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ABSTRACT The vast potential of memristor-based computation-in-memory (CIM) engines has mainly
triggered themapping of best-suited applications. Nevertheless, with additional support, existing applications
can also benefit from CIM. In particular, this paper proposes an energy and area-efficient CIM-based
methodology to perform arithmetic signed matrix multiplications. Our approach combines a) the mapping of
the signed operands on the 1T1R crossbar, and b) the augmentation of the periphery with customized circuits
to support the execution of shift and accumulate needed for the arithmetic operations. The operand mapping
is performed without the need for sign extension; hence, reducing the required memory size. To demonstrate
the superiority of our scheme as compared with the state-of-the-art, simulations are performed for different
case studies including a neural network and two kernels which are taken from the Polybench/C benchmark
suite. The results show that our approach achieves up to 8× energy-saving and 3× area-saving compared
with other CIM-based prior works.

INDEX TERMS Memristor, computation-in-memory, signed computation.

I. INTRODUCTION
Matrix arithmetic operation is key in many applications such
as image, graph, and language processing [1], [2], [3], [4],
[5], [6]. It is the killer in terms of energy efficiency. This is
mainly due to the inherent separation of data and processing
in state-of-the-art computer architectures [7]. This separation
reduces the energy efficiency as transmission to/fromDRAM
consumes several orders of magnitude higher energy than a
single operation within a processor [8], [9], [10], [11]. This
is further exacerbated when the amount of data explodes.
As an alternative to traditional computing, designing and
developing accelerators for matrix operations based on the
notion of Computation-in-Memory (CIM) [12] and making
use of emerging technologies, memristor devices [13], [14],
[15], [16], [17], have attracted great attention. From the
application perspective, mapping the operands to the memory
unit, comprising emerging devices and their peripheries, is a
critical step toward enabling energy-efficient CIM; it includes
choosing the appropriate datatype structure and supporting
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signed numbers. These applications are often operating on
signed numbers and require different data type sizes. Hence,
without the support of signed numbers, the promise of CIM
for these applications is greatly diminished. Therefore, it is
essential for researchers to enable this feature for CIM-based
design. Since memristor devices store the information as
different (positive) conductance levels, additional considera-
tions are required when the computation has to be performed
on signed numbers. This enforcesmore complexity in theway
the data is mapped to the crossbar as well as the way the
computation should be performed. Therefore, a simple, yet
energy-efficient, solutions are needed to perform operations
on signed numbers.

Recent work has presented a few mapping solutions to be
able to support data types and signed numbers on memristor-
based crossbars. The two’s (four’s) complement representa-
tion is employed in [18]; however, a large overhead in terms
of energy, performance, and area efficiency is imposed in
this representation due to the sign extension. Considering
that, ISAAC [19] biases the data intended to be programmed
into the crossbar to bring them into the positive range while
keeping the crossbar input as two’s complement datatype.
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This requires keeping track of the number of elements that
contribute to the result to be able to unbiased the output
afterward. Hence, extra pre-and post-processing has to be
considered. PRIME [20] and PipeLayer [21] map positive
and negative weights into different crossbars, which requires
incorporating more crossbars. Finally, storing the weights as
differential conductance between memristor devices either
located in one crossbar or in two crossbars has been sug-
gested in [22] and [23]. Similarly, this approach has to
employmore crossbar arrays, which in consequence, imposes
more energy and area overhead. In addition, these works did
not provide any detailed implementation required for extra
processing in the periphery to add up intermediate values
produced by the crossbar for Matrix-Matrix Multiplication
(MMM). As the matrix and operand size incorporated in
this operation increase, more overhead is imposed into the
digital periphery due to the larger adders and more shift
operators [24]. This implies the necessity of optimization
in the periphery. To summarize, signed computation, com-
pared to the unsigned computation, requires more complex
weightmapping, consumesmore area andmemristor devices,
and demands more extra processing in the periphery, which
induces more energy consumption and latency to the system.

This work advances the state-of-the-art by proposing a
novel mapping solution to support signed and unsigned
MMM based on widely used two’s complement representa-
tion. In this method, signed and unsigned operations are per-
formed with minimum energy, latency, and area overhead by
eliminating the costly sign extension. The proposed periphery
architecture utilizes minimum-sized adders customized based
on technology-driven restrictions. In short, this paper presents
the following main contributions:

1) A novel scheme to support widely used two’s com-
plement arithmetic operations: This is accomplished
by exploiting the behavior of the memristor crossbar
without the costly sign extension. This eventuates to
efficient support of signed integer/fix-point computa-
tions in terms of energy, latency, and area. The flexi-
bility of the design allows applications to dynamically
switch between signed and unsigned computationwith-
out changing the hardware or mapping of data.

2) An energy and area efficient digital periphery archi-
tecture for MMM: The periphery fulfills additional
processing required for MMM using minimum-sized
adders and registers. The proposed solution allows
applications to dynamically change the data size with-
out changing the hardware or the mapping scheme of
data to the crossbar.

3) Evaluation of the proposed solution using two mem-
ristor technologies (RRAM and PCM) and different
benchmarks: The design is validated and evaluated in
terms of energy (for both computation and program-
ming phases), execution time, and area while consid-
ering RRAM and PCM technologies. Compared to the
baselines, we achieved up to 8× energy improvement
and 3× area-saving.

FIGURE 1. (a) ReRAM memristor device behavior (b) 1T1R memristor cell
(c) CIM tile encompassing crossbar and peripheries.

The paper is organized as follows. Section II introduces the
background of the memristor device. Section III explains the
existing solutions for signed arithmetic multiplication on
crossbars. Section IV proposes an efficient periphery archi-
tecture for unsigned arithmetic computation. Then, Section V
explains the solution to flexibly and efficiently support signed
and unsigned computations at the same time based on what is
already proposed in Section IV. Finally, Section VI evaluates
the design while Section VIII concludes the paper.

II. BACKGROUND
In this section, we briefly discuss the behavior of memristor
devices, how and mainly which operations are supported by
placing them in the crossbar structure, and the challenge aris-
ing on arithmetic computation due to the limited memristor
resistance levels.

Contrary to charge-based memories, memristor devices
are non-volatile, where the resistance levels represent data.
The switching behavior of a bipolar memristor device is
depicted in Figure 1(a). The memristor devices can alter-
nate between resistance levels by the application of suitable
voltage or current pulses during a writing or programming
operation. Usually, the term SET is used when the transition
occurs from Low Resistance Level (LRS) to High Resistance
Level (HRS) while the term RESET is used for the opposite
direction. In bipolar memristor devices, the device is set and
reset by changing the polarity of the programming voltage
(e.g., 2 V) [25]. However, for unipolar memristor devices,
SET and RESET occur for the same voltage polarity but
at different amplitudes [26]. The resistance levels can be
interpreted as logic ‘0’ and ‘1’. In order to read the device
without disturbance, a small voltage (e.g., 0.2 V) (current)
should be applied, and the current (voltage) through (across)
the device should be sensed. Figure 1(b) shows a schematic
representation of the 1T1Rmemristor-based structure. This is
a fundamental block for constructing a CIM tile. Figure 1(c)
portrays a CIM tile comprising a memristor crossbar array
and peripheries where three drivers are employed to drive
Word-Lines (WL), Source-Lines (SL), and Bit-Lines (BL).
In the case of read/computational operations, the current
or voltage is sampled and then converted to the digital
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TABLE 1. List of some potential applications/algorithms/kernels that can be executed using memristor-based CIM [27].

domain by using a SenseAmplifier (SA) or Analog-to-Digital
Converter (ADC).

Figure 2 compares three leading memristor technolo-
gies (RRAM, MRAM, and PCM) with other conventional
memories. Memristors have great scalability, high den-
sity, near-zero standby power, and non-volatility. Besides,
memristor-based analog computing can lead to high energy
efficiency as it inherently allows for massive inter- and
intra-crossbar parallelization. Examples of computational
operations that can be executed on the crossbar are addi-
tion [50], logical operations [51], [52], andMMM [53], [54].
For the first two, operands are stored in the crossbar as
vectors. For the latter, one operand (multiplier) is fed to the
crossbar as input while the second operand (multiplicand)
is stored inside the crossbar.Based on these supported oper-
ations, Table 1 provides a comprehensive list of potential
applications that can be accelerated using memristor devices.
Memristor devices can be typically programmed into two or
a few resistance levels due to the technological constraints
stemming from the device (e.g., variation) and peripheral
circuits (e.g., ADC resolution). Therefore, with the provision
that the datatype size required by an application is larger
than what a single memristor cell can present, the data has
to be distributed over several devices. Similarly, a limited
resolution is supported by the input drivers of the crossbar too.
Hence, special care on the execution flow of those operations
has to be taken into account to produce a meaningful result.

III. RELATED WORK
As a primary step to enable CIM for many applications,
we need to support signed representation for both (1) the
data programmed into the crossbar –array data– and (2) the
data provided as input to the crossbar –input data. However,
to the best of our knowledge, there are only a few works that

FIGURE 2. Comparison of different memory technology [55].

FIGURE 3. Supporting signed array data by (a) subtraction of cells’ value
(b) mapping negative and positive values to different crossbars.

partially look into this problem and propose some solutions.
In the following, we discuss the existing solutions on how
they represent signed numbers for both array data and input
data.

A. PRIOR WORK ON SIGNED NUMBER REPRESENTATION
OF ARRAY DATA
In order to support negative numbers, ISAAC [19] brings
the array data into a positive range by using a bias value.
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FIGURE 4. (a) Bi-directional input current to support signed input data
and its implication on power/energy consumption of (b) DACs and
(c) ADCs in different resolutions (assuming 256 × 256 crossbar with 1-bit
per cell).

This imposes two types of extra processing. First, additional
pre-processing if the data has to be programmed to the cross-
bar on the fly to bring them into the positive range. Second,
mandatory post-processing to subtract the bias value several
times equal to the number of array data that are added up.
This has to be performed for every output element. Another
approach represents a number as a difference of two or more
cells [22], [23]. Figure 3(a) illustrates this approach assuming
that the data is presented as a subtraction of two numbers,
each residing in a single cell. PRIME [20] and PipeLayer [21]
map positive and negative numbers into different crossbars
(as unsigned numbers). Figure 3(b) depicts how a matrix with
positive and negative numbers is mapped to two crossbars.
In both cases, the result is obtained based on subtraction.
Besides having more cells to represent a number, which
leads to more energy/area consumption, more complexity is
imposed on mapping data to the crossbars, especially when
it is required to incorporate more cells for large datatype
sizes. Another approach is using two’s complement represen-
tation [18]. However, due to the necessity of sign extension,
a big overhead is imposed in terms of area and energy (more
details are in Section V). Finally, FloatPIM [56] uses the
IEEE standard floating-point to store data as a floating-point
number in the crossbar. Using a sign bit to indicate the
sign of a number, as well as the way of computation in the
crossbar [57], limits this approach to perform multiplication
and addition between only two numbers. This is inherently
different than what was depicted in Figure 1(c) to fulfill
vector-matrix-multiplication (and, in turn, MMM) at once by
exploiting Kirchhoff and Ohm’s laws.

B. PRIOR WORK ON SIGNED NUMBER REPRESENTATION
OF INPUT DATA
A few works have studied how the input data to the crossbar
can be represented. ISAAC [19] provides 16-bit data to the
crossbar in 16 cycles (one bit per cycle) in 2’s comple-
ment format. As mentioned for array data, a big overhead
is imposed due to the sign extension. Another approach is
to reverse the direction of the current for negative input as
depicted in Figure 4(a); this is only employed for subtract
operation in [18]. Considering this approach, the analog input
voltage levels that have to be supported by the Digital-
to-Analog Converters (DACs) should be doubled. Conse-
quently, more voltage/current levels should be distinguished

by ADCs. Therefore, not only the system becomes more sen-
sitive and error-prone, but also its power consumption/energy
increase exponentially as the resolution of DACs and ADCs
increase. This is shown in Figure 4(b) and 4(c), presenting
the power and energy per sample for a DAC and an ADC,
respectively, by increasing the resolution [58], [59]. It should
be noted that the minimum required ADC resolution is based
on the DAC resolution and the number of array data contribut-
ing to the analog addition (in this case, 256). As an example,
if we have 2-bit DAC, the ADC resolution is calculated as
log2(256) + 2 = 10 bits.
In conclusion, considering the limitations and overhead of

existing solutions to support sign arithmetic computation in
the crossbar, it is essential to reduce this overhead with an
efficient crossbar periphery architecture. Any architectural
solution for the digital periphery should take into account
the following restrictions as well: 1) ADC resolution; this
limits the maximum number of crossbar rows to be activated.
2) Limited resistance levels on a memristor device; if a num-
ber cannot be represented by these few levels in a single
device, it has to be distributed over several devices. 3) Input
drivers (DACs) resolution; due to the limitation on the num-
ber of voltage/current levels provided by the drivers to the
crossbar, input data has to be split and fed to the crossbar
in several steps. Considering the aforementioned limitations,
more processing steps have to be performed on the output
of the crossbar to achieve the final result for arithmetic
operations.

IV. EFFICIENT ARITHMETIC COMPUTATION IN CIM TILE
FOR UNSIGNED DATA REPRESENTATION
In this section, we propose an efficient structure for the digital
periphery required next to a memristor crossbar to execute a
complete unsigned addition and MMM operations. We first
focus on unsigned data representation and computation. The
presented structure forms the basis for supporting signed
computations, which we will describe in Section V.

Our proposed architecture consists of three stages: 1) Ana-
log Addition; this stage addresses the first limitation men-
tioned before (ADC resolution). 2) Sliding over multiple
columns; the hardware designed for this stage addresses
the second limitation (limited memristor resistance levels)
3) Sliding over input segments; this stage takes into account
the third limitation (DACs resolution). These three stages
are executed consecutively for several iterations in order to
produce a final result for arithmetic operations. We explain
each stage in the following subsections. The proposed design
utilizes minimum size adders to lessen the energy and latency
overhead of periphery circuits. Our approach is flexible and
can be applied to a systemwith a different configuration (e.g.,
ADC/DAC resolution, resistance levels, datatype size).

Figure 5(a) depicts an example of aMMMoperation where
each element is assumed to have three bits. Considering this
operation, the elements of the multiplicand matrix (array
data) have to be programmed into the crossbar while the
multiplier’s elements (input data) are provided to the crossbar
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FIGURE 5. (a) An example of MMM operation where the elements of the
array and input data are expanded (b) mapping of data to the crossbar
considering limited resistance levels as well as limited input
voltage/current levels. The coefficients colored gray are not part of the
crossbar output.

as input. Figure 5(b) depicts how an element of the out-
put matrix can be calculated and mapped to the crossbar,
assuming 1) elements of the multiplicand matrix have to be
distributed over three memristor cells (due to the restriction
on the number of resistance levels – second limitation) and
2) the elements of multiplier matrix have to be sliced into
three segments as well (due to the restriction on the number of
voltage/current levels provided by DACs – third limitation).
The segments are given to the DACs sequentially (e.g., the
first segment is a0, b0, and c0).

A. FIRST STAGE: ANALOG ADDITION
The first stage of computation is performed in an analog man-
ner. As depicted in Figure 5(b), elements with the same sig-
nificant bit are summed up. The analog addition is performed
on the bit-lines as soon as the DACs are activated and proper
voltage levels are provided to the crossbar inputs. In an ideal
case, all the crossbar rows can be activated. Therefore, all
the required elements can contribute to the analog addition.
However, due to some limitations, this may not be realized.

Figure 6(a) illustrates a scenario where all the input drivers
(DACs) cannot be activated at the same time. This can be
due to either technology restrictions or limited ADC reso-
lution (first limitation). Hence, the analog addition should
be performed among smaller sets of rows, and the interme-
diate results need to be summed up together in the digital

domain. In the example illustrated in this figure, the first two
rows (green box) are activated in the first step. Afterward,
the bit-lines are scanned by the ADC in sequence, and the
intermediate results are stored in the registers dedicated for
each column (R1,R2,R3). In the second step, the third row
(blue box) gets activated. The results in this step have to be
accumulated with the previous step. We present the required
hardware to deal with this restriction in Figure 6(a). Based
on which bit-line is read by the ADC, control signals are
sent to the demultiplexer and multiplexer to load and store
data from and into a proper register, respectively. This hard-
ware is only required when this limitation exists. The size of
the registers employed for each column should be equal to
log2(number of rows) + log2(resistance levels). The second
term in the equation is added when the number of resistance
levels is more than two.

B. SECOND STAGE: SLIDING OVER MULTIPLE COLUMNS
The intermediate results obtained from each column of the
crossbar in the first stage just contain one bit-position of array
data (it can be more if memristor devices can hold more
than one bit). In order to achieve the final results related
to one segment of the input data (e.g., a0, b0, and c0), the
intermediate results of the first stage obtained from different
columns, have to be summed up (e.g., column 1, 2, and
3). This is due to deploying several memristor devices to
represent a number (second limitation). In the following,
we explain the traditional and proposed approach to perform
the required processes in this stage.

As depicted in Figure 6(b), in each time step, the result
of analog addition obtained from a column of the crossbar
is stored in the ADC register. In the traditional approach,
the data stored in this register has to be shifted to take
into account the coefficients associated with each column
(see Figure 5(b)). Then, the result is accumulated to the
values obtained from other columns in the previous time
steps. Considering that approach, the number of shift oper-
ations is variable and depends on to which column the
value of the ADC register belongs. In addition, as more
columns contribute to the result, the data size gets increased.
Therefore, the adder which performs this accumulation
should be sized for the worst-case scenario. This size is
equal to log2(number of rows) + log2(resistance levels) +

collective columns. The collective columns are the number of
columns that represents a single value (e.g., in this example,
3). In short, this approach requires a variable number of
shift operations and large-size adders, which in consequence,
reduce the performance and energy efficiency of the crossbar
periphery.

In contrast to the traditional approach, our proposed design
does not require shift operation and minimizes the size of
adders as well as registers that are placed in this stage. Con-
sidering Figure 6(b), the value of the ADC register has to
be shifted and added up to the value of R1temp register where
the intermediate result obtained from the previous columns
is stored. In the proposed design, when performing addition
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FIGURE 6. (a) First stage: Activating rows in multi-steps and its required hardware when there is a limitation on ADC resolution or crossbar technology
(b) Second stage: accumulation of partial result obtained from columns representing a number. The size of adders and registers are minimized in this
stage (c) Third stage: performing addition between the higher partial results which are obtained from the input segments representing a number. The
same technique applied in the second stage is used here to optimize the hardware.

between these two registers, the least significant bit (or bits
when more than one bit is stored in a single memristor cell)
can be directly sent to the next level register (R1temp) since
it will not contribute to the later additions. As an example,
in the first time step, the value of the ADC register is added
to the value of R1temp (initialized to 0) and stored again
in R1temp. In the second time step, since the value of the
ADC register, which currently stores the value of the second
column, has to be shifted once to the left, the least significant
bit of R1temp does not contribute to the addition. Therefore,
it can be directly passed to the R1temp where we store the
final result of this stage. As a consequence, the shift operation
is implicitly implemented in the design without dedicating
extra hardware to it. In addition, the size of R1temp register
and the adder module are held as minimum as possible equal
to log2(number of rows)+ log2(resistance levels). When the
addition is performed for the last column (associated with the
most significant bit(s) of multiplicand’s elements), the entire
content of R1temp register is copied to R2temp register, and the
result of this stage is ready to be used for the next stage.

We perform the processing in this stage, assuming that
the datatype size for array data (e.g.,j0, J1, and J2) does not
exceed the number of columns that share an ADC. Loosening
this assumption leads to additional logic (extra stage) required
to add up the intermediate results obtained from the columns
representing one element of the multiplicand, but are shared
among more than one ADC. To avoid complexity, this will
not be discussed in detail.

C. THIRD STAGE: SLIDING OVER INPUT SEGMENTS
In this stage, the partial sum related to input segments has to
be summed. Due to the input driver resolution (third limita-
tion), the input data has to be segmented and provided to the
crossbar in several iterations. Therefore, the design should be
able to integrate the result of each iteration and produce the
output of the MMM operation.

We illustrate this using an example in Figure 6(c) where
the partial sum relating to the (a0, b0, c0), (a1, b1, c1), and

(a2, b2, c2) segments have to be integrated. The partial sum
obtained from each input segment has to be shifted and added
up to the value of R3temp register, where we store the result
related to previous input segments. The design utilizes the
same approach, deployed for the second stage, in order to
avoid shift operations whileminimizing the size of adders and
registers. As an example, in the first iteration, the value of the
first input segment (orange box) is available in R2temp register
and will be added to the value of R3temp register, which is
initialized to zero. The least significant bit of the result is
directly stored in R4temp register, while the rest of the bits are
again stored in R3temp register. Since the result of the second
input segment (blue box) has to be shifted (theoretically)
once to the left, the least significant bit of the result from
the previous iteration is not contributing to the result of the
current iteration. Therefore, we improve performance, area,
and energy efficiency by omitting variable shift operators as
well as minimizing adder and register sizes.

In summary, using the aforementioned organization leads
to energy (and possibly performance) improvement specially
when considering a large number of crossbars with hundreds
of columns computing in parallel. Controlling this structure
can be performed by designing a state machine. Alternatively,
the entire system can also be controlled by employing an
instruction set to exploit the maximum flexibility for the
design (considering ADC resolution, cell levels, and datatype
size).

V. A NOVEL SIGNED DATA REPRESENTATION AND
COMPUTATION
In this section, we propose our optimized design to support
two’s complement representation in a CIM tile. The design
uses the same hardware discussed for unsigned representation
with some changes in the execution flow.

A. MOTIVATION
Despite other representations, the primitive arithmetic oper-
ations in two’s complement representation are identical to
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FIGURE 7. Example of sign extension required for two’s complement
representation when the size of the output is larger than the input data.

FIGURE 8. Low-cost implementation of signed addition by introducing
virtual bit-lines.

unsigned numbers. This is particularly helpful when oper-
ating on many operands at once. However, considering the
crossbar structure, the sign extension required for this rep-
resentation imposes a big overhead on the system. Figure 7
shows an example where the range of data is from -4 up to +3
which can be represented in 3 bits. Assuming each memristor
device can hold one bit, 3 devices can represent one number.
As we show in this figure, by performing an addition among
the numbers programmed to the crossbar, the result is differ-
ent than expected. Although each number individually can be
presented in 3 bits, more bits are required to present the output
result since several numbers are summing up. Accordingly,
input operands have to be sign-extended to be the same size as
the output. In general and in the case of addition operation, the
number of bits that have to be considered for sign extension is
equal to log2 (number of crossbar rows). Clearly, these extra
bits degrade energy, performance, and area efficiency. There-
fore, it is essential to address this challenge and improve the
efficiency of signed arithmetic computation in the crossbar.

The sign extension causes an overhead on both array data
and input data. In Section V-B, we address the challenge of
sign extension on array data using a simple arithmetic addi-
tion operation as an example. Subsequently, in Section V-C,
we consider the MMM operation as a more complex opera-
tion where the overhead of sign extension exists on both array
data and input data. Considering this operation, we extend our

solution to address the overhead of sign extension on input
data as well.

B. EFFICIENT SIGNED ADDITION BY INTRODUCING
VIRTUAL BIT-LINES
To address the overhead of sign extension on array data,
a newmethod is proposed based on what is named virtual bit-
lines. We illustrate our solution in Figure 8 using a simple
arithmetic addition example where we want to obtain the
result of addition between three signed numbers stored in the
crossbar.

Instead of programmingmorememristor devices to capture
the effect of sign extension, we propose a novel method
to incorporate the impact of sign extension in the crossbar
periphery. As demonstrated in Figure 8, the values obtained
from the fourth and fifth columns, used to represent sign
extension values, are the same as the third column. This is
based on the fact that the values of the sign-extended bits are
equal to the most significant bit before the sign extension.
By recalling how unsigned computation is performed, in each
time step, the value of one column is stored in the ADC
register. In the third time step, the value of the third column
is stored in the ADC register and has to be summed up
with the intermediate result obtained from previous columns
(columns 1 and 2) which are (partially) stored in the R1temp
register. Since the values of the virtual bit-lines are equal
to the value of the third column and this already exists in
the ADC register, only the loop is required to be performed
extra rounds. The loop has to be performed more times
equal to the number of virtual bit-lines (in the worst-case
log2(number of crossbar rows). By doing this, 1) a fewer
number of bit-lines have to be programmed (crossbar pro-
gramming energy), 2) a fewer number of bit-lines are con-
tributing to the computation ( crossbar computation energy),
and 3) a fewer number of bit-lines read by ADCs (ADC
energy). This leads to a huge improvement in terms of area,
performance, and energy efficiency.

C. EFFICIENT SIGNED MULTIPLICATION BY EMPLOYING
VIRTUAL INPUT SEGMENTS AND VIRTUAL BIT-LINES
In the previous subsection, we discussed how to eliminate
the overhead of sign extension on array data by only con-
sidering its contribution to the result in the periphery. In this
subsection, we consider the execution model for a complete
MMM operation where the overhead of sign extension exists
both on array data and input data. We explain how this affects
the number of virtual bit-lines and how we can optimize this
operation further.

Figure 9(a) illustrates an example of the MMM operation
where the elements of both multiplier and multiplicand are
presented in two’s complement format bound for three bits.
The size of elements for the outputmatrix (Sout ), as well as the
number of sign extension bits for both multiplicand (Empd )
and multiplier (Empr ), are computed according to Equation 1,
2, and 3. Since the range of elements for the output matrix
(8 bits) is larger compared to an addition operation (5 bits),
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FIGURE 9. (a) Introducing virtual input segments besides virtual bit-lines to reduce the overhead of signed MMM (b) applying small modifications on
execution flow to support signed MMM while employing the same hardware used for unsigned computation (c) sign extending the output of second
stage adder only for one-bit (red digit). This is enough for correct execution and also minimizes the size of adders/registers in the second stage.

more overhead is imposed due to the sign extension even
using the aforementioned technique. However, to reduce this
overhead, we propose two optimizations as follows.

Sout = (multiplicand datatype size) +

(multiplier datatype size) + log2 (active rows) (1)

Empd = Sout − (multiplicand datatype size)

= number of virtual bit-lines (2)

Empr = Sout − (multiplier datatype size)

= number of virtual input segments (3)

❶ Similar to computation over unsigned numbers
(Section IV), here, input segments including the sign-extended
bits are given to the crossbar one at a time. In this example,
since the output needs to be presented in 8 bits, we have to
have 5 bits sign extension for each input operand to bring
them into the same size as the output. The bits for the
sign extension are indicated with red color in Figure 9(a).
The result of each segment has to be summed up with the
preceding segments to get the final value. Considering this
example, Figure 9(b) shows the intermediate result obtained
by applying each segment (here one bit at a time) to the
crossbar. Due to the sign extension, the intermediate results
of applying the fourth until the eighth bit of the multiplier are
the same as the third bit. Similar to virtual bit-lines, we call
these input segments as virtual input segments. Therefore,
since the result by applying the virtual input segments already
computed in the previous rounds and exists in the R2temp
register, these segments are not given to the crossbar as
input. Looking back on the proposed hardware for unsigned
numbers, there are three stages, 1) analog addition, 2) sliding
over multiple columns, and 3) sliding over input segments.
Therefore, as depicted in Figure 9(b), the third stage, which is
in charge of sliding over input segments, has to be performed
five additional times (equal to the number of virtual input
segments). Accordingly, this attains energy and performance
improvement due to the fewer activations for the crossbar as
well as periphery circuits.

❷ While the first optimization was focused on the input
data and the virtual input segments, here we focus on the size
of the adders and registers.

According to the aforementioned optimization techniques
proposed in Section IV, the size of the adder associated with
the third stage can be reduced down to the length of an
intermediate result obtained for one input segment. However,
due to the sign extension of the array data, one can think a
larger adder size (e.g., 8 bits) is required since each input
segment produces 8 bits as a result. By considering the exam-
ple in Figure 9(b), it can be realized that from the 8-bit value
resulting for each bit of input data, the last three (gray color
digits) are the same as the fifth bit. This is due to the fact that
giving an input bit (in general input segment) to the crossbar
is like an add operation (discussed before) where the number
of sign extended bits is proportional to only the number of
active rows (crossbar rows in the worst-case) and the extra
sign extended bits imposed by the MMM operation results to
the bits with the same value. In this example, among five sign
extended bits for the array data, two bits (or two virtual bit-
lines) are due to the number of active rows (or the number
of array data elements that are summed up), and the rest are
imposed due to the input data in the MMM operation (see
Equation 2). Hence, in order to get the first five bits of the
result related to each bit of themultiplier elements, the second
stage of the addition scheme requires performing only two
extra rounds like what was mentioned for an add operation
(more rounds lead to repeating the MSB). Consequently,
we minimize 1) the number of extra rounds required in the
second stage and 2) the length of output generated in the
second stage which leads to downsized adders and registers
in the third stage.

After obtaining the intermediate values from the second
stage of the addiction scheme (e.g., 5 bits in this example),
the third stage has to sum them up. Figure 9(c) depicts
how to perform this summation while using the same adder
size employed for unsigned operations (in this example 5-bit
adder rather than 8-bit adder). As we can see, after each
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FIGURE 10. Asymmetric procedure for addition scheme when a number is
split over several ADCs.

addition, the LSB is directly stored in the R4temp register,
and the rest with a one-bit sign extension will be stored in
the R3temp register. This one-bit sign extension captures the
contribution of sign-extended bits at the output of the second
stage when we downsize it from 8 to 5 bits (gray digits in
Figure 9(b)). Therefore, using this one-bit sign extension,
we ensure the correct functionality of the third stage while
reducing the size of the adder from 8-bit to 5-bit.

In order to generalize our discussion, the following equa-
tions are provided. The Equations 4 and 5 calculate the num-
ber of extra rounds required for stages 2 and 3. In addition, the
size of the adders, as well as the registers for both stages, are
shown in Equations 6 and 7 where Adder1 and Adder2 are the
adders employed for stage 2 and 3, respectively. It is worth
mentioning that the second term in Equation 6 is added when
the number of resistance levels is more than two.

Second Stage Extra Rounds =

log2 (active rows) ≤ number of virtual bitlines (4)

Third Stage Extra Rounds =

Empr = number of virtual input segments (5)

Size(Adder1) = Size(ADC register) = Size(R1temp)

= log2(number of rows) + log2(resistance levels) (6)

Size(Adder2) = Size(R2temp) = Size(R3temp) =

multiplicand datatype size + log2(number of rows) (7)

D. ASYMMETRIC ADDITION SCHEME
Until now, we assumed that the array data datatype size is
aligned or can be fit within the number of columns shared
by an ADC. However, the proposed solution is valid even
when the assumption does not hold. By increasing the number
of ADCs per crossbar, the numbers which are stored in the
crossbar might be distributed over several ADCs depending
on the application and its datatype size. Figure 10 illustrates
this scenario by employing a simple example where both
input data and array data have 6 bits size and three columns
shared by an ADC. As can be seen, while virtual bit-lines

FIGURE 11. Extra stage to sum up the result obtained from addition
scheme per ADC. This is illustrated for a simple addition operation, and
we only require this hardware when a number is split into multiple ADCs.

have only an implication on the addition unit operating on
the most significant bits, the virtual input segments influence
both units. Since three rows are considered, two extra rounds–
log2(number of rows)– are imposed to the second stage of
the addition unit on the left side. Besides, due to the eight
segments of virtual input (here each segment is one bit),
eight extra rounds have to be performed on the third stage
of both units. It must be highlighted that since the virtual
bit-lines are not associated with the addition unit on the
right side, there is no 1-bit sign extension when storing the
intermediate result in the R3temp register, while the addi-
tion unit on the left side requires this as explained before
(see Figure 9(c)).
Considering the aforementioned scenario, when the final

result associated with an ADC is achieved and stored in the
R4temp, they have to be summed up considering their posi-
tions. The same structure explained in section IV is employed
here in order to minimize the size of the adder and register
in this fourth stage. Figure 11 depicts an example where the
values of the R4temp registers related to each addition unit
are summed up in sequence. In each step, the first three
bits of the adder’s output are directly stored in the Rfinal
register since the values in R4temp registers have three bits
positional difference. Consequently, this reduces the size of
the intermediate register as well as the adder which in turn
improves performance and energy. It is worth mentioning
that the processing in this stage can be carried out in parallel
with the lower stages. Therefore, performing the computation
sequentially in this stage does not induce performance over-
head on the system since the previous stages require more
time.

VI. EXPERIMENTAL SETUP
In this section, we explain how we evaluate energy, perfor-
mance, and area as the main metrics in our simulation. The
design is compared with two baselines on three different
benchmarks which cover different scenarios when executing
arithmetic operations on the crossbar.
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TABLE 2. Value of parameters used for the analog components.

A. SIMULATION PLATFORM
The result is based on our SystemC simulator [53], [60]
which is parameterized by incorporating power and timing
characteristics for the memristor devices, digital, and analog
circuits. First, we profile the application to decompose it into
sets of MMM operations. In the next step, MMM operations
are decomposed again into sets of in-memory instructions.
This is done automatically by our in-memory compiler. The
instructions give us programmability and controllability over
memristor crossbars. The instructions are then executed by
our in-memory simulators which mimic the behavior of the
hardware including the crossbar and its analog as well as
digital peripheries. The simulator reports the simulation time
and energy numbers based on the activity factors of different
components. The energy and latency numbers for each digital
component (e.g., decoder, addition scheme) are obtained by
a synthesis tool (Cadence Genus) and then exported into the
simulator. The code for our compiler and simulator is avail-
able online [61]. All the values for the analog components of
the CIM-tile are summarized in Table 2. The parameters for
ReRAM and PCM technologies are taken from [62] and [39]
validated for the actual device. For all the simulations, it is
considered each memristor cell can hold one bit (two resis-
tance levels).

1) PERFORMANCE
The simulator executes the in-memory instructions generated
by our compiler to control the CIM tile, program the devices,
and perform the computations. The instructions are decoded
and executed in 1 GHz clock frequency. Assuming one bit
stored in each cell, in order to activate all the crossbar rows at
the same time, an 8-bit ADC at 32 nm is employed [59]. For
all the simulations, each ADC is shared between 8 bit-lines,
which directly influences the performance of the system.

2) AREA
The area of each ReRAM cell in the 1T1R crossbar structure
is taken from [63]. The digital peripheries are synthesized in
Cadence Genus targeting standard cell 15 nmNangate library
to obtain the area consumption. The number of required CIM
tiles depends on the benchmarks.

3) ENERGY
Since all the information and control signals can be tracked by
employing our simulator, a typical activity factor and perfor-
mance number are extracted. These numbers are incorporated
to achieve accurate energy consumption for the digital as
well as analog components of the tile. The power consump-
tion for ADC was obtained from [59]. Besides, the power
consumption of 1-bit DAC is taken from [58]. However,
in the simulations where more bits are required, the power
consumption is taken from the equations provided in [58].
The power consumption related to the digital periphery is
taken from the Cadence Genus report targeting standard cell
15 nm Nangate library.

B. BENCHMARKS
When we execute arithmetic matrix-matrix multiplication on
the crossbar, there would be two scenarios in the perspective
of the signed computation: 1) only one operand or 2) both
operands (input and programming data) have to be expressed
as a signed number. The benchmarks are selected to be able
to assess the behavior of both scenarios. Considering the
first scenario, a neural network is employed to classify the
MNIST database. The network has two hidden layers with
80 and 60 neurons, respectively. The network trained, pro-
viding around %97 accuracy, and the weights are obtained
using MATLAB. The programming weights are presented
in 8-bit signed fix-point whereas the input data (pixels) is
considered as 8-bit unsigned number. It is worth mentioning
that the intermediate values generated by the hidden layers are
considered binary numbers. For the second scenario, we take
two kernels from the Polybench/C benchmark suite. The first
kernel is linear-algebra ‘‘gemm’’ where the input matrix size
is 1000 × 1200, and the programming data matrix size is
1200 × 1100. Similarly, the second kernel, ‘‘3m’’, has the
problem size of 800 × 1000 and 1000 × 900 for the input
and programming data, respectively. The datatype size for
the aforementioned kernels is 8-bit, and despite the first
benchmark, both input and programming data are presented
as signed numbers. Since we only focus on the crossbar
and its periphery circuit in this paper and not a full system
simulation, considering more benchmarks will not add more
insight to our study, and a similar pattern will be repeated.

C. BASELINES
The proposed design is compared against two baselines to
quantify its efficiency in performing signed computations in
terms of energy, performance, and area. The baselines are as
follows:
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FIGURE 12. Relative execution time of the baselines normalized to the
proposed design. No distinction between the two memristor technologies
(According to Table 2, the two memristor technologies have similar
latency numbers).

• Baseline1:
In this baseline, both the inputs [19] and the program-
ming data [18] are presented as a standard two’s comple-
ment representation where the sign extension is required
for bothmultiplier andmultiplicand in the case ofMMM
operation. Furthermore, in order to have a fair com-
parison, we employ the same efficient structure pro-
posed for the addition unit (see Section IV and [24])
rather than conventional Shift-and-add structure. There-
fore, the result will completely focus on the way signed
computation is performed. This addition unit with the
proposed structure is solely evaluated in [24] against
conventional Shift-and-add structure.

• Baseline2:
In this approach, the positive and negative programming
data are mapped into two different crossbars where the
data on each crossbar is treated as unsigned value [20],
[21]. Furthermore, in order to support signed input, the
current is provided in two directions to represent nega-
tive and positive numbers (see Figure 4(a)). For all the
simulations regarding this baseline, we consider 2-bit
DACs to provide three voltage levels corresponding to
logical -1, 0, and 1 values. Finally, the same addition
unit considered for the first baseline is also employed
here.

VII. RESULTS
In this section, we evaluate the proposed design in terms of
execution time, area, and computation as well as program-
ming energy. In the following, the result regarding each of the
aforementioned aspects of the design is discussed to provide
a good insight into its pros and cons.

A. EXECUTION TIME
Figure 12 depicts the relative execution time for the two base-
lines normalized with the proposed scheme. As can be seen in
this figure, due to the extra rounds of addition required in the
proposed scheme (see Figure 9), a small overhead is imposed
on the execution time compared to Baseline 2. According
to the description of Baseline 2, since the drivers have to
generate three voltage levels, they may have more latency

than the drivers employed for the proposed design as well as
Baseline 1. This may have an adverse impact on the perfor-
mance of Baseline 2 and reduce the gap between this scheme
and the proposed design. Considering MNIST, Baseline 1
and the proposed scheme attain a similar performance since
either 8 extra crossbar columns (Baseline 1) or 8 extra rounds
in the addition unit (proposed design) has to be performed.
This is due to the sign extension. However, if the digital
clock frequency gets bigger than theADC conversion rate, the
overhead of extra rounds in the addition unit will be reduced.
Regarding GEMM and 3m, since the inputs are also signed,
the execution time for the Baseline 1 is increased due to the
costly sign extension of input data. It is worth mentioning that
the overhead of data communication to provide input data
to the crossbar is considered for all the designs. Based on
the architecture proposed in [53], in order to provide a clear
separation of tile from outside and minimize the number of
synchronizations, a buffer called Row Data Buffer with the
width equal to the maximum supported datatype size, and
the heights equal to the number of crossbar rows is placed
next to the crossbar. This buffer provides input data for the
crossbar. Filling each row of this buffer with the elements of
the multiplier matrix takes one clock cycle.

As mentioned before, when we execute arithmetic
matrix-matrix multiplication on the crossbar, there would be
two scenarios in the perspective of the signed computation:
1) only one operand or 2) both operands (input and pro-
gramming data) have to be expressed as a signed number.
As can be seen in Figure 12, for the scenario where the
inputs are unsigned (MNIST), the proposed design cannot
outperform Baseline 2 in terms of performance. Baseline 2
maps positive and negative weights into two different cross-
bars. Hence, the required computations are performed in
parallel in two crossbars and their peripheries. However, this
computation is performed sequentially in the periphery of the
proposed design. Although this could significantly improve
energy and area consumption (we discuss it in the following),
it brings marginal performance loss. It should be noted
that this only happens in the scenario where the inputs are
unsigned numbers.

B. AREA
Figure 13 depicts the area consumed by the three
designs. Regarding the first baseline, since we stored the
sign-extension bits in the crossbar, more crossbars have to be
employed, and in consequence, more area is consumed. In the
second baseline, we do not need this costly sign extension,
but since positive and negative elements in a matrix have
to be assigned to different crossbars, it consumes more area
than the proposed design. Finally, the actual area number for
each design depends on the problem size of the benchmarks.
However, the ratio between these designs remains constant
for different benchmarks. It should be noted that the area of
digital peripheries is also considered in this figure for both
the proposed design as well as the baselines. These numbers
are based on the 15 nm Nangate library.
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FIGURE 13. Area comparison of the Baselines with the proposed design
for ReRAM crossbars taking into account the digital and analog
components.

C. ENERGY
1) COMPUTATION ENERGY
Figure 14(a) demonstrates the computation energy for the
aforementioned benchmarks considering the baselines and
the proposed design. The results are presented for PCM and
ReRAM technologies without considering the programming
energy.

MNIST: For the MNIST benchmark, the experiment is per-
formed for 10k input images, and as can be seen, more
than 3× energy improvement is obtained compared to the
baselines. In the following, we analyze the results obtained
for each baseline.

• Regarding the first baseline and considering the 8-bit
datatype size, the programming weights should be sign-
extended to 24 bits (only the programming weights are
signed, not inputs). This is because the inputs are 8 bits
unsigned, and the total number of elements on each col-
umn of the crossbar is 256. Hence, the output size would
be 24 = log2(256)+8. According to the output size, the
weights should be sign extended to 24 bits. The impli-
cation is the necessity of more crossbar arrays together
with their peripheries to encompass the weights. This
leads to more energy consumption, as shown in
Figure 14(a).

• Considering the second baseline, the number of crossbar
arrays is doubled due to allocating positive and negative
weights into different crossbars. Although the inputs for
this application are not signed, the platform considered
for this baseline has a higher precision of DACs and
ADCs to support negative inputs, which imposes energy
overhead on the system. It should be taken into account
that the ADCs need to be sensitive enough in this base-
line to detect finer current/voltage values in order to keep
the accuracy as high as required. In conclusion, for this
baseline, both the crossbar and peripheries contribute
more to energy consumption than the proposed design.

Furthermore, we perform the analysis for two memristor
technologies, ReRAM and PCM. According to Table 2,
PCM has higher resistance values for both low (LRS) and
high (HRS) states. Therefore, having the same ‘read voltage’,

the energy consumed by this device is less than ReRAM
during the computation. We can observe this in Figure 14(a),
where we report the energy consumption for these two
technologies.
GEMM and 3m: The problem sizes for these two kernels are
larger than MNIST. In addition, the inputs and programming
weights are 8-bit signed numbers. Therefore, considering
the first baseline, both the inputs and programming weights
should be sign-extended to 24 bits. Hence, not only more
crossbars are required, but more input segments should be
given to the crossbars as well. This leads to around 8×
more energy consumption compared to the proposed design.
Despite the first baseline, the approach used in the second
baseline can deal with signed inputs with less overhead.
Comparing the proposed design with the second baseline and
similar to MNIST, the improvement is mainly obtained from
employing fewer crossbars as well as lower DACs and ADCs
precision.

2) PROGRAMMING ENERGY
Besides the high energy consumption of programming the
memristive devices, the endurance of these devices is a
critical feature [64], which persuades the users to program
them as minimum as possible. Therefore, usually, it is sim-
ply considered that the crossbar is programmed once before
the execution of the application without (or with minimum)
reprogramming during the execution. However, it is neces-
sary for the designer to have insight into the overhead of
crossbar programming compared to the actual computation
phase. Hence, Figure 14(b) provides the programming energy
aswell as the ratio of energy consumption for the computation
over the programming phase.

Considering MNIST and after the classification of 10K
input images, the result shows that the overhead of pro-
gramming is getting negligible compared to the computation
phase. However, this overhead is a bit higher for PCMdevices
due to the higher programming current. In addition, since the
proposed design requires fewer crossbars, the energy over-
head imposed by device programming is lessened compared
to the baselines. This might also have positive implications on
performance and aging which has not been considered in this
paper. Since GEMM and 3m kernels have a larger problem
size (require more crossbars) and relatively less computation,
the overhead of programming is increased more. It should be
noted that similar to MNIST, these two kernels can also be
executed multiple times for different input matrices. There-
fore, based on the system requirements and the application
data flow, the designer should evaluate when and for how
many times the devices can be reprogrammed.

D. LIMITATIONS AND CHALLENGES
The proposed design achives 8× and 3× energy and area
efficiency. However, this comes with two main drawbacks.
In the following, we provide a short explanation for each of
them.
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FIGURE 14. Energy consumption for (a) computation and (b) programming phase achieved for the two baselines and the proposed
design. The energy comparison among different designs is performed for PCM and ReRAM technology.

1) Performance limitation:
The proposed design has marginally lower perfor-
mance compared to baseline 2 where positive and
negative weights are mapped into two different cross-
bars. This is because the required computations are
broken into two parts and performed in parallel. How-
ever, more sequential operations are performed in the
peripheries of the proposed design. This performance
loss highly depends on the clock frequency of digital
circuits. If the clock frequency is high enough, the
latency of the crossbar can hide the latency of digital
peripheries.

2) Complexity of the controller:
The proposed design can flexibility support different
datatype sizes. This comes at the cost of a more com-
plex controller. There are two approaches to control this
design 1) implementing a state machine or 2) using
instructions. The second approach relies more on the
compiler and reduces the complexity of the hardware.
However, more complex headway is still required com-
pared to the baselines, with no flexibility in supporting
different data sizes.

VIII. CONCLUSION
In summary, we proposed a new scheme based on two’s com-
plement representation to perform signed arithmetic matrix
multiplication tailored for memristor-based crossbar array
structure. The key insight of this novel scheme is that with the
help of an innovative digital periphery design, the required
sign extension can be avoided. The design provides flexi-
bility to perform computation over different datatype sizes
as well as switching between sign and unsigned compu-
tation at run time. The simulation results show that the
proposed design achieves up to 8× energy-saving and 3×
area-saving compared to the baselines. In our future work,
we aim to employ the presented methods of supporting
signed numbers in our system-level platform to figure out

the contribution of energy/performance improvement in the
entire system. Our current simulation platform will be inte-
grated into Gem5, which will allow us to mimic the behavior
of the full system with extensive analysis and more complex
applications. Then, we can realize the contribution of the
proposed scheme to the total energy and performance of the
system.
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