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Although near-term quantum computing devices are still limited by the quantity and quality of qubits in
the so-called NISQ era, quantum computational advantage has been experimentally demonstrated.
Moreover, hybrid architectures of quantum and classical computing have become the main paradigm
for exhibiting NISQ applications, where low-depth quantum circuits are repeatedly applied. In order to
further scale up the problem size solvable by the NISQ devices, it is also possible to reduce the number of
physical qubits by “cutting” the quantum circuit into different pieces. In this work, we experimentally
demonstrated a circuit-cutting method for simulating quantum circuits involving many logical qubits, using
only a few physical superconducting qubits. By exploiting the symmetry of linear-cluster states, we can
estimate the effectiveness of circuit-cutting for simulating up to 33-qubit linear-cluster states, using at most
4 physical qubits for each subcircuit. Specifically, for the 12-qubit linear-cluster state, we found that the
experimental fidelity bound can reach as much as 0.734, which is about 19% higher than a direct
implementation on the same 12-qubit superconducting processor. Our results indicate that circuit-cutting
represents a feasible approach of simulating quantum circuits using much fewer qubits, while achieving a
much higher circuit fidelity.

DOI: 10.1103/PhysRevLett.130.110601

Introduction.—Quantum computing offers potential

speedups over classical computing on many applications,
such as factoring [1-3], unstructured search [4], and
quantum simulation [5-7]. However, these applications
require quantum computers to be fault tolerant, which is
still out of reach of the current quantum technology.
Instead, we have just entered the noisy intermediate-scale
quantum (NISQ) era [8—10], meaning that the number of
physical qubits are sizable in terms of the computational
space, but they are error prone or noisy. Recent experi-
mental demonstrations of quantum computation involves
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about 50 to 60 qubits [11-14]. Although in terms of the
memory size, they might have already exceeded the limits
of classical supercomputers, the incorrectable noisy gates
limits the depth of quantum circuits running on current
quantum devices, which constitutes a major obstacle to
finding practical applications. Therefore, it is of practical
interest to solve large problems with smaller quantum
devices, even with a tradeoff of using more classical
resources.

This topic can be roughly categorized into two branches;
one is at the algorithmic level, and the other is at the circuit

© 2023 American Physical Society
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level. The former is to decompose a large problem into
smaller subproblems, each of which is solved by a small
quantum computer. Examples include quantizing classical
divide-and-conquer algorithms to solve combinatorial opti-
mization problems [15,16], and Fujii et al.’s deep varia-
tional quantum eigensolver framework [17], which is
suitable for simulating physical systems when interactions
between subsystems are weak. Partially quantizing a tensor
network may also fall into this category [18,19].

The circuit-level schemes intends to decompose a large
quantum circuit into smaller pieces, implement each piece
independently, and finally use classical computers to com-
bine the results. For example, Bravyi et al. [20] discussed
methods of using classical postprocessing to add virtual
qubits for sparse circuits and Pauli-based computation.
Mitarai and Fujii [21] proposed a method to add virtual
two-qubit gates, which means that a remote two-qubit gate
can be simulated by a quasiprobability decomposition of
local single-qubit gates, thus cutting the large quantum
circuit. Their work is for general quantum circuits and has
been extended in a recent work [22] to allow decomposing
nonlocal quantum channels into local ones. On the other
hand, using the language of tensor network, Peng et al. [23]
proposed a tomographylike circuit-cutting scheme, which is
endowed with a rigorous analysis of the required quantum
and classical resources to simulate general quantum circuits.
The circuit-cutting scheme is further analyzed and improved
in later works [24-27].

In this work, we experimentally implement a tomogra-
phylike circuit-cutting scheme to simulate large linear-
cluster states. The purpose of the experiment is to dem-
onstrate the applicability and the actual performance of the
circuit-cutting scheme in a real experimental platform.
Because of the symmetry in linear-cluster states, we only
need to run subcircuits with at most 4 superconducting
qubits and the simulated linear-cluster states scale up to 33
qubits. To analyze the performance, we use the stabilizer
technique [28,29] to estimate the fidelity lower bound.
Then, it is compared with the fidelity bound obtained in a
previous work that prepared the 12-qubit state directly [30].
The circuit-cutting scheme achieves a fidelity bound 0.734
in the 12-qubit case, which is about 19% higher than the
previous experiment. Our experimental result shows the
promise that the circuit-cutting scheme might become a
standard tool in NISQ applications.

Cutting large quantum circuits.—The basic idea is to cut
a qubit wire and then simulate the propagation of quantum
information by classical means. We illustrate this with a toy
example in Fig. 1(a). First, observe that at the time slice of
the cutting point (the red cross), the reduced density matrix
of the first two qubits can be decomposed as,

1 3
pet =52Trb(ﬂ“”6§7) ® o} (1)
=

where we use superscripts to indicate the qubit labels
and o; € {I.X,Y,Z}. Each Pauli operator can be further
decomposed into its eigenstates, e.g., Z = |0)(0| — |1)(1].
Note that the identity operator can be written as
I =10)(0| + |1)(1], which can be combined with Z [24].
Then, we have,

6
P =" cTr,(p0%) @ pl. (2)
i—=1

=

where the ¢;, O;, and p; = |y;) (y;| are listed in Fig. 1(b).
The partial trace operation in Eq. (2) can be interpreted as
measuring O; in the qubit b of subcircuit 1, and then p; is
prepared and passed as input to subcircuit 2.

Suppose that we are interested in measuring the expect-
ation of X ® Z ® X of the 3-qubit circuit, denoted as
(XZX). In subcircuit 1, one needs to collect the expectation

values of X ® O;, defined by EEI) =Tr(p*X ® O;). In
subcircuit 2, one needs to collect the expectation values of

Z ® X, denoted as E,@, from circuits with varying initial
state |y;) in the first qubit [see Fig. 1(a)]. Then, according
to Eq. (2), (XZX) can be recovered by [23]

6
(xzX) =Y cEVEP. (3)

i i
i=1

This circuit-cutting procedure works for any observable in
the form A ® B, where A is an observable of the qubit a
and B is an observable of the qubits b and c. We remark that
the combination of expectation values is achieved with a
classical computer. In this process, we do not create a
3-qubit entangled state; instead, the 3-qubit state is
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FIG. 1. (a) Example illustrating the circuit-cutting scheme. The
quantum circuit on the left is cut at the red cross, and partitioned
into two subcircuits. (b) The list of ¢;, O; and p; for Eq. (2).
(c) The tensor network representing the summation of Eq. (3).
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simulated by a hybrid scheme of a 2-qubit quantum
computer and a classical computer.

For more general and larger quantum circuits, one can
apply this cutting scheme iteratively to multiple cutting
points, to partition the whole circuit into several discon-
nected pieces of subcircuits. By running the subcircuits
independently, and classically combining the subcircuit
expectations with appropriate coefficients, one obtains
expectations from the large quantum circuits. Moreover,
those disconnected subcircuits can be viewed as nodes in a
tensor network [23]. For example, the corresponding
tensor network for Fig. 1(a) is a line with two nodes,
and the edge has bond dimension 6, corresponding to the 6
terms in Eq. (3). The coefficient ¢; can be absorbed into

the node representing El(-]) or E,@. Then, one can use
tensor-network contraction to perform the combination to
obtain quantities of the large circuit, with classical
running time exponential in the treewidth of the tensor
network [23].

To summarize, the protocol is as follows. (a) Identify
appropriate cutting points to partition the large circuit into
disconnected subcircuits. (b) Obtain the subcircuit expect-
ations by enumerating the possible choices of |y;) and O;.
(¢) Construct a tensor network from these subcircuit
expectations and coefficients ¢;. (d) Contract the tensor
network to obtain the expectation value with respect to the
large circuit.

Linear-cluster states.—Cluster states are a family of
highly entangled states, which can be used to achieve
measurement-based quantum computation [31,32]. The
linear-cluster state is a specific example of cluster states,
where all qubits are aligned in one dimension. Explicitly, a
linear-cluster state with n qubits can be expressed as

LG, = (H czi )[4y @)

where the superscripts in the CZ gates indicate the qubits
that they act on.

In this work, we experimentally simulate a 12-qubit
linear-cluster state, with 4 qubits of a superconducting
quantum processor, which is the same processor as in
Ref. [30]. As in Fig. 2, there are 3 cutting points on the
12-qubit circuit, partitioning it into 4 subcircuits. The first 3
subcircuits are all in the form of subcircuit 1, while the last
subcircuit is in the form of subcircuit 2. Note that the
sequence of CZ gates on the left of Fig. 2 is chosen such
that pieces 1-3 can be represented by the same subcircuit 1.

To compare the performance of the circuit cutting
scheme with that of running the 12-qubit circuit directly,
we need to estimate their fidelities. We follow the approach
in Ref. [30], which uses techniques from entanglement
detection in the stabilizer formalism [28,29]. Let
s\ =X1Zy, s, =Z2Z,1X, and s; =Z; | X;Z;, for i # 1
or n. It can be shown that a linear-cluster state is a stabilizer

[¥i)
U H
Subc'\rc\" 3 0)
10y —{lz]
subc,',cm.tzlwi) X/z
10y {3 z/x
10y —{lz] X/z

[i) € {10), 1), |+), | =), |+i), =)}
0j € {(X,Y,10)01, 1111}

¢ I:‘; ! C I;““,\V,‘ ! 1.3/‘,"",: ! EW

FIG. 2. Circuit-cutting scheme for the linear-cluster state. Left.
A 12-qubit linear-cluster state, which is cut into 4 pieces. Right.
The 12-qubit linear-cluster state can be simulated by combining
measurement data from these two types of subcircuits. Bottom.
The tensor network representing the classical combination of
subcircuits.

state with a stabilizer group spanned by {si,...,s,}, i.e.,
5;|LC,) = |LC,) for i =1, ..., n. Let

1+Si

EVEN, = [] =~ (5)

ODDn==H1_ZSi»

i odd i even

For a linear-cluster state, one has |[LC,)(LC,| > ODD,, +
EVEN,, — I [28] (Theorem 6). Therefore, for an unknown
quantum state p, its fidelity relative to the linear-cluster
state is lower bounded by

Tt(p|LC,)(LC,|) > Tr(pODD,) + Tr(pEVEN,) — 1, (6)

which can be estimated by measuring ODD,, and EVEN,,.
Observe that every term in the expansion of ODD,, can be
measured in the basis XZXZ - - -, while every term in the
expansion of EVEN, can be measured in the basis
ZXZX ---. Therefore, to estimate the fidelity, one only
needs to perform measurements in two bases. For simplic-
ity, we will refer to them as XZ measurement and ZX
measurement, respectively.

Below, we illustrate how to simulate the 12-qubit
linear-cluster state with the circuit-cutting scheme.
Suppose we want to obtain the expectation value
(P @ P? @ P ® P™), where PU¥) can be any 3-qubit
observable of the ith 3-qubit group. In Fig. 2, we denote the
final state of subcircuit 1 and 2 as |®;) and |®,;),
respectively, where the index i indicates one of the 6 states
lw;) in the first qubit. Then, define

Em:: <¢1,3|P(1)®0}'|‘D1,3>

( J=(@,|PO @ 0], )

2,
Ej
El4 :

Efj) = (0[PP Q0| Dy ) ) = (@ |PW|D, ;) (7)
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to be the subcircuit expectations from pieces 1-4.
According to the circuit-cutting scheme, we have

6
(P & 1) 2 © ) = 3 ey B EV

JiI=1
(8)

where the coefficients ¢;’s are shown in Fig. 1(b). Again,
this summation can be viewed as tensor network contrac-
tion as in the bottom of Fig. 2.

The experimental procedure for estimating the fidelity is
as follows. (a) Identify the observables in the expansion of
ODD,, and EVEN,,. (b) For each observable, define P()

fori = 1,2, 3, 4. Measure Eﬁ”, Eﬁ?, E,(j>, and E§4), and use
Eq. (8) to obtain the expectation value of that observable.
(c) Calculate the fidelity lower bound according to Eq. (6).
Note that this procedure can be easily generalized to larger
linear-cluster states.

The expectation values in Eq. (8) can be obtained from
subcircuits in Fig. 2. For subcircuit 1, we need to prepare
the circuits with 6 different |y;). The measurement bases
for the first three qubits are XZX and ZXZ, and for the last
qubit are X, Y or Z; the expectation value of |0) (0] or |1)(1]
can be obtained from Z measurement. Therefore, we need
to implement 6 x 2 x 3 = 36 different circuits in the form
of subcircuit 1. As for subcircuit 2, similar argument shows
that we need to implement 12 different circuits. Thus, a
total of 48 subcircuits needs to be run [33].

Experiment.—To verify the feasibility and evaluate the
actual performance of the scheme in the experiment, we run
the subcircuits in Fig. 2 on a 12-qubit superconducting
quantum processor. As shown in Fig. 3(a), the qubits are
arranged in a one-dimensional chain. Each qubit has two
control lines to provide full control of the qubit: a micro-
wave XY control line to drive excitations between |0) and
|1), and a magnetic flux bias line to tune the qubit
resonance frequency. As the near-neighbor qubits are
capacitively coupled, the fast adiabatic CZ gates [34,35]
can be applied. The measurements of qubit are done
through dispersively coupling to a readout resonator. We
choose four adjacent qubits from a 12-qubit superconduct-
ing quantum processor to implement the experiments. The
average performance of the chosen qubits are 7| ~ 36.1 ps,
T35 ~4.3 ps, single-qubit gate fidelity #99.93% and CZ
gate fidelity ~98.5%. More detailed data are shown in the
Supplemental Material [33].

All the experimental results are processed using the
transition matrix error mitigation (TMEM) method [36,37],
to suppress the readout noise. However, negative entries
may appear in the probability distributions of the sub-
circuits after the TMEM. To make these distributions
physical, we first transform those probability distributions
into diagonal operators, and then use the maximum like-
lihood method to find a density operator that is the closest

to them [38,39]. The final distributions of the subcircuits
are then extracted from these density operators. Before and
after the experiment of circuit cutting, additional quantum
state tomography on the final state of the circuit is
performed to evaluate the performance of the experiments.
The average fidelity of the 36 subcircuits in the form of
subcircuit 1 is 0.944, and the average fidelity of the 12
subcircuits in the form of subcircuit 2 is 0.955, showing the
high quality of the experiments.

As a warm-up, we show how to estimate the fidelity
lower bounds for the 4-qubit and 3-qubit linear-cluster
states. Note that if we take |y;) = |+) for the subcircuits,
then they correspond to a 4-qubit and 3-qubit linear-cluster
state, respectively. The corresponding probability distribu-
tions from the XZ measurement are shown in Fig. 3(b),
which also includes the theoretical distributions for a
comparison; see Supplemental Material [33] for the prob-
ability distributions from ZX measurement. From these
distributions, one can obtain the expectations of terms in
the ODD and EVEN operators of the 4-qubit and 3-qubit

(@)

=

A

(b) 0.5

0.0

3-qubit theory

3-qubit experiment

(C) 4-qubit linear-cluster state 3-qubit linear-cluster state

© o o =
> o ®» o

Expectation

o
N

o
<)

Wl Ssh ot @t b g 0

FIG. 3. (a) Schematic of the 12-qubit superconducting proc-
essor, where we used Q3 to Q6 for the circuit-cutting experiment.
(b) The output distributions from XZ measurement of the 4-qubit
and 3-qubit linear-cluster states; see Supplemental Material [33]
for the labeling of each cell. (c) Expectation from XZ and ZX
measurements of the 4-qubit and 3-qubit linear-cluster states.
Ideal values are one. The error bars are due to the repeated
experiments.
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LC states, as shown in Fig. 3(c). The fidelity lower bound
then follows from these expectations according to Eq. (6),
which is 0.952 and 0.909 for the 4-qubit and 3-qubit LC
states, respectively [33]. These bounds match the average
fidelity (of all 36 circuits for subcircuit 1 and 12 circuits for
subcircuit 2) from quantum state tomography.

We now turn our discussion to simulating large linear-
cluster state with the circuit-cutting scheme. With the
measurement data from the subcircuits, one can simulate
larger linear-cluster states, and the fidelity bounds can be
derived with similar procedures. Figure 4(a) presents the
expectations of terms in ODD,, for the 12-qubit state
obtained by the circuit-cutting scheme and a direct imple-
mentation, which is an analog of Fig. 3(c). Those expect-
ations are from the XZ measurement and there are 2°
expectations in total. The blue bars are reconstructed from
the circuit-cutting scheme, while the orange bars are from
the experimental data in Ref. [30]. Each bar corresponds to
one specific terms in the expansion of ODD,, and the ideal
value is one; we leave the concrete labelling and similar
data for EVEN;, in Supplemental Material [33]. We
remark that the distributions from the 12-qubit experiment
are also processed with the same procedure (the fidelity
bound after processing is 0.615), i.e., TMEM followed by a
maximum likelihood method, for a fair comparison. From
these expectations, we can similarly use Eq. (6) to estimate
the fidelity. The estimated fidelity bound from the circuit-
cutting scheme is 0.734, about 19% higher than that from
the experiment of Ref. [30]. Note that the experiment of
Ref. [30] implemented CZ gates in parallel, which will
incur more severe crosstalk errors compared to our current

(a) B Circuit cutting
Measurement Basis (XZ) mam 12-qubit

1.0
.08
2
©0.6
]

g
x 0.4
w
0.2
0.0
0 10 20 30 40 50 60
(b)
10t
}\‘\\\

0.8 } 100 8
E R 2
3 1. ‘ £

e ) L E
06 Foon { 07y
= “tees £
3 } 102§
° { g

v "~~~
04 E ~J- Fidelity bound ] 1038

I Processing time {

6 9 12 15 18 21 24 27 30 33
Effective number of qubits

FIG. 4. (a) Comparison of the expectations with XZ measure-
ment obtained from the 12-qubit circuit [30] (orange) and from
the circuit-cutting scheme (blue). (b) Fidelity bound (blue) and
processing time (red) for simulating larger linear-cluster state
using the same experimental data. The error bars are due to
repeated experiments.

implementation, where CZ gates are applied individually
(one for each layer; see the right of Fig. 2). Moreover,
smaller circuits are easier to calibrate and control.
Therefore, the circuit-cutting experiment achieves a better
fidelity bound than Ref. [30]. The tradeoff for the circuit-
cutting scheme is the increase of both the quantum and the
classical running time [33].

Moreover, the symmetry in linear-cluster states allows us
to reuse the measurement data from subcircuit 1 to simulate
larger linear-cluster states, at a cost of increasing overhead
in classical postprocessing. Specifically, we need to add
more internal nodes to the tensor network in Fig. 2, to
represent larger circuits (5 nodes for 15 qubits, 6 nodes
for 18 qubits and so on). This allows us to simulate
linear-cluster states of size 6 + 3k, where k is a positive
integer. We need to contract a longer chain to obtain one
expectations of the large circuit, and there will be more
expectations to be computed in order to obtain the fidelity
lower bound. The obtained fidelity bound is expected to
decay as the number of qubits increases, since the error
accumulates in the classical postprocessing. The fidelity
decay and classical postprocessing time are shown in
Fig. 4(b). Here, the classical postprocessing is done on a
conventional laptop, and the processing time shows the
running time of the program for calculating the fidelity
lower bound of larger circuits [40].

Discussion.—In this work, we experimentally demon-
strate a circuit-cutting scheme and simulate larger linear-
cluster state with size scaling up to 33 qubits, using at most
4 qubits. In the case of 12 qubits, we achieve a higher
fidelity compared to that of a previous work that prepared
the 12-qubit state directly [30], giving supportive evidence
to the applicability of the circuit-cutting scheme.

Simulating large quantum circuits with small quantum
devices is a promising direction in the NISQ era. Currently,
there exist several circuit-cutting schemes [20-23]; it is
necessary to further perform experimental benchmarking
on these schemes, in order to evaluate their applicability in
practice. On the other hand, although -circuit-cutting
schemes provide systematic methods to cutting quantum
circuits into smaller pieces, to the best of our knowledge,
there is no general method for determining the optimal
cutting points. Therefore, we believe that the potential of
circuit-cutting has not yet been fully explored.
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