]: the circled
individual has moved from one group in the observed window tobs := [o1 . . . oT ] to
another in a future window tfut := [f1 . . . fT ]. Bottom. Input behavioral cues bit:
head pose (solid normal), body pose (hollow normal), and speaking status (speaker
in orange). a. The top-down approach entails predicting the event label from such
cues over tobs, from only 200 instances of group leaving in over 90min of interaction
[10]. b. Our proposed bottom-up, self-supervised formulation of Social Cue Forecasting
involves regressing a future distribution for the same low-level input cues over tfut
(shaded spread). This enables utilizing the full 90min of event-unlabeled data.
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exploratory or confirmatory analysis [14,15]. Examples of such semantic events
include speaker turn transitions [5,6], mimicry episodes [13], the termination of
an interaction [9,10], or high-order social actions [11,12].

One hurdle in such a top-down paradigm is data efficiency. The labeled events
often occur infrequently over the interaction, reducing the effective amount of
labeled data. This, combined with the fact that collecting behavior data is cost
and labor-intensive, precludes the effective application of neural supervised learn-
ing techniques that tend to be data demanding. More recently, some approaches
have adopted a more bottom-up formulation for dyadic conversations. The task
entails predicting event-independent future cues for a single target participant
or virtual avatar from the preceding observed cues of both participants [17,18].
Since training sequences are not limited to windows around semantic events,
such a formulation is more data-efficient. Figure 1 illustrates the top-down and
bottom-up approaches conceptually.

In practice, however, the concrete formulations within the bottom-up
paradigm [17,18] suffer from several conceptual problems: (i) predictions are
made for a single individual using cues from both individuals as input; since
people behave differently, this entails training one forecasting model per person;
(ii) even so, predicting a future for one individual at a time is undesirable as
these futures are not independent; and (iii) the prediction is only a single future,
despite evidence that the future is not deterministic, and the same observed
sequence can result in multiple socially-valid continuations [19–21].

To address all these issues, we introduce a self-supervised forecasting task
called Social Cue Forecasting: predicting a distribution over future multimodal
cues jointly for all group members from their same preceding multimodal cues.
Note that we use self-supervised here to simply distinguish from the formulations
where the predicted quantity (e.g. event-labels) is of a different representation
than the observed input (e.g. cues). Given the cue data, the inputs and outputs
of our formulation are both cues, so we obtain the supervisory signal from the
data itself.

Furthermore, a crucial characteristic of free-standing conversations is that
people sustain the interaction by explicitly adapting to one another’s behaviors
[1]. Moreover, the way a person adapts to their partners is a function of sev-
eral complex factors surrounding their interpersonal relationships and the social
setting [22, Chap. 1]; [1, p. 237]. The social dynamics guiding such behavior
are embedded in the constellation of participant cues and are distinct for every
unique grouping of individuals. As such, a model should adapt its forecasts to
the group under consideration. (Even in the pedestrian setting where coordina-
tion is only implicit, Rudenko et al. [23, Sec. 8.4.1] observe that failing to adapt
predictions to different individuals is still a limitation). For our methodologi-
cal contribution, we propose the probabilistic Social Processes models, viewing
each conversation group as a meta-learning task. This allows for capturing social
dynamics unique to each group without learning group-specific models and gen-
eralizing to unseen groups at evaluation in a data-efficient manner. We believe
that this framing of SCF as a few-shot function estimation problem is especially
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suitable for conversation forecasting—a limited data regime where good uncer-
tainty estimates are desirable. Concretely, we make the following contributions:

– We introduce and formalize the novel task of Social Cue Forecasting (SCF),
addressing the conceptual drawbacks of past formulations.

– For SCF, we propose and evaluate the family of socially aware probabilistic
Seq2Seq models we call Social Processes (SP).

2 Related Work

To aid readers from different disciplines situate our work within the broader
research landscape, we categorize behavior-forecasting literature by interaction
focus [24]. In a focused interaction, such as conversations, participants explicitly
coordinate their behaviors to sustain the interaction. In unfocused interactions,
coordination is implicit, such as when pedestrians avoid collisions.

Focused Interactions. The predominant interest in conversation forecasting
stems from the social sciences, with a focus on identifying patterns that are
predictive of upcoming speaking turns [5–8], disengagement from an interac-
tion [9,10], or the splitting or merging of groups [25]. Other works forecast the
time-evolving size of a group [26] or semantic social action labels [11,12]. More
recently, there has also been a growing interest in the computer vision commu-
nity for tasks related to inferring low-level cues of participants either from their
partners’ cues [27] or raw multimodal sensor data [28]. Here there has also been
some interest in forecasting nonverbal behavior, mainly for dyadic interactions
[17,18,29]. The task involves forecasting the future cues of a target individual
from the preceding cues of both participants.

Unfocused Interactions. Early approaches for forecasting pedestrian or vehi-
cle trajectories were heuristic-based, involving hand-crafted energy potentials
to describe the influence pedestrians and vehicles have on each other [30–37].
Recent approaches build upon the idea of encoding relative positional informa-
tion directly into a neural architecture [38–45]. Some works go beyond locations,
predicting keypoints in group activities [46,47]. Rudenko et al. [23] provide a
survey of approaches within this space.

Non-interaction Settings. Here, the focus has been on forecasting individual
poses from images [48] and video [49,50], or synthesizing poses using high-
level control parameters [51,52]. The self-supervised aspects of our task for-
mulation are related to visual forecasting, where the goal has been to predict
non-semantic low-level pixel features or intermediate representations [34,50,53–
57]. Such learned representations have been utilized for other tasks like semi-
supervised classification [58], or training agents in immersive environments [59].

For the interested reader, we further discuss practical considerations distin-
guishing forecasting in conversation and pedestrian settings in Appendix E.
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3 Social Cue Forecasting: Task Formalization

While self-supervision has shown promise for learning representations of lan-
guage and video data, is this bottom-up approach conceptually reasonable for
behavior cues? The crucial observation we make is that the semantic meaning
transferred in interactions (the so-called social signal [60]) is already embedded
in the low-level cues [61]. So representations of this high-level semantic meaning
that we associate with actions and events (e.g. group leaving) can be learned
from the low-level dynamics in the cues.

3.1 Formalization and Distinction from Prior Task Formulations

The objective of SCF is to predict future behavioral cues of all people involved
in a social encounter given an observed sequence of their behavioral fea-
tures. Formally, let us denote a window of monotonically increasing observed
timesteps as tobs := [o1, o2, ..., oT ], and an unobserved future time window as
tfut := [f1, f2, ..., fT ], f1 > oT . Note that tfut and tobs can be of different
lengths, and tfut need not immediately follow tobs. Given n interacting partici-
pants, let us denote their social cues over tobs and tfut as

X := [bi
t; t ∈ tobs]ni=1, Y := [bi

t; t ∈ tfut]ni=1. (1a, b)

The vector bi
t encapsulates the multimodal cues of interest from participant i at

time t. These can include head and body pose, speaking status, facial expres-
sions, gestures, verbal content—any information streams that combine to trans-
fer social meaning.

Distribution Over Futures. In its simplest form, given an X, the objective of
SCF is to learn a single function f such that Y = f(X). However, an inherent
challenge in forecasting behavior is that an observed sequence of interaction does
not have a deterministic future and can result in multiple socially valid ones—a
window of overlapping speech between people may and may not result in a change
of speaker [19,20], a change in head orientation may continue into a sweeping
glance across the room or a darting glance stopping at a recipient of interest [21].
In some cases, certain observed behaviors—intonation and gaze cues [5,62] or
synchronization in speaker-listener speech [63] for turn-taking—may make some
outcomes more likely than others. Given that there are both supporting and
challenging arguments for how these observations influence subsequent behaviors
[63, p. 5]; [62, p. 22], it would be beneficial if a data-driven model expresses a
measure of uncertainty in its forecasts. We do this by modeling the distribution
over possible futures p(Y |X), rather than a single future Y for a given X, the
latter being the case for previous formulations for cues [18,27,46] and actions
[11,12].

Joint Modeling of Future Uncertainty. A defining characteristic of focused inter-
actions is that the participants sustain the shared interaction through explicit,
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cooperative coordination of behavior [1, p. 220]—the futures of interacting indi-
viduals are not independent given an observed window of group behavior. It is
therefore essential to capture uncertainty in forecasts at the global level—jointly
forecasting one future for all participants at a time, rather than at a local output
level—one future for each individual independent of the remaining participants’
futures. In contrast, applying the prior formulations [17,18,27] requires the train-
ing of separate models treating each individual as a target (for the same group
input) and then forecasting an independent future one at a time. Meanwhile,
other prior pose forecasting works [48–52] have been in non-social settings and
do not need to model such behavioral interdependence.

Non-contiguous Observed and Future Windows. Domain experts are often inter-
ested in settings where tobs and tfut are offset by an arbitrary delay, such as
forecasting a time lagged synchrony [64] or mimicry [13] episode, or upcoming
disengagement [9,10]. We therefore allow for non-contiguous tobs and tfut. Oper-
ationalizing prior formulations that predict one step into the future [11,12,27,46]
would entail a sliding window of autoregressive predictions over the offset
between tobs and tfut (from oT to f1), with errors cascading even before decoding
is performed over the window of interest tfut.

Our task formalization of SCF can be viewed as a social science-grounded
generalization of prior computational formulations, and therefore suitable for a
wider range of cross-disciplinary tasks, both computational and analytical.

4 Method Preliminaries

Meta-Learning. A supervised learning algorithm can be viewed as a function
mapping a dataset C := (XC ,YC) := {(xi,yi)}i∈[NC ] to a predictor f(x). Here
NC is the number of datapoints in C, and [NC ] := {1, . . . , NC}. The key idea of
meta-learning is to learn how to learn from a dataset in order to adapt to unseen
supervised tasks; hence the name meta-learning. This is done by learning a map
C �→ f(·, C). In meta-learning literature, a task refers to each dataset in a
collection {Tm}Ntasks

m=1 of related datasets [65]. Training is episodic, where each
task T is split into subsets (C,D). A meta-learner then fits the subset of target
points D given the subset of context observations C. At meta-test time, the
resulting predictor f(x, C) is adapted to make predictions for target points on
an unseen task by conditioning on a new context set C unseen during meta-
training.

Neural Processes (NPs). Sharing the same core motivations, NPs [66] can be
viewed as a family of latent variable models that extend the idea of meta-learning
to situations where uncertainty in the predictions f(x, C) are desirable. They
do this by meta-learning a map from datasets to stochastic processes, estimat-
ing a distribution over the predictions p(Y |X, C). To capture this distribution,
NPs model the conditional latent distribution p(z|C) from which a task repre-
sentation z ∈ R

d is sampled. This introduces stochasticity, constituting what
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is called the model’s latent path. The context can also be directly incorporated
through a deterministic path, via a representation rC ∈ R

d aggregated over C.
An observation model p(yi|xi, rC ,z) then fits the target observations in D. The
generative process for the NP is written as

p(Y |X, C) :=
∫

p(Y |X, C,z)p(z|C)dz =
∫

p(Y |X, rC ,z)q(z|sC)dz, (2)

where p(Y |X, rC ,z) :=
∏

i∈[ND] p(y
i|xi, rC ,z). The latent z is modeled by a

factorized Gaussian parameterized by sC := fs(C), with fs being a deterministic
function invariant to order permutation over C. When the conditioning on con-
text is removed (C = ∅), we have q(z|s∅) := p(z), the zero-information prior on
z. The deterministic path uses a function fr similar to fs, so that rC := fr(C).
In practice this is implemented as rC =

∑
i∈[NC ] MLP(xi,yi)/NC . The obser-

vation model is referred to as the decoder, and q, fr, fs comprise the encoders.
The parameters of the NP are learned for random subsets C and D for a task
by maximizing the evidence lower bound (ELBO)

log p(Y |X, C) ≥ Eq(z |sD)[log p(Y |X, C,z)] − KL(q(z|sD)||q(z|sC)). (3)

5 Social Processes: Methodology

Our core idea for adapting predictions to a group’s unique behavioral dynamics
is to condition forecasts on a context set C of the same group’s observed-future
sequence pairs. By learning to learn, i.e., meta-learn from a context set, our
model can generalize to unseen groups at evaluation by conditioning on an unseen
context set of the test group’s behavior sequences. In practice, a social robot
might, for instance, observe such an evaluation context set before approaching
a new group.

Fig. 2. Architecture of the SP and ASP family.

We set up by splitting the interaction into pairs of observed and future
sequences, writing the context as C := (XC ,YC) := (Xj ,Yk)(j,k)∈[NC ]×[NC ],
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where every Xj occurs before the corresponding Yk. Since we allow for non-
contiguous tobs and tfut, the jth tobs can have multiple associated tfut windows
for prediction, up to a maximum offset. Denoting the set of target window pairs
as D := (X,Y ) := (Xj ,Yk)(j,k)∈[ND]×[ND], our goal is to model the distribution
p(Y |X, C). Note that when conditioning on context is removed (C = ∅), we
simply revert to the non-meta-learning formulation p(Y |X).

The generative process for our Social Process (SP) model follows Eq. 2, which
we extend to social forecasting in two ways. We embed an observed sequence xi

for participant pi into a condensed encoding ei ∈ R
d that is then decoded into

the future sequence using a Seq2Seq architecture [67,68]. Crucially, the sequence
decoder only accesses xi through ei. So after training, ei must encode the tem-
poral information that xi contains about the future. Further, social behavior is
interdependent. We model ei as a function of both, pi’s own behavior as well
as that of partners pj,j �=i from pi’s perspective. This captures the spatial influ-
ence partners have on the participant over tobs. Using notation we established
in Sect. 3, we define the observation model for pi as

p(yi|xi, C,z) := p(bi
f1, . . . , b

i
fT |bi

o1, . . . , b
i
oT , C,z) = p(bi

f1, . . . , b
i
fT |ei, rC ,z).

(4)
If decoding is carried out in an auto-regressive manner, the right hand side
of Eq. 4 simplifies to

∏fT
t=f1 p(bi

t|bi
t−1, . . . , b

i
f1,e

i, rC ,z). Following the standard
NP setting, we implement the observation model as a set of Gaussian distri-
butions factorized over time and feature dimensions. We also incorporate the
cross-attention mechanism from the Attentive Neural Process (ANP) [69] to
define the variant Attentive Social Process (ASP). Following Eq. 4 and the defi-
nition of the ANP, the corresponding observation model of the ASP for a single
participant is defined as

p(yi|xi, C,z) = p(bi
f1, . . . , b

i
fT |ei, r∗(C,xi),z). (5)

Here each target query sequence xi
∗ attends to the context sequences XC to

produce a query-specific representation r∗ := r∗(C,xi
∗) ∈ R

d.
The model architectures are illustrated in Fig. 2. Note that our modeling

assumption is that the underlying stochastic process generating social behaviors

Fig. 3. Encoding partner behavior for participant p0 for a single timestep. To model
the influence partners p1 and p2 have on the behavior of p0, we transform the partner
features to capture the interaction from p0’s perspective, and learn a representation of
these features invariant to group size and partner-order permutation using the sym-
metric max function.
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does not evolve over time. That is, the individual factors determining how partic-
ipants coordinate behaviors—age, cultural background, personality variables [22,
Chap. 1]; [1, p. 237]—are likely to remain the same over a single interaction. This
is in contrast to the line of work that deals with meta-transfer learning, where
the stochastic process itself changes over time [70–73]; this entails modeling a
different z distribution for every timestep.

Encoding Partner Behavior. To encode partners’ influence on an individual’s
future, we use a pair of sequence encoders: one to encode the temporal dynam-
ics of participant pi’s features, ei

self = fself(xi), and another to encode the
dynamics of a transformed representation of the features of pi’s partners,
ei
partner = fpartner(ψ(xj,(j �=i))). Using a separate network to encode partner

behavior enables sampling an individual’s and partners’ features at different
sampling rates.

How do we model ψ(xj,(j �=i))? We want the partners’ representation to pos-
sess two properties: permutation invariance—changing the order of the partners
should not affect the representation, and group-size independence—we want to
compactly represent all partners independent of the group size. Intuitively, to
model partner influence on pi, we wish to capture a view of the partners’ behav-
ior as pi perceives it. Figure 3 illustrates the underlying intuition. We do this by
computing pooled embeddings of relative behavioral features, extending Gupta
et al. [40]’s approach for pedestrian positions to conversation behavior. Note that
our partner-encoding approach is in contrast to that of Tan et al. [28], which is
order and group-size dependent, and Yao et al. [46], who do not transform the
partner features to an individual’s perspective.

Since the most commonly considered cues in literature are pose (orientation
and location) and binary speaking status [28,74,75], we specify how we transform
them. For a single timestep, we denote these cues for pi as bi = [qi; li; si], and
for pj as bj = [qj ; lj ; sj ]. We compute the relative partner features bj,rel =
[qrel; lrel; srel] by transforming bj to a frame of reference defined by bi:

qrel = qi ∗ (qj)−1, lrel = lj − li, srel = sj − si. (6a-c)

Note that we use unit quaternions (denoted q) for representing orientation due
to their various benefits over other representations of rotation [76, Sec. 3.2].
The operator ∗ denotes the Hamilton product of the quaternions. These trans-
formed features bj,rel for each pj are then encoded using an embedder MLP.
The outputs are concatenated with their corresponding ej

self and processed by a
pre-pooler MLP. Assuming din and dout pre-pooler input and output dims and J
partners, we stack the J inputs to obtain (J, din) tensors. The (J, dout)-dim out-
put is element-wise max-pooled over the J dim, resulting in the dout-dim vector
ψ(bj,(j �=i)) for any value of J , per timestep. We capture the temporal dynamics
in this pooled representation over tobs using fpartner. Finally, we combine ei

self

and ei
partner for pi through a linear projection (defined by a weight matrix W )

to obtain the individual’s embedding ei
ind = W · [ei

self ;e
i
partner]. Our intuition is

that with information about both pi themselves, and of pi’s partners from pi’s
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point-of-view, ei
ind now contains the information required to predict pi’s future

behavior.

Encoding Future Window Offset. Since we allow for non-contiguous windows,
a single tobs might be associated to multiple tfut windows at different offsets.
Decoding the same ei

ind into multiple sequences (for different tfut) in the absence
of any timing information might cause an averaging effect in either the decoder
or the information encoded in ei

ind. One option would be to immediately start
decoding after tobs and discard the predictions in the offset between tobs and tfut.
However, auto-regressive decoding might lead to cascading errors over the offset.
Instead, we address this one-to-many issue by injecting the offset information into
ei
ind. The decoder then receives a unique encoded representation for every tfut

corresponding to the same tobs. We do this by repurposing the idea of sinusoidal
positional encodings [77] to encode window offsets rather than relative token
positions in sequences. For a given tobs and tfut, and de-dim ei

ind we define the
offset as Δt = f1 − oT , and the corresponding offset encoding OEΔt as

OE(Δt,2m) = sin(Δt/100002m/de), OE(Δt,2m+1) = cos(Δt/100002m/de). (7a, b)

Here m refers to the dimension index in the encoding. We finally compute the
representation ei for Eq. 4 and Eq. 5 as

ei = ei
ind + OEΔt. (8)

Auxiliary Loss Functions. We incorporate a geometric loss function for each of
our sequence decoders to improve performance in pose regression tasks. For pi at
time t, given the ground truth bi

t = [q; l; s], and the predicted mean b̂i
t = [q̂; l̂; ŝ],

we denote the tuple (bi
t, b̂

i
t) as Bi

t. We then have the location loss in Euclidean
space Ll(Bi

t) = ||l − l̂||, and we can regress the quaternion values using

Lq(Bi
t) =

∥∥∥∥q − q̂

‖q̂‖

∥∥∥∥ . (9)

Kendall and Cipolla [76] show how these losses can be combined using the
homoscedastic uncertainties in position and orientation, σ̂2

l and σ̂2
q:

Lσ(Bi
t) = Ll(Bi

t) exp(−ŝl) + ŝl + Lq(Bi
t) exp(−ŝq) + ŝq, (10)

where ŝ := log σ̂2. Using the binary cross-entropy loss for speaking status Ls(Bi
t),

we have the overall auxiliary loss over t ∈ tfut:

Laux(Y , Ŷ ) =
∑

i

∑
t

Lσ(Bi
t) + Ls(Bi

t). (11)

The parameters of the SP and ASP are trained by maximizing the ELBO (Eq. 3)
and minimizing this auxiliary loss.
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6 Experiments and Results

6.1 Experimental Setup

Evaluation Metrics. Prior forecasting formulations output a single future. How-
ever, since the future is not deterministic, we predict a future distribution. Con-
sequently, needing a metric that accounts for probabilistic predictions, we report
the log-likelihood (LL) log p(Y |X, C), commonly used by all variants within the
NP family [66,69,70]. The metric is equal to the log of the predicted density
evaluated at the ground-truth value. (Note: the fact that the vast majority of
forecasting works even in pedestrian settings omit a probabilistic metric, using
only geometric metrics, is a limitation also observed by Rudenko et al. [23,
Sec. 8.3].) Nevertheless, for additional insight beyond the LL, we also report
the errors in the predicted means—geometric errors for pose and accuracy for
speaking status—and provide qualitative visualizations of forecasts.

Models and Baselines. In keeping with the task requirements and for fair evalu-
ation, we require that all models we compare against forecast a distribution over
future cues.

– To evaluate our core idea of viewing conversing groups as meta-learning
tasks, we compare against non-meta-learning methods: we adapt variational
encoder-decoder (VED) architectures [78,79] to output a distribution.

– To evaluate our specific modeling choices within the meta-learning family, we
compare against the NP and ANP models (see Sect. 5). The original methods
were not proposed for sequences, so we adapt them by collapsing the timestep
and feature dimensions in the data.

Note that in contrast to the SP models, these baselines have direct access to
the future sequences in the context, and therefore constitute a strong baseline.
We consider two variants for both NP and SP models: -latent denoting only the
stochastic path; and -uniform containing both the deterministic and stochastic
paths with uniform attention over context sequences. We further consider two
attention mechanisms for the cross-attention module: -dot with dot attention,
and -mh with wide multi-head attention [69]. Finally, we experiment with two
choices of backbone architectures: multi-layer perceptrons (MLP), and Gated
Recurrent Units (GRU). Implementation and training details can be found in
Appendix D. Code, processed data, trained models, and test batches for repro-
duction are available at https://github.com/chiragraman/social-processes.

6.2 Evaluation on Synthesized Behavior Data

To first validate our method on a toy task, we synthesize a dataset simulating
two glancing behaviors in social settings [21], approximated by horizontal head
rotation. The sweeping Type I glance is represented by a 1D sinusoid over 20
timesteps. The gaze-fixating Type III glance is denoted by clipping the ampli-
tude for the last six timesteps. The task is to forecast the signal over the last 10

https://github.com/chiragraman/social-processes
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Fig. 4. Ground truths and predictions for the
toy task of forecasting simulated glancing behav-
ior. Our SP models learn a better fit than the
NP model, SP-GRU being the best (see zoomed
insets).

Fig. 5. Mean per timestep LL over
the sequences in the synthetic glanc-
ing dataset. Higher is better.

Table 1. Mean (Std.) Metrics on
the Synthetic Glancing Behav-
ior Dataset. The metrics are aver-
aged over timesteps; mean and std.
are then computed over sequences.
Higher is better for LL, lower for
MAE.

LL Head Ori.
MAE (◦)

NP-latent 0.28 (0.24) 19.63 (7.26)
SP-latent (MLP) 0.36 (0.20) 19.46 (7.05)
SP-latent (GRU) 0.55 (0.23) 18.55 (7.11)

timesteps (tfut) by observing the first 10 (tobs). Consequently, the first half of
tfut is certain, while the last half is uncertain: every observed sinusoid has two
ground truth futures in the data (clipped and unclipped). It is impossible to infer
from an observed sequence alone if the head rotation will stop partway through
the future. Figure 4 illustrates the predictions for two sample sequences. Table 1
provides quantitative metrics and Fig. 5 plots the LL per timestep. The LL is
expected to decrease over timesteps where ground-truth futures diverge, being
∞ when the future is certain. We observe that all models estimate the mean
reasonably well, although our proposed SP models perform best. More crucially,
the SP models, especially the SP-GRU, learn much better uncertainty estimates
compared to the NP baseline (see zoomed regions in Fig. 4). We provide addi-
tional analysis, alternative qualitative visualizations, and data synthesis details
in Appendices A to C respectively.

6.3 Evaluation on Real-World Behavior Data

Datasets and Preprocessing. With limited behavioral data availability, a common
practice in the domain is to solely train and evaluate methods on synthesized
behavior dynamics [12,80]. In contrast, we also evaluate on two real-world behav-
ior datasets: the MatchNMingle (MnM) dataset of in-the-wild mingling behavior
[16], and the Haggling dataset of a triadic game where two sellers compete to sell
a fictional product to a buyer [27]. For MnM, we treat the 42 groups from Day 1



Social Processes 651

Table 2. Mean (Std.) Log-Likelihood
(LL) on the MatchNMingle and Hag-
gling Test Sets. For a single sequence,
we sum over the feature and participant
dimensions, and average over timesteps. The
reported mean and std. are over individual
sequences in the test sets. Higher is better.
Underline indicates best LL within family.

MatchNMingle Haggling
Random Fixed-initial Random Fixed-initial

VED family [78,79]
VED-MLP 8.1 (7.2) 7.9 (7.0) 4.0 (8.3) 4.1 (8.2)
VED-GRU 25.4 (18.0) 25.1 (19.1) 60.3 (2.2) 60.3 (2.1)
NP Family [66,69]
NP-latent 22.1 (17.8) 21.6 (18.5) 27.2 (17.3) 27.9 (16.3)
NP-uniform 21.4 (18.8) 20.5 (17.8) 24.8 (22.9) 25.0 (22.2)
ANP-dot 22.8 (18.6) 21.0 (18.3) 26.7 (21.4) 24.7 (20.8)
ANP-mh 23.6 (15.6) 20.0 (23.9) 25.1 (23.1) 24.8 (22.4)
Ours (SP-MLP)
SP-latent 102.1 (29.9) 101.5 (29.2) 136.6 (7.0) 136.7 (7.0)
SP-uniform 112.8 (34.1) 111.4 (33.8) 138.3 (8.0) 137.6 (8.4)
ASP-dot 109.9 (32.9) 107.6 (32.1) 137.8 (7.5) 136.4 (7.6)
ASP-mh 112.9 (34.7) 111.3 (33.6) 146.0 (10.9) 145.7 (10.2)
Ours (SP-GRU)
SP-latent 86.4 (37.2) 85.4 (37.2) 66.7 (27.4) 66.2 (30.7)
SP-uniform 87.0 (38.4) 85.5 (38.3) 79.9 (50.5) 78.6 (52.2)
ASP-dot 87.6 (39.1) 83.9 (38.1) 38.4 (60.4) 27.2 (93.4)
ASP-mh 85.8 (37.1) 82.3 (36.0) 66.3 (30.3) 59.3 (32.4)

X1 Y1

X2 Y2 Y3X3

time

a.

X✱ Y✱

X1 Y1

X2 Y2

Y3X3

time

b.

X✱ Y✱

Fig. 6. Context Regimes. For a target
sequence pair (X∗, Y∗), context pairs
(here 3) are sampled either a. randomly
across the lifetime of the group interac-
tion (random), or b. from a fixed initial
duration (fixed-initial).

Fig. 7. Forecasts over selected
timesteps from the Haggling group
170224-a1-group1. Speaking sta-
tus is interpolated between orange
(speaking) and blue (listening).
Translucent models denote the pre-
dicted mean±std. (Color figure online)

as test sets and a total of 101 groups from the other two days as train sets. For
Haggling, we use the same split of 79 training and 28 test groups used by Joo et
al. [27]. We consider the following cues: head pose and body pose, described by
the location of a keypoint and an orientation quaternion; and binary speaking
status. These are the most commonly considered cues in computational analyses
of conversations [28,74,75] given how crucial they are in sustaining interactions
[1,20,61]. For orientation, we first convert the normal vectors (provided in the
horizontal direction in both datasets) into unit quaternions. Since the quater-
nions q and −q denote an identical rotation, we constrain the first quaternion
in every sequence to the same hemisphere and interpolate subsequent quater-
nions to have the shortest distance along the unit hypersphere. We then split
the interaction data into pairs of tobs and tfut windows to construct the samples
for forecasting. We specify dataset-specific preprocessing details in Appendix C.

Context Regimes. We evaluate on two context regimes: random, and fixed-initial
(see Fig. 6). In the random regime, context samples (observed-future pairs) are
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selected as a random subset of target samples, so the model is exposed to
behaviors from any phase of the interaction lifecycle. Here we ensure that batches
contain unique tobs to prevent any single observed sequence from dominating
the aggregation of representations over the context split. At evaluation, we take
50% of the batch as context. The fixed-initial regime investigates how models
can learn from observing the initial dynamics of an interaction where certain
gestures and patterns are more distinctive [1, Chap. 6]. Here we treat the first
20% of the entire interaction as context, treating the rest as target.

Conversation Groups as Meta-learning Tasks? While our core idea of view-
ing groups as meta-learning tasks is grounded in social science literature (see
Sect. 5), does it help to improve empirical performance? Comparing the LL of
non-meta-learning and meta-learning models in Table 2 by architecture—VED-
MLP against NP and SP-MLP, and VED-GRU against SP-GRU—we find that
accounting for group-specific dynamics through meta-learning yields improved
performance. All best-in-family pairwise model differences are statistically sig-
nificant (Wilcoxon signed rank test, p < 10−4).

Comparing Within Meta-learning Methods. While our SP-MLP models perform
the best on LL in Table 2 (pairwise differences are significant), they fare the
worst at estimating the mean (Appendix A.2). On the other hand, the SP-GRU
models estimate a better LL than the NP models with comparable errors in the
mean forecast. The NP models attain the lowest errors in predicted means, but
also achieve the worst LL. Why do the models achieving better LL also tend
to predict worse means? Upon inspecting the metrics for individual features,
we found that the models, especially the MLP variants, tend to improve LL
by making the variance over constant features exceedingly small, often at the
cost of errors in the means. Note that since the rotation in the data is in the
horizontal plane, the qx and qy quaternion dimensions are zero throughout. We
do not observe such model behavior in the synthetic data experiments, which
do not involve constant features. Figure 7 visualizes forecasts for an example
sequence from the Haggling dataset where a turn change has occurred just at the
end of the observed window. Here, the SP-GRU model forecasts an interesting
continuation to the turn. It anticipates that the buyer (middle) will interrupt
the last observed speaker (right seller), before falling silent and looking from one
seller to another, both of whom the model expects to then speak simultaneously
(see Appendix B for the full sequence). We believe that the forecast indicates that
the model is capable of learning believable haggling turn dynamics from different
turn continuations in the data. From the visualizations also we observe that the
models seem to maximize LL at the cost of orientation errors; in the case of
SP-MLP seemingly by predicting the majority orientation in the triadic setting.
Also, the NP models forecast largely static futures. In contrast, while being
more dynamic, the SP-GRU forecasts contain some smoothing. Overall, the SP-
GRU models achieve the best trade-off between maximizing LL and forecasting
plausible human behavior.
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6.4 Ablations

Encoding Partner Behavior. Modeling the interaction from the perspective of
each individual is a central idea in our approach. We investigate the influence
of encoding partner behavior into individual representations ei

ind. We train the
SP-uniform GRU variant in two configurations: no-pool, where we do not encode
any partner behavior; and pool-oT where we pool over partner representations
only at the last timestep (similar to [40]). Both configurations lead to worse LL
and location errors (Table 3 and Appendix A).

Table 3. Mean (Std.) LL for the Ablation Experiments with the SP-uniform
GRU Model. The reported mean and std. are over individual sequences in the test
sets. Higher is better.

MatchNMingle Haggling
Random Fixed-initial Random Fixed-initial

Full model 87.0 (38.4) 85.5 (38.3) 79.9 (50.5) 78.6 (52.2)
Encoding partner behavior no-pool 77.8 (31.2) 76.9 (31.0) 54.5 (75.5) 50.1 (97.5)

pool-oT 82.3 (33.3) 81.0 (33.6) 66.9 (26.0) 66.8 (25.7)
No deterministic decoding Shared social encoders 88.5 (40.7) 87.6 (39.6) 93.1 (39.3) 91.9 (40.4)

Unshared social encoders 81.4 (38.1) 80.2 (37.8) 66.6 (24.0) 64.8 (23.4)

Deterministic Decoding and Social Encoder Sharing. We investigate the effect
of the deterministic decoders by training the SP-uniform GRU model without
them. We also investigate sharing a single social encoder between the Process
Encoder and Process Decoder in Fig. 2. Removing the decoders only improves
log-likelihood if the encoders are shared, and at the cost of head orientation
errors (Table 3 and Appendix A).

7 Discussion

The setting of social conversations remains a uniquely challenging frontier for
state-of-the-art low-level behavior forecasting. In the recent forecasting challenge
involving dyadic interactions, none of the submitted methods could outperform
the naive zero-velocity baseline [17, Sec. 5.5]. (The baseline propagates the last
observed features into the future as if the person remained static.) Why is this?
The predominant focus of researchers working on social human-motion predic-
tion has been pedestrian trajectories [23] or actions such as punching, kicking,
gathering, chasing, etc. [46,47]. In contrast to such activities which involve pro-
nounced movements, the postural adaptation for regulating conversations is far
more subtle (also see the discussion in Appendix E). At the same time, the social
intelligence required to understand the underlying dynamics that drive a conver-
sation is comparatively more sophisticated than for an action such as a kick. We
hope that the social-science considerations informing the design of SCF (joint
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probabilistic forecasting for all members) and the SP models (groups as meta-
learning tasks) constitute a meaningful foundation for future research in this
space to build upon. Note that for our task formulation, even the performance
of our baseline models constitutes new results.

Cross-Discipline Impact and Ethical Considerations. While our work here is an
upstream methodological contribution, the focus on human behavior entails eth-
ical considerations for downstream applications. One such application involves
assisting social scientists in developing predictive hypotheses for specific behav-
iors by examining model predictions. In these cases, such hypotheses must be ver-
ified in subsequent controlled experiments. With the continued targeted develop-
ment of techniques for recording social behavior in the wild [81], evaluating fore-
casting models in varied interaction settings would also provide further insight.
Another application involves helping conversational agents achieve smoother
interactions. Here researchers should be careful that the ability to forecast does
not result in nefarious manipulation of user behavior.
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