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A state-dependent multilaminate constitutive model
for anisotropic sands

HILMI BAYRAKTAROGLU�, MICHAEL A. HICKS†, MANDY KORFF‡ and VAHID GALAVI§

Experimental studies show that initial fabric and its evolution under different stress paths greatly
influences soil behaviour. Even though different sample preparation methods create different inherent
anisotropies and cause different material responses, the same initial fabric structure under different
stress paths also results in different material behaviours. In this paper, a simple state-dependent,
bounding surface-based elastoplastic constitutive model, which can simulate the anisotropic nature of
sands including the effect of principal stress rotation, is described. The model is developed based on a
semi-micromechanical concept within the multilaminate framework and, to include the inherent
anisotropy of sand, a deviatoric fabric tensor describing the initial microstructure is introduced.
In addition, a fabric evolution rule compatible with anisotropic critical state theory is employed to
describe the evolving fabric structure and induced anisotropy towards the critical state. In contrast
to the classical strain-driven formulation for fabric evolution, a micro-level evolution rule is proposed.
This paper presents concise theoretical aspects of the multilaminate framework and the anisotropic
elastoplastic constitutive formulation. The model’s capability under drained and undrained monotonic
loading conditions at different stress states, relative densities and principal stress orientations is
demonstrated by simulating experimental data for Toyoura sand.

KEYWORDS: anisotropy; constitutive relations; fabric/structure of soils; plasticity; sands

INTRODUCTION
The anisotropic nature of soil results in direction-dependent
behaviour. Experimental studies carried out by varying
stress paths and rotating principal stresses using simple and
torsional shear tests show that soils with similar initial fabrics
(i.e. undergoing the same sample preparation method
and consolidated under the same confining pressure) may
show drastic differences in response. In the case of sands, the
response can range from highly contractive flow liquefaction
to dilative behaviour (with no liquefaction) depending on the
orientation of loading and fabric direction (Nakata et al.,
1998; Uthayakumar & Vaid, 1998; Yoshimine et al., 1998;
Sivathayalan & Vaid, 2002; Yang et al., 2008; Woo &
Salgado, 2015). Similar fabric effects have also been observed
in various types of boundary value problems. Azami et al.
(2010) and Oda &Koishikawa (1979) studied the influence of
fabric anisotropy on the bearing capacity and settlement
of footings resting on layered sands. Qin et al. (2016) con-
ducted centrifuge tests on saturated sands and observed the

significant influence of deposition angle on excess pore
pressure development.
One of the most common methods in the literature for

handling the complex behaviour arising from the anisotropic
nature of soil is to define a second-order fabric tensor
approximating the soil microstructure. For this purpose, even
though it is possible to formulate a tensorial quantity based on
continuum level phenomenological observations, it is more
reliable andphysically consistent to staticallydescribe the initial
composition of the microstructure based on granular level
observations suchas the spatial orientationofparticles, voidsor
contact networks. Following the initial description of the fabric
(i.e. inherent anisotropy), anevolution rulecanbe formulated to
incorporate the influence of the changingmicrostructure. In the
literature, there are examples of models incorporating either an
evolution rule (Wan & Guo, 2001; Li & Dafalias, 2012;
Papadimitriou et al., 2019; Petalas et al., 2020; Yang et al.,
2020; Zhao & Kruyt, 2020; Norouzi & Lashkari, 2021) or a
fixed fabric tensor throughout the shearing process (Li &
Dafalias,2002,2004;Dafaliasetal.,2004;Yangetal.,2008;Yao
et al., 2017).Although themodelswitha fixed fabric adequately
simulate the soil behaviour, many recent granular level
experimental and numerical observations carried out using
X-ray computed tomography (CT) and the discrete-element
method(DEM), respectively, showthatanisotropicbehaviour is
not a fixed phenomenon arising solely from the initial
depositional formation process, but an evolving phenomenon
where a continuous evolution of the fabric composition takes
place towards its critical state value (Li & Li, 2009; Fu &
Dafalias, 2011;Kruyt, 2012;Guo&Zhao,2013;Fu&Dafalias,
2015; Wang et al., 2017; Yang & Wu, 2017; Wiebicke, 2020;
Wiebicke et al., 2020; Zhao &Kruyt, 2020; Zhao et al., 2021).
Moreover, using a fixed fabric formulation may also lead to a
deviation from a unique critical state line (CSL), which is
considered to be independent of soil fabric.
In continuum models, fabric tensors are used to modify

either the constitutive formulations or the input stresses. In
order to modify the constitutive ingredients, a fabric
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anisotropy variable (FAV) was derived by Li & Dafalias
(2012) as a function of the loading direction and fabric
orientation, and a scalar measure of fabric is then incorpor-
ated into the relevant constitutive equations. In the case of
stress modification, a modified stress tensor describing the
strong force network is calculated (Wan & Guo, 2001; Yao
et al., 2017). In contrast to the applied stress, the modified
stress incorporates the effect of soil fabric and describes a
modified isotropic scenario with a different stress state.

In the multilaminate framework, independently evolving
constitutive ingredients at so-called sampling planes enable
a model to simulate the effects of induced anisotropy
and principal stress rotation intrinsically – that is without
additional model parameters and mathematical complexity
(Schweiger et al., 2009). However, the influence of initial soil
fabric needs to be added and, in this regard, the existence of
sampling planes, their spatial orientations and independently
evolving deformation histories provide a unique and phys-
ically understandable way to formulate anisotropy.

The multilaminate framework was first proposed by
Pande & Sharma (1983) for cohesive soils. Similar semi-
micromechanical approaches, such as the microplane frame-
work, were also developed (Prat & Bažant, 1991). Then,
Galavi (2007) and Schweiger et al. (2009) introduced strength
anisotropy in the multilaminate framework by incorporating
the microstructure tensor proposed by Pietruszczak & Mroz
(2000), in such a way that the ingredients of the Mohr–
Coulomb failure criterion, namely friction angle and cohe-
sion, were distributed over the sampling planes. However,
even though these models provide reasonable performance
and simulation capabilities, none of them is state dependent.
Critical state-based, state-dependent multilaminate or
similar semi-micromechanical models have been developed
by Fang (2003), Chang & Sture (2006), Sadrnejad & Shakeri
(2017) and Dashti et al. (2019). However, none of these
models addressed or investigated fabric anisotropy and its
evolution. The aim of this paper is to fill that gap with a
simple, easy to understand anisotropic model compatible
with the premises set out by anisotropic critical state theory
(ACST) as proposed by Li & Dafalias (2012).

Note that, in this paper, the term ‘micro’ refers to within
sampling planes where the inner structure and micro-level
deformations are idealised. Second-order tensors and vector
quantities are denoted by bold characters, the time derivative

of a quantity is represented by a superposed dot, the juxta-
position of two vectors indicates their dot product, | | is used
to denote the magnitude of avector and the definitions of the
tensorial operations are as follows:

A : B ¼ AijBij A � B ¼ AikBkj tr Að Þ ¼ Aii

A* ¼ A� tr Að Þ � I=3 Ak k ¼
ffiffiffiffiffiffiffiffiffiffiffi
A : A

p

MULTILAMINATE FRAMEWORK
In classical continuum mechanics, the components of the

stress and strain tensors are defined on an infinitesimal cubic
element. The invariants obtained from these tensors are
either directly used in triaxial stress space, or generalised to
three-dimensional (3D) stress space using Lode angle-
dependent interpolating functions, to formulate constitutive
models. In both cases, the investigation of the directional
dependency of the material requires a second-order fabric
tensor.
From the theoretical point of view, a stress state defined by

a spherical element can be used to take account of the
contribution of an infinite number of planes/directions, with
relevant integration being carried out over its surface, but
this is practically impossible. The multilaminate framework
proposes an alternative for approximating the ideal case, by
employing a convex polyhedron approximating a unit sphere
and utilising a numerical integration scheme, as illustrated
in Fig. 1. The numerical integration is a closed-form
solution, carried out using a finite number of planes with
their predefined orientations (which are called sampling or
integration planes) and weight coefficients. This straightfor-
ward integration process also provides flexibility for using a
wide range of sampling planes. The accuracy and compu-
tational performance of various sampling plane configur-
ations can be found in Ehret et al. (2010). In this paper, an
orthogonally symmetric polyhedron with 66 sampling planes
has been employed. However, owing to the symmetry, inte-
gration has been carried out over the half space using only 33
sampling planes. A complete discussion of the multilaminate
framework is beyond the scope of this paper, as the math-
ematics of the polyhedron, the advantages of orthogonal
symmetry and the calculation of weight coefficients and

τ

σn

Integration point

Sampling plane

Unit sphere

Unit normal

Cauchy

σyy

σyxσyz

Multilaminate

x

y

z

Fig. 1. Macro–micro-level stress transformation and local stress components
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numerical integration can be found in Fliege &Maier (1996),
Bažant & Oh (1986), Ehret et al. (2010) and Stroud (1971). In
Fig. 1, a polyhedron approximating a unit sphere is obtained
by placing 2� 33 sampling planes an equal distance from an
integration point.

Workflow in multilaminate framework
In the multilaminate framework, the global deformation is

assumed to result from the micro-level internal sliding taking
place at each sampling plane. The resistance against shearing
and the resultant volumetric changes are calculated indivi-
dually at each of these planes and then integrated numeri-
cally over the unit sphere to obtain their global counterparts.
In this section, this link between macro- and micro-level
behaviours will be described.
Unlike the classical constitutive modelling approach,

where there is a direct link between the stress and strain
tensors, in the multilaminate framework constitutive models
are defined at sampling planes using local stress and strain
vectors. At an integration point, the transformation of a
Cauchy stress tensor σ′ into micro-level normal and shear
stresses for an arbitrary plane i can be defined as follows

σ′i ¼ Tið ÞTσ′ ¼ σ′n
τ

� �
¼ σ′p;n þ σ′dev;n

τ

� �

¼ p′þ σ*ni
� �

ni
σ*ni � σ*ni

� �
ni

� �
ni

�� ��
 ! ð1Þ

where the subscript i denotes the ith plane; σ′i is the resultant
traction stress vector with local components σ′n and τ; σ* is
the deviatoric part of σ′; σ′dev,n is the magnitude of the
deviatoric stress component in the direction normal to the
plane and is equal to σ*ni

� �
ni; σ′p,n is the mean effective stress

and is equal to p′ at each plane; ni is the unit normal (or
direction cosine) vector; and Ti is the transformation matrix,
which contains partial derivatives of the local effective stress
vector with respect to the global effective stress vector. The
detailed derivation of the transformation matrix Ti can be
found in Galavi (2007). The stress transformation concept
formulated in equation (1) is schematically shown in Fig. 1.
A consistent micromechanical system should satisfy both

static and kinematic constraints. In this framework, project-
ing the global stress tensor onto the sampling planes ensures
the static constraint. In order to fulfil the kinematic
constraint, instead of the normal–tangential (NT) split, the
volumetric–deviatoric (VD) split method has been used such
that the micro-level normal stress components are assumed
to be the projection of the mean and deviator stress tensors,
equation (1). Further details regarding thermodynamical
consistency of the framework can be found in Bažant &
Caner (2005).
It is important to note that the sampling plane orientations

are defined independently of the statistical distribution of the
contact force vectors – that is, fabric – to create a unit sphere
that does not evolve during deformation. This can be shown
using the fabric definition provided by Satake (1978)

ϕkj ¼
1
Nc

XNc

i¼1

nikn
i
j ð2Þ

where ϕkj is the statistical distribution of the contact normals;
Nc is the number of contacts (in this model the contact
force network is assumed to be idealised by sampling planes,
so that Nc¼ 33); nk

i is the component of the unit contact
normal in direction k for the ith contact (in this model the
orientations of the idealised contacts/sampling planes are
defined using their unit normals). In this model, equation (2)

yields a second-order identity tensor I and any deviation from
I denotes an anisotropic contact force network, which can
be captured by modifying the shape of the unit sphere
illustrated in Fig. 1 through the use of a second-order fabric
tensor modifying the unit normal vectors. However, in this
paper, stress modification has been omitted. An evolving
fabric tensor will be used only for the modification of the
constitutive ingredients.
Following the calculation of the local stress increments,

local constitutive models are employed to calculate the
corresponding micro-level plastic strain increments

dεpi ¼ dλi
@gi
@σ′i

ð3Þ

where dλi and gi are the plastic multiplier and plastic
potential function of the ith plane. Finally, the plastic con-
tribution of each sampling plane is transferred back to the
macro level using numerical integration by means of the
principle of complementary virtual work over the unit
surface area S

dεp ¼
ð
S

Tidε
p
i dS ffi 3 �

Xnsp
i¼1

Tidε
p
i wi ð4Þ

where dεp is resultant global plastic strain increment; nsp¼ 33
is the number of sampling planes; and wi is the weight
coefficient of the ith plane such that

Pnsp
1 wi ¼ 1�0. A

detailed derivation of equation (4) can be found in Carol &
Bazant (1997).
The global plastic strain increments are calculated in a

loop which continues until all the micro-level stresses are
returned back to admissible stress states. It should be
emphasised that the evolution of the local plastic strains
depends on the loading history on the corresponding plane.
While some planes undergo elastic deformations, others may
show a plastic response. Eventually, close to failure, plasticity
concentrates on one or a few planes (Sánchez et al., 2008;
Galavi & Schweiger, 2010). Fig. 2 shows the polar distri-
bution of the micro stress invariants, σ′n and τ, and their
varying magnitudes for a given global stress state in Voigt
form σ ¼ 100 100 300 0 0 100½ �T. In this figure, the
different magnitudes of local normal stresses (represented by
σ′n in Fig. 2) result in varying material states in each direction
and the varying local shear stresses (represented by τ in
Fig. 2) yield different plastic strain accumulations in each
direction.
It is important to note that, during the course of

deformation at each sampling plane, a varying magnitude
of micro-level plastic strains triggers a unique hardening
evolution (independent from each other). At the critical state,
the coupling between sliding and volumetric behaviour
diminishes, and an equilibrium state is reached in which
the applied global stress is balanced by the local normal and
shear components.
Some of the potential advantages of using the multi-

laminate framework are given below.

(a) Any deviation from the hydrostatic axis leads to varying
normal stresses over the sampling planes, which results
in anisotropic state variables, which control the
hardening and volumetric behaviours in different
directions.

(b) Storing state variables independently at each sampling
plane provides for a history-dependent anisotropic
mobilisation process without mathematical complexity.

(c) Lode angle dependency is implicitly obtained through
the variation of micro-level stress ratios at the critical
state.
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(d ) There are no singular points which generally require
special treatments for the convergence.

(e) The independent mobilisation processes in different
sampling planes enables the framework to be
parallelised.

There is a commonmisconception that, for the multilaminate
framework employing a specific constitutive model at the
sampling planes, the speed of the solution will be slower than
that for the same constitutive model’s generalised stress space
implementation by a factor equal to the number of sampling
planes. It should be noted that, during a simulation, most of
the computational effort is spent during the plasticity phase,
where some iterative procedures are needed in order to
achieve convergence. In the multilaminate framework, plastic
deformations are not observed on all sampling planes
simultaneously; only a limited number of sampling planes
show a plastic response, while the rest are in the elastic range.

MICRO-LEVEL CONSTITUTIVE FORMULATION
In this section, a simple state-dependent, elastoplastic,

anisotropic constitutive model is presented. The anisotropy
formulation of the model is based on the ACST proposed by
Li & Dafalias (2012), in which, together with the critical state
requirements, an additional critical measure of the fabric
anisotropy is defined.

All mathematical equations given in this section are for a
representative sampling plane. The sign convention is that
tensile stresses and strains are positive.

Yield function and critical state formulation
The well-known Coulomb criterion has been utilised as the

yield criterion through use of the mobilised angle of internal
friction, φ′mob – that is

f ¼ τ þ σ′n tan φ′mob ¼ 0 ð5Þ
Stress states inside the yield surface are associated with

elastic behaviour, and the limiting yield surface represents the
failure surface, outside which stress states are not admissible,
Fig. 3. The use of equation (5) in a multilaminate framework
consisting of 33 sampling planes yields a Mohr–Coulomb

type yield surface in global stress space. Note that the exact
shape of this global yield surface depends greatly on the
number of sampling planes employed. Increasing the number
of sampling planes moves the resultant global yield surface
closer to the Mohr–Coulomb yield surface. A comparison
showing various yield surfaces in the normalised deviatoric
plane, including the one originally proposed by Argyris et al.
(1974) and later employed by the Sanisand family of models,
Matsuoka–Nakai, Mohr–Coulomb and multilaminate, is
given in Fig. 4. Note that, for the yield surface implied by
Multilaminate, each data point represents the result of an
actual simulation.
The intermediate locations of the yield surface are defined

by the hardening/softening formulation. This formulation is
based on the state-dependent hyperbolic hardening formu-
lation originally proposed byWan &Guo (1998) and has been
converted to its two-dimensional counterpart as follows

tan φ′mob ¼ tan φ′i þ tan φ′cv � tan φ′ið Þ εpγ
Aþ εpγ

� fd ð6Þ

in which the plastic shear strain εγ
p triggers the mobilisation of

friction angle; φ′i defines the size of the initial (innermost)
elastic zone from which the mobilisation starts; φ′cv stands for
constant volume friction angle; and the plastic stiffness
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Fig. 2. Polar distribution of micro-level stress invariants for a given stress state in Cartesian coordinate system
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parameterA controls the speed of mobilisation such that, for a
target mobilised friction angle, a largerA requires more plastic
shear strain accumulation. The key ingredient fd provides the
state dependency, including the effects of both current stress
and void ratio, and is given by Wan & Guo (1998)

fd ¼ 1þ ψe�1
c

� ��α¼ e
ec

� ��α

with ec ¼ ec;0 exp � �σ′n
hs

� �n� 	
ð7Þ

where the critical void ratio at zero stress ec,0 and model
parameters hs and n are used to define the location of the CSL
in void ratio–effective stress space; ψ¼ e� ec is the state
parameter (Been & Jefferies, 1985); and the exponential para-
meter α controls the peak friction angle. The idea of state
dependency of the peak friction angle was first formulated by
Wood et al. (1994) with a linear dependency on ψ and later
translated into bounding surface plasticity by Manzari &
Dafalias (1997). This linear dependency was replaced by an
exponential function by Li &Dafalias (2000). However, in this
paper the formulation proposed by Wan & Guo (1998) has
been used. Upon reaching the critical state e! ec and fd
unconditionally becomes equal to 1. It should be emphasised
that, unlike a unique CSL, there is no specific predefined
failure line. The failure surface (which can be considered as the
integration of failure lines over the unit sphere) is formulated
as a function of the critical and current void ratios. The
schematic description of the hardening/softening by use of fd is
described in Fig. 5. Here, the term ‘softening’does not refer to
material instability encountered upon strain localisation, but is
instead used to represent the material weakening following
peak state.
Hyperbolic hardening formulations originating from the

work of Duncan & Chang (1970) are commonly used in
many constitutive models (Pietruszczak & Niu, 1992;
Cubrinovski & Ishihara, 1998; Schanz et al., 1999; Wan &
Guo, 2004; Schweiger et al., 2009; Galavi, 2021). However,
this simple, yet effective formulation provides limited flexi-
bility for highly non-linear soil behaviour. Experimental
studies by Tatsuoka et al. (1993) and Cubrinovski & Ishihara
(1998) showed that a constant A is not suitable for describing

the variation in plastic shear modulus over a wide strain
range and they proposed alternative formulations. Based on
these observations, an alternative simpler form has been
proposed by Galavi (2021), in which the value of A starts
fromAmat,i at small strain and exponentially increases toAmat
at large strain. In this paper, this formulation is further
enhanced to include the effect of stress state and soil fabric by
the addition of the last bracketed term as follows

A ¼ 1� exp
�DR

Amat
εpγ

� �� 	
Amat þ exp

�DR

Amat
εpγ

� �
Amat;i


 �

� �σ′n
pat

� � n�1ð Þ
exp �kaniA

i
fab

� �" #

ð8Þ
with

Amat;i ¼ 1�DR

2

� �
1

Gratio

� �
Amat ð9Þ

Even though the original formulation proposed by Galavi
(2021) captures the evolution of the plastic modulus, the
omission of stress state dependency makes the calibration of
A difficult over wide stress ranges. Moreover, from the
anisotropy point of view, the inclusion of fabric in determin-
ing the plastic modulus is essential to capture different
responses under different stress paths and/or fabric compo-
sitions at ultimate states. In equation (8), the addition of the
exponential fabric term includes the fabric dependence of A
over widely different loading directions. In this paper, kani is
set equal to 1·0 and the loading path-dependent formulation
of Afab

i is given in equation (26).
It should be noted that the hardening formulation

proposed by Wan & Guo (1998) has a number of drawbacks,
as explained below.

(a) The hyperbolic type hardening formulation given in
equation (6) requires an infinite plastic shear strain to

b 
= 

1

b = 0

b 
= 

0·
5

1·00
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0·50
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–0·25
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0
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σ
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 √

6
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Fig. 4. Comparison of Sanisand with Me/Mc = 0·75, Matsuoka–
Nakai, Mohr–Coulomb and multilaminate (with 33 planes) yield
surfaces in the normalised deviatoric plane for φ′=31·2°
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Fig. 5. Material responses modelled by the hardening/softening rule
at sampling planes (Wan & Guo, 1998)
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reach the critical state. In order to eliminate this
problem, the value of constant A in the original
formulation should be small enough to match the
critical state relatively closely (i.e. φ′mob! 0.999φ′cv) in a
finite shear strain range. However, such a small value of
A results in a very stiff behaviour, which generally does
not match with experimental data. The proposed
formulation in equation (8) enables the model to get
relatively close to the critical state within a reasonable
shear strain range, while at the same time matching
experimental results.

(b) The use of plastic strain (which is not an experimentally
measurable quantity) in the hardening formulation
complicates the calibration procedure when the
specimen is presheared. In such a scenario, for a given
state, following the calculation of the friction angle from
the test/data, the accumulated plastic strains can be
back-calculated from equation (6).

From the critical state point of view, at the ultimate state the
model yields the following conditions

εpγ ! 1; e ! ec; fd ! 1; φ′mob ! φ′cv and ḟ ! 0

It should be emphasised that, in this framework, reaching
the critical state does not necessarily mean that the mobilised
friction angle at each plane φ′mob,i has reached the constant
volume friction angle φ′cv. Only planes with continuous
plastic deformations yield φ′mob,i! φ′cv at the critical state
and, as a result, the model globally yields a Lode angle-
dependent φ′cs (implicitly).

Finally, as shown in Fig. 3, no kinematic hardening for-
mulation is included to capture the plasticity upon unload-
ing. Even though some plasticity could be captured upon
changing loading direction as a result of the activation of
some new (i.e. previously not activated) planes, upon a
complete loading reversal no additional sampling planes
experience plasticity. As a result, upon a complete loading
reversal, the stress state at each sampling plane falls into the
elastic zone, which results in a global elastic response. The
aim of future work is to improve the proposed model with a
proper kinematic hardening formulation for modelling
complex loading conditions such as stress principal axes
rotation (SPAR) and cyclic loading conditions.

Flow rule
The evolution of plastic strains and return mapping are

formulated using a non-associated flow rule in which the
gradient of the plastic strain increment is controlled by the
mobilised dilatancy angle, ψmob. Hence

g ¼ τ þ σ′n tanψmob ¼ 0 ð10Þ
The coupling between the shearing and compaction/

dilation mechanism is provided using a simple dilatancy
formulation

� dεpN
dεpγ

¼ sinψmob ¼
sin φ′mob � sin φ′f

1� sin φ′mob � sin φ′f
ð11Þ

The structure of equation (11) is identical to Rowe’s
(1962) stress dilatancy expression formulated in terms of
mobilised friction and dilatancy angles by Vermeer & De
Borst (1984). However, φ′cs in the original formulation, which
only refers to the ultimate condition, has been replaced by the
state-dependent characteristic friction angle φ′f. The state
dependency of the phase transformation was first formulated
as a linear function of the state parameter ψ by Manzari &
Dafalias (1997) and later as a power function of the ratio e/ec,

as in equation (13), by Wan & Guo (1998). In this paper, the
micromechanical derivation of φ′f has been adopted from
Wan & Guo (2014) as follows

sin φ′f ¼ fe sin φ′cv ð12Þ
and

fe ¼ 1þ ψe�1
c

� �β¼ e
ec

� �β

ð13Þ

where the exponential parameter β is a model constant.
In the proposed formulation, the influence of void ratio

and stress state on the dilatancy is introduced through the fe
formulation. It should be emphasised that towards the
critical state, fe evolves to 1 and equation (11) reduces to
Rowe’s dilatancy formulation.
As shown in Fig. 5, based on this formulation, at the phase

transformation (or maximum contraction) point, by enfor-
cing zero dilatancy the friction angle can be obtained from

φ′mc ¼ sin�1 fe sin φ′cvð Þ ð14Þ
For the elastoplastic formulation, at the beginning of

shearing (i.e. at low mobilised friction angles) Rowe’s
dilatancy formulation together with equation (6) yields
excessive plastic strains, which results in highly contractive
behaviour and excessive pore pressure accumulation under
undrained shearing. Hence, various modifications to Rowe’s
dilatancy formulation have been proposed (Schanz, 1998;
Søreide, 2003; Wehnert, 2006), although none of these
modifications provides a state-dependent solution for the
aforementioned problem. A detailed comparison of the
modifications can be found in Benz (2007) and Tsegaye
et al. (2013). A similar excessive pore pressure accumulation
in the vicinity of the hydrostatic axis is also observed in
hypoplasticity, as pointed out in Niemunis (2003).
In this paper, in order to improve the undrained perform-

ance of the model in the small-strain range, plastic vol-
umetric strains in the small-strain range are factored by kstiff

kstiff ¼ γ
γsmall

� �kel

� 1�0 ð15Þ

where the exponential parameter kel controls the evolving
small-strain effect. In this model, a linear link between kstiff
and the shear strain is assumed by setting kel¼ 1. By employ-
ing equation (15), a mobilisation process that increases the
size of the inner, most elastic zone without the build-up of
excess pore pressure is obtained.
In this model, parameters fd and fe, as defined by

equations (7) and (13), respectively, are used to obtain the
state dependency. Alternatives to these formulations can be
found in Li & Dafalias (2000) and Dafalias & Manzari
(2004) as follows

fd ¼ exp �α′ e� ecð Þ½ � and fe ¼ exp β′ e� ecð Þ½ � ð16Þ
However, even though equations (7), (13) and (16) provide

comparable results, and the parameters α and β have similar
functionalities as α′ and β′, they are quantitatively different.

Elasticity formulation
The elasticity formulation is divided into two parts: small

and large strain ranges. For large strains, an isotropic, state-
dependent hypoelastic formulation proposed by Oztoprak &
Bolton (2013) has been used. The influence of current effec-
tive stress on the elastic stiffness is controlled by the
exponential parameter m. The relationship between m and
stiffness parameter n, which is used together with the model
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parameter hs to define the CSL in e–p′ space, was developed
by Herle & Gudehus (1999) and Wegener & Herle (2012)
such that m¼ 1� n. As a result, beyond providing a
comparable performance with the hypoelastic formulation
proposed by Richart et al. (1970), equation (17) provides
further flexibility through the exponential parameter m.

G ¼ Grefpat
1þ eð Þ3

p′
pat

� �m

ð17Þ

A question may arise concerning the necessity of employ-
ing a fabric-dependent anisotropic elasticity formulation.
However, for the sake of simplicity an isotropic elasticity
formulation has been employed in this model similar to
many other ACST-based models (Dafalias et al., 2004;
Papadimitriou et al., 2019; Petalas et al., 2020).
For the small-strain part of the model, a hyperbolic-type

non-linear shear strain-dependent formulation from Santos
& Correia (2001) has been employed

Gsmall ¼ G0

1þ 0�385 γ=γ0�7ð Þ ð18Þ

where G0 refers to the maximum (elastic) shear modulus, and
γ0·7 refers to the shear strain value at which the secant shear
modulus reduces to 70% of its maximum value. For simpli-
city, the maximum shear modulus is calculated by factoring
equation (17) with a model constant Gratio – that is

G0 ¼ GratioG ð19Þ
Finally, the actual shear modulus used in the constitutive

formulation is obtained as

Gact ¼ max Gsmall;Gð Þ ð20Þ
Rearranging equations (17) and (18), a threshold small-

strain value is defined as

γsmall ¼
Gratio � 1ð Þγ0�7

0�385 ð21Þ

for which γ� γsmall falls into the small-strain range and
otherwise the large-strain range. In this paper, small-strain
elasticity is used to increase the accuracy of the model
together with equation (15), rather than only amplifying the
shear modulus upon loading reversal.
The above elasticity formulation is used to construct

stiffness matrices for both the global system and the sampling
planes. Even though the split method does not change the
global stiffness matrix, local stiffness ingredients are calcu-
lated based on the split method used

dσ p;n

dσdev;n
dτ

2
4

3
5 ¼

E
1� 2v′

0 0

0
E

1þ v′
0

0 0
E

1þ v′

2
666664

3
777775

dεv
dεq;n
dγ

2
4

3
5 ð22Þ

FABRIC ANISOTROPYAND ITS EVOLUTION
In this model, a modification of a recent framework called

ACST proposed by Li & Dafalias (2012) has been adopted to
handle the complex anisotropic soil behaviour. In ACST,
control over dilative and contractive behaviours is established
using a so-called dilatancy state line (DSL), which is
obtained by modifying the CSL anisotropically for varying
stress paths and fabric orientations. Even though there is no
absolute consensus on the uniqueness of the CSL, recent
experimental studies (Verdugo & Ishihara, 1996; Yoshimine

& Kataoka, 2008; Salvatore et al., 2017) and many granular
level numerical studies have shown that soil reaches a unique
CSL independent of the stress path and fabric structure. In
the ACST proposed by Li & Dafalias (2012), in order to
satisfy the uniqueness of the CSL, the DSL is formulated in
such away that, independent from the initial fabric structure,
it evolves towards the CSL and finally becomes identical to
the CSL. In this paper, the theory of ACST has been adapted
for use in the multilaminate framework where the constitu-
tive formulations are defined at sampling planes.
The isotropic measure of the state of the soil given in

equation (7) has been modified to derive the fabric-
dependent DSL in void ratio–effective stress space introduced
by Li & Dafalias (2012)

ed ¼ ec þ eA Ai
fab � 1

� � ð23Þ
In equation (23), similar to most of the ACST-based

models, the FAVAfab
i evolves such that Afab

i ! 1 towards the
critical state, although its definition, which is given in
equation (26), slightly differs from Afab proposed by Li &
Dafalias (2012). Following the introduction of the ACST, for
model formulations involving the critical state parameter,
ψ¼ e� ec is replaced by the dilatancy state parameter
ζ¼ e� ed. In this model, the same thing is achieved by
replacing the critical void ratio ec in the fd and fe formulations
(equations (7) and (13)) with the dilatancy void ratio, ed.
Note that the fabric parameter eA is used to scale the
downward movement of the DSL with respect to the CSL in
e–p′ space (Petalas et al., 2020).

Fabric tensor and vector
In this model, a contact normal-based cross-anisotropic

fabric formulation has been employed. The deviatoric part of
the initial microstructure tensor is described as

F in ¼
Fh 0 0
0 Fv 0
0 0 Fh

2
4

3
5 ð24Þ

Here, the major principal fabric direction has been selected
in the y-direction – that is the bedding plane is normal to the
y-axis and cross-anisotropic idealisation yields the other two
principal components to be equal. Since the above initial
fabric tensor represents the normalised deviatoric part of the
statistical distribution of the contact normal given in
equation (2), F in has to be traceless – that is Fv¼�2Fh.
Reorganising the above expression, a cross-anisotropic fabric
tensor can be defined as

F in ¼ φ*

Fck k ¼ Fnorm � nF

¼
ffiffiffi
3
2

r
Fvj j

�1ffiffiffi
6

p 0 0

0
2ffiffiffi
6

p 0

0 0
�1ffiffiffi
6

p

2
6666664

3
7777775

ð25Þ

in which Fnorm ¼ F ink k ¼ ffiffiffiffiffiffiffiffi
3=2

p
Fvj j is the Euclidean norm of

the fabric tensor and nF is the fabric orientation. The input
parameter Fnorm describes the initial magnitude of the fabric
tensor. The distribution of a normalised random anisotropic
parameter using equation (25) is described in Fig. 6 for
various values of Fnorm and Fv.
As shown in Fig. 6, Fv and Fnorm control the distribution of

the contact normal related anisotropic features. The sign of
Fv determines the major principal fabric direction and its
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magnitude, which can be related to Fnorm through Fnorm ¼ffiffiffiffiffiffiffiffi
3=2

p
Fvj j, determines the ratio of the magnitude of the

fabric tensor in the major and minor directions. For the
scenario described in equation (24), Fv. 0 and Fv, 0 yield a
fabric structure where the contact normals are concentrated
in the vertical (i.e. y-axis) and horizontal directions, respec-
tively, and an increase in Fnorm distorts the fabric tensor by
stretching it in its major principal direction while com-
pressing it in its minor direction. Generally, during the
depositional process of soil, the long axis of particles tends to
be oriented perpendicularly to the deposition direction,
which results in all contact normals being concentrated in
the deposition direction (Sun et al., 2019). Hence, Fv in
equation (24) mostly takes values greater than 0. From the
numerical point of view, unlike eA, Fnorm provides a control
over the level of downward scaling of the DSL over
different directions, such that in the case where the
deviator loading aligns with the major fabric direction a
positive value of Afab

i results in less downward movement;
compare with the case where the deviator loading aligns with
the minor fabric direction, in which a negative value ofAfab

i is
obtained. It is important to mention that, if there is a change
in the deposition direction – that is if the deposition direction
deviates from the y-direction, the corresponding fabric tensor
can be obtained by an orthogonal transformation.

In classical ACST-based models, the deviatoric fabric
tensor described in equation (25) is directly employed
together with the unit loading direction, which is another
tensorial quantity, to calculate the fabric anisotropic variable,
Afab ¼ F:n. The scalar quantity Afab is then involved in
relevant constitutive formulations. In this work, an alterna-
tive method has been proposed within the multilaminate
framework. The tensorial quantities, namely the deviatoric
fabric tensor and loading direction, have been downscaled to
their vectorial counterparts – that is to local fabric vectors (or
fabric traction vectors) and local unit loading directions,
respectively. Even though the local loading direction in its
vector form is readily available in equation (27), a definition
for the initial fabric vector is needed. It has already been
mentioned that, in the employed multilaminate framework,
sampling planes are positioned such that they approximate a
sphere and the distribution of sampling planes and their
normals do not have a directional bias. This feature enables
the framework to approximate an isotropic tensor by down-
scaling the physical quantity held by the tensor into a set of
vectors in the normal directions to the planes. However, in
order to downscale a tensor with a non-zero deviatoric
component, it is necessary to calculate another set of vectors
deviating from their isotropic measures (i.e. the sampling
planes normal directions) to approximate the non-zero

deviatoric part of the tensor. In this paper, the deviation of
the vectorial physical quantities from their isotropic direction
at each sampling plane is calculated using fabric vectors
which are defined as Fin

i ¼F inni.
Following the description of the fabric tensor and its

vectorial counterparts at the sampling planes, the local fabric
anisotropic variable (FAV) is calculated as

Ai
fab ¼ F indevi ¼ Fi

norm niFn
dev
i

� � ð26Þ
where niFn

dev
i represents the scalar measure of the relative

orientation between the local fabric vectorF i and the local unit
deviator stress vector ni

dev. The local unit deviator stress vector
ni
dev is derived from the global deviator stress tensor σ* as

ndevi ¼ σ*ni
σ*nij j ð27Þ

Prior to shearing, the initial fabric vector at a specific plane
i is calculated as a traction vector of the initial global fabric
tensor – that is Fin

i ¼F inni, and upon shearing it starts to
evolve to a particular fabric vector F i depending on the
accumulated plastic shear strain at the relevant plane,
equation (31). At the critical state, the local fabric direction
vector nF

i becomes coaxial with the local loading direction
ni
dev and the local fabric vector reaches its critical state
value Fc

i – that is F in ! F i
in ! F i ! F i

c. In this model,
different from the current ACST applications, instead of
considering the global loading direction and a global
definition of the fabric tensor, the local loading direction
ni
dev, which evolves uniquely at each sampling plane depend-

ing on the applied load, has been used. It is important to note
that, in this model, the fabric vector throughout the
deformation process is normalised by its critical value –
that is, by local deviator stress – and, for the sake of
simplicity, the critical fabric is set equal to the loading
direction – that is, F i

c¼ ndevi .
To sum up, at the critical state the premises set out by

ACST are achieved as

F i ! F i
c ¼ ndevi and

Ai
fab ¼ ndevi

�� �� ndevi ndevi

� � ¼ 1�0

Fabric evolution
The initial microstructure of the soil changes during the

course of loading, and ignoring that change may result in a
deviation from both experimental and granular level DEM
observations. Most of the available evolution formulations
are derived as a function of changing stress ratio and/or

Fv = 0·0
Fnorm = 0·0

Fv < 0·0
Fnorm = 0·5

Fv < 0·0
Fnorm = 1·0

Fv > 0·0
Fnorm = 0·5

Fv > 0·0
Fnorm = 1·0

y

Fig. 6. Spatial distribution of an arbitrary anisotropic parameter for different values of Fnorm and Fv
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plastic strain rate. Experimental studies by Oda et al. (1985),
Oda et al. (1982) and Oda & Konishi (1974) revealed the link
between contact normal evolutions and the applied stress
path. Based on these observations, Wan & Guo (2004)
proposed a simple evolution rule

Ḟ ¼ k � η̇ ð28Þ
where a linear relationship between the change in stress ratio
η̇ and the fabric tensor was established by using a constant k.
Equation (28) yields a constant fabric at the critical state
when η̇ ! 0. This linear relationship was upscaled by Hu
(2015) with a non-linear counterpart

Ḟ ¼ k1 1þ k2 ηk kð Þ � η̇ ð29Þ
Another commonly used plastic strain-driven fabric

evolution formulation has been proposed by Li & Dafalias
(2012)

Ḟ ¼ k Fc � Fð Þ ε̇pq
��� ��� ð30Þ

where Fc stands for the critical fabric tensor and εq
p is the

plastic deviatoric strain.
Equations (28) and (30) both provide an evolution such

that the fabric tensor reaches a critical value, Fc. However,
the evolutions of the stress ratio and plastic strain rates are
inversely proportional such that, at the initial stages of
shearing, the soil shows limited plastic strains but a rapid
increase in stress ratio and the opposite happens towards the
critical state. Hence, equations (28) and (30) provide different
types of evolution. In addition, it should be noted that
the use of equations (28) or (29) in a plasticity theory results
in a change in the fabric tensor upon elastic unloading.
Furthermore, under complex loading conditions such as
SPAR at fixed stress principal values with η̇ ¼ 0, equations
(28) and (29) miss out the intense fabric changes observed in
laboratory experiments.
The fabric evolution constant k controls the evolution

speed of the fabric tensor per stress ratio/plastic strain
increment and determines how fast it will reach its critical
state value. Hence, an inevitable concern arises about
the stress path dependency of the fabric evolution. In this
paper, equation (30) with a path-independent evolution
constant k has been converted to its vectorial form as Ḟ i ¼
k F i

c � F i
� �jε̇pγ j and then the implicit time integration of the

vectorial fabric evolution formulation is derived as

F tþΔt
i ¼ F i

c þ F t
i � F i

c

� �
e�kΔεpγ ð31Þ

Note that, in the above fabric evolution formulation, the
micro-level plastic shear strain εγ

p has been used instead of its
global deviatoric counterpart εq

p. In contrast to classical
continuum models in which a single scalar fabric anisotropic
variable defines the anisotropic state of the soil, the proposed
formulation yields various fabric scalars – that is, Afab

i values
for the different sampling planes – which further enhances
the direction- and history-dependent fabric evolution. Even
though the speed of reaching F c

i depends on the local plastic
shear strain rate at the corresponding sampling plane, under
continuous plastic shearing the fabric vector F i becomes
identical to F c

i and fulfils the anisotropic critical state theory
requirements.
In Fig. 7, each line shows the evolution of Afab at the

relevant sampling plane – that is, Afab
i . Even though a single

fabric tensor describing the initial fabric is defined using
equation (25), equation (26) yields different Afab

i values at
different sampling planes due to different ni

dev components.
Hence, at the beginning of shearing, different Afab

i values are
obtained at the different sampling planes. Upon shearing, the

locally driven evolution formulation in equation (31) yields
different fabric evolutions depending on the local plastic
shear strain accumulations, and the subplot in Fig. 7 shows
how the speed of the evolution varies at each sampling plane.
Finally, it is worth noting that, in the proposed fabric

evolution framework, the orientations of the sampling planes
which are defined by their unit normals ni are not changing.
In other words, in this paper, sampling planes with their
prescribed orientations are used to monitor the fabric
changes during shearing rather than keeping track of the
contact normals and evolving with them. Even though
changing the orientations of the sampling planes together
with the changing contact normal distribution – that is
changing the spherical shape in Fig. 1 and making it evolve
during deformation – sounds attractive, the resultant frame-
work becomes highly unstable. This is because the inte-
gration over sampling planes which is carried out to find the
global counterpart of the local plastic strains depends on the
sampling plane orientations and weight coefficient as shown
in equation (4). Such a framework could be attained with an
upgraded numerical integration formulation that takes
account of the evolving contact normals.

MODEL CALIBRATION AND VALIDATION
Calibration of material parameters
The proposed model requires the calibration of 13

parameters, whose descriptions and values for Toyoura
sand used in the current simulations are listed in Table 1.
Here, a brief description of the calibration process is given.
The calibration of the elastic part of the model requires

resonant column or bender element tests, which are mostly not
available. In this paper, the elastic parameters Gref and Gratio
for Toyoura sand were calibrated using the resonant column
and torsional shear tests from Iwasaki et al. (1978). The
critical state parameters are all physical parameters: ec,0, hs
and n are used to define the CSL in void ratio–mean effective
stress space, and require tests at large shear strain in which the
soil reaches the critical state. The role and calibration of the
critical state parameters are similar to those for hypoplasticity
and more details can be found in Herle & Gudehus (1999).
The constant-volume friction angle φ′cv differs from the Lode
angle-dependent critical state friction angle φ′cs. In this model,
the material response is formulated using the interparticle
friction angle, which is independent of the mode of shearing.
For the determination of φ′cv, the φ′cs value in triaxial
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Evolution of Afab over time

x: end of the fabric evolution

Number of steps

Fig. 7. Evolution of fabric variable Afab with local plastic strain
accumulations (and number of steps in subplot) during a triaxial
compression test
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compression can be used – that is, φ′cv¼ φ′cs(triax. comp). The
hardening parameter Amat needs to be calibrated against
data from drained triaxial tests by trial and error. The
exponential parameters α and β can be back-calculated
from peak friction and phase transformation angles
through equations (6) and (14), respectively, as shown in
Wan & Guo (1999). However, during the back-calculation,
instead of the critical void ratio ec, the dilatancy void ratio
ed should be used as per equation (23), as similarly done in
Petalas et al. (2020). In this paper, first the set of
experimental data provided by Yoshimine et al. (1998)
and Verdugo & Ishihara (1996) have been used to calibrate
the hardening parameters α and β, and then further
fine-tuning runs have been carried out to make sure the
back-calculated α and β values fit well for the remaining
experimental data set. Finally, the calibration of the fabric
parameters requires granular level studies, which rarely
exist, so that model users will mostly have to determine
parameter values through performing trial-and-error cal-
culations. Note that this type of trial-and-error-based
fabric tensor calibration requires an extensive data set,
including different modes of shearing. However, locating
the phase transformation lines using the triaxial com-
pression and extension test results may help to decrease
the number of trial runs, since eA and Fnorm together locate
the DSL in e–p′ space.

Validation
In this part of the paper, numerical simulations are

compared with experimental test data on Toyoura sand
published by various authors. The effect of fabric anisotropy
on the stress–strain response of sand is investigated for
various monotonic tests including triaxial compression,
triaxial extension, simple shear and torsional hollow cylinder
tests. The significant effect of the fabric anisotropy upon
varying the loading direction with respect to the fabric
direction is seen to be properly captured.

Toyoura sand. The set of material parameters used to
perform the following simulations is listed in Table 1. It
should be noted that, even though all the following figures
are for Toyoura sand, different sample preparation methods,
namely wet tamping and dry deposited, were used to prepare
the specimens and these yielded different initial anisotropic
structures. Investigation of the effect of sample preparation
methods on the soil fabric is beyond the scope of this paper,
but the comparison of experimental data shows that
specimens prepared using the dry-deposited method have

greater variability in response to principal stress rotation,
indicating a higher degree of anisotropy. In this paper, in
order to capture that difference, a different set of fabric
parameters is used for the different sample preparation
methods. For the case of Toyoura sand, using two different
values of Fnorm, which controls the initial fabric anisotropy,
and two different values of fabric constant eA provided
reasonable estimates; see Table 1. Note that, in the following
comparisons, the simulation and experimental results are
shown by solid and broken lines, respectively.

Model performance. The first set of simulations is performed
for drained triaxial compression tests on wet-tamped Toyoura
sand. A total of six experiments carried out by Verdugo &
Ishihara (1996), under two different consolidation pressures of
100 kPa and 500 kPa, and various initial void ratios, are
compared with simulations in Fig. 8. The volumetric changes
are adequately captured, as shown in the figure. An additional
set of drained simulations is performed for torsional simple
shear (TSS) tests on dry-deposited Toyoura sand. The TSS
tests were carried out by Pradhan et al. (1988) and relatively
more complex loading paths were followed such that the
specimens at low confining pressures (	 5 kPa) were first
anisotropically consolidated (K0-consolidation) up to an
initial axial stress σa and then sheared in torsion under
constant axial stress. The comparison of the simulations and
experimental data is presented in Fig. 9. The proposed model
satisfactorily predicts the overall response.
Figure 10 and Figs 11–16 show simulations of the

undrained response of wet-tamped and dry-deposited
Toyoura sand, respectively, for a wide range of stress states
and initial relative densities. As can be seen from these
figures, depending on the stress state and relative density
which are included in the state-dependent formulations, the
simulation results reflect the significant variations in
response recorded in the experiments. It should be empha-
sised that the addition of the stress-dependent term in the
stiffness parameter A formulation in equation (8) provides a
noticeable contribution to the model’s performance over a
wide stress range and different stress paths.
In Fig. 11, a series of triaxial compression and extension

tests, along with their simulation results, is presented. In these
simulations, specimens having a similar initial state and
fabric have been sheared in different directions. As a result,
while specimens under compression showed dilative behav-
iour, all the extension tests resulted in flow liquefaction. This
drastic change observed in the experimental data has been
well captured by the proposed model.

Table 1. The constitutive model parameters

Category Parameter Toyoura sand Description

Elasticity Gref 1400 Reference shear modulus value
Gratio 3 Small-strain stiffness ratio
v 0·17 Poisson’s ratio

Critical state ec,0 0·934 Critical void ratio at zero pressure
hs 20 000 kPa Hardness parameter
n 0·74 Exponential stiffness parameter
φ′cv 31·2° Constant volume friction angle

Hardening Amat 0·0055 Plastic stiffness constant
α 2·3 Exponential constant controlling φ′mob
β 3 Exponential constant controlling ψmob

Fabric Fnorm 0·515 (dry)/0·41 (wet) Initial fabric norm
eA 0·08 (dry)/0·05 (wet) Fabric constant for CSL deviation
k 5·2 Fabric evolution constant
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During a simple shear test, the restricted rotation in the
principal stresses greatly influences the material behaviour.
Although a full 180° principal stress rotation cannot be
achieved, quite substantial principal stress rotations
approaching as much as 60° can be observed in simple
shear tests, as shown byGutierrez et al. (2009). In Fig. 12, the
simulation results show some deviation from the experimen-
tal data, although the trends are captured.

So far, the drained and undrained responses of Toyoura
sand under various initial states have been compared with
simulation results in Figs 8–12. Although these results
validate the model’s capability to handle different initial
states and the effectiveness of the proposed state-dependent
formulations in the constitutive model, since all these
simulations involve triaxial or simple shear tests in which
there is no control over the orientation of principal stresses,

the influence of the anisotropy formulation on the simulation
performance is difficult to observe. Hence, in the remainder
of this paper, in addition to triaxial and simple shear tests,
torsional hollow tests will be presented. These results provide
a better way to evaluate the effectiveness of the fabric
formulation proposed in this model.
In Figs 13–15, stress ratio-controlled hollow cylinder tests

are compared with simulation results. In these tests, soil
specimens with similar initial states were sheared in different
directions as indicated by αani, which represents the angle
between the major principal fabric direction and the major
principal stress direction, under constant intermediate prin-
cipal stress coefficient, b¼ (σ′2� σ′3)/(σ′1� σ′3).
For similar initial densities and stress states, an increase in

both b and αani values in Figs 13–15 results in less
dilative/more contractive behaviour, which is well captured

D
ev

ia
to

r s
tre

ss
, q

 =
 σ

1 
– 
σ 3

: k
Pa

 

Shear strain, γ = ε1 – ε3

D
ev

ia
to

r s
tre

ss
, q

 =
 σ

1 
– 
σ 3

: k
Pa

 

Mean effective stress, p′: kPa

500 600

500

400

300

200

100

0

100

200

400

300

200

100

0

100

200
0·10 0·05 0 0·05 0·10 0·15 0·20

Ex
t.

Ex
t.

–200 0 200 400 600

e0 = 0·861

e0 = 0·860
e0 = 0·866
e0 = 0·876
e0 = 0·888

e0 = 0·860
e0 = 0·866
e0 = 0·876
e0 = 0·888

e0 = 0·863
e0 = 0·876
e0 = 0·890

e0 = 0·861
e0 = 0·863
e0 = 0·876
e0 = 0·890

C
om

p.

C
om

p.

Fig. 11. Undrained triaxial compression and extension tests; data after Yoshimine et al. (1998) (note: ‘Comp.’, compression; ‘Ext.’, extension)

D
ev

ia
to

rs
tre

ss
, q

 =
 σ

1 
– 

σ 3
: k

Pa
 

200

175

150

e0 = 0·804

e0 = 0·816

e0 = 0·841

e0 = 0·844

e0 = 0·863

e0 = 0·876

e0 = 0·888
125

100

75

50

25

0 0 50 1000·100·05 0·15
0

200

175

150

e0 = 0·804

e0 = 0·816

e0 = 0·841

e0 = 0·844

e0 = 0·863

e0 = 0·876

e0 = 0·888
125

100

75

50

25

0

Mean effective stress, p′: kPaShear strain, γ = ε1 – ε3

D
ev

ia
to

r s
tre

ss
, q

= 
σ 1

 –
 σ

3:
 k

Pa

Fig. 12. Undrained simple shear tests; data after Yoshimine et al. (1998)

BAYRAKTAROGLU, HICKS, KORFFAND GALAVI12

Downloaded by [ TU Delft Library] on [13/04/23]. Published with permission by the ICE under the CC-BY license 



by the proposed model. Even though the critical state stress
ratios in simulations with b¼ 0 and b¼ 1 match the
experimental data in Figs 13 and 15, the multilaminate
yield surface given in Fig. 4 underestimates the critical state
stress ratio for Toyoura sand for b values between 0 and 1,
which can be observed in Figs 14 and 16. Experimental
results for Toyoura sand show a better match with the yield
surface denoted by Sanisand in Fig. 4.
Finally, the torsional shear tests from Nakata et al.

(1998) on relatively looser specimens (e.g. DR¼ 30%)
are shown in Fig. 16. In this figure, the deviatoric
stress and the deviatoric strain are calculated as qN ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0�5 σ′1 � σ′2ð Þ2 þ σ′2 � σ′3ð Þ2 þ σ′3 � σ′1ð Þ2
h ir

and γN ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ε1 � ε2ð Þ2 þ ε2 � ε3ð Þ2 þ ε3 � ε1ð Þ2
h i

=9

r
, respectively.

These results show the effectiveness of both the state
dependency and fabric formulations in the proposed
model to capture the experimental data. Based on these
observations it may be concluded that, for a given stress
path, the soil shows less dilative/more contractive behaviour
as the angle between the major principal stress and fabric
directions increases. These loading and fabric orientation-
dependent behaviours are well captured with the proposed
model.

CONCLUSIONS
In this paper, a state-dependent constitutive model within

the multilaminate framework has been proposed for aniso-
tropic sands. The potential capability of the multilaminate
framework to handle the effect of principal stress rotation
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and induced anisotropy has been further enhanced by
incorporating ACST. Fabric effects have been introduced
into the model through the use of a locally evolving fabric
vector F i and then converted to evolving scalar constitutive
ingredients which vary over the sampling planes. In this
model, instead of stress/strain invariants, using normal
and shear components at local sampling planes provides
a more intuitively understandable constitutive formulation.
Similarly, using sampling planes distributed in 3D stress
space provides a rather physical and direction-dependent
meaning for the tensorial fabric formulation. Finally, the
undrained performance of the model at low mobilised
friction angles was improved by suppressing plastic strain
accumulation inside the small-strain zone.

The performance of the proposed model has been verified
through the simulation of laboratory data for Toyoura sand.
The influence of different initial states, different initial fabrics

arising from different sample preparation methods, principal
stress rotation and various stress paths (e.g. fixed intermedi-
ate principal stress ratios and restricted rotation of principal
stresses observed in simple shear tests) have been satisfac-
torily simulated with a single set of material parameters, only
varying the fabric parameters. The use of a single set of fabric
parameters may result in less accurate predictions in the case
when different sample preparation methods are involved.
The comparisons between model response and published
experimental data show that the proposed constitutive
framework is well able to simulate the anisotropic behaviour
of sands.
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NOTATION
A plastic stiffness parameter

Afab
i fabric anisotropic variable (FAV)

Amat,i minimum value of the plastic stiffness parameter
b intermediate principal stress coefficient

DR relative density
e void ratio
e0 initial void ratio

e0·05 void ratio at 0·05 kgf/cm2 (	5 kPa)
eA fabric constant, determines the deviation of the dilatancy

state line (DSL) from the critical state line (CSL)
ec critical state void ratio

ec,0 critical state void ratio at zero stress
ed dilatancy void ratio (anisotropic measure of ec)
F fabric tensor
Fh principal fabric component in horizontal direction
F in initial fabric tensor
F i a particular fabric vector of the ith sampling plane
Fc
i critical state value of fabric vector of the ith sampling plane

Fin
i initial fabric vector of the ith sampling plane
Fv principal fabric component in vertical direction
f local yield function

G0 maximum (elastic) shear modulus
Gref reference shear modulus

Gsmall small-strain shear modulus
gi plastic potential of the ith sampling plane
hs critical state line model constant
I second-order identity tensor
k fabric evolution constant

Mc critical state stress ratio in triaxial compression test
Me critical state stress ratio in triaxial extension test
m 1� n
n critical state line model constant

nF fabric orientation
nF
i unit fabric direction vector of the ith sampling plane
ni unit normal (or direction cosine) vector of the ith sampling

plane
ni
dev unit deviator loading vector of the ith sampling plane
p′ mean effective stress
pat atmospheric pressure
Ti transformation matrix of the ith sampling plane
wi weight coefficient of the ith sampling plane
α exponential model parameter controlling bounding state

line
β exponential model parameter controlling dilatancy state

line
γsmall threshold shear strain for small-strain range

εi
p plastic strain vector at the ith sampling plane
η stress ratio
λi plastic multiplier of the ith sampling plane
σ′ Cauchy stress tensor
σ* deviatoric stress tensor

σ′dev magnitude of deviator stress component of a traction stress
vector

σ′i traction stress vector at the ith sampling plane
σ′n magnitude of normal component of a traction stress vector
τ magnitude of shear stress component of a traction

stress vector
ϕkj statistical distribution of contact normals
φ′cs critical state friction angle (global)
φ′cv constant volume friction angle (local)
φ′mc maximum contraction friction angle (local)
φ′mob mobilised friction angle (local)
φ′peak peak friction angle (local)

ψ state parameter
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