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A tractable physical model for the yeast
polarity predicts epistasis and fitness

Werner Karl-Gustav Daalman, Els Sweep and Liedewij Laan

Department of Bionanoscience, TU Delft, 2629 HZ Delft, The Netherlands

LL, 0000-0002-7138-9004

Accurate phenotype prediction based on genetic information has numerous
societal applications, such as crop design or cellular factories. Epistasis, when bio-
logical components interact, complicates modelling phenotypes from genotypes.
Hereweshowanapproach tomitigate this complication forpolarityestablishment
in budding yeast, where mechanistic information is abundant. We coarse-grain
molecular interactions into a so-called mesotype, which we combine with gene
expression noise into a physical cell cycle model. First, we show with computer
simulations that the mesotype allows validation of the most current biochemical
polaritymodelsbyquantitativelymatchingdoubling times. Second, themesotype
elucidates epistasis emergence as exemplified by evaluating the predicted muta-
tional effect of key polarity protein Bem1p when combined with known
interactors or under different growth conditions. This example also illustrates
howunlikelyevolutionary trajectories canbecomemoreaccessible.The tractability
of our biophysically justifiable approach inspires a road-map towards bottom-up
modelling complementary to statistical inferences.

This article is part of the theme issue ‘Interdisciplinary approaches to
predicting evolutionary biology’.
1. Introduction
Many fields, such as personalized medicine [1], agriculture [2], chemical pro-
duction [3] and forensics [4], will greatly benefit from better understanding of
how traits connect to genes, the so-called genotype–phenotype (GP-) map. How-
ever, resolving this connection is generally not straightforward even for known
heritable traits [5]. For example, multiple genes can contribute to a single trait
(polygenic inheritance) while multiple traits can emerge from a single gene (pleio-
tropy) [6]. Frequently, mutational effects have been shown to be non-additive in
(model) species as Escherichia coli [7] and Saccharomyces cerevisiae (budding yeast)
[8]. This phenomenon is known as epistasis. Theoretically, epistasis surfaces
easily based on metabolic network analysis [9], and some molecular origins are
known [10]. As epistasis complicates the predictions of phenotype and conse-
quently gene evolution [11,12], it poses an important challenge forGP-mapmodels.

In order to unravel this complication, intermediate levels in the GP-map are
commonly employed [13]. An intermediate level is any quantity more complex
than individual proteins, but less complex than the phenotype level. This level
addition is meant to produce a more modular and hence more tractable GP-
map (figure 1a). Multiple level examples exist, such as the biofunctional gene
ontology level (ontotypes) [14], and the diffuse endophenotypes [15]. Ideally,
such a level both facilitates understanding of the emergence of phenotypes from
genotypes, and elucidates the handles for evolution, the reverse path in the GP-
map. Phenomenological or statistical level formulations have the advantage that
predictions can be generated in large quantities, integrating data from high-
throughput studies [16]. For example, the ontotype approach [14] is proficient in
predicting millions of interactions between genes. While these methods are very
effective in predicting, there is room to complement these by an alternative
approach and level formulation when we pursue a different goal. Here, we aim
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Figure 1. Decomposition of the genotype–phenotype (GP-) map with the mesotype as an intermediate, showcased in yeast polarity. (a) General conceptualization
of a GP-map containing epistatic interactions. Introduction of an intermediate level simplifies the connections between genes to phenotype. (b) Visualization of yeast
polarity as the function template for decomposing a GP-map. Example overlay of brightfield and widefield fluorescence images of a polarizing budding yeast cell
(yLL129), scale bar 5 µm. Spa2p, binding partner of active Cdc42p, is fluorescently labelled. (c) Schematic overview of core polarity protein network (proteins not to
scale). Proteins are denoted with a suffix -p, as opposed to italicized gene names. A positive feedback for (active) Cdc42p-GTP is mediated by the Bem1p. Nrp1p
represents a mechanistic unknown. (d ) Phase diagram summarizing the GP-map, depicting the phenotype viability (green) as function of genotype (purple) through
Cdc42p (active and inactive) and GAP concentration in the cell with or without Bem1p. An intermediate, the ‘mesotype’, can be identified here as the limiting
Cdc42p concentration (blue). (e) Implementation of the mesotype into a physical cell cycle model, to tractably decompose the polarity GP-map. Starting from G1,
every cell aims to divide once the polarity mesotype checkpoint has passed. This implies mother radius rm exceeding minimum radius rmin, time thus far in G1 t1
exceeding minimum G1 time tG1,min, and a Cdc42 concentration (abbreviated as (P)) exceeding mesotype (P)min. If maximum size rmax is exceeded in the process, the
cell dies. If the mesotype checkpoint is passed, the mother continues to grow isotropically for polarization time tpol, which is at least tpol,min. Then, only the bud
grows until the second, coarse-grained growth checkpoint, which involves bud size must be a certain fraction of mother size before division. Throughout all phases,
Cdc42p is subject to stochastic protein production and deterministic degradation. Its spatial distributions across the cell cycle are schematically depicted in green
inside the cells.
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to maximize understanding of specific, unusual phenotypes
and in particular increase our fundamental understanding of
emergence of biological network properties and their evolution.

By bottom-up modelling, we hope to circumvent possible
interpretability limitations that may result from phenomeno-
logical methods and find GP-map rules justifiable from the
bottom-up which permit generalizations to less studied net-
works. In systems with well-mixed proteins, these models
are easily scalable, e.g. greater than 100 protein species in a
macrophage polarization model [17], and greater than 1000
for S. cerevisiae metabolism [18]. However, in systems as
yeast polarity where we cannot neglect the spatio-temporal
interplay of protein species, tractability requires us to
coarse-grain the underlying biochemical networks. We
define the quantity that emerges from the biochemistry as
the ‘mesotype’. This mesotype describes the function of a bio-
logical module as a function of protein concentration(s), and
can for example be a sigmoidal Hill curve. Moreover, if this
curve is sufficiently simple as we will see in our case here,
we can even reduce the mesotype function by a simple
scalar/threshold.

To test ourmesotype approach,wemodel polarity establish-
ment in S. cerevisiae, the cell cycle step where budding yeast
breaks its spherical symmetry to direct bud growth (figure 1b).
The challenge is reproducing the ample epistasis exhibited in
the polarity network in e.g. doubling times [19]. Conveniently,
the molecular interaction network for polarity establishment
(simplified in figure 1c) was recently modelled in broad
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agreement with literature [20]. In short, polarity is essential for
cell proliferation and relies on the small GTPase Cdc42p [21]
(proteins denoted with suffix -p, as opposed to italicized
genes). Cdc42p is considered active when bound to a GTP
nucleotide and can in this form redirect the actin cytoskeleton
[22]. Subsequently, growth becomes polarized (only to one
direction) instead of isotropic, and a new cell (bud) is formed
(see for a review e.g. [23]). Before this growth transition can
occur, active Cdc42p must have been clustered to one point in
the plasma membrane through multiple positive feedbacks
[24]. One positive feedback is mediated by Bem1p to recruit
Cdc42p [25–27]. Elsewhere on the membrane, Cdc42p must be
inactivated through hydrolysis of its nucleotide. This hydrolysis
is catalysed by the confusingly named GTPase activating pro-
teins (GAPs) such as Bem2p and Bem3p [28]. In the absence
of Bem1p, clusters of active Cdc42p can still arise, but this pro-
cess then becomes very sensitive to GAP concentration.
Concretely, at low enough GAP concentration relative to
Cdc42p concentration, a spot with large Cdc42p concentration
can locally saturate the GAPs causing the active Cdc42p spot
to be maintained [20]. This mechanism strongly links viable
Cdc42p and GAP concentrations. Consequently, deletion of
BEM1 in an experimental evolution experiment structurally
led to subsequent deletion of GAPs to restore fast polarity estab-
lishment [19]. However, in this experiment another, mysterious
protein surfaced, Nrp1p whose absence becomes strongly ben-
eficial in the Δbem1 background. Possibly, Nrp1p influences
cell cycle timing, but its molecular mechanism is currently
unknown. Nevertheless, we include Nrp1p to test our model
with the experimental data in [19].

In our system, the mesotype is based on [20], where the
current biochemical network model for polarity was specified
in terms of the chemical reactions and diffusion of relevant
proteins such as Cdc42p, GAPs and Bem1p complexes. Numeri-
cal simulations of the reaction–diffusion equations and
mathematical analysis thereof then displayed elegantly simple
dependencies of polarization success (and time required) on
polarity proteins. In particular, polarization is only possible
between a minimal and maximal Cdc42/GAP ratio, with the
viable range differing per genotype (figure 1d). However,
the theoretical upper bound of this ratio is not experimentally
relevant for this paper, as high expression of Cdc42p under
the Gal1-promoter did not reveal severe fitness effects (even
though the model in [20] surprisingly shows that a large
excess [Cdc42p] above the mesotype should eventually slow
down polarization [20]), nor did deleting two GAPs [19]. There-
fore, we coarse-grain the biochemistry underlying polarity to a
mesotype defined by a minimum Cdc42p concentration below
which polarization is not possible. This simple rule on protein
dosage will facilitate the understanding of epistasis emergence
while sharply reducing computational costs.

To complete our GP-map model, the mesotype is incor-
porated into a physical cell cycle model, which is further
composed of simple volume growth and stochastic protein pro-
duction (figure 1e), to reproduce phenotypes. The phenotypes
we consider are G1 times, cell sizes (electronic supplementary
material, figure S5) and fitness/growth rates. The latter also
encompasses epistasis as it can be seen as an unexpected
double mutant fitness, given the fitness effects of single
mutants. In this paper we assess the quality of our predictions
by comparing these to documented interactions, validating
the underlying molecular polarity model quantitatively. Our
tractable approach also illustrates how epistasis and therefore
feasible evolutionary trajectories depend on growth condi-
tions. Finally, we show our framework relies on biofunctional
(and ideally mechanistic information) of the key proteins to
yield informative predictions, which delineates the appropriate
conditions for applying our method.
2. Results
(a) Cell cycle model design with the mesotype as level

between genotype and phenotype
As polarity relies crucially on polarity protein concentrations
[20], an accurate transition of polarity to cellular phenotypes
includes the time-dependence of key protein concentrations,
which in turn implies describing (stochastic) protein produc-
tion and dilution effects. Therefore, we modelled the yeast
cell cycle as a process involving three modules, namely: (i)
polarity mesotype, (ii) stochastic protein turnover, and (iii)
cell size expansion (figure 1e). We sketch the essence of each
module, and further details are found in the electronic supple-
mentary material, Information (Section Extended explanation
cell cycle model). Moreover, a summary of model parameter
values is given in electronic supplementary material, table
S1, where we distinguish five parameters (mesotypes of the
Δbem1/BEM1 background, mesotype effects of a Bem2p/
Bem3p deletion and a minimum G1 time effect of the Nrp1p
deletion) which we use here as fit parameters on fitness
values, and other model parameters that are fixed based on
observations from literature or theoretical considerations. We
integrated the three modules into a simulated population of
cells, with properties size and protein content. We employed
a Gillespie-style algorithm [29,30], where [Cdc42p] is updated
at each simulation step per cell for production bursts (electronic
supplementary material, figure S3a). The durations between
steps follow from randomdraws of an exponential distribution.
The simulations result in phenotypes such as dosage distri-
bution, size and doubling times. These phenotypes each
converge to equilibrium values at the end of the simulations
(electronic supplementary material, figure S3b,c). The conver-
gence of the doubling times also provides a proxy of the error
on the simulated doubling time estimate, which is taken at
the end of the simulations, and it is typically small (usually
less than 1%; see the electronic supplementary material,
Convergence) compared to the experimental error in [19].

For module (i), we reduced the biochemical network for
polarity to the mesotype of a minimal [Cdc42p] threshold.
As depicted in figure 2d, the mesotype threshold scales linearly
with GAP concentration, here Bem2p and Bem3p concentra-
tion, and also depends on Bem1p. Therefore, the mesotypes
of all mutants are determined by the slopes of the mesotype
lines and crossing points with GAP concentration of the
mutant of choice. As the presence of Bem1p increases this
slope, we require the slope with and without Bem1p and
the (effective) GAP concentration decrease upon Bem2p or
Bem3p deletion (thus four parameters in total) to fully describe
the mesotype of all mutants of [19]. The mesotype in part con-
stitutes the polarity mesotype checkpoint (see module (iii)).
Upon checkpoint passage, cell expansion continues for a time
tpol, which increases exponentially with the excess [Cdc42p].
This time period simplifies the functional dependency uncov-
ered with the aforementioned analysis of the underlying
reaction–diffusion equations [20].
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Although this analysis assumes a steady concentration state
(constant protein concentrations), we use the tpol from this
analysis in our time-dependent concentration setting. This
simplification is valid unless this polarization time is slowed
specifically by excessively high [Cdc42p] to above an hour, the
typical time scale of concentration fluctuations owing to dilution
and production bursts (see the electronic supplementary
material, figure S3a), Given the optimal polarization time of
5 min [31] and a wild-type (WT) doubling time of 83 min [19],
the condition tpol greater than 1 h translates roughly to fitness
relative to WT of less than 0.6. This threshold typically holds for
the experimentally explored genotypeswith relatively lowmeso-
types/excess [Cdc42p], and is marginally crossed for two lowest
carbon source availabilities in the Δbem3 Δbem2 in figure 3a.

For module (ii), we only consider Cdc42p to induce cell-
to-cell variability, as GAP dosage population noise [33] is
much smaller than the noise of Cdc42p (coefficient of
variation 0.83, this study). As messenger RNA of Cdc42
lives much shorter than the protein [34,35], we assume
bursty Cdc42p production, whose properties can be inferred
from flow cytometry experiments (see the electronic sup-
plementary material, figure S1) under these conditions [36].
By contrast, we assume deterministic Cdc42p degradation
owing to its high abundance [37].

For module (iii), we assume two stages of constant outer
membrane area growth in G1 and S/G2/M phase, respectively.
Two stages are a simple description consistent with different
phases of growth in [38,39], with alternating mother and bud
growth [39], and the constant area growth assumption is not
critical (electronic supplementary material, figure S4). In the
first stage, spherical mother cells of radius rm(t) grow until
the polarity mesotype checkpoint is passed and polarization is
completed, or until cell death when rm(t) exceeds maximum
radius rmax. The polarity checkpoint entails next to the
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[Cdc42p]min ofmodule (i), exceeding aminimal radius rmin, and
a minimal time since last division tG1,min. The last two criteria
reflect the biology behind the Start transition. There, time must
be spent to make Ydj1p sufficiently available to release key
cyclin Cln3p from the endoplasmic reticulum [40]. The critical
size condition, a minimum size a cell must obtain for cell cycle
progression events such as bud emergence, has also long been
established in literature [41]. The nrp1 deletion is phenomenolo-
gically incorporated by reducing thisminimal time as suggested
by [19]. In the next stage, a budwith radius rb(t) grows to 70% of
the mother volume (the second checkpoint). Then, mother and
bud restart the cell cycle independently. Resulting cell expansion
rates are in decent agreement with literature [38,39] (see the
electronic supplementary material, figure S2).
(b) The mesotype enables detailed validation of the
underlying biochemical model and bottom-up
interpretation of phenotype emergence

Our physical cell cycle model encompassing the three mod-
ules relies on the validity of the underlying biochemical
network model, which was coarse-grained to the mesotype.
While the biochemical network model was tested in [20],
quantitatively describing phenotypes at higher levels of
organization such as fitness were out of reach as cell cycle
and population effects were excluded. Our cell cycle model
can capture these phenotypes and thus allows more
in-depth validation of the biochemical network model.

To this end, we considered 20 previously documented
experimental values from [19]. These constitute doubling
times, whose reciprocals are defined as fitness, and cell cycle
times. The three most prominent, non-trivial phenotypes are
(i) strong epistasis in growth rates between GAP (bem2/bem3)
mutants only in the Δbem1 background, (ii) strong epistasis
between BEM1 and NRP1, and (iii) non-monotonous optimiz-
ation of G1 times for (reconstructed) experimentally evolved
mutants starting from Δbem1. For the latter phenotype,
the acceleration of G1 speed of the Δbem1 cells, despite
their poor fitness, compared to WT cells is particularly note-
worthy. While these phenotypes comprise a limited set,
these fit the purpose of our model to in particular improve
understanding of non-trivial phenotype emergence, rather
than generating predictions in bulk. Notwithstanding, more
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diverse predictions are possible, for example the cell sizes of the
aforementioned reconstructed Δbem1 background mutants
(electronic supplementary material, figure S5).

Tomodel the 16mutants of [19] in our target observable set,
we required five fitting parameters (see also the electronic sup-
plementary material, table S1). First, the BEM1 and Δbem1 have
two different values for the mesotype. Second, because the
mesotype scales with GAP concentration (figure 1d),
any combination of bem2 and bem3 null mutations, which
decrease the total effective GAP concentration, is described
by two additional parameters. Last, the nrp1 mutant is
phenomenologically incorporated through a (25%) decrease in
tG1,min. To fix these, we first fit these values by considering
doubling times of five genotypes [19], a set which covers
high and low fitness genotypes, namely those of WT, Δbem1,
Δbem1Δbem3, Δbem1Δbem2 and Δbem1Δbem3Δbem2Δnrp1. The
remaining 11 doubling times can then be used to validate
model predictions. In the electronic supplementary material,
figure S6we tested other genotype sets for fitting, all with quan-
titatively almost identical results and the same conclusions. The
fitted parameter values are 116.2 Cdc42p proteins/µm3 (Δbem1
mesotype), 3.7 Cdc42p proteins/µm3 (BEM1 mesotype), and
those mesotypes decrease with GAP deletions by −64%
(Δbem3) and −33% (Δbem2).

When considering the first of our targeted phenotypes,
GAP epistasis, we see it is quantitatively reasonably described
(figure 2a, left). Here, the Bem2p and/or Bem3p deletion
mutants reside on points along the GAP concentration axis
(as in figure 3a), with the exact location depending on the
model fit. This description is robust to several model assump-
tion modifications (electronic supplementary material, figure
S4). Particularly in presence ofNRP1, fitness values were mod-
elled in accurate accordance with experiments of [19]. As
expected, less cells produce sufficient Cdc42p for high meso-
types, leading to increased cell death and lower fitness
(figure 2b). Therefore, we see a diffuse viability threshold
despite a sharp mesotype, as in previous experiments with
inducible Cdc42p [20].

For the second phenotype of interest, BEM1-NRP1
epistasis, we see fitness values of the Δnrp1 background
(figure 2a, right) are not always well fitted (4 out of 7 correct
within experimental error), although these have relatively
large experimental uncertainties. Nevertheless, the strongest
feature, the BEM1-NRP1 epistasis, is at least qualitatively
described. This description confirms the intuition offered by
the mesotype. If the nrp1 deletion reduces the mandatory G1
waiting time tG1,min, Δbem1 cells have more chance to exploit
temporary Cdc42p overproduction before excessive dilution,
thereby improving fitness (figure 2c). Quantitatively, we
explain one-third of the epistasis following the definition of
[42]. An alternative G1 time formulation (see the electronic
supplementary material, table S2) does not strongly alter this
result. As a likely reason for the incomplete description, we
confirm in the next section that incorporating mutants phe-
nomenologically rather than based on molecular information
limits the accuracy of phenotype description.

Last, we turned to the third phenotype of interest concern-
ing non-monotonous G1-time shifts during adaptation.
These shifts are an example of the more detailed traits
that can be modelled. As the underlying experimental data
of [19] were performed in suboptimal (for growth) synthetic
medium for fluorescence microscopy, we must account for
this slower growth medium in our model. For this purpose,
we performed the simulations with half the normal membrane
area rates which slows the WT doubling time from 83 min to
105 min. The trends presented here are not very sensitive
to the precise membrane growth rate choice (see the electronic
supplementary material, figure S7). The observed trends in
G1 times along the evolutionary trajectory from WT to
the fully evolved mutant in that paper were qualitatively
matched, including the unusual G1 time decrease for the
Δbem1 (figure 2d). The mesotype clarifies this subtle pheno-
type. The Δbem1 cells are relatively larger and less limited
by the minimum size criterion rmin. This eliminates a potential
waiting step in G1 for this background, which may
allow the cells to pass G1 faster if these have the stochastic
outcome of Cdc42p overproduction. Other phases are on
average extended by the relatively high minimum Cdc42
concentration threshold.

In summary, the three phenotype examples illustrate two
main points. First, comparison of experimental data with
simulation of our physical cell cycle model further confirms
the current biochemical model view of polarity. Second, the
mesotype framework exhibits the tractability needed for
understanding phenotype emergence, as demonstrated with
several examples.
(c) The mesotype generates model predictions for
genetic interactions

(i) Poorer carbon source availability reduces fitness differences
After establishing the value of the mesotype in trait gener-
ation, we turn to the reverse transition in the GP-map. This
transition is embodied by evolution (figure 1a), since pheno-
types such as fitness determine the selective pressure to
shape genotypes. Environmental factors are important for
growth, with even subtle changes noticeable under highly
controlled laboratory settings [43]. Given that historical evol-
ution has occurred in the wild, where conditions are expected
to be much more variable and more often difficult than not,
adaptive trajectories can be very different than for laboratory
evolution. For example, Bem1p is an important yet dispensa-
ble part of the polarity network over the fungal tree of life
[44], and even a well-functioning budding yeast polarity net-
work without Bem1p is retrieved within a few mutational
steps [19], which however do not always improve fitness indi-
vidually. One may ask how relevant this retrieval is given
that under rich laboratory conditions the loss of Bem1p
leads to a large fitness loss. One answer to this question is
that slower growth conditions and concordant ease of exceed-
ing the mesotype, may make the loss of the protein Bem1
more likely than initially anticipated.

To further substantiate our mesotype intuition on con-
dition-dependence for evolving a network without Bem1p,
we first simulate the effect of changes in carbon source richness
in the growth media through a change in membrane area
growth rates. We considered a roughly three-fold area
growth rate range that caused WT fitness to span between 0.5
and 1 (normalized to maximum growth). We further assume
Cdc42p expression remains the same across media, which is
at least true upon switching from dextrose to ethanol, an
inferior carbon source [45].

As a result of our model simulations, figure 3a displays
the fitness ratio between the Δbem1 and BEM1 background,
as a function of GAP concentration (ranging from Δbem3
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Δbem2 to BEM3 BEM2) and carbon source availability. Intui-
tively, we expected Δbem1 cells to benefit greatly from less
Cdc42p dilution and the extra time to exceed the mesotype
threshold. We indeed observe the trend of smaller fitness
differences for decreasing GAP concentrations and decreas-
ing carbon source availability in our simulations. This
observation suggests poorer media acts as a fitness equalizer,
facilitating the evolution of Bem1p.

To experimentally test our hypothesized environmental
effect, figure 3b demonstrates the effect of poorer medium on
fitness with and without Bem1p. In this case, we modulated
carbon source availability through sugar content (from 2% to
0.1%). To avoid lengthy exposure of the Δbem1 background
to high selective pressure, this genotype is mimicked by
auxin-inducible degradation [46] of Bem1p. As it is difficult
to exactly integrate the media conditions into the simulations,
the match cannot be expected to be quantitative. However,
the nullifying effect of poor media on the fitness differences
between the Δbem1 and BEM1 backgrounds is visible. The
relative fitness compared to WT for the effective Δbem1 back-
ground in the ‘poorest (in terms of carbon)’ media (0.1%
dextrose) is significantly better compared to the ‘richest’ and
intermediate medium conditions at 2% and 0.5% dextrose
(one-sided Welch’s t-test, p-value 1.3 × 10−3 and 3.3 × 10−3,
respectively), also when considering the Holm-Bonferroni cor-
rection [47]. Thus, slower growth medium conditions mitigate
to some extent fitness differences and show how the mesotype
framework can provide a new, intuitive explanation of other-
wise non-trivial environmental interactions that are relevant
for evolution.
(ii) The polarity mesotype predictions on epistasis become useful
when functions of mutated genes are known

While we showed that our cell cycle model produced accurate
epistasis predictions, the extensive mechanistic information
we used is not always available for other functional modules,
such as the TORC1 signalling module involving rapamycin
[48,49]. This raises the question about the extendibility of
the model predictions beyond polarity. We, therefore, deter-
mined the minimal information content needed about yeast
mutations to make qualitatively useful epistatic predictions
between two genes, when only one gene is inside the polarity
network.

For this purpose, we considered high-throughput data
on BEM1 interactors. We categorize those interactors
by their individual knockout phenotype where available,
yielding three sets (Xn with n = 1,2,3) of varying phenotype
specificities, i.e. information content with regards to
biochemical and biofunctional detail of the phenotype
(figure 3c, and for more detail see the electronic supplemen-
tary material, Information, section Predictions using literature
data, and table S7). The coarse phenotype set covers (com-
petitive/fermentative) fitness mutants (1), the mid-detail set
(2) G1 mutants (in size/speed), and the functional set (3)
covers proteasomal, phospholipid or ribosomal mutants, all
of which also interact with BEM1. As the phenotypes in set
3 point more precisely to specific modules/functions than
set 2, and much more than set 1, set 3 has the highest infor-
mation content and set 1 the lowest. Each set is then split
into two subsets according to the sign of the epistasis pre-
dicted by the model (Xn+ and Xn− for positive and negative
epistasis respectively) for each mutant in the set. These
predictions can be intuitively constructed as explained in
the next paragraphs or derived from simulations (electronic
supplementary material, table S3). We then determined
for which set, and thus information content, our model pre-
dictions help explain the prevalence of the sign of the
observed epistasis (εn+ and εn+ for each subset) (see Material
and Methods and the electronic supplementary material).

Firstly, we considered the coarse phenotype mutant set.
The model predictions for BEM1 interactors in this set follow
from incorporating the single mutant phenotype into an
adjusted membrane area growth rate C2. As seen by the
media effect in figure 3a, smaller rates mitigate the Δbem1
effect. The model prediction is hence that deleterious mutants,
which slow down growth, are expected to have more positive
epistasis with the Δbem1 (making this subset X1+), than
beneficial mutants (making this subset X1−).

To assess this statement, we calculate the (posterior)
probability distributions for encountering positive epistasis
in literature for subsets X1+ and X1−, where the inferred prob-
abilities for positive epistasis are defined as ε1+ and ε1−,
respectively. The posterior distributions of ε1+ and ε1− resulted
from assuming a binomial likelihood of finding the observed
number of positive interactors k1+ and k1− from the subsets
X1+ and X1− respectively (p(k1+ | ε1+) and p(k1− | ε1−)) and
an uniform prior for p(ε1+) and p(ε1−) (see also see
the electronic supplementary material, Information, section
Predictions using literature data). Our statement then math-
ematically equates to assessing how likely Pr(ε1+ > 0) >
Pr(ε1− > 0) is. We use the Bayesian odds ratio as our metric to
set the threshold for sufficient confidence in our statement.
This choice involves the probability of Pr(ε1+ > 0) > Pr(ε1− > 0)
divided by its complement, a ratio known as the Bayes factor,
to exceed 10 [32]. As seen in figure 3d, the model predictions
are far from this target, implying our model is not useful to
make epistasis predictions based on coarse knock-out growth
rate data.

Analogously, we analyse our model predictions for the
mid-detail mutant phenotype set. To generate model predic-
tions, the mid-detail mutants are incorporated by changing
G1 waiting time tG1,min (for G1 speed mutants) and addition-
ally the minimal radius before Start rmin (for G1 size mutants).
As was the case for to Nrp1p (figure 2c), mutations
which allow an earlier entry to Start, disproportionally
benefit the Δbem1 cells. Therefore, the model prediction is
that mutants fast or small in G1 have more positive epistasis
with Δbem1 than mutants that are slow or large in G1. With
a Bayes factor of 2.4, the information content in this set is
still insufficient.

Last, we consider the functional mutant set, where model
incorporation follows from increasing the Cdc42p half-life for
proteasomal mutants, decreasing membrane growth rate C2

for phospholipid mutants and decreasing the average
Cdc42p burst size for ribosomal mutants. The proteasomal
and phospholipid mutants mitigate the problematic lack of
Cdc42p in the Δbem1 cells. Our statement for this set is
hence that these two mutant types should therefore exhibit
more positive epistasis than the ribosomal mutants, which
lowers [Cdc42p]. From the literature data, 29% of the protea-
somal and phospholipid mutants have positive epistasis,
much more than the 11% of the ribosomal mutants. This
results in a Bayes factor of 18, and implies strong positive evi-
dence for our epistasis prevalence statement in this set. This
shows we minimally require functional information on
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mutants for meaningful epistasis predictions, once we have a
core where mechanical information is known.
oyalsocietypublishing.org/journal/rstb
Phil.Trans.R.Soc.B

378:20220044
3. Discussion
Epistasis forms a general hurdle for reverse-engineering the
GP-map, complicating modelling of protein networks and in
turn limiting the predictability of phenotypes and evolution.
Complementing methods effective to make bulk predictions,
we aim to extract understanding and intuition form our predic-
tions. For this purpose and to alleviate the GP-map complexity,
we tested the mesotype as an intermediate level between gen-
otype and phenotype. This level emerges from coarse-graining
the biophysics of the underlying biochemical network, which
in our case corresponded to budding yeast polarity (figure 1).
We employed the mesotype, which in our context is the mini-
mum [Cdc42p] to polarize, in a tractable cell cycle model
with simple volume growth and stochastic protein production,
making bottom-up reconstruction of phenotypes and epistasis
feasible and insightful.

First, our cell cycle model allows us to quantitatively con-
firm that observed population phenotypes are consistent
with the existing biochemical network model, which had pre-
viously been qualitatively validated [20]. The quantitative
validation further increases our trust in the mesotype being a
key property of the system. Good quantitative agreement
with literature was found for 8 out of 11 polarity mutant dou-
bling times used for predictions, and qualitative agreement for
documented unintuitive G1 times (figure 2). Phenomenologi-
cal linkage of minimum G1 time to Nrp1p, a protein
normally not included in polarity models, also provided fruit-
ful model predictions. Thus, complementary to big data
approaches which may yield superior quantitative matches
with phenotype observations, our cell cycle model adds
value by generating tractable and interpretable predictions,
which also provides direction to deciphering the remaining
mechanistic unknowns in the polarity network.

Second, we showed how the mesotype elucidates epistasis.
We hypothesize that less carbon availability extends protein
production time, alleviating minimum protein concentration
thresholds. We verified this for yeast polarity, where the
[Cdc42p] mesotype threshold proves less problematic for the
Δbem1 background in poorer media in simulations and exper-
iments (figure 3a,b). The Δbem1 case fits the more general
picture that haploin sufficiency in YPD (10 g l−1 yeast extract,
20 g l−1 peptone, 20 g l−1 dextrose) is typically lifted in poorer
medium [50]. By the same token, evolvability of (near-)essential
genes may be enhanced under slow growth conditions, where
fitness values across genetic backgrounds converge. In our
example, step-wise evolution of Bem1p is still feasible given lab-
oratory conditions [20]. Yet, for other proteins, medium change
may be the only manner to circumvent fitness valleys. Ideally,
we also explore other environments. For example, we can con-
jecture that nitrogen limitation changes protein degradation
[51], but to what extent this applies to Cdc42p specifically or
whether more parameter changes are induced is not clear.
However, with more information on the effect of the environ-
ment on model parameters, we would be able to assess the
effect of other slow growth conditions.

Finally, we determined the basis for successful epistasis pre-
dictions. Given the robustness of our results tomanyalternative
growth detail formulations (see the electronic supplementary
material, figure S4), we argue the core of our model consist
only of dosage noise in combination with a known mesotype.
Then, to generate meaningful predictions for epistasis with
genes outside the scope of the mesotype, adding functional
information for those genes proved necessary and sufficient
from examining high-throughput literature data (figure 3d),
in line with the ontotype strategy [14]. While a sharp mesotype
as in polarity implies essentiality (around 19% of yeast genes
[52]) or toxicity, generally other mesotypes are more appro-
priate. Yet, given the simple functions with which fitness
landscapes as function of single genes can be fitted [53], the
mesotype approach still seems feasible to model many other
biological networks.

Using our findings on yeast polarity as a template, we envi-
sion a road-map to apply to general GP-maps (electronic
supplementary material, figure S8). The core functional com-
ponent, in this case, polarity, is to be modelled by justifiable
coarse-graining, which results in the mesotype of the system.
This mesotype in turn emerges from functional subunits [20],
identifiable from the rigorous analysis of the underlying bio-
physics. Currently, yeast polarity stands alone at the ideal
intersection between complexity and required mechanistic
knowledge. Mesotype generation for other systems would
again require detailed numerical analysis of reaction–diffusion
systems, or results more simply from dose–reponse curves
when spatial information is not essential for the chemical reac-
tions. In the latter case, we essentially revert to amore standard
biochemical model, but it is in the former case where spatio-
temporal information is essential that the mesotype coarse-
graining is key to retain tractability in phenotype predictions.
Once multiple model systems with important spatio-temporal
dynamics (such as the PAR protein system inCaenorhabditis ele-
gans [54], with promising recent advances [55]) have been
described in this manner, it may be possible to construct a lim-
ited library of recurring subunits. Based on this library,
construction of the correspondingmesotypemay bemuch sim-
pler. Moreover, given the possibilities of epistasis predictions
beyond polarity given one mesotype, it may become possible
to tractably model the full protein network of an organism
once all core modules in an organism are captured by meso-
types. This may enable detailed epistasis predictions on
diverse kinds of phenotypes, paving the general path to
bottom-up (population) phenotype prediction.
4. Material and methods
(a) Strain construction
All strains used in this study are S. cerevisiae strains in the W303
background (see the electronic supplementary material, table S9).
The ade2 deletion in yLIC132 was performed through transform-
ation of yLL3a by homologous recombination using the URA3
marker (polymerase chain reactions (PCRs) using primers olic24,
olic15, olic18 and olic26 on a template derived from the pRL368
plasmid [56]). The URA3 was removed by overlap extension
PCR (primers olic24, olic20, olic26 and olic21) to yield yLIC133
selecting on 5-FOA (Zymo Research). In this strain, osTIR1-
KANMX4 was integrated into the HO locus (from plasmid
pOsTir1w/oGFP) and BEM1 was replaced by BEM1-mCherry-
AID to yield yWT03 by selecting transformants with G418
(Thermo Fisher) and Hygromicin (Formedium). Plasmid pOsT-
IR1w/oGFP was a gift from Matthias Heinemann (Addgene
plasmid no. 102883; http://n2t.net/addgene:102883; RRID:
Addgene_102883, while the PCR product for BEM1-mCherry-

http://n2t.net/addgene:102883
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AID is from Addgene plasmid no. 173925; http://n2t.net/
addgene:173925; RRID:Addgene_173925). The latter resulted from
Gibson assembly of a BEM1 homology region added to a pG23A
plasmid backbone, upstream and in frame of the mCherry-AID
sequence. Plasmid pG23A was a gift from Matthias Heinemann
(Addgene plasmid no. 102884; http://n2t.net/addgene:102884;
RRID:Addgene_102884). Further downstream, the HPHMX6 cas-
sette and another BEM1 homology region was added. For primers
and plasmids see the electronic supplementary material, tables S8
and S10, respectively.

(b) Fluorescence measurements
Fluorescence data of strains RWS116 [57] and RWS1421 [24] were
acquired using FLOWJO CE software and performed on a BD FACS-
can flow cytometer. Cells were pregrown in YNB (0.69% w/v,
Sigma-Aldrich) + CSM -Met (0.77% w/v, Formedium) + 2% dex-
trose (Sigma-Aldrich), diluted to an optical density (OD)600 of 0.1
and measured after 15 h. Gamma fits on gated flow cytometry
data using maximum likelihood through Matlab’s R2016a built-
in mle function, were done on the background (RWS116) and
GFP-Cdc42p data (RWS1421). We subtracted the background by
approximating the deconvolved Cdc42 distribution as a gamma
distribution [58], whose parameters link to expression burst par-
ameters [36]. For fluorescence microscopy of yLL129a (figure 1b),
we used low-fluorescencemedia, namely non-fluorescent nitrogen
base (0.69% w/v, Formedium), CSM amino acid mix (0.79% w/v,
Formedium) and 2% dextrose (Sigma-Aldrich).

(c) Growth assays
The growth rate assay for RWS1421 was performed in the same
media type as the flow cytometry, in an Infinite M-200 Pro Tecan
plate reader at 30°C. OD600 measurements (9 nm bandwidth)
were conducted with an interval of 12 min for a total duration of
24 h, using a Thermo Fisher Scientific Nunclon 96 Flat Bottom
Plate input template. After an initial 1000 s of orbital shaking
(1 mm amplitude), linear shaking between measurements
(25 flashes, 5 ms settle time) lasted 330 s each time (amplitude
1 mm). OD600 values were analysed using a home-written
Matlab GUI already used in [20] and made available as
the electronic supplementary material, Information. A weighted
least-squares (WLS) regression (e.g. [59]) is done on the log (base
2) of the (OD600 – backgroundOD600 value), where the background
is set as the mean of the first 10 OD600 values in that well. The
weights forWLS are set by the reciprocal of the difference between
each log value +/- the instrument error. The instrument error is
estimated by taking the standard deviation of the first 10 OD600

or if this is zero, by 10−digit/2 where digit is the value of the expo-
nent with base 10 of the last significant digit.Within a user-defined
bandwidth a fit window moves across the longest time span with
data above a user-defined signal-to-noise ratio (with noise from the
instrument error). We choose the steepest slope, which corre-
sponds to the fastest doubling time, which pertains to a fit with a
R2 squared above a user-defined value. For this assay, late log
phase reflects the flow cytometry conditions the most, so we fit
above an OD above 0.1, a fitting window size to 21 points, a mini-
mum R2 to 0.9 and minimal signal-to-noise ratio to 2.

For the growth rate assay in figure 3b, we used YPD (10 g l−1

yeast extract, 20 g l−1 peptone, 0.1/0.5/2% dextrose, 20 µg ml−1

adenine (all Sigma-Aldrich)) and 0.25 mM auxin (Merck Milli-
pore). Strains were then grown in a turning wheel for at least
24 h at 30°C. After this pre-growth the cultures were diluted (at
least 100×) to an OD600 of approximately. 0.05 into a 96-well
plate containing 100 µl medium well−1. The OD600 values were
measured for 48 h using a Biotek Epoch 2 Microplate Spectropho-
tometer using linear and orbital shaking at 30°C, as described in
[20]. Three experiments with two plates each were done, using
one and two biological replicates for the BEM1 and BEM1-AID
background respectively, with at least two technical replicates
per medium. Per run, we averaged the fitness (defined by the reci-
procal of the doubling time) of BEM1 replicates. We then divided
the fitness of each BEM1-AID strain by the mean BEM1 fitness of
that run. We then pooled all BEM1-AID replicates per medium
for data analysis. Wells where no growth were observed were
excluded, and we neglected the error from the doubling time fits
as the largest error source is the variation across replicates. We
used a one-sided Welch t-test (Matlab R2016a’s native t-test2, for
unequal variances) to test for significant differences, and applied
a Holm-Bonferroni correction factor [47] to the significance
values for the three t-tests performed.

(d) Computational
An initial population of 200 cells with 2.4 µm and zero Cdc42
concentration are asynchronized across a bandwidth of 83 min
and iteratively grown until a population size value of 2 million.
We calculate the doubling times for 67 mesotypes (ranging
roughly from 0.026 to 169 Cdc42 proteins µm−3), both for the
BEM1 and Δbem1 background, which differ in wpol (see
the electronic supplementary material, table S1). The doubling
times of WT, Δbem1, Δbem1 Δbem3, Δbem1 Δbem2 and Δbem1
Δbem3 Δbem2 Δnrp1 of [19] were used for fitting in figure 2a by
minimizing a normalized score objective as function of meso-
type, using Matlab R2016a’s native fminsearch, and by manual
inspection for setting tmut (to 0.75) for the nrp1 deletion. This
objective is the sum of ((fitted doubling times – observed dou-
bling times)/error of observed doubling times)2. Doubling
times corresponding to an arbitrary mesotype can then be
approximated by interpolation.

Interaction and phenotype data for figure 3d were obtained
from BioGRID [60] and SGD [61] respectively (date of access
6/8 March 2018), see also the electronic supplementary material,
table S6 for detailed references per interaction. We calculated
posterior distributions for the probability ε of a positive inter-
action with BEM1, using the binomial likelihood for such an
interaction in literature and a uniform prior. The posterior distri-
bution for the probability of a positive interaction ε is a beta
distribution with parameters k and N, where k is the encountered
positive interactions and N the number of encountered negative
interactions with BEM1 [62]. The positive and negative inter-
action counts for this study can be found in the electronic
supplementary material, table S7.

From 10000 random draws of every ε, we can simulate the
probability distributions of the differences between phenotype
subset pairs of ε. Alternative, we can rewrite this probability as
a Bayes factor for the model hypotheses that the positive epistasis
is more prevalent in the + subset than in the subset.

Data accessibility. We attached the data in a folder as the electronic sup-
plementary material [63].
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