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Abstract
In recent times, coherent Fourier scatterometry has been considered as an emerging optical
grating scatterometry technique for semiconductor metrology since it shows large sensitivity
owing to its scanning ability. However, further utilization of coherence is possible by making
additional measurements using the principle of temporal phase-shifting interferometry. In this
paper, through numerical simulation, we show how scanning and interferometry can be
coupled together to improve the sensitivity of coherent Fourier scatterometry, to extend its
range of applicability and to obtain sufficient information to calculate the complex scattering
matrix for all angles of incidences inside the numerical aperture of a microscope objective.

Keywords: scatterometry, grating, lithography inspection, coherence, interferometry

(Some figures may appear in colour only in the online journal)

1. Introduction

With the advancement of semiconductor technology, not
surprisingly, a rapid increase in nano-metrology tools suitable
for industrial uses is being observed. However, a look at the
recent ITRS roadmap [1] reveals that there are still many
cases where the required accuracies are not met by tools
that exist at present. Industrial nano-metrology techniques
must be fast, non-contact and process integrable without loss
of accuracy. Optical inverse-grating scatterometry, in which
the shape of a grating sample is retrieved from far field
measurements followed by numerical optimization, is one of
the few methods fulfilling all these requirements [2]. Owing
to its practical importance, a number of articles have been
devoted to scatterometry, so that a detailed introduction can be
skipped here, while [3] or [4] can be referred to for a review.

The state of the art optical scatterometry technique
that is presently used in industry is incoherent Fourier
scatterometry, in which a spatially incoherent extended light

source and Köhler illumination are used [5]. Every source
point corresponds to a particular plane wave that is incident on
the grating. Because the light source is spatially incoherent,
the incident plane waves are mutually incoherent. The
intensities of the scattered orders that are captured by the
lens are measured and compared to simulations, from which
the grating parameters are determined. Gawhary et al [6]
introduced coherent Fourier scatterometry (CFS), in which
a coherent source and a high NA focusing lens are applied
to illuminate the grating with a focused spot. The focused
spot can be expanded in mutually coherent plane waves that
are incident on the grating. The intensities of the reflected
orders that are captured by the objective are measured and
compared to simulations. By using two polarizers, one in
the incident beam and the other in the reflected beam (after
collimation by the lens), all combinations of incident and
reflected polarizations are measured. If the pitch and the
numerical aperture of the objective are so large that higher
reflected orders are captured by the lens, then some of the
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reflected orders overlap. This happens in both incoherent
and coherent Fourier scatterometry, but since in incoherent
Fourier scatterometry the contributing orders are mutually
incoherent, the total intensity is the sum of the intensities of
the overlapping orders. In contrast, in CFS the overlapping
orders interfere and the measured total intensity depends on
the phase difference between them. As has been shown in [7],
the intensities and phase differences of the overlapping orders
can be retrieved by scanning the focused spot over a period
of the grating. Since the method is similar to a common
path interferometer, it is robust. The information about the
overlapping orders can be retrieved in CFS provided the pitch
is large enough. Since this is lacking in incoherent Fourier
scatterometry, the sensitivity for grating shape parameters
is considerably higher in CFS [8]. If the pitch is so small
that reflected orders higher than the zeroth order cannot be
captured by the lens, there is no difference in sensitivity
between the coherent and incoherent versions of Fourier
scatterometry.

However, in CFS, information about the phase differ-
ences between different scattered waves is available only, not
about their individual phases. If this information were also
available an even higher sensitivity could be expected. The
only conceivable way to retrieve this phase information is by
letting the reflected spot interfere with a reference beam [9].
We shall refer to the combination of CFS with interferometry
as interferometric coherent Fourier scatterometry (ICFS).
With this motivation, the purpose of this paper is to investigate
by simulations the gain in sensitivity that can be expected
with these combined techniques. The intensities and phase
differences of overlapping orders are again obtained by
scanning the spot, just as in conventional CFS, whereas the
phase of the total scattered field is obtained by interfering
the reflected spot with a reference beam. The latter can
always be carried out whatever the value of the pitch; hence,
in contrast to CFS, ICFS always gives a higher sensitivity
compared to incoherent Fourier scatterometry, even for a
very small pitch. Two orthogonal polarizations are again
chosen for the incident field and in each case the polarization
of the reference beam is chosen parallel to that of the
incident field. As will be shown in this paper, with ICFS
the complete complex scattering matrices can be determined
for all reflected orders and all incident waves inside the
numerical aperture of the lens. Hence, for a given NA,
with ICFS the maximum possible information about the
scattered far field (i.e., the intensities and phases for all
combinations of incident and reflected polarization states)
is used to reconstruct the grating parameters. Interestingly,
we will show that by adding interferometry, the minimum
number of scanning positions that is needed to retrieve the
overlapping orders is less than in conventional CFS. Recently,
an extension of CFS with white light interferometry has been
reported [10], where a polychromatic source has been used
to produce a reference wave that interferes with the scattered
wave from the sample. Essentially, this technique utilizes
the advantages of spectroscopic scatterometry in a modified
CFS setup. Besides experimental complexity, the main
drawback with spectroscopic scatterometry for semiconductor

industries is unwanted exposure of photo-resist by short
wavelength components. Thus, angular scatterometry with
larger wavelengths is preferred. However, interference with a
monochromatic source should lead us closer to determining
the full scattering matrix [11] of the system, and so
towards maximum sensitivity to solve the ill-posed [12]
inverse-grating problem. Also, it should allow us to limit the
size of the data, thereby helping to achieve faster optimization.

Goniometric scatterometry [13, 14] is probably the most
well known angular scatterometry technique. As illustrated
in figure 1(a), plane waves corresponding to a certain set
of incident angles interact with the grating one by one and
the intensities of the reflected orders are measured for all
combinations of orthogonal states of the polarizers in the
incident and scattered beams. Since the grating is illuminated
by one plane wave at a time, goniometric scatterometry is
too slow for most applications. Nevertheless, if this technique
is extended by interferometry with a reference beam, the
full information about the complex scattering matrix can
be retrieved, just as in ICFS. One might thus expect that
the sensitivity for the grating parameters of interferometric
goniometric scatterometry must be the same as for ICFS.
However, as we will explain, in fact the sensitivity of ICFS
is larger if the pitch of the grating is large. Hence, ICFS is
not only a very fast alternative for interferometric goniometric
scatterometry but also has superior sensitivity.

This paper is organized as follows. In section 2 we
describe the model for CFS and ICFS. In section 3 we present
the results of simulations and we discuss the improvement that
is obtained with ICFS. The final section, section 4, contains
the conclusions.

2. Modeling of the coherent Fourier scatterometry

The problem of the interaction of a plane wave and a periodic
structure is well studied and needs little introduction. We
introduce a Cartesian coordinate system (x, y, z) as shown in
figure 1, such that the grating is periodic in the x-direction,
the grooves are parallel to the y-axis and the z-axis is the
optical axis of the focusing system such that z increases in
the direction of propagation of the incident beam with z = 0
coinciding with the top of the grating.

The incident spot can be expanded into plane waves that
are incident on the grating. The sine of the angle of incidence
of these plane waves with the z axis is smaller than the
numerical aperture (NA) of the focusing lens. The interaction
of an incident plane wave with the grating leads to diffracted
orders. The propagating reflected orders, for which the sine
of the angle with the normal of the grating is smaller than
the NA, are captured by the lens and detected by a camera
conjugate with the lens pupil. Every plane wave whose angle
of incidence or angle of reflection with the normal of the
grating is within the numerical aperture (NA) of the lens
corresponds to a point in the pupil of the lens. Depending on
the value of the so-called overlap parameter introduced in [6],

F =
λ

3 NA
, (1)

2
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Figure 1. The schematics of coherent goniometric scatterometry
and CFS for a one-dimensional grating. The coordinate system
(x, y, z) is such that x is the direction of periodicity, y is the direction
of translational invariance of the grating and z coincides with the
optical axis of the objective. Thus, the grating vector g has only an
x-component. Two different orthogonal polarizations are shown in
different colors, red and blue. In (a) and (b), respectively, simple
schematics of coherent goniometric scatterometry and CFS systems
are shown. In (c) a block diagram of a CFS system is illustrated.
Here, we look at one outgoing direction in the pupil plane in which
several incident ‘red’ or ‘blue’ waves can contribute depending on
the pitch of the grating. When practically realized, (red, blue) can be
seen as (S,P) in coherent goniometric scatterometry and (y, x) in
CFS.

where 3 is the pitch of the grating and λ is the illumination
wavelength, a certain number N of reflected orders can
overlap. If 1 < F ≤ 2, then the +1st, −1st and 0th order
are captured by the lens. Consequently, for some directions
of the reflected beam, the total complex amplitude is the sum
of a field that is the 0th reflected order of some incident beam
and a field that is the +1st reflected order of another incident
beam. As long as F > 1, the −1st and +1st reflected orders
never overlap, hence for 1 < F ≤ 2 we have N = 2. As an
example of the superposition for N = 2, in figure 2(a) the
contributing orders are the zeroth from Q0 and the first from
Q1, which appear at the pupil point Q corresponding to the
scattered wavevector ks

Q. The adjacent figure 2(b) explains
how the focusing by the objective is modeled.

In incoherent Fourier scatterometry, the overlapping
orders are mutually incoherent, hence the total intensity is
the sum of the intensities of the orders, but in CFS they are
coherent and hence interfere. If there is no way to separate the
waves, then the information content in the measurements is
not properly utilized, and the sensitivity of CFS is not optimal.
For this reason, scanning of the sample after illumination
by coherent light is to be utilized. Figure 3(a) shows the
scanning scheme for a one-dimensional grating, with the
grating vector along x, as the grating is moved along x through
small uniform steps until the whole pitch is covered. The
number of steps, or number of sufficient scanning positions
(βmin), depends on whether there is superposition between
the orders or not. Thus, it is related directly to F. If F >

2, there is no overlap of the reflected orders (only the 0th
reflected order is detected), making scanning unnecessary.
The scanning becomes necessary when the superposition of
orders starts at F ≤ 2 (as the first order starts to be captured
by the optical system (N > 1)). The second order is captured
if 0.67 < F ≤ 1. As the number of superposing orders is
determined solely by F, the minimum number of scanning
positions (βmin) needed to obtain maximum sensitivity can be
determined directly from F [7, 8]1.

To simulate CFS for an objective of given NA, it is
convenient to define an orthonormal basis (ξ̂, η̂) in the lens
pupil which is parallel to the (x̂, ŷ)-basis. The incident field
at a given point Q of the pupil having pupil coordinates (ξ, η)
is related to a unique plane wave incident on the grating with
a wavevector whose projection on the (x, y)-plane is given by
(see figure 2(b))

ki
Q = −nk0(ξ x̂+ ηŷ), (2)

where n is the refractive index of the ambient medium, k0 is
the vacuum wavenumber and ki

Q is the incident wavevector. In
this paper we will be using superscript s for scattered wave and
superscript i for incident wave. Since the z-component of the

1 For CFS, βmin = 1 if F > 2, βmin = 4 in the range 1 < F ≤ 2, βmin = 6 in
the range 0.67 < F ≤ 1 etc. It should be noted that βmin = 3 would have been
sufficient when 1 < F ≤ 2, but for simplicity in modeling it is convenient to
choose scan positions symmetrically about the center of the pitch. Also, it is
convenient to assume that in the initial position without scan, the optical axis
(z-axis) passes through the center of the pitch, as shown in figure 3(a). In the
experimental situation this is not possible, and the misalignment is introduced
as an additional parameter to be reconstructed. For details, refer to [8].

3
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Figure 2. (a) The objective pupil plane where a point Q, which
corresponds to the scattered transverse wavevector ks

Q, is
contributed by the waves from direction ks

Q (corresponding to point
Q0) and ks

Q − g (corresponding to point Q1), respectively, through
the superposition of their zeroth and first orders. Here, g is the
grating vector and ξ̂, η̂ is the orthonormal basis at the pupil plane
parallel to the (x̂, ŷ)-basis, with −NA ≤ ξ, η ≤ NA. (b) An
illustration of how the focusing action of the objective is modeled.
The objective transforms a ray incident at Q(ξ, η) on its pupil plane
to a plane wave of incidence angle (θ, ϕ). They are related by
ϕ = tan−1(η/ξ) and θ = sin−1

√
ξ 2 + η2. The polarization of the

incident ray is set to be in the pupil plane by a polarizer placed
before the objective (not shown here) and, thus, expressible in ξ̂, η̂.
It is also required to transform this polarization from basis ξ̂, η̂ to
S,P relative to the plane of incidence. This is carried out in two
steps: first the rotation matrix Ω(ϕ) is used to transform from ξ̂, η̂
to an intermediate polar basis, and then this is transformed into the
S,P basis with a unit matrix. Given the S,P components and the
angles θ, ϕ, one has sufficient information to define the incident
wave on the grating.

wavevector is fixed once ki
Q is specified, ki

Q can be thought
of as a unique direction. Each wavevector ks

Q of the field
scattered by the grating is similarly related to a particular pupil

Figure 3. The grating parameters and the scanning are defined in
(a). In the modeling, the center of the pitch is assumed to be on the
z-axis without scan (initial position). The scanning positions are
designated by β, with β = (0, 1, . . . , βmin − 1). If the grating vector
has only an x-component, scanning is needed only along x and the
βth scanning position denotes a shift of β1x from the origin (1x is
the scanning step size). (b) A possible scheme of the interferometric
coherent scatterometry setup. The coordinate plane x–y is located in
the back focal plane of the objective. The fiber coupler creates the
reference and incident waves from an intensity stabilized laser. The
scattered wave from the sample and the reference are superposed on
beam splitter 2. Polarizers 2 and 3 are always parallel, as indicated
by the arrow. The scanning is performed by a precision stage on
which the sample is placed, whereas the reference phase shifts are
introduced by a fiber phase shifter. Polarizer 1 sets the polarization
of the incident wave.

point similarly as equation (2). For example, in figure 2(a), for
Q, ξ, η < 0 and for Q0, ξ, η > 0, etc.

Now suppose that reflected orders m with −M1 <

m < M2 contribute to the reflected wave with transverse
wavevector ks

Q corresponding to pupil point Q. Here, M1 and
M2 are the maximum numbers of negative and positive orders,
respectively, which can be captured by the optical system and
contribute to the total field of this reflected wave, (i.e., we have
N = M1+M2+1, with N as introduced earlier). According to

4



J. Opt. 15 (2013) 075707 S Roy et al

Floquet’s theorem, the transverse components of the incident
wavevector ki

m,Q whose mth reflected order is in the direction
of ks

Q satisfy

ks
Q = ki

m,Q + mg. (3)

Here, we must keep in mind that when expressed in terms
of ξ and η, the scattered and incident wavevectors will have
components with opposite signs, in accordance with the laws
of vector addition. Also, as illustrated in figure 2, g is the
grating vector, which for our one-dimensional grating is given
by (figure 1)

g =
2π
3
ξ̂. (4)

With this, we can write the total complex reflected field b at
the pupil point Q as

b(ks
Q) =

M2(ki
m,Q)∑

m=−M1(ki
m,Q)

Rm(ki
m,Q)a(k

i
m,Q). (5)

Here, Rm(ki
m,Q) is the 2×2 matrix giving mth order complex

diffraction amplitudes in reflection, for a wave with complex
amplitude a(ki

m,Q) incident from the direction with transverse

projection ki
m,Q. Note that the reflection matrix in (5) relates

fields in the lens pupil, i.e. b and a are both fields in the
pupil. The reason for this is that the polarizer of the incident
field is in the entrance pupil of the lens before focusing and
the analyzer of the reflected beam is in the exit pupil after
collimation. The incident field a in the pupil can be measured
(amplitude and phase) by a wavefront sensor and can be
expressed as a complex vector field dependent on the pupil
coordinates (ξ, η). Given the incident wavevector ki

m,Q, the
matrix Rm is dependent on the shape of the grating, and so is
of central interest to us. In the basis ξ̂, η̂we write the reflection
matrix as

Rm;1x(ki
m,Q) =

(
rξξm (k

i
m,Q) rξηm (k

i
m,Q)

rηξm (k
i
m,Q) rηηm (k

i
m,Q)

)
, (6)

where, for example, superscript ξη denotes polarization
scheme ξ in the reflected field and η in the incident field
(figure 2(b)), etc. The overall phase factor, which forms the
basis of scanning, appears due to shift of the grating by 1x
(measured from the z-axis to the center of the pitch when the
grating is in a specific scanning position) along the x-axis.

A general conically incident incoming wave with
azimuthal angle ϕ and incidence angle θ can be split into
S and P polarized components (with respect to the plane
of incidence), rigorously solved for an interaction with the
grating, and the output field can be similarly expanded. The
commonly used reflection matrix for the interaction of a plane
wave with a grating gives the reflection coefficients of the
reflected orders with respect to this basis. To distinguish it
from the matrix defined above, we will denote this matrix for
order m by RR

m. Its relation with Rm,1x is (see [7] for details)

Rm,1x = f (θ, θm)Ω(ϕ)RR
mΩ−1(ϕm) exp(jmg1x). (7)

Here, �(ϕm)
−1 is a rotation matrix that relates the incident

field in pupil point Qm with polar coordinates (ρm, ϕm) of the
lens from the ξ̂, η̂ basis to the S,P basis. This intermediate
basis (ρ, ϕ) is essentially illustrated in figure 2(b). Pupil
point Qm corresponds to the incident wavevector ki

m,Q whose
mth reflected order is in the direction of the reflected
wavevector ks

Q which, in turn, corresponds to pupil point Q

with coordinates (ρ, ϕ). The reflection matrix RR
m gives the

reflected mth order in the S- and P-basis. The rotation matrix
�(ϕ) transfers the S- and P-components of the mth reflected
order with wavevector ks

Q back to the basis ξ̂, η̂ in the pupil
point Q (see figure 2(b)). Thus, Rm,1x can be assumed to
operate on the basis ξ̂, η̂ only. The scalar factor f (θ, θm) is
necessary for conservation of the energy flux2.

Going back to equation (6), for each direction of
scattering, the whole reflection process can be expressed by
a set of N complex 2 × 2 matrices. Our main interest in this
paper is to obtain sufficient information to determine these
scattering matrices. Let us assume for simplicity that in an
experiment with the µ–ν polarization scheme (µ or ν can
each be either ξ or η) only the zeroth and the first orders
are captured and superposed, i.e., 1 < F ≤ 2. This is the case
shown in figure 2(a). The complex amplitude of the reflected
wave in the direction of ks

Q is then given by

bµν1x(k
s
Q) = rµν0 (ks

Q)a
ν(ks

Q)+ rµν1 (ks
Q − g)aν(ks

Q − g)

× exp(jmg1x), (8)

where equation (3) has been used to express the incident
wavevectors in terms of the scattered wavevector. By
symmetry, a similar expression will hold for superposition
of the zeroth and the negative first orders, but the positive
and negative first orders do not superpose unless F < 1.
Thus, we can consider only one of the superpositions, namely,
equation (8), and the analysis for the other one will be
identical. The intensity in the pupil plane is

|bµν1x(k
s
Q)|

2
= |rµν0 (ks

Q)a
ν(ks

Q)|
2
+ |rµν1

× (ks
Q − g)aν(ks

Q − g)|2

+ 2|rµν0 (ks
Q)a

ν(ks
Q)||r

µν
1

× (ks
Q − g)aν(ks

Q − g)|

× cos[(arg rµν0 (ks
Q)− arg rµν1 (ks

Q − g)

+ arg aν(ks
Q)− arg aν(ks

Q − g)− g1x)],

(9)

where arg(rµνm ) and arg(aν) are, respectively, the phases of
the diffraction amplitudes and of the νth component of the
incident field. The latter can be kept as a reference to be used if
explicit phase evaluation from equation (8) is required. Thus,
if we assume that the incident field is faithfully measured so
that the vector a is known for all wavevector projections in
the pupil, then (9) can be regarded as an equation with three
unknowns, namely the moduli |rµν0 (ks

Q)| and |rµν1 (ks
Q−g)| and

the phase difference arg rµν0 (ks
Q)−arg rµν1 (ks

Q−g). Following
the standard algorithms of phase-shifting interferometry, we

2 This is the ratio of square roots of cosines of incidence and scattered angles.

5
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require at least three scanning positions to obtain all the
unknowns in equation (9). This can be carried out by changing
1x and repeating the measurements. This argument can be
extended when more orders overlap, by stating that we need
at least 2N − 1 scan positions for N overlapping orders.
Anyway, only the phase difference between overlapping
reflected orders, i.e. arg rµν0 (ks

Q) − arg rµν1 (ks
Q − g), can be

calculated. This shows why scanning is not sufficient for
determining the individual phases of the orders, and to obtain
these, interference with a reference wave is necessary. This
will be accompanied by an increase in the amount of data.
This combined technique, which we introduce here as ICFS,
will contain 4Lβminαmin data elements, where αmin is the
required number of steps of phase-shifting interferometry and
βmin is the minimum number of scanning positions (which
may be different from βmin of CFS). Both of these are
determined in the following equations.

If the reflected field bµν1x is made to interfere with another
completely known reference wave aref polarized along µ, the
output polarization direction, the complex amplitude becomes

aµref + bµν1x(k
s
Q) = rµν0 (ks

Q)a
ν(ks

Q)+ aµref + rµν1 (ks
Q − g)

× aν(ks
Q − g) exp(jg1x). (10)

For simplicity, from now on let us assume that both the
incident and the reference waves are perfectly planar. This
does not change any general outcome. Also, for simplicity of
notation, let us drop the wavevector ks

Q in bµν1x(k
s
Q) from now

on. From equation (10), the interference is now a three wave
one, and the intensity can be written as

Iµνβ1x,α = |b
µν
β1x + aµref;α|

2

= |bµνβ1x|
2
+ |aµref;α|

2
+ 2|bµνβ1x||a

µ

ref;α|

× cos[(arg bµνβ1x − arg aµref;α)], (11)

where arg aµref;α is the phase of the αth phase step of the
reference wave polarized along µ, α = (0, 1, . . . , αmin − 1)
and the scan positions are numbered by the indices β =
(0, 1, . . . , βmin − 1); for each β a specific scan position β1x
is chosen. Since these scan positions are used for providing
successive phase shifts usually they are chosen equidistantly.
Physically, Iµνβ1x,α implies, following the notation for scanning
and phase steps as introduced before, the intensity for the
αth phase step measured at the βmth scanning position. The
complete experimental setup will now result in a modified
coherent scatterometry setup [15], shown schematically in
figure 3(b).

To understand the minimum number of frames required
for one specific polarization scheme, it may be noted
from equation (10) that the first and zeroth order complex
reflection amplitudes add up to the complex number bµνβ1x
in equation (8). The latter complex number is derivable
from phase-shifting interferometry with a reference wave.
However, to solve a system of equations as in equation (8),
we need two measurements, i.e. two scan positions (βmin =

2), since each of them contains two independent complex
numbers, namely rµν0 (ks

Q) and rµν1 (ks
Q − g). Thus, the

minimum number of frames required for measurement of one

specific polarization scheme in ICFS is six, employing three-
step phase-shifting interferometry each with two scanning
positions (αmin = 3, βmin = 2).

This argument can easily be extended when more orders
are overlapping (F < 1). For example, if three orders are
overlapping, bµνβ1x will contain three independent complex
numbers, and we will need nine measurements (αmin =

3, βmin = 3). Successive overlapping orders will increase βmin
by one each. An interesting remark can be made here by
noting that ICFS, i.e., CFS with interference with a reference
wave, leads to a smaller minimum number of scanning
positions than the CFS setup without interferometry with the
reference wave.

Together, all the interferometric and scanning frames are
considered as one set of intensity data, a scatter-interferometry
super-frame. After this super-frame is defined, standard
sensitivity analysis for scatterometry [16] of the model with
respect to the required shape parameters can be carried out.
Assuming a noise independent of pixel location and having a
normal distribution with unit standard deviation, the 3-sigma
uncertainty per pixel 1al for the lth shape parameter is given
by [17]

1al = 3
√

Cll, (12)

where C is the covariance matrix of the grating shape
parameters for the model. According to the standard practice
of optimization, we arrange the shape parameters (figure 3)
in one vector a = (a1, a2, a3) = (height, swa,midcd), and the
lth component of that vector has uncertainty1al. Now we can
define the coherent sensitivity gain due to interferometry, csgi,
as

csgil =
1al,scatterometry without interferometry

1al,scatterometry with interferometry
, (13)

where it is assumed that for scatterometry without interfer-
ometry sufficient scanning is already carried out to obtain
maximum possible sensitivity. It is to be noted that any pixel
independent noise component influencing CFS and ICFS in
the same way will cancel out in the way csgi has been defined,
making the results independent of any sensitivity gained or
lost due to this noise.

3. Results and discussion of sensitivity analysis

In this section, we consider example gratings of different
pitches to evaluate the sensitivity gain and to verify the
assumptions made through numerical simulations using
rigorous coupled wave analysis (RCWA) [18, 19]. The
independent variable is the overlap parameter which can be
varied from F = 1 to some reasonable upper limit such
that the case where only the zeroth order is present is also
considered. In the following simulations, we set this upper
limit as F = 2.2. The reason for limiting the scope of
this paper to gratings that are not highly sub-wavelength is
mainly because a simpler theory can be used to describe
them more efficiently [20], which is beyond the present
discussion. However, this range will be sufficient to show the
effectiveness of the principle discussed. We set the simulation

6
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Figure 4. Gain in sensitivity of ICFS compared to CFS when csgi as a function of overlap parameter F is plotted for midcd (left), height
(center) and swa (right) in the range 1.01 ≤ F ≤ 2.2. Improvement in sensitivity is seen for all cases.

Table 1. The simulation parameters summarized.

Simulation settings

Grating type Binary symmetric, resist on silicon in air

Grating shape 150 nm (height) 90◦ (swa) 0.5 (duty cycle)
Overlap parameter settings λ = 633 nm NA = 0.9 Variable 3

Figure 5. The sensitivity of ICFS is compared with ICGS. The
sensitivity in ICFS for midcd is normalized with the sensitivity of
interferometric coherent goniometric scatterometry and plotted with
the overlap parameter for the cases when scanning is carried out (♦)
and not carried out (�). The results show that with scanning the
sensitivity in ICFS becomes better when F ≤ 2. When F > 2, the
sensitivities of both methods are the same.

wavelength at λ= 633 nm and assume an NA of 0.9, while the
pitch is variable. The duty cycle is fixed at 0.5 so that midcd
scales linearly with the pitch. In table 1, we summarize the
simulation parameters.

In figure 4, the results for ICFS are shown. It is seen
that csgi > 1 for all values of the overlap parameter and for
all parameters, proving the benefits of ICFS. Depending on
the specific value of the overlap parameter the gain is seen
to vary. This indicates that for these given physical variables
(wavelength, NA, grating material, etc) some specific grating
shapes have more sensitivity than others. Similar conclusions
can be drawn from the results observed for gratings with other
shapes and materials which have also been tested but left out
to avoid repetition.

At this point, it will be interesting to make a comparison
of ICFS with coherent goniometric scatterometry. As
mentioned in section 1, integration with interferometry can
also be performed for this technique, and if we repeat the
experiment for each of the incident waves in the NA we
can make a fair comparison with ICFS. As the scattered
field of each incident plane wave will have to be interfered
with the reference beam separately, this process will be very
slow and have little practical importance. Nonetheless, the
comparison with ICFS will show how important the benefits
are of the previously discussed retrieval of overlapping orders
by scanning. Since normally (to save time) goniometric
scatterometry is performed for planar incidence only [13], a
linear array along the x-axis (η = 0) will be considered for the
interferometric versions of both methods. This comparison is
shown for midcd in figure 5. Here, the sensitivity of ICFS
is normalized with the interferometric version of coherent
goniometric scatterometry for two cases: no scanning (βmin =

1) and sufficient scanning3. For F > 2, we observe that
the sensitivities of both methods are identical. To explain
this, firstly we note that all calculations for goniometric
scatterometry require only RR

m mentioned in equation (7).
As F > 2, only the zeroth order is captured (f = 1 in
equation (7)), and the sensitivities from both methods should
be identical because the rotation matrices in equation (7)
cannot add any overall gain in sensitivity. This can be used
as a check for correctness in modeling both methods. For
F ≤ 2, without scan, the sensitivity of ICFS is poorer than
its goniometric counterpart. However, the situation changes
when scanning is performed because then ICFS is seen

3 As goniometric scatterometry has no superposition, scanning is
unnecessary.

7



J. Opt. 15 (2013) 075707 S Roy et al

Figure 6. Verification of equation (11) is shown for two overlap
parameters: F = 1.59 (� —), when the 0th and the 1st orders are
present, and F = 2.08 (? · · ·), when only the 0th order is present.
The abscissa denotes different cases of interference and scanning as
ordered pairs, where the first number is the number of phase steps in
interferometry and the second is the number of scanning positions.
The ‘saturation’ of sensitivity shows no more sensitivity gain
beyond (3; 2) for both gratings, agreeing with the predictions made
after equation (11).

to have more sensitivity. This seems surprising at first, as
both techniques must have the same physical information.
The explanation for this observation can be found from the
way in which this information is arranged in the intensity
measurements of the two cases. To explain this, we expand
equation (11),

Iµν1x,α(k
s
P) = |r

µν
0 |

2
+ |rµν1 |

2
+ 1+ 2|rµν0 |

× cos[(arg rµν0 − arg aµref;α)] + 2|rµν1 |

× cos[(arg rµν1 + g1x− arg aµref;α)]

+ 2|rµν0 ||r
µν
1 |

× cos[(arg rµν0 − arg rµν1 − g1x)], (14)

where we assumed a normalized intensity for the plane
reference wave. Here, we have dropped the functional
dependence of rµν0 and rµν1 on ks

Q and ks
Q − g, respectively,

to make the equation compact assuming they are implied
implicitly. If we take the derivative of equation (11) with
respect to any shape parameter, the contribution of the last
term is only available in ICFS. Independent of the phase of
the reference, without scanning, this term can be seen as an
additional noise component with unpredictable contribution
towards sensitivity, while with scanning, this gives the gain
in sensitivity. From the point of view of determination of the
scattering matrices of the system, interferometric goniometric
scatterometry is simpler, since there is not need to retrieve
overlapping orders. However, owing to the overlap, ICFS
has superior sensitivity and is more suitable for use in an
optimization algorithm.

In figure 6 we test the remarks made after equation (11)
about the values of αmin and βmin. We designate our scatter-
interferometry super-frame by (αmin;βmin). For example, (0;
4) will mean scatterometry without interferometry with four
independent scanning positions; likewise, (3; 12) implies
scatterometry with three-frame phase-shifting interferometry
and 12 scanning positions. If we notice the 3-sigma
uncertainty in midcd for two specific overlap parameters, then

we can see for the specific grating with F = 1.59 (overlap
between orders) the the minimum is obtained for (3; 2); (3;
12) and (4; 4), whereas for the case F = 2.08 (only 0th order),
there is no change after (3; 1). Thus it is seen that when
there is overlap, (αmin, βmin) = (3; 2) is sufficient and for no
overlap, (αmin, βmin) = (3; 1) is sufficient4. If we compare the
(0; 4) and (3; 2), we can see that the increase in sensitivity is
comparatively larger for F > 2, about three times, than for
F ≤ 2, when it is about two times. Finally, we may note that
a measurement scheme of (3; 2) for F > 2 and (3; 0) for F ≤
2 should provide sufficient information to obtain scattering
matrices. For this reason, more intensity measurements did
not lead to any gain in sensitivity. This remark supports the
assumptions made after equation (11).

4. Conclusion

In this paper we have shown how coherent Fourier
scatterometry can benefit from integration with phase-shifting
interferometry to improve the sensitivity. It was pointed
out [6] that one of the advantages of CFS compared to
other angular scatterometry methods is the fact that a
number of plane waves from different directions are incident
simultaneously due to the focusing of the objective, creating
superposition and consequent enhancements of sensitivity. We
showed how the benefits of coherence can be extended even
more with integration of scatterometry with interferometry.
Moreover, unless the pitch is sufficiently large, overlap
between orders does not occur and CFS does not have
any practical advantage in terms of sensitivity compared to
incoherent Fourier scatterometry. With ICFS, improvement
of sensitivity for these cases is also shown. Common
practical difficulties (like vibrations, stability of incident
wave) associated with interferometric analysis are often taken
care of by more phase steps and stabilized instrumentation.
These problems are more critical for explicit phase retrieval,
which is required if the scattering matrix is to be determined.
However, in semiconductor metrology this is not needed.
In a comparison with coherent goniometric scatterometry,
we showed that even though these two systems contain the
same physical information about the sample, with scanning,
ICFS shows superior sensitivity. This is desirable for fast
convergence of any optimization algorithm, a fact that is
important for industrial applications.
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