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a b s t r a c t

Outsourced training and crowdsourced datasets lead to a new threat for deep learning models: the
backdoor attack. In this attack, the adversary inserts a secret functionality in a model, activated through
malicious inputs. Backdoor attacks represent an active research area due to diverse settings where they
represent a real threat. Still, there is no framework to evaluate existing attacks and defenses in different
domains. Only a few toolboxes have been implemented, but most of them focus on computer vision
and are difficult to use. To bridge this gap, we implement Backdoor Pony, a framework for evaluating
attacks and defenses in different domains through a user-friendly GUI.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Motivation and significance

Neural Networks have proven to work more accurately and
onsiderably faster than humans in several areas, such as fa-
ial recognition [1], stock market predictions [2], and detection
f ‘‘fake news’’ on social media [3]. For this reason, they are
idely used and recently deployed on critical applications like
utonomous driving [4]. Thus, we must ensure their secure oper-
tion and deployment in the real world. The backdoor attack is a
hreat that has recently emerged and can have dire consequences

∗ Corresponding author.
E-mail addresses: info.backdoorpony@gmail.com (Arthur Mercier),

molin.projects@gmail.com (Nikita Smolin), O.Sihlovec@student.tudelft.nl
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as the trained model can be manipulated to the adversary’s ben-
efit [5]. It is, therefore, essential to develop defenses to identify
and counter these attacks. Up to date, only a few tools facilitate
the evaluation of such attacks and defenses. However, most of
them target only computer vision [6–8], or only offer a command
line interface [8,9]. As such, they are not convenient for a broader
audience.

To bridge this gap, we implemented Backdoor Pony.2 Backdoor
Pony is a web-based application containing a GUI through which
users can evaluate backdoor attacks and defenses in different
application domains. Its GUI is user-friendly, making research
more accessible to a large audience. The user controls various
hyperparameters for the attacks and defenses through the GUI
without the need to build complex pipelines. After each exper-
iment, various plots are shown to help users understand the
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Table 1
A comparison of Backdoor Pony and the state-of-the-art.
Tool Image Text Audio Graph GUI #Attacks #Defenses

BackdoorBox [6] x 12 7
TrojanZoo [8] x 8 14
OpenBackdoor [10] x 12 4
BackdoorBench [7] x 8 9
Backdoor Toolbox [11] x 13 10
Backdoor Pony x x x x x 6 5

performance of their experiments. Our tool can follow the recent
developments in this field, as it can be extended with new attacks
and defenses in all domains. To conclude, our tool could lower
the barrier for new researchers and establish a common point of
reference for backdoor attacks and defenses.

The main difference between Backdoor Pony and the state-
f-the-art can be seen in Table 1. We see that only OpenBack-
oor [10] targets text applications, and the rest are focused only
n computer vision [6–8,11]. Backdoor Pony is the first tool to
nclude audio and graph data. It is also the first to offer a GUI.
hile the existing tools have implemented more attacks and
efenses, we do not consider this a major limitation, as we can
se our extension API to extend our tool.
The implemented attacks and defenses by the state-of-the-art

re shown in Table 2 and Backdoor Pony’s supported attacks and
efenses in Table 3. In image classification, we chose patch-based
riggers as they are the most popular. In particular, we chose
he Badnet [5] and the clean-label attack [12]. From Table 2 we
ee that these attacks are widely supported by the state-of-the-
rt. Even though it is very popular, we did not use the Blended
ttack [13] as its performance is very similar to the Badnet attack.
e chose only three different defenses that target different parts
f the pipeline (input sanitization, backdoor removal, or monitor-
ng) to avoid overlaps in our evaluations. For text classification,
e implemented BadNL attack [14] as it supports various triggers
character, word, or sentence). As a defense, we chose ONION [15]
s it is one of the first defenses for textual backdoors. In graph
nd audio domains, we picked the most popular attacks from the
iterature. In the graph domain, to the best of our knowledge,
here is not yet a domain-specific defense, and for audio, we
hose STRIP-VITA [16]. Our tool supports fewer defenses and
ttacks as we initially aimed for usability and application variety.
ow that many domains are supported, we can easily extend our
ool with additional attacks and defenses through our extension
PI.
Our contributions can be summarized as follows:

• We implemented Backdoor Pony, the first user-friendly
web-based framework that allows smooth and fast evalu-
ation of backdoor attacks and defenses.

• Backdoor Pony is the first tool that supports different ap-
plications like computer vision, text classification, audio
recognition, and graph neural networks.

• Like other tools, Backdoor Pony is extensible with arbitrary
attacks and defenses in all four provided domains.

. Backdoor attacks on neural networks

Recent trends like outsourced training, machine learning as
service (MLaaS), and crowdsourced datasets introduced a new

hreat for deep learning models, the backdoor attack [5]. In this
ttack, an adversary injects a secret functionality in a trained
odel that is activated through malicious inputs. In any other in-
ut, the model behaves normally to avoid raising any suspicions.
his attack can be mounted through data poisoning [5], code
oisoning [22], or weight poisoning [75]. Currently, we support
nly data poisoning attacks as they are the most popular and

In a classifier, this secret functionality may be targeted mis-
classifications that happen when the model’s input contains a
specific property, the trigger. For example, a stop sign with a
yellow post-it note (trigger) can be misclassified as a speed limit
from a backdoored model deployed in an autonomous car [5].
In the recent literature, various attacks have been designed. The
most targeted application is computer vision [76], but back-
door attacks have already been implemented against text [14,77],
audio [71,78], and graph neural networks [74,79].

Defending against backdoor attacks is very difficult as there is
no method to exhaustively verify what a model has learned. New
attacks that bypass existing countermeasures are continuously
developed in the related literature, making this whole field a cat-
and-mouse game between the attackers and the defenders [75].
There are various countermeasures already implemented that can
be divided into different categories based on the assumptions
used. Some of them remove the triggers from the inputs without
knowing if the model is poisoned [80] or search for poisoned
samples in the training dataset [40,41]. Other countermeasures
inspect the trained model offline to reverse engineer a trigger
pattern and unlearn the backdoor [44,45], or monitor the op-
eration of a model and raise alarms when there is suspicious
behavior [42]. Some of these countermeasures are white-box and
assume the defender has full access to the model and its training
data [40,41], or in the opposite case, black-box [42,46]. This
field is generally very active, and new attacks and defenses are
published regularly, making it very challenging for researchers to
keep up-to-date.

2.1. Metrics

We use the attack success rate (ASR) and the clean accuracy
drop (CAD) to measure the backdoor’s effectiveness. ASR is the
percentage of the successfully activated backdoors over a number
of tries and should be as high as possible. The clean accuracy drop
shows the effect of the backdoor on the original task and should
be as small as possible to avoid raising any suspicions. To see the
effectiveness of a defense, we can either show the ASR’s drop
after the defense’s implementation or a confusion matrix with
statistics regarding poisoned and clean data samples. In this case,
we have the following categories:

• True/False positive rate: the probability the classifier cor-
rectly/incorrectly identifies a poisoned input.

• True/False negative rate: the probability the classifier cor-
rectly/incorrectly identifies a benign input.

3. Software description

Backdoor Pony uses a client–server architecture, shown in
Fig. 1. The front-end consists of a web application with a GUI that
controls the tool. The web application is written in javascript and
mainly uses the Vue library. The back-end server is where all the
services are run. The server is written in python and uses the
Flask framework. Its /src can be found in the server folder,
while the front-end /src can be found in the gui folder. The
resent the large majority of the related works. server and front-end use REST-API to communicate.

2
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Table 2
The implemented attacks and defenses by the state-of-the-art.
Tool Type Attack Defense

BackdoorBox image Badnets [5], Blended [13],
Refool [17],
Clean-label [12], TUAP [18],
SleeperAgent [19], ISSBA
[20],
WaNet [21], Blind [22],
Input-aware [23],
PhysicalBA [24], LIRA [25]

3-layer Autoencoder [26],
ShrinkPad [24],
Fine-tuning, Fine-Pruning [27],
MCR [28], NAD [29], ABL [30]

TrojanZoo image Badnets [5], ESB [31], TNN
[32],
Refool [17], Blended [13],
LB [33],
ABE [34], IMC [35]

Randomized Smoothing [36],
DownUp [37],
Adversarial Retraining [38],
Manifold-projection [39], AC [40],
Spectral-signatures [41], STRIP
[42], NEO [43],
Fine-Pruning [27], Neural Cleanse
[44],
DeepInspect [45], TABOR [46],
Neuron Inspect [47], ABS

OpenBackdoor text Badnets [5], AddSent [48],
SynBkd [49],
StyleBkd [50], POR [51],
TrojanLM [52],
SOS [53], LWP [54], EP [55],
NeuBA [56],
LWS [57], RIPPLES [58]

ONION [15], STRIP-VITA [16], RAP
[59], BKI [60]

BackdoorBench image Badnets [5], Blended [13],
Clean-label [12],
SIG [61], Low-frequency
[62], ISSBA [20],
Input-aware [23], WaNet
[21]

Fine-tuning, Fine-pruning [27],
NAD [29],
Neural Cleanse [44], ANP [63],
ABL [30], DBD [64]
Activation Clustering [40],
Spectral-signatures [41],

Backdoor Toolbox image Badnets [5], Badnets
all-to-all [5],
Blended [13], TNN [32],
Clean-label [12],
Input-aware [23], SIG [61],
ISSBA [20],
WaNet [21], Refool [17],
TaCT [65],
Adaptive [66], SleeperAgent
[19]

SCAn [65], Activation clustering
[40],
Spectral-signatures [41], SPECTRE
[67],
STRIP [42], Sentinet [68],
Low-frequency [62],
Neural Cleanse [44], Fine-pruning
[27],
ABL [30]

Fig. 1. Software architecture overview.

The server functions in parallel to the GUI interface. The high-
st level of the server’s architecture consists of a runner that
eeps track of the current state of the front-end application. Its
ob is to execute the instructions in the incoming REST requests
n the appropriate service. The runner also ensures that the
equests are made in the correct order, making it impossible, for
xample, to execute an attack if the model has not been chosen.
The different services executed in order are ‘‘model’’, ‘‘at-

ack’’, ‘‘defense’’, and ‘‘plot’’. All the hyperparameters and the
esulting data of the services are stored in a python dictionary

used to pass information through the framework. The interaction
between the services and the dictionary can be seen in Fig. 1.
After the user makes a selection from the available models and
updates its hyperparameters, the model is trained on one of the
datasets included in the framework. After the model is trained,
the user selects and runs the attacks and defenses. Some of our
implemented neural network models use PyTorch, and a few of
our attacks and defenses also use the Adversarial Robustness
Toolbox [9]. We implemented the rest of them from scratch

using PyTorch. After applying the attacks and the defenses, we

3
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Fig. 2. General workflow of the application.

Table 3
The implemented attacks and defenses per data type.
Model Attack Defenses

Image Badnet [5],
Clean-label [12]

De-trigger Autoencoder
[69],
IBAU [70], STRIP [42]

Audio BAASV [71] STRIP-VITA [16]
Text BadNl [72] ONION [15]
Graph Zaixizhang [73],

GTA [74]
N/A

save all the corresponding hyperparameters and results into the
dictionary. This information is used for the plots in the last step
of our tool. The available metrics differ based on what attacks
and defenses were selected. As stated before, the model service
stores its results in the dictionary before the attacks and defenses
are run. In this way, the user can easily compare the network’s
performance before or after the attack or the defense. Once the
plot service has computed all the statistics, they are sent in a
specific format to the GUI, which will generate the corresponding
plots.

Backdoor Pony runs with Docker. The server and the front-
nd run in a separate container. Docker is also used to connect
o the integrated GPU support. Running ‘‘docker-compose up’’
ith an existing PyTorch image and CUDA/NVIDIA drivers will
utomatically expose all available GPUs in the system to the
ontainer. The user may also select which specific GPUs will be
sed. One of our focuses for Backdoor Pony was to maintain high
ode quality. We have achieved this by implementing engineering
ractices, creating unit tests, and comprehensive documentation.
his was done to ease future implementation or the integration
f new attacks and defenses into Backdoor Pony.

. Illustrative example

In this section, we first show a high-level overview of the
ramework’s operating flow (Fig. 2) and then provide an illustra-
ive example of its usage. As we show in Fig. 2, the user selects
dataset and a model, an attack (optionally), and a defense

optionally) and then proceeds to the training. When the training
inishes, the user selects the plots needed and, optionally, down-
oads the execution history. Our tool has information buttons –

the ‘‘i’’ letter enclosed in a red circular background – to facilitate
its usage. When this button is clicked, a pop-up window shows
all relevant information about that field.

4.1. Dataset selection

First we need to select a dataset. The selection screen will
appear after the user clicks on the Start button from the home
page. Here, a set of available datasets is presented (Fig. 3). Only
one can be chosen at a time. Image, audio, text, and graph are
the four types of available data categories, each having a unique
icon. The right side of the screen displays a list of configurable hy-
perparameters for the model that will be trained on the selected
dataset. In Fig. 3, the user chooses the full CIFAR10 dataset (50000
training images), SGD as the model’s optimizer, and a learning
rate of 0.001.

When a choice has been made, the server loads a neural
network that will be used to classify the data. If the framework
has previously used this dataset, and the hyperparameters were
not changed from their default values, a pre-trained model will be
loaded in the current execution. Otherwise, the network is trained
with the data after clicking the Continue button.

4.2. Choosing the attack and defense

Next, the user selects an attack and a defense. Similarly to the
datasets, attacks, and defenses are type-specific. Thus, only the
attacks and defenses that match the dataset’s type are shown for
selection on the screen (Fig. 4). Each attack and defense has a set
of hyperparameters appearing on the right side of the page after
selecting the desired mechanism (Fig. 4). Multiple values can be
typed in for a single field, separated by commas which will trigger
an execution of the simulation for each unique combination of
values.

Additionally, the user can skip running a defense for the cur-
rent configuration by selecting the None label in the list of
defenses. This choice impacts the available metrics after the at-
tack has been completed. Once the user has chosen the means
of attack, defense, and hyperparameters, clicking the Execute
button – placed in the bottom right of the page (Fig. 4) – will
start applying the attack and defense on the neural network.
4
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Fig. 3. Dataset selection screen.

Fig. 4. Attack (parameter selection upper right window) and Defense (parameters selection lower right window) selection screen.

.3. Metrics configuration

The metrics’ settings page will appear once the previous step
as finished its execution. The tool can generate multiple plots
hat indicate the model’s performance or the attack’s and de-
ense’s effectiveness. These plots include the model’s accuracy,
he ASR, the CAD, the true and false positive rates, and the true
nd false negative rates.
To create a plot, the user clicks on the ‘‘+’’ sign of the desired

etric and specifies the variables for the ‘‘X ’’ and ‘‘Y ’’ axes and
he fixed hyperparameters selected for the attacks and defenses.
n example plot would be the poisoned model’s accuracy in the
‘Y ’’ axis and the poisoning rate (the percentage of the poisoned
ata) in the ‘‘X ’’ axis. The fixed hyperparameters would be the
est of the options given by the user in the previous screens
target class, style of trigger) as shown in Fig. 5. The Add button
saves the plot configuration and the Plot button produces the cor-
responding plots. To create these plots, the server feeds clean or
poisoned inputs to the model and calculates the chosen metrics.

4.4. Results

Finally, the plots will be presented in the Results tab. In
this tab (Fig. 6), we can see the clean accuracy (leftmost plot),
which is the model’s accuracy on clean inputs, the ASR (middle

plot), which shows the attack’s effectiveness, and the clean ac-
curacy drop (rightmost plot), which shows the percentage drop
of the clean accuracy by the backdoor in. Besides the metrics, a
text file can be downloaded. The file includes details about the
dataset, attacks, defenses, and the chosen hyperparameters. This
file presents some information about basic user choices in simple
sentences and shows more complex options in a json format. An
example of this file is shown in Listing 1 in Appendix A.

5. Impact

Backdoor Pony is a framework that targets both cutting-edge
research and education. The framework’s documentation shows
how users can extend this tool through a few simple steps and
add new attacks and defenses. This extension mechanism will
keep Backdoor Pony up to date with all the recent develop-
ments in the field. An up-to-date tool will reduce the load of
re-implementing existing works from the literature and lead to
faster results and more accurate research outcomes. Additionally,
Backdoor Pony can run multiple experiments sequentially by ac-
cepting a list of values for the experiment’s hyperparameters. This
speeds up ablation studies allowing users to focus on identifying
trends instead of building pipelines. We have already used this
tool in our internal research projects, and we believe it can be
a valuable contribution to the community. Unlike current tools,

e.g., [6–8], Backdoor Pony supports many application domains.

5
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Fig. 5. Network accuracy metric settings.

Fig. 6. Example of resulting plots.

hus, it can become a common point of reference for experi-
ents among researchers leading to fair comparisons between
ifferent attacks and defenses. Finally, its simplicity and user-
riendliness will lower the barriers to entry in this field and
ttract a broader audience. As a result, it can become a valuable
ducational framework.

. Limitations and future work

While our tool can be a valuable contribution to the field
e believe that there are a few limitations. First, a few popular
ttacks and defenses are missing. However, we plan to add them
n the future allowing researchers to keep up with state-of-the-
rt without too much effort. Additionally, in this version, custom
odels and datasets are not supported as we wanted to ensure

hat our pipeline is functional before allowing arbitrary inputs
rom the users. In the future, we will add this feature to Backdoor
ony allowing the seamless evaluation of the attacks and the
efenses on new data and tasks.

. Conclusion

In this work, we presented Backdoor Pony which is a frame-
ork for evaluating backdoor attacks and defenses in various
pplication domains. To our knowledge, Backdoor Pony is the first
ramework that supports four application domains (image, text,
peech, and graphs) as most of the previous tools focus only on
omputer vision. It also offers full control of the hyperparame-
ers involved through a user-friendly GUI making it suitable for
utting-edge research and education.
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Appendix A. Configuration file

In this section, we show an example of the generated con-
figuration file. It contains info about the chosen dataset, the
model used, the attack and hyperparameters (trigger’s position
and poisoning rate), the defense and hyperparameters, and the
plot configuration.
1 . Se lect the IMDB dataset ;
2 . Se lect ’ use bui l t−in model ’ ;
3 . Choose the stealthybadnl attack ;
6
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L

R

3a . Input [1] for target c l a s s ;
Attack parameters :
{" ta rge t_c l a s s " : {" pretty_name " : " Target c l a s s " , " value " : [ 1 ] } ,
" locat ion " : {" pretty_name " : " Tr igger locat ion " , " value " : [ " s t a r t

" ] , " values " : [ " s t a r t " , "middle " , "end " ] } ,
" t r i gger " : {" pretty_name " : " Tr igger " , " value " : [ " char " ] ,
" values " : [ " char " , "word" , " sentence " ] } ,
" poison_percent " : {" pretty_name " : " Percentage of poison " , " value

" : [ 0 . 1 ] , "minimum": 0 , "maximum": 1 , "
i sVa l id " : true }}

4 . Choose the onion defense ;
Defense parameters :
{" threshold " : {" pretty_name " : " Threshold " , " value " : [20] } }
5 . Press execute .
6 . Metrics :
{" metrics0 " : {" metric " : "Accuracy " , " x_axis " : " Percentage of poison

" ,
" plot " : " Target c l a s s " ,
" graph " : { "1" : {" points " : [ { " x " : 0 .1 , "y " : 50 .8 } ] ,

"name" : 1} } } ,
"metrics1 " : {" metric " : "Accuracy " , " x_axis " : " Percentage of poison

" ,
" plot " : " Target c l a s s " ,
" graph " : { "1" : {" points " : [ { " x " : 0 .1 , "y " : 52 .8 } ] ,

"name" : 1} } } }

isting 1: Example configuration file
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