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Abstract. In this paper we extend the classical Follow-The-Regularized-
Leader (FTRL) algorithm to encompass time-varying constraints, through
adaptive penalization. We establish sufficient conditions for the proposed
Penalized FTRL algorithm to achieve O(

√
t) regret and violation with

respect to a strong benchmark X̂max
t . Lacking prior knowledge of the con-

straints, this is probably the largest benchmark set that we can reason-
ably hope for. Our sufficient conditions are necessary in the sense that
when they are violated there exist examples where O(

√
t) regret and vio-

lation is not achieved. Compared to the best existing primal-dual algo-
rithms, Penalized FTRL substantially extends the class of problems for
which O(

√
t) regret and violation performance is achievable.

Keywords: FTRL · Online convex optimization · Constrained
optimization

1 Introduction

The introduction of online convex optimization (OCO) [15] offered an effective
way to tackle online learning and dynamic decision problems, with applications
that range from portfolio selection, to routing optimization and ad placement, see
[3]. One of the seminal OCO algorithms is the Follow-The-Regularized-Leader
(FTRL), which includes online gradient descent and mixture of experts as special
cases. Indeed, FTRL is widely used in different contexts, e.g., with linear or non-
linear objective functions, composite objectives [8], or budget constraints [1].

The general form of the FTRL update is:

xτ+1 ∈ arg min
x∈X

{
Rτ (x) +

τ∑
i=1

Fi(x)

}
(1)

where action set X ⊂ R
n is bounded, function Fi : X → R and regularizer

Rτ : X → R are strongly convex. When the sum-loss
∑τ

i=1 Fi(x) is convex
and Fi(x) and

(
Ri(x) − Ri−1(x)

)
are uniformly Lipschitz, the FTRL-generated

sequence {xτ}t
τ=1 induces regret

∑t
i=1

(
Fi(xi)−Fi(x)

) ≤ O(
√

t), ∀x∈X, cf. [8].
Importantly, the set X of admissible actions must be fixed and this is intrinsic
to the method of proof, i.e., it is not a minor or incidental assumption.
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The focus of this paper is to extend the FTRL algorithm in order to accom-
modate time-varying action sets, i.e., cases where at each time τ the fixed set
action X is replaced by set Xτ which may vary over time. We refer to this
extension to FTRL as Penalized FTRL or Pen-FTRL.

In general, it is too much to expect to be able to simultaneously achieve O(
√

t)
regret and strict feasibility xτ ∈ Xτ , τ = 1, . . . , t. We therefore allow limited
violation of the action sets {Xτ} and instead aim to simultaneously achieve
O(

√
t) regret and O(

√
t) constraint violation. That is, defining loss function

fτ : D → R on domain D ⊂ R
n and constraint functions g

(j)
τ : D → R such

that Xτ =
{
x ∈ D : g

(j)
τ (x) ≤ 0, j = 1, . . . ,m

}
then we aim to simultaneously

achieve regret and violation:

Rt =
t∑

i=1

(
fi(xi) − fi(x)

)
≤ O(

√
t), Vt =

m∑
j=1

max

{
0,

t∑
i=1

g
(j)
i (xi)

}
≤ O(

√
t)

for all x ∈ Xmax
t :=

{
x ∈ D :

∑t
i=1 g

(j)
i (x) ≤ 0, j = 1, . . . , m

}
.

Importance of Using A Strong Benchmark. We know from [7] that O(
√

t) regret
and violation with respect to benchmark set Xmax

t is not achievable for all pos-
sible sequences of constraints {g

(j)
i }. It is therefore necessary to: (i) change the

benchmark set Xmax
t to something more restrictive; or (ii) restrict the admissible

set of constraint sequences {g
(j)
i }; or (iii) both. In the literature, it is common

to adopt the weaker benchmark:

Xmin
t :=

{
x ∈ D : g

(j)
i (x) ≤ 0, i = 1, . . . , t, j = 1, . . . ,m

}
⊂ Xmax

t

i.e., to focus on actions x which simultaneously satisfy every constraint at every
time. But this weak benchmark is in fact so restrictive and easy for a learning
algorithm to outperform, where the achieved regret Rt is often negative.

One of our primary interests, therefore, is in retaining a benchmark that is
close to Xmax

t . To this end, we consider the following benchmark:

X̂max
t :=

{
x ∈ D :

τ∑
i=1

g
(j)
i (x) ≤ 0,∀j = 1, . . . ,mτ = 1, . . . , t

}
.

We can see immediately that Xmin
t ⊂ X̂max

t . The set X̂max
t requires∑τ

i=1 g
(j)
i (x) ≤ 0 to hold at every time τ ≤ t rather than just at the end of

the horizon t, and so is still smaller than Xmax
t . Lacking, however, predictions

or prior knowledge of the constraints g
(j)
i , it is probably the best we can reason-

ably hope for. To illustrate the difference between X̂max
t and Xmin

t , suppose the
time-varying constraint is x ≤ 1/

√
t. Then Xmin

t = [0, 1/
√

t] which tends to set
{0} for t large, Xmax

t = D = [0, 1] for t ≥ 1, and X̂max
t = D = [0, 1].

Role of Pen-FTRL. Almost all of the literature focuses on using primal-dual
algorithms to accommodate time-varying constraints (see Sect. 2). In contrast,
here we use a direct penalty-based approach [12], which we refer to as Penalized
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FTRL or Pen-FTRL. This has the important advantages of (i) conceptually sep-
arating the issue of multiplier selection (i.e. λ in the above primal-dual update)
from the issue of sum-constraint violation and so facilitating analysis; and (ii)
maintaining a direct link with the well-established FTRL algorithm.

Contributions. In summary, the main contributions of the present paper are: (i)
introduction of the Pen-FTRL extension to FTRL; and (ii) establishing sufficient
conditions for Pen-FTRL to achieve O(

√
t) regret and violation with respect to

benchmark X̂max
t . Lacking prior knowledge of the constraints, X̂max

t is proba-
bly the largest benchmark set that we can reasonably hope for. Our sufficient
conditions are necessary in the sense that when they are violated there exist
examples where O(

√
t) regret and violation is not achieved. Compared to the

best existing primal-dual algorithms, Pen-FTRL substantially extends the class
of problems for which O(

√
t) regret and violation performance is achievable.

2 Related Work

The literature on online learning with time-varying constraints focuses on primal-
dual algorithms (see update (7) in the sequel), and largely fails to obtain O(

√
t)

regret and violation simultaneously even w.r.t. the weak Xmin
t benchmark. The

standard problem setup consists of a sequence of convex cost functions ft : D →
R and constraints g

(j)
t : X → R, j = 1, . . . , m, where actions x ∈ D ⊂ R

n. The
canonical algorithm performs a primal-dual gradient descent iteration, namely:

xt+1=ΠD

(
xt − ηt(∂ft(xt)+ λT

t ∂gt(xt))
)
, λt+1=

[
(1− θt)λt+μtgt(xt+1)

]+
(2)

with step-size parameters ηt, μt and regularization parameter θt; while ΠD(α)
denotes the project of α onto D. Commonly, the parameter θt ≡ 0, with excep-
tions being [4,6], and [10] that employ non-zero θt. [14] approximate gt(xt+1) in
the λt+1 update by gt(xt) + ∂gt(xt)(xt+1 − xt).

The Rt is commonly measured w.r.t. the baseline action set Xmin
t , with the

exception of [11] where a slightly larger set is considered; [14] that considers
stochastic constraints and the baseline action set is {x ∈ D : E[g(j)i (x)] ≤
0, j = 1, . . . ,m}; and [5] which considers a K-slot moving window for the sum-
constraint satisfaction. The original work on this topic restricted attention to
time-invariant constraints g

(j)
i (x) = g(j)(x). With this restriction, the work in

[4] achieves Rt ≤ O(max{tβ , t1−β}) and Vt ≤ O(t1−β/2) constraint violation,
which yields Rt, Vt ≤ O(t2/3) with β = 2/3. Similar bounds are derived in [6].
It is worth noting that these results are primarily of interest for their analysis
of the primal-dual algorithm rather than the performance bounds per se, since
classical algorithms such as FTRL are already known to achieve O(

√
t) regret

and no constraint violation for constant constraints.
For general time-varying cost and constraint functions, [10] achieves O(

√
t)

regret and O(t3/4) constraint violation; [5] achieve Rt = O(
√

t + Kt/V ) and
Vt = O(

√
V t), with K = 1 corresponding to baseline set Xmin

t and V a design
parameter. Selecting V =

√
t gives O(

√
t) regret and O(t3/4) constraint violation,
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f(x)
f(x)+ɣmax{0,g(x)}

ɣmax{0,g(x)}

feasible
set

feasible
optimum

f*

Fig. 1. Illustrating use of a penalty to convert constrained optimization minx:g(x)≤0 f(x)
into unconstrained optimization minx f(x)+ γ max{0, g(x)}, γ >0. Within the feasible
set g(x) ≤ 0 and γ max{0, g(x)} = 0. Outwith this set γ max{0, g(x)} = γg(x) >
0. The idea is that γ is selected large enough that outwith the feasible set f(x)+
γ max{0, g(x)} > f∗, the min value of f inside the feasible set.

similarly to [10]. By restricting the constraints, [11] improves this to O(
√

t)
regret and constraint violation. As already noted, this requires restricting the
constraints to be g

(j)
i (x) = g(j)(x) − bi,j with bi,j ∈ R i.e. the constraints are

g(j)(x) ≤ b
(j)
i with time-variation confined to threshold b

(j)
i . Yu et al [14] also

achieve O(
√

t) regret and expected constraint violation (i.e. E[
∑t

i=1 g
(j)
i (xt)] ≤

O(
√

t)), this time by restricting the constraints to be i.i.d. stochastic. Yi et al [13]
obtain Rt,Vt = O(t2/3) by restricting the cost and constraint functions to be
separable, while [2] focuses on a form of dynamic regret that upper bounds the
static regret and show o(t) regret and O(t2/3) constraint violation under a slow
variation condition on the constraints and dynamic baseline action.

3 Preliminaries

3.1 Exact Penalties

We begin by recalling a classical result of Zangwill [12]. Consider the convex
optimization problem P :

min
x∈D

f(x) s.t. g(j)(x) ≤ 0, j = 1, · · · ,m

where D ⊂ R
n, f : Rn → R and g(j) : Rn → R, j = 1, · · · ,m are convex. Let

X := {x : x ∈ D, g(j)(x) ≤ 0, j = 1, · · · ,m} denote the feasible set and X∗ ⊂ X
the set of optimal points. Define:

F (x) := f(x) + γ
m∑

j=1

max
{

0, g(j)(x)
}

, γ ∈ R. (3)

F (x) is convex since f(·), g(j)(·) are convex and max{·} preserves convexity.
The key idea is that the penalty (second term in (3)) is zero for x ∈ X, but

large when x /∈ X. Provided γ is selected large enough, the penalty forces the
minimum of F (x) to (i) lie in X and (ii) match minx∈X f(x); see example in
Fig. 1. The next lemma, proved in the Appendix, corresponds to [12, Lemma 2].
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Lemma 1 (Exact Penalty). Assume that a Slater point exists i.e. a feasible
point z ∈ D such that g(j)(z) < 0, j = 1, · · · ,m. Let f∗ := infx∈X f(x) (the
solution to optimization P ) . Then there exists a finite threshold γ0 ≥ 0 such
that F (x) ≥ f∗ for all x ∈ D, γ ≥ γ0, with equality only when x ∈ X∗. It is
sufficient to choose γ0 = f∗−f(z)−1

maxj∈{1,··· ,m}{g(j)(z)} .

3.2 FTRL Results

We also recall the following standard FTRL results (for proofs see, e.g., [9]).

Lemma 2 (Be-The-Leader). Let Fi, i = 1, . . . , t be a sequence of (pos-
sibly non-convex) functions Fi : D → R, D ⊂ R

n. Assume that
arg minx∈D

∑τ
i=1 Fi(x) is not empty for τ = 1, . . . , t. Selecting sequence

wi+1, i = 1, . . . , t according to the Follow The Leader (FTL) update wτ+1 ∈
arg minx∈D

∑τ
i=1 Fi(x), ensures

∑t
i=1 Fi(wi+1) ≤ ∑t

i=1 Fi(y) for every y ∈ D.

Condition 1 (FTRL) (i) Domain D is bounded (potentially non-convex), (ii)∑τ
i=1 Fi(x) is convex (the individual Fi’s need not be convex), (iii) Fi(x) is

uniformly Lf -Lipschitz on D i.e. |Fi(x) − Fi(y)| ≤ Lf‖x − y‖ for all x, y ∈ D
and where Lf does not depend on i, and (iv) Rτ (x) is

√
τ -strongly convex and(

Ri(x) − Ri−1(x)
)

is uniformly Lipschitz, e.g.
√

τ‖x‖22.
Lemma 3 (Regret of FTRL). When Condition 1 holds, the sequence {xτ}t

τ=1

generated by the FTRL update xτ+1 ∈ arg minx∈D Rτ (x)+
∑τ

i=1 Fi(x) has regret
Rt =

∑t
i=1 Fi(xi) − Fi(x) ≤ O(

√
t) for all x ∈ D.

Lemma 4 (στ -Strongly Convex Regularizer). When
∑τ

i=1 Fi(x) is
στ -strongly convex, Fi(x) uniformly Lf -Lipschitz over D and wτ+1 ∈
arg minx∈D

∑τ
i=1 Fi(x), it holds ‖wτ+1 − wτ‖ ≤ 2Lf/(στ + στ−1)

4 Penalized FTRL

4.1 Exact Penalties for Time-Invariant Constraints

We begin by demonstrating the application of Lemma 1 to FTRL update (1)
with time-invariant action set X. Selecting Fi(x) = fi(x) + γh(x) with h(x) =∑m

j=1 max{0, g(j)(x)} and defining the bounded domain D with X ⊂ D, then
by standard analysis, cf. [8], the Pen-FTRL update1:

xτ+1 ∈ arg min
x∈D

{
Rτ (x) +

τ∑
i=1

Fi(x)

}
(4)

ensures regret
∑t

i=1(Fi(xi) − Fi(x)) ≤ O(
√

t) for all x ∈ D, and since X ⊂ D
for all x ∈ X. Of course this says nothing about whether the actions xi lie in set
1 Note the subtle yet crucial difference w.r.t. non-Pen-FTRL update (1).
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X nor anything much about the regret of fi(xi), but when set X has a Slater
point and γ is selected large enough then by Lemma 1 we have that xτ+1 ∈ X
for all τ . It follows that Fi(xi) = fi(xi) (since h(xi) = 0 when xi ∈ X) and so
regret

∑t
i=1(Fi(xi) − Fi(x)) =

∑t
i=1(fi(xi) − fi(x)) ≤ O(

√
t) for all x ∈ X.

4.2 Penalties for Time-Varying Constraints

We now extend consideration to FTRL with time-varying constraints. Our aim
is to define a penalty which is zero on a set X̂max

τ ≈ Xmax, and large enough
outside this set to force the minimum of

∑τ
i=1 Fi(x) to lie in X̂max.

Penalties Which Are Zero When x ∈ X̂
max

τ . Consider extending the
penalty-based FTRL (4) to time-varying constraints. We might try selecting:

Fi(x) = fi(x) + γhi(x), with hi(x) =
m∑

j=1

max
{

0, g
(j)
i (x)

}
,

but we immediately run into the following difficulty. We have that
∑τ

i=1 Fi(x) =∑τ
i=1 fi(x)+ γ

∑τ
i=1

∑m
j=1 max{0, g

(j)
i (x)} and so to make the second term zero

requires g
(j)
i (x) ≤ 0 for all i ≤ τ and j ≤ m, i.e. requires every constraint

over all time to simultaneously be satisfied. This penalty choice hi(·) therefore
corresponds to benchmark Xmin

t , whereas our interest is in set Xmax
t . It is

perhaps worth noting that this corresponds to the penalty used in the primal-
dual literature, so it is unsurprising that those results are confined to Xmin.

With this in mind, consider instead selecting

hτ (x) =
m∑

j=1

max

{
0,

τ∑
i=1

g
(j)
i (x)

}
−

m∑
j=1

max

{
0,

τ−1∑
i=1

g
(j)
i (x)

}

with h1(x) =
∑m

j=1 max{0, g
(j)
i (x)}. Then,

τ∑
i=1

Fi(x) =
τ∑

i=1

fi(x) + γ

m∑
j=1

max

{
0,

τ∑
i=1

g
(j)
i (x)

}
.

We now have a sum-constraint in the second term, as desired. Unfortunately,
this choice of hi(·) violates the conditions needed for FTRL to achieve O(

√
t)

regret. Namely, it is required that Fi(·) is uniformly Lipschitz but hi(·) does not
satisfy this condition, and so neither does Fi(·). To see this, observe that when
g
(j)
i (·) is uniformly Lipschitz with constant Lg, then

∑τ
i=1 g

(j)
i (x) has a Lipschitz

constant τLg that scales with τ , and so there exists no uniform upper bound.
The max operator in hi(·) does not change the Lipschitz constant (see Lemma
5); thus hi(·) is τLg Lipschitz, which prevents FTRL achieving Rt ≤ O(

√
t).
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These considerations lead us to the following penalty,

hτ (x) =
m∑

j=1

max

{
0,

1
τ

τ∑
i=1

g
(j)
i (x)

}
. (5)

When g
(j)
i (·) is uniformly Lipschitz with constant Lg then so is hi(·) due to the

1/τ prefactor added to the sum and the following Lemma which just states that
when a function h(x) is L-Lipschitz then max{0, h(x)} is also L-Lipschitz:

Lemma 5. When |h(x)−h(y)| ≤ L‖x−y‖ then |max{0, h(x)}−max{0, h(y)}| ≤
L‖x − y‖.
Proof. Observe that 2max{0, h(x)} = h(x)+|h(x)|. Therefore, 2|max{0, h(x)}−
max{0, h(y)}| = |h(x)−h(y)+ |h(x)|−|h(y)|| ≤ |h(x)−h(y)|+ ||h(x)|−|h(y)|| ≤
|h(x) − h(y)| + |h(x) − h(y)| ≤ 2L‖x − y‖.

With this choice, we can write:

τ∑
i=1

Fi(x) =
τ∑

i=1

fi(x) + γ

m∑
j=1

τ∑
i=1

max

{
0,

1
i

i∑
k=1

g
(j)
k (x)

}
.

The second term is zero when

xτ ∈ X̂max
τ :=

{
x ∈ D :

τ∑
i=1

hi(x) ≤ 0

}
=

{
x :

i∑
k=1

g
(j)
k (x) ≤ 0, j ≤ m, i ≤ τ

}

Penalties Which Are Large When x /∈ X̂
max

τ . In addition to requiring the
penalty for time-varying constraints to be zero for x ∈ X̂max

τ , we also require
the penalty to be large enough when x /∈ X̂max

τ so as to force the minimum of∑τ
i=1 Fi(x) to lie in set X̂max

τ , or at least to only result in O(
√

τ) violation.
As already noted, to use FTRL we need Fi(·) to be uniformly Lipschitz,

which requires fi(·) to be uniformly Lipschitz. When fi(·) is Lf -Lipschitz then
|∑τ

i=1 fi(x)| may grow linearly with τ at rate τLf . We therefore require the
penalty

∑τ
i=1 hi(x) to also grow at least linearly with τ since otherwise for all τ

large enough |∑τ
i=1 fi(x)| � ∑τ

i=1 hi(x) and the penalty may become ineffective
i.e. we can have xτ /∈ X̂τ for all τ large enough and so end up with O(t) constraint
violation, which is no good.

We formalize the requirement the sum-penalty
∑τ

i=1 hi(x) in (5) needs to
grow quickly enough as follows. Let ∂X̂max

τ denote the boundary of X̂max
τ , and

kτ := min
x∈∂X̂max

τ

∣∣∣∣∣
{

(i, j) :
1
i

i∑
k=1

g
(j)
k (x) ≥ 0, i = 1, . . . , τ, j = 1, . . . , m

}∣∣∣∣∣ .

That is, kτ is the minimum number of constraints active at the boundary of
X̂max

τ . Observe that 1 ≤ kτ ≤ τ with, for example, kτ = τ when g
(j)
i (x) = g(j)(x)

does not depend on i.
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Condition 2 (Penalty Growth). Let z ∈ D be a common Slater point such
that 1

τ

∑τ
i=1 g

(j)
i (z) < −η < 0 for j = 1, . . . ,m and τ > tε (the same z must

work for all τ and j). We require that kτ ≥ β
η τ for all τ > tε, where β > 0 and

the same β must work for all τ = 1, . . . , t.

Time-Varying Exact Penalties. We are now in a position to extend the
penalty approach to time-varying constraints. We begin by applying Lemma 1 to
optimization problem P ′: minx∈D f(x) s.t. 1

i

∑i
k=1 g

(j)
k (x) ≤ 0, i = 1, · · · , t, j =

1, · · · ,m where f(·) and g
(j)
i (·), i = 1, . . . , t, j = 1, · · · ,m are convex and D ⊂ R

n

is convex and bounded. Let C∗ = arg minx∈X̂max
t

f(x). Define

H(x) := f(x) + γ

t∑
i=1

m∑
j=1

max

{
0,

1
i

i∑
k=1

g
(j)
k (x)

}

where γ ∈ R. Note that H(·) is convex since f(·), g
(j)
i (·) are convex and compo-

sition with max preserves convexity.

Lemma 6. Assume a Slater point exists, i.e. a z∈D such that 1
i

∑i
k=1 g

(j)
k (z)<

−η < 0, i = 1, . . . , t, j = 1, . . . ,m. Let f∗ := minx∈X̂max
t

f(x). Then there exists
a finite threshold γ0 ≥ 0 such that H(x) ≥ f∗ for all x ∈ D, γ ≥ γ0, with equality
only when x ∈ X̂max

t . It is sufficient to choose γ0 ≥ f∗−f(z)−1
−ktη

.

Proof. Setting the expression for γ0 to one side for now, the result follows from
applying Lemma 1 to P ′. Turning now to expression γ0≥ f∗−f(z)−1

ktη
, comparing

this with the expression in Lemma 1, observe that the only change is in the
denominator, which applying Lemma 1 to P ′ is maxi≤t,j≤m{ 1

i

∑i
k=1 g

(j)
k (z)}=

−η. Referring to (8) in the proof of Lemma 1, it is sufficient the denominator G of

γ0 is such that
∑

(i,j)∈A
1
i

∑i
k=1 g

(j)
k (z)

G ≥ 1, where A ⊂ {1, . . . , t} × {1, . . . , m}. By
assumption g

(j)
k (z)≤−η and so

∑
j∈A

1
i

∑i
k=1 g

(j)
k (z)≤−|A|η with |A|≥1. Now

kt ∈ [1, |A|], thus suffices to see setting G = −ktη also meets this requirement.

Theorem 1 (Time-Varying Exact Penalty). The sequence xτ , τ = 1, . . . , t
generated by the FTRL update (4) with Fi(x) = fi(x) + γhi(x) and hi(x) :=∑m

j=1 max{0, 1
i

∑i
k=1 g

(j)
k (x)} satisfies xτ+1 ∈ X̂max

τ for τ > tε when Condi-
tion 2 holds and parameter γ > E+L+1

β where E ≥ maxy∈D,i∈{1,...,t}(Ri(y) −
Ri(z))/i, L ≥ maxy∈D,i∈{1,...,t} fi(y) − fi(z) with z ∈ D a Slater point.

Proof. The result follows by application of Lemma 6 at times τ > tε with h(x) =
Rτ (x) +

∑τ
i=1 fi(x). We have that h(x) − h(z) = Rτ (x) − Rτ (z) +

∑τ
i=1(fi(x) −

fi(z)) ≤ Eτ + Lτ . Hence for xτ+1 ∈ X̂max
τ it is sufficient to choose:

γ > γ0 =
(E + L)τ − 1

kτη
≤ E + L + 1/τ

β
≤ E + L + 1

β
.

When Condition 2 holds, β > 0.
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Theorem 1 states a lower bound on γ in terms of constants E, L and β. For
a quadratic regularizer Rτ (x) =

√
τ‖x‖22 we can choose E = maxy,z∈D(‖y‖22 −

‖z‖22). Since functions fi are uniformly Lipschitz then |fi(z) − fi(y)| ≤ Lf‖z −
y‖ ≤ Lf‖D‖ and so we can choose L = Lf‖D‖. A value for β may be unknown
but to apply Theorem 1 in practice we just need to select γ large enough, so a
pragmatic approach is simply to make γ grow with time and then freeze it when
it is large enough i.e. when the constraint violations are observed to cease.

4.3 Main Result: Penalized FTRL O(
√

t) Regret & Violation

Our main result extends the standard FTRL analysis to time-varying constraints:

Theorem 2 (Penalized FTRL). Assume Conditions 1 and 2 hold for Fi(x) =
fi(x) + γhi(x) with hi(x) =

∑m
j=1 max{0, 1

i

∑i
k=1 g

(j)
k (x)}, and the constraints

g
(j)
i are uniformly Lipschitz. Let the sequence of actions {xτ}t

τ=1 be generated
by the Pen-FTRL update:

xτ+1 ∈ arg min
x∈D

Rτ (x) +
τ∑

i=1

Fi(x) (6)

Then, if γ is sufficiently large, the regret and constraint violation satisfy:

Rt :=
t∑

i=1

fi(xi) − fi(y) ≤ O(
√

t), Vt :=
t∑

i=1

hi(xi) ≤ O(
√

t), ∀y ∈ X̂max
t

X̂max
t =

{
x ∈ D :

i∑
k=1

g
(j)
k (x)≤0,∀i ≤ t, j ≤ m

}
=

{
x ∈ D :

i∑
k=1

hk(x)=0,∀i ≤ t
}

Proof. Regret : Applying Lemma 3 then
∑t

i=1 Fi(xi)−Fi(y) ≤ O(
√

t) for all y ∈
D. This holds in particular for all y ∈ X̂max

t and for these points
∑t

i=1 Fi(y) =∑t
i=1 fi(y). Therefore,

∑t
i=1 Fi(xi) − fi(y) ≤ O(

√
t) i.e. Rt =

∑t
i=1 fi(xi) −

fi(y) ≤ O(
√

t) − γ
∑t

i=1 hi(xi) ≤ O(
√

t) since hi(xi) ≥ 0.

Constraint Violation: By Theorem 1, xτ+1 ∈ X̂max
τ for τ > tε. Our interest is

in bounding the violation of X̂max
τ+1 by xτ+1. We can ignore the finite interval

from 1 to tε since it will incur at most a finite constraint violation and so not
affect an O(

√
t) bound i.e. when obtaining the O(

√
t) bound we can take tε =

0. We follow a “Be-The-Leader” type of approach and apply Lemma 2 with
Fi(x) = hi(x). We have that hi(x) ≥ 0 and by Condition 2, there exists a Slater
point z ∈ D such that hi(z) = 0, i = 1, . . . , t. Hence, minx∈D

∑τ
i=1 Fi(x) =

0 and arg minx∈D

∑τ
i=1 Fi(x) is not empty. Now, xτ+1 ∈ X̂max

τ =
{
x ∈ D :∑τ

i=1 hi(x) = 0
}

= arg minx∈D

∑τ
i=1 hi(x) i.e. xτ+1 is a Follow-The-Leader

update with respect to
∑τ

i=1 hi(x). Hence, by Lemma 2, it is
∑t

i=1 hi(y) ≥∑t
i=1 hi(xi+1), ∀y∈D. Multiplying both sides of this inequality by -1 and adding∑t
i=1 hi(xi), it follows that:

t∑
i=1

(
hi(xi) − hi(y)

)
≤

t∑
i=1

(
hi(xi) − hi(xi+1)

)
∀y ∈ D.
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In particular, for y ∈ X̂max
t then

∑t
i=1 hi(y) = 0 and so

Vt =
t∑

i=1

hi(xi) ≤
t∑

i=1

(
hi(xi) − hi(xi+1)

)
.

Since g
(j)
i is uniformly Lipschitz then by Lemma 5, we get that hi is uniformly

Lipschitz, i.e. |hi(xi) − hi(xi+1)| ≤ Lg‖xi − xi+1‖ and Vt ≤ Lg

∑t
i=1 ‖xi −

xi+1‖, where Lg is the Lipschitz constant. Since the regularizer Rτ (x) in the
Pen-FTRL update is

√
τ -strongly convex, by Lemma 4 we get that ‖xi − xi+1‖

is O(1/
√

i) and so
∑t

i=1 ‖xi − xi+1‖ is O(
√

t). Hence, Vt ≤ O(
√

t) as claimed.

We can immediately generalize Theorem 2 by observing that a sequence of
constraints {g

(j)
i } which are active at no more than O(

√
t) time steps can be

violated while still maintaining O(
√

t) overall sum-violation.

Corollary 1 (Relaxation). Define the sets

P− = {j :

t∑

i=1

max{0,
1

i

i∑

k=1

g
(j)
k (x)} ≤ O(

√
t)}, and P+ = {1, . . . , m} \ P−.

In Theorem 2 relax Condition 2 so that it only holds for the subset P+ of con-
straints. Then the Pen-FTRL update still ensures O(

√
t) regret and constraint

violation with respect to:

X̂max
t =

{
x ∈ D :

i∑

k=1

g
(j)
k (x) ≤ 0, i = 1, . . . , t, j ∈ P+

}
.

In effect, Corollary 1 says that we only need Condition 2 to hold for a sub-
set of the constraints (i.e. subset P+). The effect will be to increase the sum-
violation, but only by O(

√
t). This is the key advantage of the penalty-based

approach, namely it allows a soft trade-off between sum-constraint satisfac-
tion/violation, Condition 2 and benchmark set X̂max

t . Importantly, note that
the Pen-FTRL update itself remains unchanged and does not require knowledge
of the partitioning of constraints into sets P+ and P−.

With this in mind, it is worth noting that we also have the flexibility to
partition the constraints in other ways. For example:

Corollary 2. Consider the setup in Theorem 2 but using penalty

hi(x) =
m∑

j=1

max

{
0,

1
i

i∑
k=1

g
(j)
k (x)

}
+ δ

(j)
i (x)

Then the Pen-FTRL update ensures regret and violation

Rt :=
t∑

i=1

(
fi(xi) − fi(y)

)
≤ O(

√
t) −

t∑

i=1

m∑

j=1

(
δ
(j)
i (xi) − δ

(j)
i (y)

)

Vt :=

t∑

i=1

hi(xi) ≤ O(
√

t) +

t∑

i=1

m∑

j=1

δ
(j)
i (x)

for all y ∈ X̂max
t =

{
x ∈ D :

∑i
k=1 g

(j)
k (x) ≤ 0, i = 1, . . . , t, j = 1, . . . ,m

}
.
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When δ
(j)
i ≤ O(1/

√
t) then Corollary 2 shows that the Pen-FTRL update

achieves O(
√

t) regret and violation, this Corollary will prove useful in the next
section. Other variations of this sort are also possible.

4.4 Necessity of Penalty Growth Condition

Condition 2 is necessary for Theorems 1 and 2 to hold in the sense that when
the condition is violated then there exist examples where these theorems fail.

Returning again to the example from the Introduction, selecting hi(x) accord-
ing to (5) then hi(x) = max{0,−0.01} + max{0,

n2,i

i x} = max{0,
n2,i

i x}. Hence,
the penalty is

∑τ
i=1 hi(x) ≤ ∑τ

i=1
n2,i

i x. When n2,i < O(i) then
∑τ

i=1 hi(x) <

O(τ) (since
∑τ

i=1
1
ic ≤ ∫ τ

0
1
ic di = τ1−c

1−c for 0 ≤ c ≤ 1) and Condition 2 is vio-
lated (since kτ ≤ n2,τ < O(τ) and so there does not exist any β > 0 such
that kτ ≥ β

η τ). For τ large enough the penalty
∑τ

i=1 hi(x) therefore inevitably
becomes small relative to

∑τ
i=1 fi(x) = −2τx, which leads to persistent violation

of constraint x ≤ 0 i.e. Theorem 1 fails. This is what we see in Fig. 2(a).
When n2,i ≤ O(

√
i) then n2,i

i ≤ O(1/
√

i) and the constraint sum-violation∑τ
i=1 hi(x) ≤ O(

√
i). Hence, Corollary 1 still works even though Theorem 1 fails.

However, when n2,i greater than O(
√

i) but less than O(i) then the constraint
violation is greater than O(

√
i) and so Corollary 1 also fails.

Note that while we might consider gaining penalty growth by scaling γ with
t, this is inadmissible because Condition 1 requires Ft(x)=ft(x)+γht(x) to be
uniformly Lipschitz, i.e., the same Lipschitz constant to apply at all times t.

4.5 Constraints Satisfying Penalty Growth Condition

A natural question to ask is which classes of time-varying constraints satisfy
Condition 2. In this section we present some useful examples. In particular, we
consider the classes of constraints considered by [11] and [14], since these are the
only previous works for time-varying constraints that report Rt,Vt = O(

√
t).

Perturbed Constraints. In [11] the considered constraints are of the form:

g
(j)
i (x) = g(j)(x) + b

(j)
i

with common Slater point and b
(j)
i upper bounded by some value, i.e., b

(j)
i ≤

b̄(j),∀i. For this class of constraints we have that:

hi(x) =
m∑

j=1

max

{
0,

1
i

i∑
k=1

(g(j)(x) + b
(j)
k )

}
=

m∑
j=1

max

{
0, g(j)(x) +

1
i

i∑
k=1

b
(j)
k

}
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Defining b
(j)
t = 1

t

∑t
k=1 b

(j)
k and Δ

(j)
i (x) = 1

i

∑i
k=1(b

(j)
k −bt), then we can rewrite

the penalty equivalently as

hi(x) =
m∑

j=1

max
{

0, g(j)(x) + b
(j)
t

}
+ δ

(j)
i (x)

with δ
(j)
i (x) = max

{
0, g(j)(x) + b

(j)
t + Δ

(j)
i (x)

} − max
{
0, g(j)(x) + b

(j)
t

}
. When

|Δ(j)
i (x)| is O(1/

√
i) then, by Lemma 5, so is |δ(j)i (x)|. Hence, when |Δ(j)

i (x)|
is O(1/

√
i) then we can use the fact that Condition 2 holds for constraints

g(j)(x) + b
(j)
t ≤ 0 to show, by Corollary 2, that the Pen-FTRL update achieves

O(
√

t) regret and violation with respect to benchmark set X̂max
t = {x : g(j)(x)+

b
(j)
t ≤ 0}. This corresponds to one extreme of [11]’s benchmark but Theorem

1 provides more general conditions under which it is applicable, while [11] only
considers constraints that are either time-invariant or i.i.d.

Alternatively, defining Δ
(j)
i (x) = 1

i

∑i
k=1(b

(j)
k − b̄(j)), we can rewrite the

penalty equivalently as:

hi(x) =
m∑

j=1

max
{

0, g(j)(x) + b̄(j)
}

+ δ
(j)
i (x)

with δ
(j)
i (x) = max{0, g(j)(x) + b̄(j) + Δ

(j)
i (x)} − max{0, g(j)(x) + b̄(j)}. Observe

that δ
(j)
i (x) ≤ 0 since Δ

(j)
i (x) ≤ 0. Hence, δ

(j)
i (x) does not add to the

upper bound on the sum-constraint violation and so, by Corollary 2, the
Pen-FTRL update achieves O(

√
t) regret and violation with respect to bench-

mark set X̂max
t = {x : g(j)(x)+ b̄(j) ≤ 0}. This corresponds to the other extreme

of [11]’s benchmark, and in fact corresponds to the weak benchmark Xmin
t and

so is perhaps less interesting.

Families of Constraints. Suppose the time-varying constraint functions g
(j)
i

are selected from some family. That is, let A(j) = {a
(j)
1 , . . . , a

(j)
nj } be a family

of functions indexed by k = 1, . . . , nj with a
(j)
k : D → R being Lg-Lipschitz

and |a(j)
k (x)| ≤ amax for all x ∈ D. At time i, constraint g

(j)
i = a

(j)
k for some

k ∈ {1, . . . , nj}, i.e. at each time step the constraint g
(j)
i is selected from family

A(j). Let n
(j)
k,τ denote the number of times that function a

(j)
k is visited up to time

τ and p
(j)
k,τ = n

(j)
k,τ/τ the fraction of times that a

(j)
k is visited. With this setup

the penalty is:

hi(x) =
m∑

j=1

max

{
0,

1
i

i∑
k=1

g
(j)
i

}
=

m∑
j=1

max

{
0,

nj∑
k=1

p
(j)
k,ia

(j)
k (x)

}
.

We proceed by rewriting the penalty equivalently as

hi(x) =
m∑

j=1

max

{
0,

nj∑
k=1

p
(j)
k a

(j)
k (x)

}
+ δ

(j)
i (x)
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with δ
(j)
i (x) = max

{
0,

∑nj

k=1 p
(j)
k,ia

(j)
k (x)

} − max
{
0,

∑nj

k=1 p
(j)
k a

(j)
k (x)

}
By

Lemma 5, |δ(j)i (x)| ≤ |∑nj

k=1(p
(j)
k,i − p

(j)
k )a(j)

k (x)|. Assume the following condi-
tion holds:

Condition 3 (1/
√

t-Convergence). For ε > 0 there exists t0 > 0 and 0 ≤
p
(j)
k ≤ 1,

∑m
j=1

∑nj

k=1 p
(j)
k = 1 such that |p(j)k,τ − p

(j)
k | ≤ ε/

√
τ for all τ > t0.

Then for all τ > t0, |δ(j)i (x)| ≤ nj
ε√
τ
amax ≤ n̄ ε√

τ
amax with n̄ := maxj nj . By

Corollary 2 it now follows that Pen-FTRL achieves O(
√

t) regret and violation
with respect to benchmark X̂max

t =
{
x :

∑nj

k=1 p
(j)
k a

(j)
k (x) ≤ 0

}
. Observe that in

this case X̂max
t = Xmax

∞ , i.e., we obtain O(
√

t) regret and violation with respect
to the strong benchmark, which is very appealing. Note that we don’t need to
know the relative frequencies in advance for this analysis to work.

Example. Suppose D = [−10, 10], loss function fτ (x) = −2x and constraint
gτ (x) alternates between a1(x) = −0.01 and a2(x) = x, equaling a2(x) at time
τ with probability2 0.1c/τ1−c. Figure 2(a) shows the performance vs c of the
Pen-FTRL update with quadratic regularizer Rτ (x) =

√
τx2 and Fτ (x) = fτ (x)+

γ max{0, p1,τa1(x) + p2,τa2(x)} with parameter γ = 25. It can be seen that for
c = 1 and c = 0.5 the constraint violation is well-behaved, staying close to zero,
but for c∈(0.5, 1) the constraint violation grows with time.

What is happening here is that when c=1 then p1,τ → 0.9, p2,τ → 0.1 and
the penalty term γ max{0, p1,τa1(x) + p2,τa2(x)} in Fτ (x) ensures the violation∑t

i=1 gi(x) = t(p1,ta1(x) + p2,ta2(x)) stays small. When c = 0.5, then p1,τ → 1,
p2,τ → 0 and the penalty term ensures tp1,ta1(x) stays small while tp2,ta2(x)
is O(

√
t), thus

∑t
i=1 gi(x) is O(

√
t). When c ∈ (0.5, 1) then again p1,τ → 1,

p2,τ → 0 and the penalty term ensures tp1,ta1(x) stays small but now tp2,ta2(x)
is larger than O(

√
t) and so

∑t
i=1 gi(x) is also larger than O(

√
t).

We claim that 1/
√

t-convergence is sufficient for Pen-FTRL to achieve O(
√

t)
regret and violation with respect to X∗, but it remains an open question whether
or not it is also a necessary condition. Nevertheless, in simulations we observe
that when 1/

√
t-convergence does not hold then performance is often poor and

that this is not specific to the FTRL algorithm, e.g. Figure 2(b) illustrates the
performance of the canonical online primal-dual update (e.g. see [11]),

xt+1 = ΠD (xt − αt(∂ft(xt) + λt∂gt(xt))) , λt+1 =
[
λt + αtgt(xt+1

]+
(7)

where ΠD denotes projection onto set D and step size αt = 5/
√

t.

I.i.d Stochastic Constraints. In [14] i.i.d. constraint functions drawn from
a family are considered and a primal-dual algorithm is presented that achieves

2 Recall that c
∑t

τ=0
1

τ1−c ≈ c
∫ t

0
1

τ1−c dτ = tc for 0 ≤ c ≤ 1. Hence, with this choice

E[n2,t] ≈ 0.1tc and E[p2,t] ≈ 0.1tc−1..
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Fig. 2. Example about the role of 1/
√

t-convergence in achieving Vt = O(
√

t).

O(
√

t) regret and expected violation. Since with high probability the empirical
mean converges at rate 1/

√
t with high probability, we can immediately apply the

foregoing analysis to the sample paths to show that Pen-FTRL achieves O(
√

t)
regret and violation with respect to Xmax

t with high probability. In more detail,
let indicator random variable Ij

k,i = 1 when constraint function a
(j)
k is selected

at time i, and otherwise I
(j)
k,i = 0. By the law of large numbers (we can use any

convenient concentration inequality, e.g. Chebyshev), with high probability the
empirical mean satisfies | 1τ

∑τ
i=1 I

(j)
k,i − pj

k]| ≤ 1/
√

τ with high probability. That
is, Condition 3 holds with high probability and we are done.

Periodic Constraints. Let indicator Ij
k,i = 1 when constraint function a

(j)
k is

selected at time i, and otherwise I
(j)
k,i = 0. When the constraints are visited in a

periodic fashion then

I
(j)
k,i =

{
1 i = nT

(j)
k , n = 1, 2, . . .

0 otherwise

where T
(j)
k is the period of constraint a

(j)
k . Then | 1τ

∑τ
i=1 I

(j)
k,i − 1

T
(j)
k

| = 1
τ | τ

T
(j)
k

�−
τ

T
(j)
k

| ≤ 1
τ . Hence Condition 3 holds and we are done.

5 Summary and Conclusions

In this paper we extend the classical FTRL algorithm to encompass time-varying
constraints by leveraging, for the first time in this context, the seminal penalty
method of [12]. We establish sufficient conditions for this new Pen-FTRL algo-
rithm to achieve O(

√
t) regret and violation with respect to a strong benchmark

X̂max
t that expands significantly the previously-employed benchmarks in the lit-

erature. This result matches the performance of the best existing primal-dual
algorithms in terms of regret and constraint violation growth rates, while sub-
stantially extending the class of problems covered. The key to this improvement
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lies in how the time-varying constraints are incorporated into the FTRL algo-
rithm. We conjecture that adopting a similar formulation with a primal-dual
algorithm, namely using:

xt+1 = ΠD(xt − αt(∂ft(xt) + λt∂ht(xt))), λt+1 = [λt + αtht(xt+1]+

where ht(x) = 1
t

∑t
i=1 gi(xt+1), would allow similar performance to be achieved

by primal-dual algorithms as by FTRL but we leave this to future work.

Acknowledgments. The authors acknowledge support from Science Foundation Ire-
land (SFI) under grant 16/IA/4610, and from the European Commission through Grant
No. 101017109 (DAEMON).

Appendix A: Proofs

A.1 Proof of Lemma 1

Proof. Firstly note that for feasible points x ∈ X we have that g(j)(x) ≤ 0,
j = 1, · · · ,m and so F (x) = f(x). By definition f(x) ≥ f∗ = infx∈X f(x) and
so the stated result holds trivially for such points. Now consider an infeasible
point w /∈ X. Let z be an interior point satisfying g(j)(z) < 0, j = 1, · · · ,m; by
assumption such a point exists. Let γ0 = f∗−f(z)−1

G . It is sufficient to show that
F (w) > f∗ for γ ≥ γ0 and G = maxj∈{1,··· ,m}{g(j)(z)}.

Let v = βz +(1−β)w be a point on the chord between points w and z, with
β ∈ (0, 1) and v on the boundary of X (that is g(j)(v) ≤ 0 for all j = 1, · · · ,m
and g(j)(v) = 0 for at least one j ∈ {1, · · · ,m}). Such a point v exists since z lies
in the interior of X and w /∈ X. Let A := {j : j ∈ {1, · · · ,m}, g(j)(v) = 0} and
t(x) := f(x) + γ

∑
j∈A g(j)(x). Then t(v) = f(v) ≥ f∗. Also, by the convexity of

g(j)(·) we have that for j ∈ A that g(j)(v) = 0 ≤ βg(j)(z) + (1 − β)g(j)(w).
Since g(j)(z) < 0, it follows that g(j)(w) > 0. Hence,

∑
j∈A g(j)(w) =∑

j∈A max{0, g(j)(w)} ≤ ∑m
j=1 max{0, g(j)(w)} and so t(w) ≤ F (w, γ). Now,

observe that t(z) = f(z) + γ
∑

j∈A g(j)(z) ≤ f(z) + γ0
∑

j∈A g(j)(z) since
g(j)(z) < 0 and γ ≥ γ0. Hence,

t(z) ≤ f(z) + (f∗ − f(z) − 1)

∑
j∈A g(j)(z)

G
(8)

Selecting G such that
∑

j∈A g(j)(z)

G ≥ 1 then t(z) ≤ f∗ − 1 ≤ t(v) − 1. So we
have established that f∗ ≤ t(v), t(z) ≤ t(v) − 1 and t(w) ≤ F (w). Finally,
by the convexity of t(·), t(v) ≤ βt(z) + (1 − β)t(w). Since t(z) ≤ t(v) − 1 it
follows that t(v) ≤ β(t(v) − 1) + (1 − β)t(w) i.e. t(v) ≤ − β

1−β + t(w). Therefore
f∗ ≤ − β

1−β + F (w) < F (w) as claimed.
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