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Abstract
Collaborative robots (cobots) have the potential to augment the productivity and life quality of human operators in the
context of Industry 4.0 by providing them with physical assistance. For this reason, it is necessary to define the relationship
between humans and cobots and to study how the two agents adapt to each other. However, to the best of our knowledge,
literature is still missing insight into how humans perceive and react to changes in the cobot behavior (e.g. changes in the
learned trajectory and in the role the robot assumes). Specifically, a study of how humans adapt to changing roles and control
strategies of collaborating robots is missing. To fill this gap, we propose a human study in which 16 participants executed
a collaborative human–robot sawing task where the cobot altered between three different control strategies. We examined
human adaptation when cobot suddenly changed the control strategy from one to another, resulting in six experimental
conditions. The experiments were performed on a setup involving Kuka LBR iiwa robotic arm. The results suggest that
transition influences movement performance in the early stages and at steady state, subjects prefer to abandon modes that
require more effort and they adapt faster to energy-demanding modes. Finally, for the specific task we studied, subjects tend
to prefer collaborative modes to ones in which the robot assumes a fixed role.

Keywords Collaborative robots · Adaptation · Human–robot physical interaction

Introduction

Industry 4.0 is a new manufacturing paradigm involving
novel production technologies in order to improve worker’s
conditions and to increase productivity and quality (Nardo
et al., 2020). Among these technologies, robotics solutions
have the potential to increase productivity and the working
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conditions of human operators (El Makrini et al., 2019).
Machine productivity and human flexibility have notably
been combined in a concept called human–robot collabora-
tion (HRC) (Kumar et al., 2020). Robots built with this intent
are called collaborative robots or, more commonly, cobots.
Moreover, cobots implementations aim to improve safety
and performance while at the same time facilitating more
interesting responsibilities for human workers and increas-
ing productivity growth (Maddikunta et al., 2022) by sharing
knowledge between robots and humans and by learning from
others (Ngoc et al., 2022).

In many HRC scenarios, humans’ cognitive abilities are
used to supervise the cobots’ physical capabilities (Faccio et
al., 2023a) or to teach the robot how to perform a specific task
by demonstration (Ye et al., 2020). When physical human–
robot interaction (pHRI) is present, it is often treated as a
strict asymmetric relationship leaving low decision power to
the robot (Jarrasse et al., 2014) andmuch attention is devoted
to the safety during the interaction (DeLuca et al., 2006). This
is mainly due to the forces the robot is able to exert, which
must be monitored to maintain safety for the operator as the
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two perform the operation together (Faccio et al., 2023b).
Thanks to improved sensing and control abilities, cobots
gained major awareness in more recent HRC implementa-
tions (Selvaggio et al., 2021). This allows them not only to
share the same workspace with human operators but also to
provide physical assistance to reduce efforts andmore gener-
ally to improve ergonomics in shared tasks (Ajoudani et al.,
2018b). For instance, control algorithms have been designed
to reduce human overloading joint torques coordinating the
two partners in joint tasks (Peternel et al., 2017a) which
required redefining the relationship between the human and
the cobot and particularly the role of each concerning the
collaborative task.

In the advanced paradigm of collaboration, typical of
Shared Autonomy (Selvaggio et al., 2021), the collaborative
robot is capable of adapting its level of autonomy based on
its own understanding of human behavior and of the environ-
ment. Several aspects of collaboration have been investigated
(Faccio et al., 2023a): the communication channel between
humanand cobot (Liu et al., 2022), the experience of the oper-
ator in the task to be performed (Erden & Billard, 2015) and
individual behavior characteristics (Robert, 2018). Neverthe-
less, a fundamental question for this kind of collaboration is
how the two agents adapt to each other across the tasks. In
fact, if the robot were able to predict how a subject would
adapt to a given policy, it could vary its policy with the intent
of accelerating adaptation (in case the equilibrium condition
was good) or conversely guide it to another equilibrium con-
dition.

Human–machine adaptation is a widely studied field even
beyond pHRI (Gallina et al., 2015), implementing adaptive
control schemes which conform to an unknown gain of the
human (Dong et al., 2020). Adaptation could be integrated
by changing the cobot policy when thresholds of safety have
been reached. For instance, Peternel et al. (2018) proposed a
method for HRC where the robot behavior is adapted online
to humanmotor fatigue. Similarly, in Cacace et al. (2022) the
cobot on-line infers whether the human guidance is aligned
to the planned activities and adapts its cooperative behavior
accordingly. In other situations, adaptation can be used to
solve problems in which neither the human nor the robot is
able to solve the problem on their own (Shafti et al., 2020).

Many of these works presented control algorithms that
adapt and change the cobot policy during collaboration with
humans. However, to the best of our knowledge, we lack
knowledge of how humans perceive and react to changes
in cobot behavior. Specifically, little is known about how
humans adapt to changing roles and control strategies of col-
laborating robots during pHRI. We think this knowledge is
important because it allows the robot to predict how a subject
would perform in the short period (before adaptation) and in
the long period (when the adaptation is reached). Knowing

this the robot’s policy can change to modify situations harm-
ful to the subject.

To fill this gap, we propose a human study in which 16
participants executed a collaborative human–robot sawing
task where the cobot altered between three different control
strategies (human-leader, human-follower, and reciprocal).
In human-leader mode, the human guides the execution of
the collaborative task, while the cobot follows. Vice versa, in
human-follower mode, the cobot leads the execution, while
the cobot follows. Finally, in reciprocal mode, the human
and cobot behaviors are reciprocal in terms of the phase of
operation. We examined human adaptation when the cobot
suddenly changed the control strategy from one strategy to
the other, resulting in six experimental conditions. The exper-
iments were performed on the Kuka LBR iiwa robotic arm.

The aim of our study is to try to answer some of the
questions not addressed in the literature. In our previous
human studies (Vianello et al., 2022; Peternel et al., 2016)
we observed that when there is a change in the robot behav-
ior (robot gaining autonomy) the human needs some time to
adapt to that new behavior. During this adaptation period, the
performance of the task and the effort to execute it may be
affected. For this reason, in this paper, we want to assess
how switching is perceived, with both objective and subjec-
tive metrics. We also ask how collaboration performance is
affected in the short and long term. Finally, we think it is
interesting to assess how long subjects need to adjust to a
strategy. We addressed the following questions:

(Th1) How the switching between modes is perceived by
the human? Is the task performance influenced in
the first iterations of the task after the switching?

(Th2) Does a past transition influence the collaboration
even after a steady state is reached?

(Th3) Do humans prefer some transitions with respect to
others?

We also observed the data collected before the mode switch-
ing happened and we used it to compare the three different
modes. This analysis is part of a series of works (Kheddar,
2011; Jarrasse et al., 2014) that seek to understand what role
the robot should assume when physically interacting with
the human (constant/dynamic, cooperation/collaboration,
low/high autonomy). For this reason, we addressed the fol-
lowing questions:

(Th4) Do humans adapt faster to some modes with respect
to others?

(Th5) For the specific task studied in this work, is there a
preferred mode of interaction among human-leader
(L), human-follower (F), reciprocal (R)
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We answer all these questions for this specific task from both
a point of viewof objectivemeasures and fromapoint of view
of human perception (subjective scales).

Related works

Roles in pHRI: cooperation and collaboration

The concept of pHRI combines human skills, such as ver-
satility, with the physical advantages of the robot (Kumar
et al., 2020). Two kinds of interactions are interesting pHRI:
cooperation and collaboration (Jarrassé et al., 2012). In coop-
eration, the roles of the two agents (human and robot) are
fixed while, in collaboration, they adapt during the task
execution. Human-leader/robot-follower role allocation is
typically the preferred strategy in many cooperation sce-
nario (Losey et al., 2018): in this case, the cobot handles
secondary tasks, such as rejecting disturbances (Hogan,
1984), or sustaining forces and positions in different axes
from the ones controlled by the human (Wang & Li, 2010).
The role of the cobot determines the impedance behavior at
the interaction point. During the leader behavior, the cobot
controller can minimize the errors for the actual trajectory
and the desired one (high-impedance), whereas during fol-
lower behavior it minimizes the forces applied at the contact
point with the human operator (low-impedance). By vary-
ing the stiffness-damping parameters, the behavior of the
cobot can be modified between these two extremes (Khed-
dar, 2011).

Even though cobot fixed rolesmeet great success in several
applications such as robotic surgery (Rahal et al., 2020) and
telemanipulation, there are instances in which collaboration,
and thus, adaptive or variable roles could be preferred (Jar-
rasse et al., 2014).Within this context,Agravante et al. (2019)
interpolate between a humanoid robot’s behavior from a total
leader to a total follower. To facilitate effective collabora-
tion in pHRI and switch roles, the robot should be able to
detect human intent online. Khoramshahi and Billard (2020)
propose a method to automatically detect when a human co-
worker is physically trying to guide a robot that is executing
an autonomous task. After the intent detection, the robot
switches into follower mode and only goes back to leader
mode when the human stops correcting the robot.

One method widely used in the literature to modify the
robot’s impedance profile (and thus the role) is the so-
called tele-impedance, namely the transferring of human
impedance to the robot (Fani et al., 2018). Peternel et al.
(2017b) presented two robot role allocations ( reciprocal and
mirrored) based on the concept of tele-impedance. During
Reciprocal tele-impedance, the robot and the human opera-
tor execute two behaviors that are reciprocal in terms of phase
of operation (e.g. sawing task). On the other side, duringmir-

rored tele-impedance, both agents produce the same behavior
in a certain phase of the task (e.g. valve turning). The same
authors (Peternel et al., 2018) proposed a control implemen-
tation of the two roles for human–robot collaboration where
the robot behavior is adapted online using electromyogra-
phy (EMG) signals. The main advantage of using this type
of sensor is that you can directly estimate the forces exerted
by the human and separate them from those exerted by the
surroundings (Bednarczyk et al., 2022).

While theseworks have demonstrated extensively how the
useof variable impedanceprofiles can improve collaboration,
little is known of how the human operator adapts to changes
in robot roles.

Adaptation of roles in pHRI

AclassicalHRCstrategy is to design cobot policies that adapt
to humans (one-way adaptation). In (Li et al., 2015), the robot
is able to adjust its own role according to the human’s inten-
tion to lead or follow. Cherubini et al. (2016) alternate the
leader and follower roles of a robot in a pHRI application
for industrial assembly tasks according to visual and haptic
cues by the human co-worker. Peternel et al. (2018) used
tele-impedance to set the robot strategy and switch between
roles when a given amount of fatigue is reached by the
human. Other work proposes an adaptive control schemes
in which the robot adapts its policy according to estimated
forces (Dong et al., 2020).

In more recent work, it was hypothesized that better col-
laborative approaches can be designed by also considering
how humans change their policy by interacting with the
robot (Gallina et al., 2015). Nikolaidis et al. (2017) intro-
duced a formalization for mutual adaptation between a robot
and a human in a collaborative task. In a similar way, the
study in (Shafti et al., 2020) presents a reinforcement learn-
ing algorithm able to solve a human–robot task in which
neither the human nor the robot is able to solve the problem
on their own. Ikemoto et al. (2009) showed the importance
of a bilateral learning process that takes place in both part-
ners. Other works consider the evolution of the human trust
in robot (Chen et al., 2020) and the robot’s persuasive abil-
ity (Saunderson & Nejat, 2022) to maximize long-term team
performance.

To design the robot action which maximizes the expected
reward, it is necessary tomodel the humanbehaviour (Wilcox
et al., 2013) or, alternatively, the human–robot teambehaviour
(Nikolaidis & Shah, 2013). Nikolaidis et al. (2017) inte-
grated the human ability to adapt to robot actions, defined
as adaptability, to predict human actions in a human–robot
collaboration scenario. Saunderson and Nejat (2022) pro-
posed to use Adaptive Persuasive Systems to acquire user
information, update user models and adapt their persuasive
approaches to the human operator. Chen et al. (2022) use

123



Journal of Intelligent Manufacturing

social projection theory to learn human models from human
demonstrations. In addition, it should be considered that
different individuals may have different behaviors. For this
reason, Nemlekar et al. (2021) divided into cluster subjects
accordingly to their preferences.

All the aforementioned works rely on some human behav-
ior model that is used to determine the robot’s policy of
adaptation. However, these models lack information about
how humans adapt to changes in the robot’s behavior. To cre-
ate more accurate human models, we believe human studies
in pHRI that compare different robot policies and observe
how the human adapts to these given policies are criti-
cal (Vianello et al., 2022). In particular, the impact of changes
in robot control policies during the collaboration was not yet
examined. For this reason, in this work, we examine how
humans adapt when the robot suddenly changes the collabo-
rative control strategy.

Methods

The aim of this study is to investigate how humans react and
adapt to changes in cobot control modes during a collabora-
tive task (Th1, Th2, Th3). Such changes are often necessary
for collaborative robotics applications when different func-
tionalities are required for task execution.

To investigate how humans adapt to changing policy,
we conducted an experiment in which human participants
performed a collaborative sawing taskwith a cobot under dif-
ferent conditions. Three control strategies were defined for
the cobot end-effector impedance: human-leader (L), human-
follower (F) and reciprocal (R). In human-leader mode, the
human guides the execution of the collaborative task, while
the cobot follows. Vice versa, in human-follower mode, the
cobot leads the execution, while the cobot follows. Finally,
in reciprocal mode, the human and cobot behaviors are recip-
rocal in terms of the phase of operation.

16 healthy adults took part in the experiment (4 females
and 12 males, aged 24–30). Participants were naive to the
purpose of the study, and none reported any chronic motor
disease or health condition that could influence the results.
Participants signed an informed consent formprior to starting
the experiment. The study was approved by TU-Delft’s ethi-
cal committee and was conducted following the Declaration
of Helsinki (PP, 1964).

Each of the participants received instructions on the task
to be performed, a description of the three modes, as pre-
sented in “Experimental setup and protocol” section, and
was informed about the presence of a switch from one mode
to another during each trial. However, they were not told
what the two modes would be and when the switching would
happen. They had to figure out which mode the cobot was
executing, and how to adapt to the new one.

We are aware that our work has some limitations like the
use of participants from the university environment and the
choice of the sawing task (simple and common). In this sense,
we do not know if our results can be generalized to other tasks
involving large and heavy loads with movements on the three
dimensions. Nevertheless, we think that our study provides
a fundamental understanding of how to manage the robot
controller transitions in a seamless manner.

Experimental setup and protocol

We selected a collaborative human–robot sawing task that
requires both complex physical interactions and good coor-
dination between the agents (Fig. 1). The task consists of
alternating phaseswhere the humanpushes the saw (while the
cobot pulls) and phases where the human pulls the saw(vice
versa, the cobot pushes). The movement must be performed
along the entire length of the saw (45cm). Performing one
trial takes 2 s on average. A metronome is used to help sub-
jects keep a constant frequency of task execution. Constant
frequency helps us to standardize the experiment among sub-
jects to make data comparable also in the case when the
human is the leader and so no hint on the frequency comes
from the cobot. Participants face the cobot and hold the saw
with their dominant hand, while the other side of the saw is
attached to the cobot end-effector. Figure1 shows the setup.

The cobot is controlled using three different control con-
ditions (F,L,R) which are specifically adapted to the sawing
task. In “Human-follower” (F), the human stabilizes the saw
vertically, while the cobot does all the movement of the
saw back and forth in the horizontal direction. In “Human-
Leader” (L), the human moves the saw back and forth, while
the cobot only stabilizes the saw at its own side. In “Recipro-
cal mode” (R), the robot replicates the standard way humans
do the two-person sawing: both agents are only pulling the
saw, and not pushing. The pulling is exchanged in the fol-
lowing manner. When humans pull the saw to their side, the
cobot starts pulling it back to its side, and vice-versa. The
reason not to pull is to not interrupt each other’s activity (for
example, in a two-person saw without the arc, the saw would
bend, and the task would be interrupted). To express all the
situations in which no previous mode has been executed (so
the cobot is fixed), we used the terminology Nothing condi-
tion (N).

Each subject executed 6 trials; in each trial, two of the
three cobot modes are executed. The first mode is executed
for around ∼ 2 m, then the transition happens and the cobot
switches to the second mode for other ∼ 2 m. Between each
trial, the human rests and there is an allocated time to answer
the questionnaire (∼ 2 m) and time to recover (∼ 3 m). The
total amount of time for the entire experiment is ∼ 1 h. The
acoustic sound of the metronome tells the human when the
trial starts. The metronome frequency does not change for
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Fig. 1 The experimental setup: the cobot is semi-rigidly attached to
the saw, likewise the subject grabs the saw from the other end. EMG
sensors are attached to the subject tomeasuremuscle contraction during
movement

the full time of the task (even during the transition). The par-
ticipant does not know which mode is executing nor when
the transition happens. The six experimental conditions are
presented in Table 1 and their order is presented randomly.
One preliminary trial (in human-leader mode) of 1min is
performed before each experiment to make the subject famil-
iarize with the setup and the sawing task.

Cobot controls

The experimentwas performedwith aKUKA iiwa robot. The
robot was controlled with a mixed force-impedance scheme.
Impedance control allows to move the saw and easily imple-
ment different compliance behaviors. Force control allows
the robot to maintain contact with the workpiece. Let the
robot equation of motion be:

M(q)q̈ + C(q, q̇)q̇ + g(q) = τ − J�Fint (1)

with q ∈ R
n, q̇ ∈ R

n, q̈ ∈ R
n respectively the joint angles

and their derivatives (joint velocities and joint accellerations),
M(q) ∈ R

n×n the inertia matrix, C(q, q̇) ∈ R
n×n the matrix

of Coriolis and centrifugal effects, g(q) ∈ R
n the vector of

gravity forces, J ∈ R
6×n the end-effector Jacobian, τ ∈ R

n

the joint torque vector, and Fint ∈ R
6 the interaction forces

and wrenches at the end-effector. A hybrid force/impedance
controller was implemented following (Peternel et al., 2018).
The force behavior was defined as

Fint = F f or + Fimp (2)

where the term F f or is related to the force task (i.e., in saw-
ing is keeping contact with the wood) controlled by a PI
controller

F f or = K F
P eF + K F

I

∫
eFdt, (3)

eF = SF (Fa − Fd) (4)

where K F
P , K F

P are the gain of thePI controller,while Fa, Fd

are respectively the actual and the desired force on the
end-effector. The desired mechanical impedance at the end-
effector is defined as:

Fimp = K (xee − xd) + D(ẋee − ẋd) (5)

where K ∈ R
6×6 and D ∈ R

6×6 are the desired stiffness
and damping matrices in Cartesian space, and xee and xd are
respectively the actual and desired end-effector poses. The
three different robot behaviors described in “Experimental
setup and protocol” section were implemented by changing
the values and profiles of the K and Dmatrices, as explained
in the next section. Only the translational stiffness and damp-
ing were modified across conditions, whereas the rotational
part remained identical.

Robot role allocation

The two experiment conditions L and F, were implemented
usingfixed values for K and D throughout the entire task exe-
cution. The coefficient of K on the direction of the sawing
was set to a zero value when the human leads the movement.
When the human follows, the coefficient is set to a high value.
The coefficients of D were computed from K and the Carte-
sian mass matrix using factorization design (Albu-Schaffer
et al., 2003).

The ”Reciprocal mode” R was defined and implemented
based on the work by Peternel et al. (2017b). The robot’s
Cartesian stiffness is adjusted online throughout the task
depending on the human shoulder stiffness trend ch(t). The
human stiffness profile is estimated as in Ajoudani et al.
(2018a) using the scaled mean of shoulder antagonist muscle
contractions (A1, A2):

ch = a

(
A1 + A2

2

)
∈ [0, 1] (6)

where a ∈ R defines the amplitude and shape of ch , and is
determined experimentally.

For the reciprocal stiffness behavior (R), K is:

K (t) = K const + S
((
1−ch(t)

)
(Kmax−Kmin)+Kmin

)
(7)

where S is a selection matrix that defines the axes where the
stiffness ismodulated, Kmin and Kmax contain themaximum
and minimum desired stiffness for those axes, and K const

contains a constant stiffness for the axes that are not mod-
ulated. In this experiment, the translational stiffness in the
direction of the sawing was modulated, while the other com-
ponents were constant. In this condition, the robot behaves
as a leader if the human is compliant, whereas it effectively
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Table 1 Study design and
experimented conditions: each
subject performs the six
experimental conditions, in
which the cobot changes the
mode from one to another

Experimental condition Cobot controls Modes conditions Cobot control

1 F → L 1b N → F

2 F → R

3 L → R 2b N → L

4 L → F

5 R → F 3b N → R

6 R → L

Three modes were tested: human follower (F), human leader (L), and reciprocal (R). To express all the
situations in which no previous mode has been executed (so the cobot is fixed), we used the terminology
Nothing condition (N ). The experimental conditions are tested in random order

cedes the autonomy of the task to the humanwhen the human
co-contracts.

The robot reference trajectory has been designed in Carte-
sian space between two points based on the required saw
movement in the experimental setup.When the robot reaches
one end-point, it then comes back to the other end-point.
The orientation of the saw is kept constant throughout the
movement. The duration of the reference trajectorywas tuned
experimentally and set to 2 s, which corresponded to a com-
fortable pace for users and was comparable to the previous
studies on human–robot collaborative sawing (Peternel et al.,
2017b).

Performancemetrics

To evaluate the performance of the task execution and of the
collaboration, we observed the following objective metrics.
These performance metrics were calculated at each iteration
of the task, whereas iteration is considered one round trip of
the saw.

M1 Length of the movement makes it possible to verify
that the movement is performed along the entire length
of the blade. This value is assessed using the difference
between the minimum value and the maximum value of
the movement in the y direction. At best, the length of
the movement is equal to the length of the blade (45cm).

M2 Acceleration gives an estimation of the smoothness of
the movement and it is calculated with double deriva-
tion from the movement. We considered the mean of the
absolute value of the acceleration. The position of the
end-effector is assessedusing thedirect kinematicsmodel
of the robot. These values are recorded using rosbag
collecting the ros messages sent by the kuka control soft-
ware.

M3 Co-Contraction index (ICC) provides an estimation of
the human effort. Co-Contraction index is the minimum
value of antagonist muscles. This value is usually asso-
ciated with human stiffness (Gribble et al., 2003). The

value is calculated as the mean value of all the ICC over
one trial.

M4 Force applied to the robot is also a measure of human
effort. It is calculated using the robot torque sensors
(Fext = J−T τext ). We considered the mean value of
the absolute value of the force only in the direction of
the sawing (namely y axis) because we do not notice big
forces in the other directions. Also in this case we col-
lect the ros messages sent by the kuka controller using
rosbags.

M5 The Error on the reference position gives us an idea of
how much the subjects differ in motion from the trajec-
tory proposed by the robot. It is important to note that in
the human leader mode (L) the subject has no clue what
the trajectory indicated by the robot is. This justifies the
use of themetronome as a tool to equalize the comparison
between different modes.

M6 Fourier To compare the smoothness of each move-
ment, we compute the sum of the frequencies minus the
principal frequency using the Fourier transform of the
movement (Bracewell & Bracewell, 1986).

Moreover, to evaluate the human adaptation to a given
mode after the transition happens we calculate the number
of transitions necessary to reach a steady state for the human.
The next section (“Statistical analysis” section) will present
how we consider that a steady state is reached.

We also evaluate how the subjects perceived each exper-
imental condition. This subjective metric is composed of
a set of questions. After each trial, the subjects answer
three questions related to how they perceived the transition
between modes:

1. Did you recognize the 2modes? This question was added
to stimulate the subject to explore the experimental con-
dition they are testing and thus engage more in the
collaboration.

2. The transition between the two modes was challenging.
3. I felt that the performance in collaboration improved

after mode transitioning.
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After each experiment, they are additionally asked to fill in a
questionnaire related to individual mode, with the following
questions, with answers on an X-items Likert scale.

1. The mode was engaging
2. The mode was demanding
3. The mode required high cognitive effort
4. The mode required high physical effort
5. The mode was boring

Moreover, we included the Van der Laan questionnaire (Van
Der Laan et al., 1997), which evaluates perceived usefulness
and satisfaction for an experimental condition.

Statistical analysis

For each experimental condition, we analyzed two critical
times: just after the mode-switching and when the steady
state is reached. We decided to study the first trials after the
transitions becauseduringpilot experimentsweobserved that
these are the more critical moments for the collaboration.

To identify when participants reached steady state perfor-
mance,we use linear regression. Regressionswere calculated
for each of the six experimental conditions (F→L, F→R,

L→R, L→F, R→L, R→F) and the ”nothing-to-something”
conditions (N→L, N→R, N→F), in an iterative way for
the last n trials, where n goes from N (number of trials) to
zero. We repeated this procedure until the slopes were not
significantly different from zero (i.e. the 95% intervals did
include zero). Since different performance metrics have dif-
ferent convergence times to steady state, we decided to take
the last one to converge.

The data (both for the first trials and for steady-state con-
ditions) were checked for normality with a Shapiro-Wilk test
and then analyzed with a one-way repeated-measures analy-
sis of variance (ANOVA) with condition as a within-subject
factor and participant as a random factor (Dixon & Massey
Jr, 1951). Pairwise multiple comparison post-hoc tests with
Bonferroni corrections were conducted when a significant
effect of condition was detected by the ANOVA.

Questionnaire scores and the number of contactswere ana-
lyzed with non-parametric Friedman tests, given the nature
of the data. Post-hoc tests were conducted when a significant
effect of condition was detected. A significance level of 5%
was adopted for all statistical tests. Analyses were performed
with python software.

Results

This section is composed of three main parts. First, we look
into transitions between modes. Second, we examine modes
on their own. Finally, we check the results of the subjective

evaluation of both transitions and modes using question-
naires.

Transitions evaluation

Transitions betweenmodes are evaluated in terms of progress
and in terms of reaching a steady state.

Progression

We noticed that the progress of the performance metrics
varies accordingly to the current mode and the one experi-
enced in the past. We could observe that the average number
of iterations necessary for the participants to adapt (and so
reach steady state) varies across the experimental conditions
(R→L : 7, F→L : 10, L→R : 13, F→R : 10, L→F :
14, R→F : 17).

Figure 2 we display the distribution of the metrics on the
first iterations of the task after the mode switching. Fig. 2a
displays the length of the movement, at best, the length of
the movement is equal to the length of the blade (45cm).
We can observe that the more autonomy the robot has longer
the movement. Figure2b displays the accelerations during
the movement execution. In this case, it is not easy to spot
differences between the conditions. Figure2c shows the dis-
tributions of the muscle co-contraction. This value is usually
associated with human stiffness. Figure2d exhibits the force
the human is applying to the robot calculated using the robot
torque sensors. Human force and human stiffness give valu-
able information about howmuch effort the subject is putting
into performing the movement. In Fig. 2e are presented the
distributions of the error in the reference trajectory.This value
is useful to understand how much the subject could apply a
different trajectory. Finally, Fig. 2f shows how smooth the
trajectory is.

The ANOVA revealed a significant effect for the length
of the movement (p = 0.02), co-contraction index (p =
0.04) force (p < 0.001), error on the reference position
(p < 0.001) and smoothness of the movement (p < 0.001).
For these cases, we executed Post-hoc test. For the length
of the movement, we observed differences between F→L
and L→F (p = 0.02) and values close to differences
between F→L and L→F (p = 0.06) and F→L and R→F
(p = 0.058). For co-contraction index between R→L and
all the last three conditions (p < 0.001 for all the conditions)
and a similar thing for F→L and all the last three conditions
(p = 0.03, p = 0.004, p = 0.01 respectively). Concerning
the force, we found significant differences between R→L
and all the last four conditions (p = 0.02, p = 0.02, p =
0.001, p < 0.001 respectively) and a similar thing for
F→L and all the last four conditions (p = 0.012, p =
0.021, p = 0.003, p < 0.001 respectively). Moreover, there
are significant differences between R→F and the two con-
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Fig. 2 Comparison of the
experimental conditions at the
first 5 iterations after the
switching: (M1) Length of the
movement; (M2) Acceleration;
(M3) Co-Contraction index of
the subject and measured using
EMG sensors; (M4) Force
applied to the cobot; (M5) Error
on the reference position; (M6)
Fourier. The six experimental
conditions are the combinations
of the three control modes:
Human Leader(HL), Human
Follower(HF) and
Reciprocal(R). Stars above the
boxplots indicate a statistically
significant difference between
conditions

ditions ending with R (p = 0.01, p = 0.04 respectively).
Error on reference position reported differences between the
conditions having L after the transition and all the others
(p < 0.001); moreover, the experimental condition F→R
presents statistical differences with the experimental modes
ending with F (p < 0.001, p = 0.006). The smoothness of
the movement suggest statistical differences between R→L
and R→F (p = 0.02), F→L and all the others (p = 0.015
for the first condition and p < 0.001 for the last three con-
ditions) and L→R and R→F (p = 0.01).

In summary, we observe that the transition heavily influ-
ences the collaboration.

Steady state

Figure 3 displays the distribution of themetrics on the steady-
state iterations of the task and after the mode switching.

The ANOVA revealed a significant effect for acceleration
(p = 0.02), co-contraction index (p = 0.008), force
(p < 0.001), error on the reference position (p < 0.001)
and smoothness of the movement (p = 0.004). For these
cases, we executed Post-hoc test. For the acceleration, we
observed differences between R→L and F→R (p = 0.02),
R→L and L→F (p = 0.001). For the co-contraction index,
between R→L and the last four conditions (p = 0.018, p =
0.006, p = 0.004, p = 0.001 respectively), for F→L there
are significant differences only to the last three conditions
(p = 0.01, p = 0.001, p = 0.04 respectively). Concern-
ing the force, we measured significant differences between
conditions ending with L and the other conditions. Error on
reference position reported similar behavior; moreover, we
found statistical differences between F→R and the experi-
mental modes ending with F (p = 0.01 for both of them).
Regarding the smoothness of the movement, we found sta-

123



Journal of Intelligent Manufacturing

Fig. 3 Comparison of the
experimental conditions at
Steady State: to identify
steady-state linear regressions
were calculated for each of the
six experimental conditions
iteratively for the last 60, 59, 58
trials and so forth until the
slopes were not significantly
different from zero (i.e. the 95%
intervals did include zero). Stars
above the boxplots indicate a
statistically significant
difference between conditions

tistical differences only between the first two conditions and
the last four.

In summary, we can observe that certain transitions influ-
ence collaboration even at a steady state.

Modes evaluation

Figure 4 displays the distribution of the metrics described in
“Performance metrics” section for the three control modes
after reaching steady state. The ANOVA revealed a sig-
nificant effect co-contraction index (p < 0.001), force
(p < 0.001), error on the reference position (p < 0.001),
and smoothness (p < 0.001). For these cases, we executed
Post-hoc test. For the co-contraction index, we notice signif-
icant differences between L and R (p = 0.001) and between
L and F (p < 0.001). For the force, there are significant
differences between L and R (p < 0.001) and between

L and R (p < 0.001). Concerning the error on the refer-
ence position, there are significant differences between L
and R (p < 0.001), between L and F (p < 0.001) and
between R and F (p = 0.001). Also the Fourier showed dif-
ferences between L and R (p < 0.001) and between L and
F (p = 0.002). At steady state, we notice more statistical
differences between L and R than between F and R. This
may suggest that participants, at steady state, tend to follow
the movement of the cobot and supervise the movement. The
only statistical difference between R and F is for the error
on the reference position.

Regarding the number of iterations necessary for subjects
to adapt, we observed that L mode generally converges faster
to steady state (it takes around 12 iterations to converge)
while R takes 20 iterations and F is generally slower (around
25 iterations) (Table 2).
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Fig. 4 Comparison of the
control modes at steady state: to
compare the control modes
fairly and without them being
affected by the transitions, we
compared the scores before the
transitions occurred. Stars above
the boxplots indicate a
statistically significant
difference between conditions

Table 2 Linear regressions
between the trial number and
these dependent measures to
identify when participants
reached steady state
performance

R→HL HF→HL HL→R HF→R HL→HF R→HF HL R HF

7 10 13 10 14 17 12 20 25

Regressions were calculated for each of the six experimental conditions and the modes, iteratively for the last
60, 59, 58 trials and so forth until the slopes were not significantly different from zero (i.e. the 95% intervals
did include zero, the first appearance of p > 0.05)

Questionnaire

Figure 5 displays the distribution of the scores for the ques-
tionnaire about the transitions. The Friedman tests revealed
a significant effect of the condition factor for question Q1
(Transition between the modes was challenging) (χ2(3) =
26.6, p < 0.001) and for Q2 (Collaboration improved after
the transition) (χ2(3) = 25.7, p < 0.001). For Q1, post-hoc
tests indicated a significant difference between F→L and

L→R (p = 0.045), L→R and F→R (p = 0.003), L→R
and R→F (p = 0.005), F→R and L→F (p = 0.03) and
a close difference between L→F and R→F (p = 0.052),
while the other comparisons did not reach significance. For
Q2, post-hoc tests indicated a significant difference between
R→L and L→R (p = 0.01), F→L and L→R (p =
0.001), F→L and L→F (p = 0.01), L→R and R→F
(p = 0.045), and close to be different between R→L and
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Fig. 5 Subjective questions about the transition

L→F (p = 0.07), while the other comparisons did not reach
significance.

Figure 6 displays the distribution of the scores for the ques-
tionnaire about the three modes. The Friedman tests revealed
a significant effect of the condition factor for question Q1
(The mode was engaging) (χ2(3) = 8.4, p = 0.01), for Q2
(The mode was demanding) (χ2(3) = 28.6, p < 0.001), for
Q3 (The mode required high cognitive effort) (χ2(3) = 13.6,
p = 0.001), for Q4 (The mode required high physical effort)
(χ2(3) = 29.1, p < 0.001) and for Q5 (The mode was
boring) (χ2(3) = 12.16, p = 0.002). For Q1, post-hoc
tests indicated a significant difference between R and F
(p = 0.02). For Q2, post-hoc tests indicated a significant
difference between L and R (p = 0.003) and L and F
(p = 0.001). For Q3, post-hoc tests indicated a signifi-
cant difference between R and F (p = 0.04) and L and
F (p = 0.02). For Q4, post-hoc tests indicated a signifi-
cant difference between L and the other two conditions(p =
0.004, p = 0.001 respectively). For Q5, post-hoc tests indi-
cated a significant difference between R and L (p = 0.007).
All the other comparisons did not reach significance.

Discussion

This section discussed the main results in terms of transi-
tions between modes and modes individually, both in terms
of objective metrics and questionnaires. Finally, we discuss
some of the possible limitations of the existing study.

Transitions

Figure 2 reports on the performances we chose to evalu-
ate (length of the movement, acceleration, co-contraction
index, force, error, and smoothness) at the first iterations
after switching between one mode to another. We observe
statistical differences in movement length only between the

second (F→L) and the fifth experimental condition (L→F).
Although there are no statistical differences, we observe a
lower median for both the first (R→L) and fourth tran-
sitions (F→R). Similar considerations apply to the error
on the reference position (statistical differences for R→L ,
F→L and F→R). These results suggest that for these three
experimental modes, the quality of motion is affected by the
transition losing the ability to follow the reference. We think
this is because the participants are accustomed to greater
robot autonomy, and when this fails, they do not take over
quickly enough to take the lead.

We also observed an interesting effect regarding co-
contraction and applied force. The co-contraction index of
the third experimental condition (L→R) is similar to that of
the first two conditions (R→L and F→L), despite not show-
ing statistical differences from the last three (as the first two
do). The applied force, on the other hand, shows how both
the third and fourth conditions (L→R and F→R respec-
tively) show differences from the last two, and the fourth
has a higher median. These results suggest that the opera-
tor applies a different force profile dependent on what the
transition was. This type of behavior may be due to a stiff-
ening of the operator (and thus an increase in ICC without a
consequent increase in the force applied on the cobot) in the
transition phase. We think this may be due to either a desire
to maintain stability in the movement or an attempt to better
understand the type of interaction being performed with the
cobot.

Figure 5 showed how the subjects perceived the tran-
sitions. Subjective questionnaires showed that the subjects
found challenging to pass to F modes (Fig. 5a) and, on the
contrary, they showed that the simplest transition is L→R.
Collaboration perception is improved in the cases where pre-
viously the human is the leader (Fig. 5b) while it remains
more or less constant in the switching from human leader
to reciprocal, conversely, it is worsened when the human
is the leader after the transition. Similar behavior has been
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Fig. 6 Subjective questions about the three modes: Human Leader (L), Human Follower (F) and Reciprocal (R)

observed previously inmovement length. This indicator rein-
forces our hypothesis that subjects have difficulty taking over
abruptly when the cobot’s cooperation fails. Similar undesir-
able behavior can also be imagined in the case of two human
subjects in which one of the two participants stops making a
contribution to the collaboration. Undoubtedly, such conduct
would be misinterpreted by the second participant. Indeed, it
is well known that, in general, people tend to appreciate more
those who evolve their behavior from negative to positive
while they appreciate less thosewho change from a perceived
positive behavior to a negative one. In the literature, this effect
is called the “gain-loss effect” (Aronson&Linder, 1965), and
it has been shown that it can also be applied to interaction
with robots (Nakamura & Umemuro, 2022). So, to answer
(Th1: How the switching between modes is perceived by the
human? Is the performance influenced in the first iterations
of the task after the switching?), we can state that indeed
the transition influences movement performance in the early
stages and that the quality of the movement depends on how
it was previously performed. As for (Th3:Do humans prefer
some transitions with respect to others?), however, we can
say that subjects prefer to abandon the human leader mode
and prefer to either follow the robot or to collaborate (recip-
rocal).

Figure 3 reports on the performance metrics after the
steady state is reached. We expected that at steady state, the
impact of switching had now been nullified, and instead,
some results suggest that operator performance is still
affected. Indeed, although we observed no statistical differ-
ences in movement length, there is a lower median for both
the fourth transitions. Similar considerations apply to the
error on the reference position (statistical differences for the
first two and the fourth). Interestingly, the movement length
for the human leader cases is about the same as for the other
cases while the error is very different. Our intuition is that
this might be due to the fact that the human imposes a dif-
ferent trajectory than the cobot but is still functional for task
execution. These results refer to (Th2:Does a past transition
influence the collaboration after the steady state is reached?),
suggesting that the performance of the collaboration is also
influenced after the steady state is reached.

Fig. 7 Results of the Van der Laan questionnaire. This scale assesses
system acceptance on two dimensions: a Usefulness scale and a Satis-
fying scale

Modes

Figure 4 reports on the performance metrics for the three
control modes observed separately after the steady state is
reached. We can observe that there were no statistical differ-
ences in movement length, so movement performance was
therefore not affected by mode choice. On the other hand, if
we look at the distance to the reference trajectory, we notice
statistically significant differences that allow us to say that in
the three cases, the human–robot pair performed three differ-
ent trajectories. Looking at the other graphs (ICC, force, and
smoothness), we observe statistical differences only between
L and the other two modes. These results suggest that the
R mode does not significantly affect the operator’s effort
and smoothness of the motion while allowing the opera-
tor to impose his own trajectory, as observed in the error
from the reference. This happens because of the way R was
constructed, in fact, whenever the subject decides to change
the trajectory from that imposed by the cobot the subject
increases its stiffness inducing the cobot to become compli-
ant.

In Fig. 6 wemake the following observations: the subjects
perceive the R and the F modes as engaging, the F is not
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demanding while the L is highly demanding also from a
cognitive point of view and from a physical point of view,
the R mode is arranged in the middle of these two extremes,
subjects perceive the R mode as less boring with respect to
the other modes. In a similar way, Fig. 7 displays the three
modes on the Van der Laan scale assigning both a score of
satisfaction and of use-fullness. We observe that the mean
value of the R and of the F mode are very close to each other,
and at the same time, they are distant from the mean of the L
modes. In accordance with this scale, there is a small benefit
in the R with respect to using F mode. Thus, answering
question Th5 (For this specific task, does human prefer one
mode with respect to another?), we could state that subjects
much prefer to collaborate with a cobot in R and L modes
than a cobot in F mode. At the same time, we note a slight
preference toward the R mode. Talking with participants,
we got the idea that subjects preferred approaches in which
the cobot was active because they were less strenuous. At
the same time, we think R mode was better perceived by
subjects because they felt they had more control over the
task. Moreover, we think R is more convenient because it is
less boring, more engaging (with respect to F mode), and
requires less effort (with respect to L mode). For this reason,
we think it is better suited for tasks in which it is important to
be engaging (for instance, when human and robot executes
dangerous movements).

The performed statistical analyses (“Statistical analysis”
section) show how the general human subject finds equi-
librium in its behavior (and thus scores settle) faster in the
human leader case. In contrast, the human follower is, in
general, slower to converge to an equilibrium solution. The
reciprocal mode condition generally requires intermediate
times. Thus, answering question Th4 (Does human adapt
faster to some modes with respect to others? ), we could state
that human subjects adapt to the cobot’s control modes at dif-
ferent times and that the greater the participant’s autonomy,
the shorter the time. This result is probably due to the fact
that subjects search harder for solutions that limit the amount
of fatigue in performing the movement. Furthermore, it has
been shown that humans, in general, have a greater ability to
adapt to tasks than the robot (Fitts, 1951), we think that in
the L case, the subject has full decision-making power and
thus is not somehow slowed down by the cobot’s reduced
capabilities as is the case in the R and F cases.

Limitations

Our results should be considered carefully. First, the study
was conducted with participants from the university environ-
ment, and while few participants were familiar with robots,
the results cannot be generalized to a generic population,
especially with industry workers that may have different atti-
tudes when interacting with a cobot (Maurice et al., 2018).

Second, the planar sawing task was simple and common. In
this sense, we do not know if our results can be generalized to
other tasks involving large and heavy loads with movements
on the three dimensions, a situation that is often found in
manufacturing where robots physically assist workers [e.g.,
manipulating car parts as in Maurice et al. (2019)]. In any
case, the results we obtained allow us to demonstrate how
important the type of training the operator must undergo is
and how important it is to manage the robot controller tran-
sitions in a consonant manner.

Conclusion

In this paper, we studied how humans adapt in a collabora-
tive sawing task when cobot suddenly changes the control
strategy. The results suggest that in this kind of task, not
only the type of the current role of the cobot, but also the
past ones influence the behavior of the human operator. In
our specific task, the results seem to indicate that: transi-
tion influences movement performance in the early stages
(Th1) and at steady state (Th2), subjects prefer to abandon
the human leader mode and prefer to adopt modes in which
there is either reciprocal mode or follower mode (Th3), they
adapt faster to leader mode (Th4), subjects prefer recirocal
mode (Th5).

Our work points out how important it is to consider the
adaptive process in many environments where humans and
robots physically interact: industry, home automation, and
rehabilitation. In future work, we would like to test the adap-
tation of the human on different types of tasks to see if the
results are consistent with what we have seen for collabora-
tive sawing. Also, we would like to use the collected data to
build a model of how a human adapts to a robot. We think
this model could provide us with an indispensable tool for
collaboration. Indeed, if the robot could predict how a sub-
ject adapts to a given policy it could vary its policy with the
intent of accelerating the adaptation (in case the equilibrium
condition was good) or on the contrary guide it to another
equilibrium condition. These kinds of strategies are already
present in the literature (Nikolaidis et al., 2017), but to the
best of our knowledge, there are few cases where they are
used in pHRI.
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