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Samenvatting

Op massa spectrometrie-gebaseerde cellulaire proteomics heeft een prominente rol gespeeld 
in veel onderzoeksgebieden, waaronder biowetenschappen, biotechnologie en microbiële 
ecologie. Eiwitten zijn de cellulaire bouwstenen die de potentiële functie van genen 
rechtstreeks in stand houden door enzymatische katalyse, moleculaire signalering en fysieke 
interacties en daarom kan de functie niet rechtstreeks worden bepaald aan de hand van het 
genoom. Bovendien is het proteoom van een cel veel complexer dan het genoom, als gevolg 
van onder andere posttranslationele modificaties. Momenteel is massa spectrometrie de 
krachtigste techniek om de grote proteoomdiversiteit in cellen te onderzoeken, vaak toegepast 
in een shotgun (bottom-up) benadering. Toch worden geavanceerde, op massaspectrometrie-
gebaseerde proteomics methoden, niet routinematig toegepast op microben. De celfabriek en 
het modelorganisme Saccharomyces cerevisiae, bijvoorbeeld, is een zeer goed 
gekarakteriseerd micro-organisme. Echter, veel onderzoeksvragen over de dynamiek van het 
proteoom onder verschillende groeiomstandigheden en de regulering van het complexe 
metabole netwerk via post-translationele modificaties, moeten nog worden beantwoord. In 
het bijzonder ontbreken momenteel kwantitatieve gegevens over proteoomdynamiek onder 
goed gedefinieerde omstandigheden, zoals in bioreactoren. Een beter begrip zal de 
ontwikkeling van geavanceerde industriële giststammen mogelijk maken en het gebruik van 
bakkersgist als modelorganisme verbeteren, bijvoorbeeld tijdens het analyseren van 
stofwisselingsziekten bij de mens. Daarom was het doel van dit proefschrift om een 
geoptimaliseerd monstervoorbereidingsprotocol op te stellen om de grootschalige
kwantitatieve analyse van het gist proteoom mogelijk te maken onder zeer gecontroleerde 
omstandigheden. Daarnaast werd een nieuwe massaspectrometrische methode ontwikkeld 
om de mate van modificatie van metabole enzymen te kwantificeren, wat een beter begrip 
van hun rol in metabole regulatie mogelijk maakt.

In Hoofdstuk 2 wordt het belang van post-translationele modificaties in proteomics-
experimenten beschreven. Deze extra regulatielaag in het proteoom kan alleen worden 
gevisualiseerd door middel van gevoelige proteomics-analyses, aangezien deze modificaties 
niet in het genoom zijn gecodeerd. Over het algemeen blijft een groot aantal 
fragmentatiespectra in een typisch shotgun proteomics-experiment ongeïdentificeerd. 
Geschat wordt dat een groot deel van die niet-geïdentificeerde spectra afkomstig is van 
onverwachte post-translationele modificaties of natuurlijke peptidevarianten. Recente 
vorderingen in resolutie, nauwkeurigheid en kwantitatieve eigenschappen in 
massaspectrometrie, evenals ontwikkelingen in dataverwerking, maken nieuwe manieren 
mogelijk om eiwitmodificaties te onderzoeken. Waar de meeste gemodificeerde peptiden 
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gemakkelijk kunnen worden gedetecteerd door de veel-gebruikte methode, leidt het gebruik 
van database zoekalgortithmen vaak niet tot een positieve identificatie. Om de beperkingen 
van database-gelimiteerde methoden te overwinnen, zijn alternatieve algoritmen vastgesteld. 
Deze zoekhulpmiddelen voor open modificaties vereisen geen vaststelling van de modificatie 
vóór de analyse en kunnen daarom ook onverwachte modificaties identificeren in 
experimenten. In Hoofdstuk 2 worden deze recente vorderingen in microbiële (gist)
proteomics voor onbeperkte ontdekking van eiwitmodificatie besproken.

Bij gist proteomics wordt doorgaans een shotgun-benadering toegepast, waarbij eiwitten 
worden omgezet naar peptiden voorafgaand aan de LC-MS/MS-analyse. 
Monstervoorbereiding kan een van de belangrijkste bijdragen zijn aan datavariatie en slechte 
vergelijkbaarheid tussen proteomics-experimenten. Daarom wordt de invloed van een reeks 
monstervoorbereidingsprocedures op de proteomics-uitkomst beschreven in Hoofdstuk 3.
Hier hebben we een systematische vergelijking van monstervoorbereidingsprotocollen 
uitgevoerd met behulp van een matrix van verschillende omstandigheden en reagentia die 
doorgaans worden toegepast op het lysaat van hele (gist) cellen, in bottom-up proteomics-
experimenten. De protocollen werden geëvalueerd op verschillende criteria: de fractie van 
geïdentificeerde spectra, de proteoom- en aminozuursequentiedekking, de GO-term 
distributie en het aantal en de diversiteit van peptidemodificaties. De beste protocollen 
maakten de identificatie van ongeveer 65-70% van alle verkregen fragmentatiespectra
mogelijk door een combinatie van database- en onbeperkte zoekmethoden voor modificaties 
te gebruiken. Een groot deel van de niet-geïdentificeerde spectra bestond uit een te lage 
kwaliteit om met vertrouwen te worden geïdentificeerd met behulp van aanvullende de novo
sequencing. Interessant is dat een aantal onverwachte peptidemodificaties kunnen worden 
gekoppeld aan oplosmiddelen, additieven en andere veel gebruikte materialen. De 
verzamelde protocollen en grote sets onbewerkte massaspectrometrische data bieden een 
hulpmiddel om nieuwe protocollen te evalueren en te ontwerpen en de analyse van 
(natuurlijke) peptidemodificaties in gist te begeleiden.

Hoewel S. cerevisiae een van de meest gekarakteriseerde microben is, is er tot nu toe geen 
volledig begrip van de regulering van het metabolisme. Bovendien maakt de complexiteit 
ervan het moeilijk om biosynthetische routes voor de productie van chemicaliën te 
ontwikkelen en te optimaliseren. Recente studies hebben het potentieel van het gebruik van 
proteome toedeling aangetoond om voorspellingsmodellen voor metabolische processen te 
verbeteren, waarvoor zeer kwantitatieve en nauwkeurige proteoomgegevens nodig zijn. 
Daarom werden grootschalige kwantitatieve proteomics-experimenten van S. cerevisiae
uitgevoerd om de reactie van S. cerevisiae op aerobe en anaerobe batchculturen te volgen in 
Hoofdstuk 4. Anaerobe omstandigheden lieten een aanzienlijk lagere eiwitdynamiek zien 
tijdens de overgang van proliferatie naar stationaire fase, wat te wijten is aan het gebrek aan 
een diauxische verschuiving in afwezigheid van zuurstof. Bovendien maakte de vergelijking 
met de giststam met minimale glycolyse, waarin alle overtollige minor iso-enzymen zijn 
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verwijderd, het mogelijk om de impact van genetische overtolligheid in gistglycolyse te 
onderzoeken. Hoewel er geen significante fysiologische reacties werden waargenomen bij 
het verwijderen van de kleine glycolytische paralogen, werd een aantal veranderingen op 
eiwitniveau waargenomen in de glycolyse van de gemuteerde stam, met name onder anaerobe 
omstandigheden.

Ten slotte, zijn er tot nu toe meer dan honderd verschillende soorten posttranslationele 
modificaties geïdentificeerd in alle domeinen van het leven. Desalniettemin is het merendeel 
van de modificaties zeldzaam en is hun biologische rol niet geïdentificeerd, terwijl deze de 
eiwitfunctie aanzienlijk kunnen beïnvloeden. Bovendien is crosstalk tussen modificaties 
aangetoond voor verschillende enzymen in gist, wat het belang benadrukt van het analyseren 
van het volledige modificatielandschap van een eiwit. Eiwitsequenties worden over het 
algemeen geanalyseerd via tryptische peptiden en daarom worden minder toegankelijke 
sequentiegebieden over het hoofd gezien. In Hoofdstuk 5 wordt een proof-of-concept 
beschreven van een methode die het mogelijk maakt om de globale mate van modificatie te 
kwantificeren voor individuele enzymen van complexe cellysaten. Hier wordt de niet-
gemodificeerde fractie van elk peptide gekwantificeerd waardoor alle soorten modificaties 
worden overwogen, ongeacht hun chemische aard. Kwantificering van de volledige
eiwitsequentie wordt bereikt met behulp van een eiwitstandaard gegenereerd met celvrije 
synthese, in combinatie met een multi-proteasebenadering. Bovendien maakte het gebruik 
van TMT-labeling een high-throughput, gemultiplexte methode mogelijk. De aanpak wordt 
gedemonstreerd voor het glycolytische enzym Pyk1 in minimale glycolyse S. cerevisiae,
waarvoor de globale eiwitmodificatieveranderingen werden gevolgd tijdens de overgang van 
proliferatie naar stationaire fase onder aërobe omstandigheden. Interessant genoeg 
vertoonden de meeste sequentiegebieden significante veranderingen op ten minste één punt 
tijdens de groeicurve. Verdere ontwikkeling van deze aanpak zou het mogelijk kunnen maken 
om het modificatie landschap van volledige metabole routes te volgen. Dergelijke 
experimenten maken het mogelijk om de rol van post-translationele modificaties in de 
regulatie van metabole routes in gist en daarbuiten te onderzoeken.
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Summary

Mass spectrometry-based cellular proteomics has taken a prominent role in many fields of 
research, including life sciences, biotechnology and microbial ecology. Proteins are the 
cellular building blocks that directly maintain the potential function of genes through 
enzymatic catalysis, molecular signalling and physical interactions and therefore function 
cannot be directly determined from the genome. Furthermore, the proteome of a cell is far 
more complex than its genome, due to processes including post-translational modifications. 
Currently, mass spectrometry is the most powerful technique to investigate the large 
proteome diversity present in cells, commonly applied in a shotgun (bottom-up) approach. 
Still, advanced mass spectrometry-based proteomics methods are not routinely applied to 
microbes. The cell factory and model organism Saccharomyces cerevisiae, for example, is 
very well characterized, however, many research questions surrounding proteome dynamics 
under different growth conditions, and the regulation of its complex metabolic network via 
post-translational modifications, remain to be answered. In particular, quantitative proteome 
dynamics data under well-defined conditions (in bioreactors) are currently lacking. A more 
comprehensive understanding will enable development of advanced industrial strains and 
improve its use as model organism when e.g. analysing metabolic diseases in humans.
Therefore, the aim of this thesis was to establish and apply optimized protocols to enable the 
large-scale quantitative analysis of proteome dynamics under highly controlled conditions.
In addition, a novel mass spectrometric approach was established to quantify the degree of 
modification of metabolic enzymes, that allows for a better understanding of their role in 
metabolic regulation.

In Chapter 2 the importance of post-translational modifications in proteomics experiments 
is described. This additional layer of regulation in the proteome can only be visualized 
through sensitive proteomics analyses, as these modifications are not encoded in the genome. 
Generally, in shotgun proteomics, many fragmentation spectra remain unidentified. A good 
fraction of those unidentified spectra likely originates from unexpected protein modifications 
or natural sequence variants. Recent advances in resolution, accuracy and quantitative 
properties in mass spectrometry, as well as developments in data processing enable new ways 
to explore protein modifications. Alternative algorithms (such as open modification search 
approaches) have been established over the past years, to overcome the limitations of 
database-restricted approaches. In Chapter 2, these recent methodological advancements 
enabling unrestricted protein modification searchers are reviewed and discussed.

S
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In yeast proteomics, a shotgun approach is typically applied in which proteins are digested 
into peptides prior to LC-MS/MS analysis. Sample preparation protocols are a common 
source of biases in proteomics experiments. Therefore, the influence of a range of sample 
preparation procedures on the proteomics outcome is described in Chapter 3. Thereby, we 
performed a comparison of different sample preparation protocols which are commonly 
employed in whole cell lysate proteomics experiments. The outcomes (after applying the 
different protocols) were evaluated for several criteria: the fraction of identified spectra, the 
proteome and amino acid sequence coverage, the GO-term distribution and the number and 
diversity of peptide modifications. The best performing protocols allowed to identify approx.
65–70% of all fragmentation spectra. A large fraction of the unidentified spectra consisted of 
too low quality to be confidently identified using additional de novo sequencing. 
Interestingly, a number of unexpected peptide modifications could be linked to solvents, 
additives and other routine materials. The established protocols and large sets of mass 
spectrometric raw data provide a resource optimise yeast proteome studies and to validate
(native) peptide modifications.

Even though S. cerevisiae is one of the most characterized microbes, a full understanding of 
the regulation of its metabolism has not been achieved thus far. Furthermore, its complexity 
makes it difficult to engineer and optimize biosynthetic routes for production of chemicals. 
Recent studies demonstrated the potential of proteome allocation data to improve prediction 
models for metabolic processes, that requires highly quantitative and accurate proteome data. 
Therefore, large-scale quantitative proteomics experiments were performed to monitor the
proteome dynamics in aerobic and anaerobic batch cultures, in Chapter 4. Anaerobic 
conditions showed substantially lower protein dynamics during the transition from 
proliferation to stationary phase, accountable to the lack of diauxic shift in the absence of 
oxygen. Furthermore, comparison with the minimal glycolysis yeast strain, in which all 
redundant minor isoenzymes are removed, allowed to investigate the impact of genetic 
redundancy in yeast glycolysis. While no significant physiological responses were observed 
when deleting the minor glycolytic paralogs, a number of protein-level alterations was 
observed in glycolysis of the mutant strain in particular under anaerobic conditions.

Finally, more than hundred different types of post-translational modifications have been 
identified to date across all domains of life. Nevertheless, the majority of modifications is 
rare and their biological roles have not been identified, while these can significantly affect 
the protein properties and localisation. Furthermore, crosstalk between modifications has 
been demonstrated for various enzymes in yeast, highlighting the importance of analysing 
the full modification landscape on a protein. Protein sequences are commonly analysed via 
tryptic peptides and less accessible sequence regions are therefore overlooked. In Chapter 
5, a proof-of-concept is described for an approach that enables to quantify the global degree 
of modification for individual enzymes from complex cell lysates. Here, the unmodified 
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fraction of each peptide is quantified, and therefore all types of modifications regardless their 
chemical nature are considered. Quantification of the full protein sequence is accomplished 
with the help of a protein standard generated with cell free synthesis, in combination with a 
multi-protease approach. Moreover, the use of TMT labelling allowed for a high-throughput, 
multiplexed method. The approach is demonstrated for the glycolytic enzyme Pyk1 in 
minimal glycolysis S. cerevisiae, for which the global protein modification changes were 
monitored during transition from proliferation to stationary phase under aerobic conditions. 
Interestingly, the majority of sequence regions showed significant changes at least at one 
point during the growth curve. Further development of this approach could allow to monitor 
complete metabolic pathways. Such experiments allow to explore the role of post-
translational modifications in the regulation of metabolic pathways in yeast and beyond.
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Chapter 1
General introduction
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Over the past decades, mass spectrometry-based cellular proteomics emerged as key 
technology in many fields of research, such as life sciences, biotechnology and microbial 
ecology [1–4]. In contrast to genomics approaches, proteomics targets the final gene 
products, namely the proteins [5]. The proteins translate the catalytic and metabolic 
functions, enable cellular signalling and regulation, and have structural roles [3]. However, 
the proteome of a cell can be magnitudes of orders more complex than its genome, due to 
processes such as alternative RNA splicing, amino acid variation, post-translational -
modification and -cleavage. Therefore, mass spectrometry is currently (and likely also in the 
foreseeable future) the most powerful approach to study the large proteome diversity present 
in cells. Interestingly, the advanced application of mass spectrometry-based proteomics to 
microbes and their complex ecosystems is still far from routine. This holds true for microbes 
such the model organism and cell factory yeast. For example, there are many open questions 
surrounding the proteome dynamics under different growth conditions, and the regulation of 
its complex metabolic network, or more specifically, the involvement of post-translational 
modifications. Providing a deeper understanding to these questions will support the 
development of advanced strains for industry, and enhance its use as model organism, e.g.
when studying metabolic diseases such as cancer.

From the discovery of the electron to large-scale proteomics
Technically, mass spectrometers measure the mass-to-charge ratio of ions, which strictly 
involves ionisation of the peptide or protein, separation of the ions and finally measurement 
of the mass-to-charge ratio. Nevertheless, it took more than 75 years of development until 
mass spectrometers found its first large-scale application in life sciences. The origin of mass 
spectrometry is attributed to the physicist J.J. Thomson, towards the end of the 19th century. 
Thomson experimented with electric fields inside a cathode ray tube, which ultimately led to 
the discovery of the electron that brought him the Nobel Prize in Physics in 1906 [6, 7].
Subsequently, the mass of charged atoms, and several stable isotopes could be determined 
for the first time [8, 9]. Decades later, A. Nier developed a mass spectrometer to obtain pure 
uranium-235 by mass fractionation, which helped to demonstrate that this isotope was 
responsible for nuclear fission, rather than uranium-238 [10]. This enabled later to build the 
first atomic bomb in World War II. In the late 50s and early 60s, the first small organic 
molecules were measured. K. Biemann, for example, was one of the first who used mass 
spectrometry to validate the structure of natural products [11]. In the mid-70s, the birth of the 
nowadays widely employed tandem-mass spectrometer was attributed to D. Hunt [12]. Mass 
spectrometers could now also selectively fragment molecular ions to obtain structural 
information. Nevertheless, it was only in the 1980s that mass spectrometry found its first 
applications in biology. This was attributed to the newly developed soft ionisation techniques, 
namely electrospray ionisation and matrix assisted laser desorption ionisation. These 
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techniques brought another Nobel Prize to the field of mass spectrometry, namely for K. 
Tanaka and J. Fenn in the year 2002 [7].

However, the vast proteome diversity of cells required additional developments before mass 
spectrometry could finally coin the term ‘cellular proteomics’. One of these developments 
was the coupling to high performance separation techniques. The second was the 
development of bioinformatics approaches that ultimately enabled the analysis of large-scale 
sequencing data, e.g. via database searching and validation procedures such as scoring and 
target/decoy approaches. Furthermore, other technical advancements improved sensitivity 
and resolving power of mass spectrometers. For example, high-resolution mass analysers 
such as the time-of-flight mass analyser, the Orbitrap mass analyser and later the integration 
of ion mobility techniques enabled many new insights into molecular features, such as 
covalent protein modifications [13–17].

Over the past decades, a range of dedicated proteomics approaches have been developed. 
Those allow now to answer a broad spectrum of proteome-related questions, such as large-
scale protein discovery using shotgun (data-dependent) and data-independent acquisition, 
protein quantification using targeted proteomics and labelling techniques, discovery of 
protein modifications using enrichment strategies, study the protein turnover and substrate 
utilisation using stable isotope probing, analysis of metabolite/protein interactions using 
thermal proteome profiling, the discovery of novel enzymes using activity-based proteomics, 
determining protein/protein interactions using chemical cross linking experiments, protein 
conformation studies using hydrogen deuterium exchange mass spectrometry, and 
determination of protein complex stoichiometry via native mass spectrometry [2, 18]. Today, 
many of these approaches are routinely employed to perform system-wide analyses of cells, 
body fluids and tissues. However, currently, most proteomics experiments are performed on 
human cells and a few model organisms. The application to microbes and their complex 
ecosystems is increasing but still far from routine [19].

State-of-the-art in large-scale cellular proteomics
Liquid chromatography coupled to high-resolution tandem mass spectrometry is currently 
the most common instrumental setup when performing cellular proteomics studies. In 
bottom-up proteomics, the complex protein extract, as derived from cells or tissues, is 
proteolytically digested into peptides prior to chromatographic separation and mass 
spectrometric detection [6, 20–23]. For this, the protease Trypsin is considered as gold 
standard in proteomics, even though many other proteases (with alternative cleavage 
specificities) are available. Trypsin cleaves at the carboxyl side of the amino acids lysine and 
arginine (except when a proline follows), generating mid-sized (8–30 AAs long) peptides 
with basic residue at the C-terminus. This is highly suitable for chromatographic separation, 
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ionisation (protonation) and sequencing using fragmentation experiments [24]. Peptides are 
typically separated using reverse-phase liquid chromatography to avoid co-elution and 
competitive ionisation and to allow the detection of as many peptides as possible by 
employing extended chromatographic gradients [25, 26]. Additionally, the peptide mixtures 
can be fractionated to maximise identifications before or in conjunction with the online 
chromatographic separation, e.g. by using strong cation exchange chromatography [27, 28].
Electrospray ionisation is the most common ionisation technique in proteomics, in which the 
analytes are ionized (protonated) out of solution, making it compatible with liquid 
chromatography separation techniques [28]. Another well-known ionization technique is 
matrix-assisted laser desorption/ionization (MALDI), where the samples are co-crystallised 
with a liquid matrix, and ionized following laser pulses [29]. Due to incompatibility of 
MALDI with liquid chromatography, electrospray ionisation is preferred as it allows for high 
efficiency and sample throughput [21].

In a conventional shotgun (data-dependent acquisition) experiment, the mass-to-charge ratio 
of the peptide ions are measured at high resolution to obtain a full scan (MS1) spectrum
(Figure 1). The most abundant peptide ions of every full scan are then selected for 
fragmentation via collision induced dissociation, higher-energy dissociation, or alternative 
approaches such as electron capture dissociation and electron transfer dissociation [21, 23, 
30]. This needs to be achieved within the time peptides elute from the separation column 
which is usually at peak widths in the range of seconds. The spectrum of the resulting 
fragments (MS/MS or MS2 spectrum, Figure 1) is then subjected to de novo sequencing, 
spectral library searching or to the more common database searching approach, to identify 
the peptide sequence, possible modifications, and the parent protein [21].

Nowadays, high-resolution mass analysers such as the Orbitrap, time-of-flight mass 
analysers are the most commonly employed analysers in cellular proteomics [3, 31, 32]. On 
the other hand, the first mass analyser in tandem (or hybrid) mass spectrometers are often 
simple mass filers, such as the quadrupole mass analyser [3]. The quadruple-Orbitrap mass 
spectrometers emerged as one of the most popular instruments for cellular proteomics studies 
due to its advanced performance in regard to mass resolution, accuracy and fragment ion 
coverage [13, 33]. Nevertheless, time-of-flight analysers enable fast scan speeds of 100 
microseconds per spectrum [31]. In combination with ion mobility as a third dimension of 
separation (e.g. trapped ion mobility, as employed in the timsTOF Pro instrument) [34–36],
this provides a powerful alternative to the widely used quadruple-Orbitrap mass 
spectrometers. This has been recently demonstrated in a scan mode termed parallel 
accumulation serial fragmentation ‘PASEF’ where peptide ions that co-elute are accumulated 
in parallel at specific ion mobility spaces [37]. Those are then serially ejected from the ion 
mobility cell for further fragmentation and analysis. This process increases proteome 
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coverage without loss of sensitivity. Ion mobility devices have also been recently developed 
and flexibly implemented by several other mass spectrometer instrument developers [38].

Nevertheless, the final step of a proteomics experiment is the interpretation of the acquired 
sequencing spectra. Some 500K sequencing spectra can nowadays be achieved during a 
conventional two hour chromatographic separation [13, 33, 37, 39]. Most common 
algorithms used to investigate fragmentation spectra are based on database searching, where 
the experimental spectra are compared to in silico-generated spectra from predefined protein 
sequence databases [21, 39, 40]. Yet, different search engines have been developed over the 
past decades, which often employ very different scoring and filtering strategies. Therefore, 
the combined application of different search engines provides usually an increased number 
of peptide spectrum matches [41–48].

Figure 1. High-resolution tandem mass spectrometry for sequencing of complex peptide mixtures 
as used in cellular proteomics. The upper left shematic shows a quadrupole-Orbitrap mass 
spectrometer, which has been widely employed for cellular proteomics studies over the past decade. A 
liquid chromatographic separation system is usually directly coupled to the ion source. The 
chromatogram (upper middle graph) shows the measured total ion intensity obtained from the 
chromatographic separation and mass spectrometric detection of the proteolytic digest. The full scan 
mass spectrum (MS1) shows mass peaks derived from peptides that elute at a given time point during 
the chromatographic separation, for which the mass-to-charge (m/z) ratio and the ion intensity are 
measured. Modified peptides show an increased m/z value in relation to the chemical nature of the 
modifications. The fragmentation spectra (MS2) of the peptides are obtained in a consecutive 
fragmentation step (right graphs). This is performed in a dedicated collision cell. This is commonly 
achieved following isolation of the m/z value by a quadrupole mass filter and subsequent fragmentation 
by collision induced dissociation (CID, HCD) or electron transfer dissociation ETD. The blue and 
orange lines show the fragmentation spectra from a theoretical peptide and its modified counterpart. 
The sequencing spectrum finally represents the amino acid sequence of the peptide (as shown for the 
theoretical sequence “PEPTIDE” (right graphs). The modified peptide shows a mass shift on the 
Threonine (T) residue, which results in the peptide sequence PEPT(+Δm)IDE. Unknown modifications 
pose a challenge to automated data processing in cellular proteomics experiments. 
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More recent developments improve the reproducibility of large-scale proteomics experiments 
by overcoming the stochastic sampling in shotgun experiments via data-independent 
acquisition methods (commonly abbreviated with ‘DIA’ or ‘SWATH’ MS) [49]. The ions of 
each window are then analysed by a high-resolution mass spectrometer. These strategies 
enable highly reproducible and rapid proteomics experiments, but usually also depend on 
advanced database or spectral library searching algorithm [50–53]. Additionally, hypothesis-
driven studies allow to focus on a subset of the proteins. These targeted applications allow 
the application of focused data acquisition methods (e.g. parallel reaction monitoring (PRM), 
single reaction monitoring (SRM), or multiple reaction monitoring (MRM)) to perform a 
very sensitive quantification of hundreds of preselected proteins in single runs [54–57].

Apart from achieving a high proteome and amino acid sequence coverage in cellular 
proteomics studies, another challenge is the detection and quantification of covalent protein 
modifications and unexpected single nucleotide polymorphisms. Such events are commonly 
not captured in the reference sequence databases due to mass changes to the reference peptide 
and therefore require advanced experimental as well as bioinformatics approaches. Latest 
developments include sophisticated enrichment strategies that enable the sensitive detection 
and quantification of selected modifications, as well as open database searching approaches 
that allow the discovery of unexpected modifications in complex datasets [58–60].

Nevertheless, the qualitative information obtained from large-scale discovery experiments 
finds often only limited application. Many systems biology questions require additional 
quantitative information about the proteomic state of the cell. Unfortunately, peptide signal 
abundances cannot directly be translated into absolute peptide, or protein quantities. Albeit 
that over the past decades useful strategies have been investigated to obtain more quantitative 
parameters (e.g. spectral counting, PAI and emPAI indices [61]), without the application of 
additional synthetic peptide standards the proteome information remains semi-quantitative. 
Nevertheless, a relative quantification (e.g. fold change of the same protein between different 
conditions) can be achieved for several thousands of proteins at high confidence, using label 
free as well as chemical-labelling approaches. For example, stable isotope labelling by amino 
acid in cell culture (SILAC) is a frequently used labelling technique that enables relative 
quantification of different cultures by addition of selected stable isotope amino acids into the 
cell culture medium [62]. Other chemical-labelling methods include the isobaric tagging for 
relative and absolute quantification (iTRAQ) and the tandem mass tag (TMT) strategies
(Figure 2) [63]. These allow to quantify thousands of proteins from multiple conditions, or 
time points, in single analysis runs. The intact masses of the chemical labels remain the same, 
while the mass normalizer and the mass reporter carry isotopes in different combinations to 
distinguish between samples. Peptides with the same sequence from different samples will 
elute from the separation column simulatenoulsy, and appear as a single peptide mass peak 
in the mass spectrum (Figure 2). Therefore, the number of peaks in the mass spectra does (in 
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theory) not increase when increasing the number of samples. Quantification is performed 
based on reporter ions in the MS2 spectrum, as the different mass tags only differ upon 
peptide fragmentation. The main advantage of TMT quantification is the ability to multiplex 
up to 16 samples [64], while for label-free quantification, samples are measured separately 
and thus significantly increase instrument time (Figure 2). Quantification reproducibility of 
the TMT approach does therefore not depend on performance variations LC-MS setup [65],
whereas a label free method is cost-efficient compared to TMT quantification. Finally, label 
free quantification is often superior in terms of protein coverage/identifications [66] and TMT 
quantification (MS2 based) is prone to co-isolation which may lead to less accurate results 
[67]. To overcome this issue, MS3-based approaches allow to further isolte and fragment 
ions from MS2 spectra [68].

Figure 2. Protein quantification methods: label-free quantification (LFQ) and tandem mass tag 
(TMT). In LFQ, samples are prepared and analysed separately using LC-MS/MS. Quantification of 
the samples is performed for each separate analysis. TMT quantification enables the quantification of 
up to 16 samples simultaneously due to unique labelling of each sample and subsequent mixing of the 
samples. Peptides with the same amino acid sequence from different samples elute from the 
chromatographic separation system at the same time and show therefore a single peptide mass peak in 
the spectrum. Quantification is performed based on the reporter ions in the fragmentation (MS2) 
spectrum, as the different mass tags differ upon fragmentation. 
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Absolute quantification on the other hand, can be achieved by using 13C or 15N stable isotope 
labelled standards such as by employing ‘AQUA peptides’ [69], by using the ‘QconCAT 
protein standards’ [70], or the full-length stable isotope labelled proteins for absolute 
quantification ‘FLEXIQuant’ [71]. These are powerful, but also costly approaches, and 
therefore not applicable to the absolute quantification of a global microbial proteome.

The yeast S. cerevisiae as cell factory
Microbial fermentation has played an important role in human society since ancient times. 
Alcoholic fermented beverages have been produced with yeasts and consumed by people as 
early as Neolithic times [72, 73]. However, yeast was only visualized by the early 
microscopes of Antoni van Leeuwenhoek in the 17th century [74]. The connection to alcohol 
formation in the fermentation process was then demonstrated by Louis Pasteur two centuries 
later [75]. Nowadays, S. cerevisiae (baker’s yeast) is the most well-known yeast and widely 
used for industrial and research applications. This is due to its genetic accessibility [76] and 
its GRAS (generally recognised as safe) status for the production of food and health-care 
products [77]. S. cerevisiae is also one of the most prominent cell factories because of its 
compatibility with high-density and large-scale fermentation, high tolerance against toxic 
inhibitors and final products [78] and its suitability as host for recombinant protein 
production [79].

Ultimately, S. cerevisiae became a popular metabolic engineering platform and a versatile 
industrial cell factory. As the world demands sustainable alternatives to petroleum-based 
products and fuels, microbial cell factories play an important role in the sustainable 
production of a broad range of products. Since yeast is already extensively used in beer and 
wine production, its use was extended towards bioethanol production [80], making it the most 
used biofuel to date. This alternative fuel is less toxic and more readily biodegradable than 
petroleum fuel such as higher octane number [81]. Additionally, many ‘bio-based’ chemicals 
have successfully been produced by S. cerevisiae [80], ranging from amino acids such as 
ornithine, which can be used as a dietary supplement [82], to pharmaceuticals products like 
opiods that are relevant for pain treatment [83]. However, many of the products can for now 
only be produced on laboratory scale in small amounts. To achieve cost-competitive bio-
based processes, cell factories must convert raw materials into products of interest with high 
productivities and yields.

Therefore, extensive reengineering of the central carbon metabolism is often required, 
because not only the pathway of interest need optimisation, but also the supply of precursor 
metabolites and co-factors need to be ensured, while at the same time by-products should be 
eliminated [84]. Over the past decades, the yeast molecular biology toolbox expanded 
tremendously, most recently with the dynamic genome editing tool CRISPR-Cas which 
allows for the precise introduction of multiple genetic modifications in the yeast genome 
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simultaneously [85–87]. These tools could improve the production of (heterologous) bio-
based products by industrial yeast strains. Nevertheless, multiple native genes need to be 
edited and heterologous multi-gene pathways to be implemented [88]. The central carbon 
metabolism remains essential to microbes, making simple elimination and replacement of 
biochemical reactions due to high complexity level of the genome of yeast often difficult. 
Therefore, metabolic pathway engineering is challenging, but essential for the production of 
bio-based chemicals and fuels.

The yeast S. cerevisiae as eukaryotic model organism
Yeast also became an important model organism for higher eukaryotes, in particular for 
human cells. S. cerevisiae shows a high degree of conservation for many key cellular 
processes when compared to human cells, such as for protein translocation and secretion, 
protein folding and chaperone functions. Furthermore, many key signal transduction 
processes are conserved between yeast and humans, indicating conserved elements for 
protein-protein interactions, regulation hierarchies and signal cross-talk [89]. Interestingly, 
47% of the 414 essential yeast genes can be replaced one on one by their human orthologues 
[90]. Additionally, yeast can grow very fast (especially compared to mammalian cells), it 
shows simple nutritional requirements and harbours an accessible genome (approx. 6000 
protein coding genes). 

Therefore, yeast has become a popular single-cell model organism to study the carbohydrate 
metabolism of eukaryotes. For example, the Embden-Meyerhof-Parnas (EMP) pathway of 
glycolysis is similar in all eukaryotes and plays a central role in carbon metabolism. 
Glycolysis is involved in diseases such as cancer, via the ‘Warburg effect’ [91, 92]. Several 
features of fermenting yeast and human tumour cells (that show the Warburg effect) are 
shared. Cancer cells consume larger amounts of glucose compared to healthy cells. Most of 
this glucose is then converted into lactate, despite presence of oxygen, which would result in 
full oxidation to carbon dioxide generating more energy [92–94]. Yeast cells grow in a 
similar manner during the Crabtree effect, where ethanol is accumulated under aerobic 
conditions at high specific growth rates, as fermentation is preferred over respiration [95]. A 
recent study also highlights the beneficial use of yeast cells as a model organism for the 
human Warburg effect, because all parameters in the presence of yeast could be reconstituted. 
Furthermore, it was successfully demonstrated that oxidative phosphorylation repression is 
not necessary to boost cell growth [96]. Another example of S. cerevisiae as a model 
organism is in aging research. A remarkable number of aging pathways are conserved across 
human and yeast species, including genome instability and nutrient signalling [97, 98].
Therefore, baker’s yeast remains an important and widely used model organism for higher 
eukaryotes. 
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Yeast growth on glucose
S. cerevisiae has the unique ability under yeast species to grow rapidly both under aerobic 
and anaerobic conditions. Growth of this yeast can be supported by a broad set of carbon 
sources, however the preferred carbon and energy sources are fermentable sugars, such as 
glucose. In glucose-limited, aerobic batch conditions, S. cerevsisiae encounters three phases 
throughout its growth curve; proliferation, diauxic shift and stationary phase. First, glucose 
is taken up in the yeast cell to support exponential growth and further metabolized through 
dissimilatory and assimilatory pathway. Glycolysis – the central pathway for sugar oxidation 
into pyruvate [99] – is coupled to fermentative production of ethanol under conditions of 
oxygen limitation and (or) sugar excess (Crabtree effect) (Figure 3) [100]. Nevertheless, S. 
cerevisiae can generate energy by fermenting glucose to ethanol to produce two ATP 
molecules per glucose or by respiration to obtain a significantly higher yield of ATP (16) on 
glucose molecule [101, 102]. Upon glucose exhaustion yeast cells undergo the so-called
diauxic shift. Here, the previously generated ethanol is consumed by switching to
gluconeogenesis using the glyoxylate shunt to provide its precursors and simultaneously
increasing the respiration rate by upregulation of tricarboxylic acid (TCA) genes [103]. The 
main catalytic function of the TCA cycle is to provide reducing equivalents to the respiratory 
chain via oxidative decarboxylation of acetyl-CoA. Furthermore, the TCA cycle also 
supports biosynthetic metabolism and most intermediates are used by other metabolic 
reactions [104]. Oxidative phosphorylation ensures the generation of ATP through electron 
transport of the energy precursors from the TCA cycle. Finally, cell reach the stationary 
growth phase upon complete carbon source depletion and growth is arrested immediately. 
Carbon starved cells are characterized by thickened cell walls, increased resistance and 
accumulation of storage carbohydrates [105]. In this quiescence stage, extracellular sources 
for energy and carbon are absent and therefore the cells rely upon intracellular energy 
production. In the presence of oxygen, two types of storage polymers are available in yeast. 
The first type, storage carbohydrates trehalose and glycogen, are generated from glucose 6-
phosphate during growth on glucose [106]. The second type of storage polymers are fatty 
acids, which are predominantly stored as di- and triacylglycerol esters. These fatty acids are 
catabolized through β-oxidation to produce acetyl-CoA, which subsequently enters the TCA 
cycle followed by energy generation through respiration. Interestingly, cellular chronological 
lifespan (CLS) is also modelled by stationary phase yeast cells, as they preserve viability and 
are able to grow upon encounter with nutrients. Understanding of stationary phase yeast cells 
has allowed for a better understanding of cellular mechanisms in aging, also applied to higher 
eukaryotes [107].

In the absence of oxygen, S. cerevisiae becomes auxotrophic for certain compounds, such as 
sterols and unsaturated fatty acids [108]. Consequently, anaerobic cells have a different lipid 
composition of the membrane (more saturated fatty acids, less sterol, ergosterol and squalene)
compared to yeast cells in aerobic environments [109]. Furthermore, cells are not able to 
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respire using the TCA cycle under oxygen deprivation. To maintain a high growth rate, the 
in vivo activity of glycolysis is much higher in anaerobic cultures than in aerobic cultures 
[110]. Overall, alcoholic fermentation is a redox-neutral process. Nevertheless, growth is
associated with anabolic processes that generally lead to a surplus of reducing compounds. 
In the presence of oxygen, these can be oxidised through the respiratory chain. On the other 
hand, glycerol is commonly produced to maintain redox balances during anaerobic growth 
[111]. Once glucose is depleted, the lack of oxygen ensures the entry directly into the 

Figure 3. Schematic overview of S. cerevisiae glycolysis and associated pathways in the central 
carbon metabolism. The graphs outlines the major (blue) and minor (grey) S. cerevisiae isoenzymes. 
Only the major isoenzymes are retained in the minimal glycolysis strain. 
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stationary phase. Here, the only known storage compounds, trehalose and glycogen, are 
utilized for energy generation. However, the conversion can only take place through alcoholic 
fermentation, thereby yielding 5–8 fold less ATP compared to respiratory dissimilation in 
aerobic conditions [106]. Little is known about the transition into or survival of budding yeast 
cells in stationary phase in anaerobic environments. However, yeast cells can pose as 
simplified model organism for cells in structured environments in multi-cellular organisms 
(e.g. tissues) that encounter micro-environments, including variations in oxygen 
concentrations, causing heterogeneity [112].

Layers of metabolic regulation in yeast
A major challenge in yeast growth is to understand how complex regulatory mechanisms 
control the metabolic pathways in response to changes in the environment. Generally, the 
metabolic flux depends on the capacities of the enzymes, which correlate with enzyme 
abundances, allosteric regulation but also with the presence of post-translational processes 
such as covalent protein modifications or irreversible cleavage of the protein backbone. 
Protein modifications are important post-translational regulators, which can alter protein 
(enzyme) activities and location spontaneously in a reversible manner. Post-translational 
modifications (PTMs) are not directly encoded in the genome and require therefore the 
analysis of the protein itself. 

Since glycolysis is a pivotal pathway in cellular growth and division, the pathway is subjected 
to multiple layers of regulation. Even though glycolysis is one of the most studied pathways 
of the yeast metabolism, a profound understanding of its regulation is still not accomplished, 
partly by the genetic redundancy of the pathway. Genetic redundancy in eukaryotes such as
S. cerevisiae is another level of regulatory complexity for experimental development of cell 
factories. Many genes have orthologues with apparently similar functions [113], but with 
poorly understood roles. In S. cerevisiae, eight of the 12 enzymatic reactions from glucose to 
ethanol are represented by multiple paralogous genes following whole genome duplication 
event(s), resulting in two or more isoenzymes for the same reaction [114]. In most cases, the 
major paralog of the isoenzymes has the largest contribution to the catalytic conversion. An 
exception is phosphofructokinase, as both paralogs support the activity equally as part of 
hetero-octameric enzyme [115]. The co-existence of more than one enzyme reaction in
glycolysis has also not been fully understood and remains elusive even today. For some minor 
paralogs, expression depends on specific nutrient availability, while others exhibit a 
(moonlighting) function parallel to their glycolytic duty [116].

In general, the major paralogs are constitutively expressed at high levels, making up to 20% 
of the expressed proteins in solution in a yeast cell [117]. Furthermore, the high expression 
levels of glycolytic enzymes also allow for an overcapacity that result in rapid adaptation to 
changing environments [118], while expression levels are still prone to environmental cues 
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that can increase their expression levels up to five times [119, 120]. Overall, the minor 
glycolytic enzymes are transcribed at a much lower level compared to the major paralogs, 
although their expression is claimed to be condition-dependent. For example, HXK1, GLK1, 
PYK2 and ADH2 have a low expression in response to high glucose concentrations [121–
124]. In addition, PDC6, minor paralog to PDC1, is strongly upregulated in sulphur-limited 
conditions, due to its lower sulphur amino acid content compared to its paralogs [125, 126].
In S. cerevisiae, for at least five glycolytic enzymes, secondary functions have been 
demonstrated. First, Hxk2 is not only involved in phosphorylating intracellular glucose, but 
also in the glucose repression process [127]. In these high glucose concentrations, 
approximately 15% of Hxk2 is localized to the nucleus where it interacts with the 
transcriptional repressor of the aforementioned repressible genes [128], including Hxk1 and 
Glk1. Fba1 is the second enzyme with an alternative function in yeast metabolism, while it 
lacks paralogs for its glycolytic activity. Fba1 is physically involved in the assembly of the 
subunits of vacuolar proton-translocating ATPases (V-ATPases), while Fba1 also plays an 
essential role in V-ATPase activity, that couple ATP hydrolysis to proton transport out of the 
cytosol into the vacuole [129, 130]. The enolase pair (Eno1 and Eno2) in glycolysis are both 
implied to be involved in vacuolar fusion [131], in addition to their enolase activity in 
glycolysis. Deletion of either enolase therefore also results in vacuole fragmentation in yeast 
cells [131]. Finally, Pyk1 and Pyk2 both catalyse the conversion of phosphoenolpyruvate to 
pyruvate, but only Pyk2 (minor paralog) allows for efficient growth on the three carbon-
substrate dihydroxyacetone (DHA) [132]. Interestingly, in a study by Solis-Escalante et al., 
a minimal glycolysis (MG) yeast strain was constructed in which all the redundant minor 
isoenzymes were knocked-out (Figure 3) [120]. To this end, only 13 (out of 26) glycolytic 
enzymes were expressed in this yeast. The deletion of the glycolytic minor isoenzymes did 
not induce a phenotypic response under a range of tested growth conditions, confirming the 
suitability of such a strain for studying the regulation of metabolic enzymes. However, the 
underlying proteome level adjustments were not investigated.

Nevertheless, it has been demonstrated that the glycolytic flux in S. cerevisiae is 
predominantly determined by post-translation processes, such as allosteric regulation and 
protein modifications [133]. The glycolytic flux is thus partially determined by well-defined 
allosteric regulators. First, Hxk1 and Hxk2 are strongly inhibited by trehalose-6-phosphate, 
which acts as an intermediate in trehalose synthesis [134]. Secondly, Pfk1 and Pfk2 can be 
affected by multiple regulators, while the enzymes are influenced mainly by ATP inhibition, 
AMP, ADP and fructose-2,6,-biophosphate activation [135]. The final kinase in glycolysis is 
Pyk1 and this enzyme is regulated allosterically by fructose-1,6-bisphosphate, an glycolytic 
intermediate produced by phosphofructokinase, that acts as an feed-forward activator [124].
Inhibition of hexokinase and phosphofructokinase in combination with activation of pyruvate 
kinase allow for harmonization of the upper and lower part of glycolysis. 
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A slightly less characterized form of regulation is by PTMs on glycolytic enzymes. Many 
modifications, such as methylation [19], acetylation [20], succinylation [21], ubiquitination 
[22], nitration [23] and O-mannosylation [24] have been reported for glycolytic enzymes. 
Most proteome studies have focused on identifying phosphorylation in S. cerevisiae [136–
140], however, only few can connect the modification to a biological function in the cell. For 
example, Hexokinase 2 is able to shuttle between the nucleus and cytoplasm due to a 
phosphorylation of the protein [141]. Moreover, it has been demonstrated recently that 
increased phosphorylation resulted in decreased enzyme activity and lower growth rates of 
S. cerevisiae under glucose-limited conditions, indicating a negative correlation between 
phosphorylation and activity of several glycolytic enzymes [142]. Yet, the functionality of 
many (un)identified modifications on glycolytic enzymes need to be determined. 

State-of-the-art in yeast proteomics
Proteomics of microbes and their complex communities is still far from routine. For yeast, S. 
cerevisiae is by far the best investigated member considering proteomics studies [110, 143–
153]. Yeast has been also subjected to several deep proteomic studies where 80–90% of the 
complete proteome could be identified [151, 152]. There were also numerous proteomic 
studies performed that focused on biological questions. For example, since yeast is able to 
grow under both aerobic and anaerobic conditions, several studies explored the influence of 
oxygen on the proteome. A study by de Groot et al. illustrated that most glycolytic enzymes 
were more abundant in the absence of oxygen compared to oxygen-rich conditions [110]. On 
the other hand, TCA cycle proteins were more abundant in aerobic conditions, as cells are 
not able to respire without oxygen. Helbig et al. discovered that the yeast respiratory chain 
complexes were still present in anaerobic conditions, although at reduced levels [145]. The 
genetic redundancy of enzymes in glycolysis was also addressed recently by Costenoble et 
al. This study showed that the minor isoenzymes Glk1 and Hxk1 redirect glucose to glycogen 
storage as opposed to glycolysis. In addition, the major ethanol-producing paralog Adh1 
clustered with glycolytic enzymes, whereas the major ethanol-consuming paralog Adh2 
clustered with gluconeogenesis proteins [148].

In batch cultures, the yeast encounters multiple environmental changes along the growth 
curve and the proteome needs to adapt accordingly. Especially under aerobic conditions, cells 
move from fermentation to respiration to growth arrest. Several studies therefore focused on 
the proteome adaptation during the diauxic shift in aerobic yeast cultures as cells reverse their 
metabolic flux from glycolysis to gluconeogenesis [146, 147]. According to a yeast 
proteomics study by Zampar et al., the diauxic shift is accomplished by the reduction of the 
glycolytic flux, production of storage compounds (before glucose depletion), which is 
followed by reversion of carbon flow through glycolysis and the glyoxylate cycle upon 
glucose exhaustion [146]. Finally, cells enter the stationary phase once the fermentation 
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products are consumed in the post-diauxic phase. Stationary phase yeast cells were analysed 
in comparison to exponentially growing cells, in which protein in log cells were enriched in 
various processes including biogenesis and RNA processing [153, 154]. In the absence of 
oxygen, however, cells enter the stationary phase directly after glucose exhaustion. 
Transcriptome changes of batch cultures were monitored throughout the complete 
(an)aerobic growth curve and revealed that the longevity and thermotolerance of yeast cells 
is strongly affected by oxygen availability [155]. The post-diauxic growth on ethanol was 
indicated to enable the cells with time and resource required for longevity and
thermotolerance. Nevertheless, proteome analyses are required to confirm the changes on a 
transcriptome level during these conditions. 

Recently, in silico models are generated to reproduce and predict the complex microbial 
metabolism to improve cell factories through metabolic engineering [156]. The prediction 
ability of these models is greatly enhanced with the use of resource allocation, including the 
cost of protein expression [157–161]. Mitochondrial proteome quantification and allocation, 
for example, revealed a trade-off between biosynthesis and energy generation during the 
diauxic shift [162]. In this study, the diauxic shift was suggested to represent the stage where 
major structural and functional reorganizations in mitochondrial metabolism occur. Another 
study demonstrated the influence of amino acid supplementation in aerobic and anaerobic
cultivations. Here, the proteome reallocates from amino acid biosynthesis to ribosome to 
enable faster growth in rich media [160]. Proteome allocation was also applied to predict the 
Crabtree effect, explained by a reduced protein cost of generating ATP through fermentation 
than respiratory pathways [161]. Finally, proteome allocations changed linearly with the 
yeast specific growth rates. For example proteins involved in translation showed a 
remarkably linear correlation with the specific growth rate. On the other hand, glycolysis and 
chaperone proteins showed a linear decrease [163].

Nevertheless, a large number of spectra in (yeast) cellular proteomics experiments remain 
unidentified, likely resulting from unidentified modifications on peptides (Figure 1) [60]. In 
fact, the yeast proteome has been investigated for the presence of post-translational 
modifications. However, analysis of sub-stoichiometric modifications, with unknown 
chemical composition is very difficult to facilitate and are therefore often not explored at all. 
Interestingly, over the past decades, more than one hundred modifications have been detected 
(from different species) [164], where the fraction of modifications with a biological relevance 
is expected to be much lower. Therefore, the focus was strongly on the most common 
modifications such as phosphorylation, acetylation and methylation [139, 165–167].
However, the functionality of many modifications (sites) has not been validated to date. In 
addition, rare or difficult to analyse modifications may still have been left unnoticed so far. 
Most importantly, PTMs have commonly only been studied isolated, while many different 
modifications are known to modify one and the same enzyme simultaneously. Some 
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modifications have been also found competing for the same modification site or impacting 
on the modification stoichiometry of neighbouring modification sites through PTM cross-
talk [168–171]. This either competitive or cooperative interplay has been already described 
as comparable to a large regulatory network [168, 170]. For example, cross-talk of 
phosphorylation and nearby U3-ligase dependent ubiquitinylation results in proteasomal 
degradation [169]. Another example is the potential interplay between histone methylation 
and adjacent regulatory phosphorylation sites [172]. PTM crosstalk is thought to be common 
in living cells, as more and more recent yeast studies demonstrate the co-occurrence of 
multiple PTMs at the same time [173–176]. Many technical as well as computational 
challenges however hamper the progress in this field and therefore there is still a large gap in 
understanding the diversity and regulatory impact of post-translational modifications, in 
particular for microbes such as yeast.

Still, a large number of peptide modifications are also introduced artificially during sample 
handling and preparation, underlining the need for mild preservative protocols, which is not 
common practice in the proteomics field. A significant fraction of unidentified spectra may 
therefore be a consequence of proteolytic cleavage or other sample preparation related 
artifacts. [177]. Therefore, an optimised sample preparation protocol is essential for 
achieving a deep proteome coverage and for studying (novel) protein modifications. 

In summary, S. cerevisiae is one of the most extensively characterized model organisms, and 
has therefore also been subjected to many proteomics studies [110, 143–153]. However, the 
regulation of the complex yeast metabolism and the yeast proteome dynamics has not been 
fully explored to date. The proteome is a complex network in the cell that constantly adapts 
to meet the requirements of the cell. Therefore, to understand the regulatory networks in a 
cell in response to the environment, the proteome needs to be under close surveillance using 
the most advanced mass spectrometry-based methods. As the proteome is a highly dynamic 
entity in the cells in reaction to its environment, it is very important in proteomics 
experiments to closely control the conditions. However, many proteome features have been 
investigated in isolation (e.g. single protein modifications), or under poorly controlled growth 
conditions. Highly quantitative large-scale proteome data under tightly controlled culturing 
are currently lacking in the field that are required to assist predictive models of the 
metabolism.

Goal of the thesis and outline of the chapters
The single cell eukaryote S. cerevisiae is a highly important cell factory and model organism. 
Even though S. cerevisiae is one of the best characterized model organisms, a complete 
understanding of the metabolic network and its complex regulation has not been achieved to 
date. In particular quantitative proteome dynamics data established under highly controlled 
conditions are lacking. Therefore, this thesis aims to i) perform a comparative study on 
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cellular proteomic sample preparation protocols to enable standardised yeast proteomic 
studies, to ii) establish large-scale quantitative proteome dynamics data established under 
highly controlled conditions, and to iii) investigate novel mass spectrometric approaches to 
quantify the degree of protein modification of metabolic enzymes to better understand their 
role in metabolic regulation. The established data and methods aim to support metabolic 
engineering efforts in order to expand the scope of industrial applications, and to advance 
yeast in its role as model organism, e.g. when studying metabolic diseases.

Chapter 2 discusses recent advancements in data processing tools that support the discovery 
of post-translational modifications (in S. cerevisiae). Post-translational modifications 
represent an additional layer of regulation that is challenging to identify and to quantify in 
large-scale proteomics experiments. A large fraction of unidentified spectra is suggested to 
originate from unexpected post-translational modifications or natural amino acid sequence 
variants. Recent advances in mass spectrometry and data processing algorithm opened new 
ways to explore these important features. For example, so called “open modification” search 
approaches allow to simultaneously search for a large range of unexpected modifications in 
complex data.

Chapter 3 describes the influence of a range of sample preparation procedures on the 
proteomics outcome. In yeast proteomics, a shotgun approach is typically applied in which 
proteins are digested into peptides prior to LC-MS/MS analysis. Sample preparation can be 
one of the most significant contributors to biases in proteomics experiments. Therefore, we
performed a systematic comparison of sample preparation protocols commonly applied in 
whole cell lysate proteomics experiments. The results were evaluated for a range of key 
performance criteria. Finally, the best protocols allow to identify approx. 65–70% of all 
fragmentation spectra. Additional de novo sequencing suggests that the remainng spectra 
were largely of too low quality in order to provide spectrum matches. Interestingly, several
unexpected peptide modifications could be linked to chemicals such as solvents and
additives. The established protocols and mass spectrometric data provide a large resource for
optimising and evaluating yeast proteomics studies.

Chapter 4 investigates with large-scale quantitative proteomics the proteome dynamics of 
S. cerevisiae in response to dynamic glucose concentrations in batch cultures under both 
aerobic and anaerobic conditions. Experiments were performed under highly-defined growth 
conditions and continuous measurements of off-gas, pH, temperature, dissolved oxygen and 
sampling without disturbing the controlled environment. Anaerobic conditions showed 
substantially lower protein dynamics during the transition from exponential to stationary 
phase, that could suggest that anaerobically growing cells lack the time and resources needed 
to adapt to the changing in environment, more particularly the depletion of carbon source.
Additionally, comparison to the minimal glycolysis S. cerevisiae strain allowed to investigate 
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roles of the minor isoenzymes under these dynamic conditions. Interestingly, no significant 
physiological responses and only a few protein-level alterations were observed when deleting 
the redundant minor glycolytic paralogs. 

Chapter 5 provides proof of concept for an approach that enables to quantify the global 
degree of modification for individual enzymes from complex cell lysates. To date, more than 
hundred different types of modifications have been observed. Modifications such as 
phosphorylation, acetylation or glycosylation, are very abundant and are known to translate 
important functions. However, studies on post-translational modifications usually consider 
only a single or a few modifications, while modifications have been demonstrated to interact. 
Furthermore, studies commonly only investigate sequence regions that are accessible via 
tryptic peptides. This approach quantifies the unmodified fraction of each peptide, and 
therefore considers all types of modifications, regardless their chemical nature. 
Quantification of the complete protein sequence is realised by the aid of a cell free synthesis 
produced protein standard, TMT labeling and a multi-protease approach. Finally, we 
exemplify this approach by monitoring the protein modification changes of the glycolytic 
enzyme Pyk1 from S. cerevisiae, during transition from proliferation to stationary phase 
under aerobic conditions. Further development and additional cross validation of the 
established data will allow to expand this approach to complete metabolic pathways.
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Chapter 2
Shotgun proteomics: why thousands of 

unidentified signals matter

Maxime den Ridder, Pascale Daran-Lapujade and Martin Pabst

Essentially as published in:
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Abstract
Mass spectrometry-based proteomics has become a constitutional part of the multi-omics 
toolbox in yeast research, advancing fundamental knowledge of molecular processes and 
guiding decisions in strain and product developmental pipelines. Nevertheless, post-
translational protein modifications (PTMs) continue to challenge the field of proteomics. 
PTMs are not directly encoded in the genome; therefore, they require a sensitive analysis of 
the proteome itself. In yeast, the relevance of post-translational regulators has already been 
established, such as for phosphorylation, which can directly affect the reaction rates of 
metabolic enzymes. Whereas the selective analysis of single modifications has become a 
broadly employed technique, the sensitive analysis of a comprehensive set of modifications 
still remains a challenge. At the same time, a large number of fragmentation spectra in a 
typical shot-gun proteomics experiment remain unidentified. It has been estimated that a 
good proportion of those unidentified spectra originates from unexpected modifications or 
natural peptide variants. In this review, recent advancements in microbial proteomics for 
unrestricted protein modification discovery are reviewed, and recent research integrating this 
additional layer of information to elucidate protein interaction and regulation in yeast is 
briefly discussed.

2      Chapter 2
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Introduction
Mass spectrometry (MS) is currently the most powerful technology for the identification, 
characterisation and quantification of complex mixtures of proteins [178–180]. The 
performance of mass spectrometers has steadily improved over recent decades, providing a 
near-complete yeast proteome coverage using short chromatographic separation times and 
minimum amounts of sample [151, 181]. The actual proteome is approximately 2 to 3 orders 
of magnitudes more complex than can be predicted from its genome [182], in which 
diversification processes such as post-translational modifications (PTMs) contribute 
substantially. PTMs are enzyme-mediated covalent modifications (or cleavage products) 
introduced following biosynthesis of the amino acid backbone, thereby expanding the range 
of possible protein isoforms (proteoforms) and functions without the need for changing the 
genetic code itself [183]. For example, the central carbon metabolism has been fine-tuned to 
exactly meet the requirements for building blocks and Gibbs free energy in conjunction with 
cell growth. Thus, when cells experience environmental changes, their metabolism 
immediately aims to adjust [133, 184, 185]. Apart from the relatively slow adjustment of 
enzyme abundances, cells utilise fast and dynamic routes such as allosteric regulation but 
also through the above-mentioned (reversible) protein side chain modifications of the enzyme 
itself [133, 186] (Figure 1). The number of different modification types reported across 
various species are in the range of hundreds [164, 187], but most have been only observed at 
low frequency and low stoichiometry, and a potential biological relevance remains elusive 
[188].

Figure 1. Overview of metabolic regulation mechanisms in a yeast cell. The metabolic flux in cell 
depends on the capacities of the metabolic enzymes, which depend on enzyme abundances, allosteric 
regulation but also on the occurrence of covalent modifications on the protein itself, termed post-
translational modifications (PTMs).
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PTMs observed for the yeast model Saccharomyces cerevisiae have recently been compiled 
in the database YAAM [189]. Here, statistics on 12 experimentally confirmed modification 
types (ubiquitination, phosphorylation, acetylation, lipidation, oxidation, succinylation, 
glycosylation, methylation, sumoylation, nitration, disulfide bond formation and N-terminal 
acetylation) are described that are experimentally confirmed by MS, point mutation or 
functional evidence (Table 1). According to this database, more than 70% of the complete 
yeast proteome has been observed post-translationally modified (albeit under different 
growth and experimental conditions), demonstrating the importance of these regulators for 
cellular processes [189]. Nevertheless, low frequent or difficult to analyse modifications, 
such as lipoylation [190, 191] are rarely addressed, of which some may still have been left 
unnoticed to date. 

Table 1. Number of entries found for most abundant PTMs in yeast. Number of entries for each 
PTM described for Saccharomyces cerevisiae as collected in the YAAM database 
(http://yaam.ifc.unam.mx, November 2019). Each entry represents a modified residue described in 
literature, therefore a specific PTM site could be entered more than once [189]. The number of modified 
proteins in terms of the complete proteome of S. cerevisiae are also given.

Protein phosphorylation appears to be the most commonly observed PTM in yeast (Table 1), 
however, this may be heavily overestimated since many studies specifically focus on this 
type of modification. A similar trend was observed in the Uniprot database entries for the 
proteins of S. cerevisiae, in which also phosphorylation appears to be the most frequent type 
of modification in yeast [192]. In addition to phosphorylation, other common modifications 

Modification # Mods # Proteins

Acetylation 10052 1814
Disulfide 264 79
Glycosylation 1972 424
Lipidation 183 128
Methylation 287 143
Nitration 16 15
N-terminal Acetylation 762 687
Oxidation 875 605
Phosphorylation 87739 3955
Succinylation 1754 570
Sumoylation 138 48
Ubiquitination 14883 2355

Coverage

Estimated total modified proteins.
Modified proteins of the proteome (%)

4759
70.82

2      Chapter 2

166125 den Ridder BNW.indd   34166125 den Ridder BNW.indd   34 12-04-2023   09:4912-04-2023   09:49



 

35

such as acetylation and methylation have been frequently described and were found involved 
in a variety of cellular processes. For example in yeast glycolysis, the shuttling back and forth 
of Hexokinase 2 between the nucleus and cytoplasm is regulated by phosphorylation [141].
Furthermore, studies over the past years have demonstrated that phosphorylation seems to 
affect many more processes, such as cell signalling [193], glycerol metabolism [194],
regulation of nucleotide and amino acid biosynthesis [195], regulation of the outgrowth of 
autophagosomal membranes in autophagy [196] and DNA damage checkpoint signalling 
[197]. Moreover, lysine acetylation (and glutamine methylation) is an evolutionarily highly 
conserved modification, which regulates chromatin accessibility and therefore affects gene 
expression directly [198–200]. Recent studies on PTMs in yeast are summarized in 
Supplementary Table 1. For a more extensive reviews on post-translational modifications 
in yeast, in particular for phosphorylation, we refer readers to recent reviews from Oliveira 
and Sauer (2012), Tripodi et al. (2015) and Chen and Nielsen (2016) [167, 180, 201].
Nevertheless, the functionality of many modification sites and (unknown) modifications have 
not been investigated to date.

In this review, recent advancements in proteomics for unrestricted modification discovery 
are summarised, as PTM data analysis remains very challenging in identifying modifications.
Moreover, we discuss the critical trade-off between maximum proteome coverage versus 
maximum sequence coverage in the context of a comprehensive functional characterisation 
of PTMs.

Advances in bioinformatics tools for unrestricted PTM discovery
Currently, the most frequently employed approach in discovery proteomics is referred to as 
shotgun proteomics (Figure 2). Thereby, (in a bottom-up approach) protein extracts are 
analysed following proteolytic digestion using liquid chromatography (LC) coupled to 
tandem mass spectrometry (MS/MS) [178]. After chromatographic separation of the 
proteolytic digest, peptides are analysed for (accurate) mass that further triggers automatic 
fragmentation to obtain peptide sequence information [23, 202–204]. The spectra are then 
matched against a predefined protein database, generally derived from public repositories or 
genome sequencing itself. In common, cellular shotgun proteomics experiments create 
enormous amounts of sequencing spectra. For example, as much as 80,000 MS/MS spectra 
could be obtained for an one hour yeast proteome experiment [151].

State-of-the-art proteomics workhorses, such as the quadrupole Orbitrap mass spectrometer 
[13], are capable of acquiring spectra at high speed (such as >20 Hz), high resolving power 
and high mass accuracy fragmentation spectra, supporting the identification of several 
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thousands of proteins in less than one hour of analysis time [33, 205]. Nevertheless, only a 
fraction of fragmentation spectra (on average less than half) is confidentially matched to the 
proteome database (Figure 2) [60]. It is estimated that a good portion of those unidentified, 
but high-quality spectra, may originate from unexpected (including not considered) 
modifications (or sequence variants) not present in the database [60, 206]. Where the majority 
of modified peptides may be readily detected by the employed method, their confident 
identification however, often fails. Peptides containing modifications could, for example, not 
only be shared by different proteins (protein inference), but several overlapping modified 
peptides could also share the same modified site [207].

Identification is commonly realised by a database matching algorithm, where the acquired 
fragmentation spectra are matched against in silico spectra from predefined protein sequence 
databases [21]. Modifications are thereby detected as mass deviations from the native peptide 
mass peak, and that, in the ideal case, can be further allocated to single amino acids (Figure 
3a).

Figure 2. Protein identification by (a bottom-up) shot-gun proteomics experiment. The typical 
workflow consists of cell lysis, protein extraction from (yeast) cells and subsequent digestion into
peptides using specific proteases (step 2). In step 3, the peptides are separated by liquid 
chromatography and further detected following electrospray ionization (ESI) by data dependent
analysis, which automatically collects fragmentation spectra from (top intense) peptide signals, in step 
4. In step 5, the fragmentation spectra (MS/MS) are commonly identified by database search 
approaches, matching fragmentation spectra to in-silico peptides derived from the target proteome 
database. Finally, the result of a typical shotgun proteomics experiment is depicted, in which roughly 
half of the spectra could not be assigned to a target protein sequence of the database. Similar 
identification rates have been reported in a survey reinvestigating hundreds of shot-gun proteomics 
experiments by Griss et al. (2016) . To improve the identification rate, several approaches can be taken. 
First, the quality of the spectra should be verified. In addition, modifications could be added to the 
database to ensure that the database is complete and modified peptides could be identified. Finally, an 
unrestricted search could be performed to identify (unexpectedly) modified peptides.
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However, identification of PTMs by the simple addition of mass increments (modifications) 
is restricted. Firstly, it assumes prior knowledge of the modifications present in a sample. 
Secondly, consideration of multiple modifications leads to an exponential increase in search 
space, impacting on computational efforts and challenging common statistical parameters, 
resulting in increased false negative as well as false positive identifications [58, 208, 209].
To overcome limitations of database-restricted approaches, alternative algorithms have been 
established, with the most common tools and latest developments being listed in Table 2.
These open modification search tools do not require specifying the modification before 
analysis and can therefore also identify unexpected modifications. Current bioinformatics 
tools use different strategies such as multi-round search, de novo sequencing, sequence-
tagging or spectral library-based approaches. PeaksPTM, for example, is a multi-round 

Figure 3. Peptide modification search. A. Unrestricted modification search as obtained by using the 
Byonic software tool (Table 2). The observed mass shifts (between 0 and 150 Da) on tryptic peptides 
from a yeast shot-gun proteomics experiment are represented in a histogram. Commonly, many mass 
additions derive from artificial modifications introduced during sample preparation, while others are of 
natural origin. However, the distinction between both types is a delicate step during data processing 
and evaluation. Common mass shifts found are indicated by an arrow: Deamidation (0.98 Da) 13C
isotope precursor selection (1.0 Da), methyl (14.0 Da), oxidation (15.98 Da), sodium adduct (22.0 Da), 
acetyl (42.0 Da), iron adduct (52.9 Da), carbamidomethyl (57.0 Da) and dicarbamidomethyl or 
ubiquitin (114.0 Da). Phosphorylation (80.0 Da) was not observed frequently in this search, even 
though it appears to be the most commonly observed PTM in yeast [189]. However, this modification 
type usually occurs at low stoichiometry and therefore enrichment methods are commonly applied, 
which was not performed here. (*) Indicated mass shifts can also represent amino acid substitutions, 
which require case-by-case investigations. Inset: Assignment of high-resolution mass shifts. Where
high-resolution mass spectrometry can resolve 15.99 (oxidation) from a closely related addition at 
16.02 Da. Other amino acid substitutions such as Ala->Ser show exactly the same composition and 
therefore mass shift. B. The degree of formylation of Enolase 2 (S. cerevisiae) is quantified following 
a common shotgun proteomics experimental set-up with or without the use of formic acid as a solvent 
for protein solubilisation. The use of formic acid during sample handling introduced a considerable 
number of formylated peptide artefacts, as shown for Enolase 2.
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search tool incorporated into the PEAKS proteomics software solution [210], enabling 
efficient searches for all modifications listed in the UNIMOD database simultaneously [211, 
212].

Following identification of the proteins present in a sample, modifications are searched using 
a ‘one-PTM-per-peptide’ limitation to avoid exponential growth of the search space. During 
this process, sample-common PTM types are identified, generating a finite set of relevant 
modifications used to search for peptides containing two or more PTMs [212]. Another multi-
round tool—G-PTM-D—employs a similar strategy, but uses a mass-tolerant open search 
strategy in the first round [213]. A further advanced version was published by Solntsev et al.
(2018) that increases the speed and accuracy. Alternatively, de novo sequencing derives the 
peptide sequence from a tandem mass spectrum without a protein database. This strategy is 
used by deNovoPTM to identify modified peptides. However, algorithms are 
computationally demanding, consider only a restricted number of modifications and require 
high-quality fragmentation spectra [215]. A more efficient de novo PTM identification 
workflow, termed Open-pNovo, has been published by Yang et al. (2017) [216].

The first developed unrestricted search tools included sequence-tag based approaches [203, 
217, 218]. Here, only de novo sequence-tags (extracted peptide sequence fragments of 3 to 4 
amino acids) are required to find possible peptide matches from a sequence database. The 
differences between the expected and observed mass of the match are then assumed to be 
mutations or modifications. Sequence-tag-based approaches were then also the baseline for 
faster, further developed tools such as MODa, a ‘multi-blind’ spectral alignment algorithm 
[209]. Many software tools further employ hybrid approaches to improve accuracy and speed. 
Open-pFind, for example, uses first a sequence-tag based approach followed by a restricted 
search in which modification types and protein sequence entries are set by semi-supervised 
machine learning [219]. Kong et al. (2017) established a novel fragment-ion indexing method 
implemented in a database search tool termed MSFragger [220]. This tool provided a 
substantial improvement in search speed and made unrestricted modification searches 
feasible for particularly large data sets. More recently, TagGraph was established by 
Devabhaktuni et al. (2019) which is an unrestricted de novo sequence-tag approach utilising 
a fast string-based search including a probabilistic validation model optimised for PTM 
assignments [221]. Another commercial software package that enables advanced 
modification searches is Byonic [222]. This tool includes an option for Modification Fine 
ControlTM that is also a fully unrestricted search approach for unanticipated modifications, 
termed Wildcard SearchTM (Figure 3a). An alternative peptide modification search strategy
utilises spectral libraries. Thereby, identification of modified peptides are interpolated from 
the identification of unmodified reference spectra [208, 223–226]. This process results in 
improved accuracy and higher identification rates but is limited to peptides being present in 
the database. More recent developments here include the ANN-SoLo tool from Bittremieux 
et al. (2018) [227] and the SpecOMS tool developed by David et al. (2017) [228]. It should 
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be noted that most of the recently developed algorithms have not been applied in microbial 
or yeast proteomics to any significant degree, potentially due to difficulties in obtaining 
accurate FDR estimations and the risk of extensive false positive identifications.

Table 2. Recently developed open modification tools for PTM discovery. *Many tools utilise 
hybrid-type approaches. **Commercial platform(s).
 

 

Software tool (Main) 
approach*

Fully 
unrestricted? Download link Reference

MSFragger
Error tolerant 

search Yes http://www.nesvilab.org/software [220]

DeNovoPTM
De novo

sequencing
No

http://www.mybiosoftware.com/denovoptm-
ms-based-peptide-identification-software-

tool.html
[215]

Open-pNovo
De novo

sequencing
No http://pfind.ict.ac.cn/software/pNovo/index.html [216]

TagGraph
De novo

sequencing / error 
tolerant search

Yes http://sourceforge.net/projects/taggraph [221]

ANN-Solo
Spectral library / 

error tolerant 
search

Yes https://github.com/bittremieux/ANN-SoLo [227]

SpecOMS
Spectral library / 

error tolerant 
search

Yes https://github.com/matthieu-david/SpecOMS [228]

G-PTM-D
Multi-round / 
error tolerant 

search
Yes https://github.com/smith-chem-wisc/gptmd [213]

MetaMorpheus
Multi-round 

search
No https://github.com/smith-chem-

wisc/MetaMorpheus
[229]

PeaksPTM**
Multi-round 

search No http://bioinfor.net/ptm [212]

Byonic**

Various types, 
including 

sequence tagging / 
error tolerant 

search

Yes www.proteinmetrics.com/products/byonic/ [222]

MODa
Sequence tagging 

/ error tolerant 
search

Yes https://omictools.com/moda-2-tool [209]

Open-pFind
Sequence tagging 

/ multi-round / 
error tolerant

Yes http://pfind.ict.ac.cn/software/pFind3 [219]

PIPI
Sequence tagging 

/ error tolerant 
search

Yes http://bioinformatics.ust.hk/pipi.html [230]
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Sample preparation artefact or natural PTM?
Whenever a peptide modification is detected, analysts have to make a decision regarding 
whether the observed modification is a genuine proteoform variant or whether it is in fact an 
artefact introduced during the experiment. However, this is sometimes a very delicate 
process. Formylation, for example, is a natural histone modification [231], which however 
can also be introduced during sample preparation when using formic acid-containing buffers 
to increase the solubility of hydrophobic peptides and aggregates (Figure 3b) [232]. The 
same holds for carbamylation, which is frequently introduced when using buffers containing 
(high-molarity) urea [233], or unspecific alkylation reactions introduced by extensive 
iodoacetamide treatment, broadly used during sulfhydryl alkylation reactions [234, 235].
Furthermore, chemically labile amino acid residues may undergo oxidation, deamidation, 
pyroglutamate formation, dehydration or metal ion adduct formation [236–238]. Many of 
those chemically introduced modifications may however occur naturally in protein ageing 
processes and are therefore difficult to discriminate from sample preparation artefacts 
regardless of the method employed [239]. In addition to preserving the native state of a 
peptide during sample preparation, chromatographic and ionisation properties during the 
analysis process also need to be chosen thoughtfully, particularly for modifications such as 
phosphorylation, which undergo rapid enzymatic hydrolysis and in-source fragmentation 
leading to neutral loss [240]. Where otherwise comparable protocols are used for cell lysis, 
protein extraction and proteolytic digestion compared to conventional discovery proteomics 
experiments, the analysis and interpretation of post-translational modifications requires 
additional careful considerations [241]. Harsh conditions not only produce ambiguous 
identifications, but also induce mass spectrometric signal multiplications, reducing the 
discovery rates for both native and naturally modified peptides [233, 242, 243].

Maximise proteome- or sequence coverage? 
The proteome-wide discovery of post-translational modifications is challenged by factors 
such as sub-stoichiometric occurrence, competitive ionisation (sensitivity), computational 
limitations and lack of effective validation strategies. Thus, when a proteome-wide analysis 
of a certain type of modification is performed, peptide fractionation techniques are employed 
to reduce the number of signals and therefore increase sensitivity. Suitable methods are based 
on any physicochemical properties such as size, charge or hydrophilicity but also on affinity 
[244, 245]. Alternatively, targeted mass pre-selected subset of modifications has also been 
performed, but typically only for quantification purposes rather than discovery [246–248].
For tools supporting quantitation, we refer to a review from Allmer (2012) [249]. However, 
over recent decades, it has become apparent that most proteins are modified by more than 
one modification at a time, and many modifications do not function in an isolated manner but 
seem instead to interact with modification sites from the same or other proteins, a process 
referred to as PTM cross-talk [168–171, 250]. This process, however, is changing the view 
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on how protein modifications are ideally investigated. For example, for the sake of improving 
sensitivity, an enrichment for a specific modification increases coverage for this particular 
modification tremendously, but it may abolish information essential for understanding a
complete process. 

Hence, to explore the functional aspects and interactions, the analysis should aim to maximise 
protein sequence coverage of related pathways. In bottom-up proteomics, trypsin is 
predominantly used for digestion of the proteome due to its high specificity and ease of use 
[24]. However, full sequence coverage is almost never achieved because digestion also 
generates peptides with sub-optimal length for MS detection [251]. To increase sequence 
coverage, multi-proteolytic digestion approaches have been proposed [252, 253]. Here, the 
proteome is subjected to digestion with multiple proteases in parallel, resulting in 
complementary parts of the protein sequence and thus higher sequence coverage. The use of 
trypsin in combination with LysC has therefore become common practice in the field of 
shotgun proteomics. Even though both proteases share lysine as a cleavage site, 
LysC/Trypsin digests were found most efficient to yield fully cleaved peptides [254].
Furthermore, the use of 4 alternative proteases (LysC, ArgC, AspN and GluC) in addition to 
trypsin led to nearly a 3-fold improvement of sequence coverage for proteins at low 
abundances in yeast [251].

In this context, prediction tools have been developed to support experiments designing a full 
protein sequence coverage. PTMselect is an example of such an open-source software tool, 
which simulates multi-enzyme digestion to tailor the optimal set of proteases for the 
discovery of global or targeted modification from any single or multiple proteins [255]. This 
approach allows sequence coverage to be achieved; however, it does not solve the sensitivity 
issues. On the other hand, sensitivity for labile or very large modifications, such as 
phosphorylation and glycosylation [256], could be increased using alternative fragmentation 
techniques such as electron transfer dissociation (ETD) [257–259].

Finally, using alternative bottom-up MS technologies to the commonly employed data-
dependent acquisition (DDA), could lead to increased detection of modified peptides. PTMs 
are generally observed at low stoichiometry and therefore not selected for fragmentation 
using a DDA approach, in which only ions with highest intensity are chosen. To overcome 
this stochastic precursor ion selection, DIA methods could be employed [260]. Here, all 
precursor ions are systematically fragmented in predefined retention time and precursor ion 
mass to charge (m/z) range. However, proper data analysis software tools should be utilized 
to correctly identify, localise and quantify the modifications [261, 262]. Moreover, these tools 
are important for discrimination of co-isolated modified peptide isoforms resulting from large 
precursor isolation windows [261].
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Outlook
Research on post-translational modifications has advanced the understanding of protein 
phosphorylation in metabolic flux control and the understanding of modification cross-talk 
in yeast [263, 264]. However, many of the latest developments for the analysis, discovery 
and quantification of larger sets of post-translational modifications still challenge the field. 
Because many proteins undergo more than one modification at a time, a comprehensive 
exploration will require an examination beyond the most commonly investigated 
modifications such as phosphorylation and acetylation, by a simultaneous increase in protein 
sequence coverage. 

A recent study on fission yeast by Telekawa et al. (2018) demonstrated the comprehensive 
characterisation of a protein complex following affinity purification [265]. This work 
provided particularly high sequence coverage and gave insight on almost 40 modification 
sites of three different types of modifications within one complex. A similar study was 
performed by Šoštarić et al. (2019), who demonstrated the impact of acetylation and 
phosphorylation on subunit interaction in 3 large yeast complexes [266].

Considering that many modifications can influence binding affinities, modifications are often 
considered to be functionally associated [267]. A phosphoproteomics study in yeast 
illustrated that phosphorylated proteins engage in many more protein-protein interactions 
than their unmodified counterparts [268]. A better understanding of the impact of 
modifications on protein complex formation and on protein-protein or enzyme-substrate 
interactions may open effective intervention points and targets for engineering.
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Abstract

The importance of obtaining comprehensive and accurate information from cellular 
proteomics experiments asks for a systematic investigation of sample preparation protocols. 
In particular when working with unicellular organisms with strong cell walls, such as found 
in the model organism and cell factory S. cerevisiae. Here, we performed a systematic 
comparison of sample preparation protocols using a matrix of different conditions commonly 
applied in whole cell lysate, bottom-up proteomics experiments. The different protocols were 
evaluated for their overall fraction of identified spectra, proteome and amino acid sequence 
coverage, GO-term distribution and number of peptide modifications, by employing a 
combination of database and unrestricted modification search approaches. Ultimately, the 
best protocols enabled the identification of approximately 65–70% of all acquired 
fragmentation spectra, where additional de novo sequencing suggests that unidentified 
spectra were largely of too low spectral quality to provide confident spectrum matches. 
Generally, a range of peptide modifications could be linked to solvents, additives as well as 
filter materials. Most importantly, the use of moderate incubation temperatures and times 
circumvented excessive formation of modification artefacts. The collected protocols and 
large sets of mass spectrometric raw data provide a resource to evaluate and design new 
protocols and guide the analysis of (native) peptide modifications.
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Introduction

Despite recent advancements in mass spectrometric instrumentation, a large fraction of 
fragmentation spectra (MS/MS) from bottom-up shotgun proteomics experiments usually 
remain unidentified [60, 206]. Amongst the many possible reasons, a decreased identification 
rate can result from the presence of non-peptidic contaminants (particularly surfactants), 
increased spectral complexity due to co-fragmentation of multiple precursor ions, low-quality 
spectra due to poor and incomplete peptide fragmentation, unexpected peptide sequence 
variants or co/post-translational modifications that are not covered by the database, as well 
as deficiencies of the database search scoring schemes used to match the spectra. The latter 
led to the development of iterative approaches or to the combined use of orthogonal database 
search algorithms [45, 46, 269–271]. However, a significant fraction of unassigned MS/MS 
spectra may also be a consequence of incomplete or nonspecific proteolytic cleavage or result 
from unintended peptide modifications introduced during sample preparation when using 
highly reactive chemicals. In fact, sample preparation can be one of the most significant 
contributors to data variation and poor comparability between proteomics experiments [177].
Hence, selecting the most suitable sample preparation protocol is essential for enabling deep
proteome coverage and for confidently identifying and quantifying (novel) peptide 
modifications. Moreover, the (native) in vivo state of the proteins should be preserved as 
good as possible. Therefore, sample preparation protocols usually include quenching of the 
cellular metabolism subsequently after sampling. This is particularly important when 
investigating reversible post-translational modifications, that may be rapidly cleaved by the 
many hydrolytic enzymes present in every cell [240]. However, different quenching 
strategies, such as using ethanol or trichloroacetic acid (TCA) [242, 272], have been shown 
to differently impact the outcome of proteomics experiments [272]. Following protein 
extraction, proteins are solubilised and commonly denatured (e.g., with Urea). Disulphide 
bonds of proteins are subsequently reduced by e.g., Dithiothreitol (DTT) or Tris(2-
carboxyethyl)phosphine (TCEP) and alkylated using reagents such as iodoacetamide (IAA) 
or acrylamide (AA) to avoid reoxidation of the sulfhydryl groups [235, 273]. Finally, the 
proteins are proteolytically cleaved (typically with trypsin) to create protein fragments that 
are sufficiently small for efficient measurement, but that retain sufficient unique sequence 
information for the subsequent protein identification step. Chemicals, or their employed 
concentrations, are often not compatible with the following steps in the protocol and, 
therefore, require removal by methods such as protein precipitation e.g., with acetone or 
Trichloroacetic acid (TCA), or filter-aided approaches [274–280]. The type and pH of the 
buffer used during the final proteolytic digestion may ultimately also impact the amino acid 
cleavage site specificity [281]. Lastly, non-peptidic compounds and non-volatile salts are 
removed before analysis by the aid of solid-phase extraction (SPE), using different types of 
reverse-phase or mixed-mode resins [282].
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However, combinations of different sample preparation procedures are expected to 
differently bias the proteomic analysis outcome. The selected protocol, therefore, may 
influence the proteome fraction or native modifications that can be detected and quantified 
significantly [283]. In addition, when investigating the biological significance of peptide 
modifications, the observed modification needs to be traced back to its co/post-translational 
or sample processing origin. However, without appropriate controls, this is a highly 
challenging procedure. For example, formylation can occur as a natural histone modification 
[231], but may also be introduced during sample preparation when using formic acid-
containing buffers, such as those used to increase the solubility of hydrophobic peptides [232, 
284]. Similarly for carbamylation, this modification has been associated with severe renal 
and cardiovascular disorders; however, it may also originate from high molarity Urea-
containing buffers used during protein denaturation [285]. Alkylation of cysteine residues 
has become standard practice in proteomics experiments, which however due to over- or off-
target alkylation reactions frequently introduces unintended peptide modifications. For 
example double alkylation artefacts, which for the case of IAA (114.04 Da) mimics the C-
terminal glycine residue of ubiquitin [234, 235, 273, 286]. Nevertheless, recent studies 
suggest that disulphide reduction and cysteine alkylation may not be essential to achieve a 
good proteome coverage. This would therefore eliminate the exposure of the peptides to 
highly reactive alkylating reagents [287]. Furthermore, chemically labile amino acid residues 
may undergo sample preparation induced oxidation, deamidation, pyroglutamate formation, 
dehydration or excessive metal ion adduct formation [236–238]. Many of those modifications 
(or adducts) may, however, also occur as consequence of the natural protein ageing processes 
within the cell and are, therefore, difficult to discriminate from sample preparation artefacts 
[239].

A systematic evaluation – using a matrix-like approach, which leaves out one chemical at a 
time – and which investigates the impact on i) the % of identifications, ii) proteome coverage, 
iii) GO-term distribution and iv) post-isolation modifications, has not been performed for a
unicellular organism to date. We therefore constructed a matrix of conditions, which include 
steps frequently employed in whole cell lysate proteomics and applied it to the preparation 
of well-controlled chemostat grown yeast cells. The outcomes of the proteomics experiments 
were compared for their obtained proteome and amino acid sequence coverage and for their 
GO-term profiles. Moreover, we performed an unrestricted modification search using 
TagGraph, to identify reagent-induced modifications. Finally, we investigated the quality of 
the unidentified spectra using de novo peptide sequencing. In summary, this study provides 
a systematic evaluation of sample preparation protocols for bottom-up proteomics 
experiments of the increasingly studied model organism and cell factory yeast. Thereby, we 
demonstrate the large impact of the different sample preparation procedures on proteome 
coverage and overall identification rates. 
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Ultimately, the performed study and publicly available large proteomics datasets, provide a 
valuable resource to select for the most suitable sample preparation elements for different 
experiments, and support the analysis of (native) peptide modifications.

Materials and Methods

Yeast strain, growth media and storage. In this study, we used the minimal glycolysis 
(MG) yeast strain IMX372 (MATa ura3-52 his3-1 leu2-3,112 MAL2-8c SUC2 glk1::SpHis5, 
hxk1::KlLEU2, tdh1::KlURA3, tdh2, gpm2, gpm3, eno1, pyk2, pdc5, pdc6, adh2, adh5, adh4)
[120], which under the selected growth conditions shows no phenotypic alterations compared 
to the parent CEN.PK lineage [288]. Shake flask and chemostat cultures were grown in 
synthetic medium (SM) containing 5.0 g·L-1 (NH4)2SO4, 3.0 g·L-1 KH2PO4, 0.5 g·L-1

MgSO4·7H2O and 1 mL·L-1 trace elements in demineralized water. The medium was heat 
sterilized (120˚C) and supplemented with 1 mL·L-1 filter sterilized vitamin solution [289].
For shake flask cultures 20 g·L-1 heat sterilized (110˚C) glucose (SMG) was added. In 
chemostat cultures, 7.5 g·L-1 glucose was added, and the medium was supplemented with 0.2 
g·L-1 antifoam Pluronic PE 6100 (BASF, Ludwigshafen, Germany). Frozen stocks of S. 
cerevisiae cultures were prepared by the addition of glycerol (30% v/v) in 1 mL aliquots for 
storing at -80˚C. 

Yeast chemostat cultures and sampling. Aerobic shake flask cultures were grown at 30°C 
in an Innova incubator shaker (New Brunswick™ Scientific, Edison, NJ, USA) at 200 rpm 
using 500 mL round-bottom shake flasks containing 100 mL medium. Duplicate aerobic 
chemostat cultures were performed in 2 L laboratory fermenters (Applikon, Schiedam, The 
Netherlands) with a 1 L working volume in duplicate. SM-medium was used and maintained 
at pH 5 by the automatic addition of 2 M KOH. Mixing of the medium was performed with 
stirring at 800 rpm. Gas inflow was filter-sterilized and compressed air (Linde Gas, 
Schiedam, The Netherlands) was sparged to the bottom of the bioreactor at a rate of 500 
mL·min-1. Dissolved oxygen levels were measured with Clark electrodes (Mettler Toledo, 
Greinfensee, Switzerland). The temperature of the fermenters was maintained at 30°C. The 
reactors were inoculated with exponentially growing shake flask cultures of S. cerevisiae 
strain IMX372 to obtain an initial optical density (OD660) of approximately 0.4. Following 
the batch phase, the medium pump was switched on to obtain a constant dilution rate of 0.10 
h-1. Chemostat cultures were assumed to be in steady state when, after five volume changes, 
the culture dry weight, oxygen uptake rate and CO2 production rate varied less than 5% over 
at least 2 volume changes. The dilution rate and carbon recovery were determined after each 
experiment. 

Analytical methods. OD660 measurements to monitor growth were performed on a 
JENWAY 7200 spectrophotometer (Cole-Parmer, Stone, UK). The biomass dry weight was 
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determined in duplicate by extracting 10 mL of broth and filtrating it over a filter with 0.45 
μm Ø pores while a vacuum was applied to the filter. The filters were washed twice with 10 
mL of demineralized water. Prior to use, the filters were dried in the oven for at least 24 hours 
at 70°C. After filtration, the filters were dried in a microwave oven at 360 W for 20 min 
leaving only dry biomass. For extracellular metabolite determinations, broth samples were 
centrifuged for 5 min at 13,000 g and the supernatant was collected for subjection to an 
Aminex HPX-87H ion exchange column (Agilent, Santa Clara). The HPLC was operated at 
60°C and 5 mM of H2SO4 was used as mobile phase at a rate of 0.6 mL·min-1. Off-gas 
concentrations of CO2 and O2 were measured using an NGA 2000 analyzer. Proteome 
samples (1 mL, at approx. 3.6 g·L-1 dry weight) were taken from steady state cultures. The 
samples were collected in multifold in trichloroacetic acid (TCA) (Merck Sigma, Cat. No. 
T0699) with a final concentration of 10% or in five volumes of ice-cold methanol (MeOH) 
(Thermo Fisher, Cat. No. 15654570). Samples were centrifuged at 4000 g for 5 min at 4°C. 
Cell pellets were frozen at -80°C [272].

Proteomics sample preparation protocols (an extended version of all sample 
preparation protocols is provided in the SI document). Yeast cell culture pellets were 
resuspended in lysis buffer composed of 100 mM triethylammonium bicarbonate (TEAB) 
(Merck Sigma, Cat. No. T7408) containing 0.1%, 1% sodium dodecyl sulphate (SDS) (Merck 
Sigma, Cat. No. L4522) or 8 M Urea (Merck Sigma, Cat. No. U5378) and 
phosphatase/protease inhibitors. Yeast cells were lysed by glass bead beating using a Mini-
Beadbeater-16 (Biospec Products, USA) and thus shaken 10 times for 1 minute with a bead 
beater alternated with 1 minute rest on ice. For in-solution methods, proteins were reduced 
by addition of 5 mM DTT (Merck Sigma, Cat. No. 43815) or 5 mM TCEP (Merck Sigma, 
Cat. No. C4706) and incubated for 1 hour or 30 min at 37°C or 56°C, respectively. 
Subsequently, the proteins were alkylated for 30 min or 1 hour at room temperature in the 
dark by addition of 15 mM iodoacetamide (Merck Sigma, I1149) or 50 mM acrylamide (AA) 
(Merck Sigma, Cat. No. A9099), respectively. Protein precipitation was performed by 
addition of four volumes of ice-cold acetone (-20°C) (Merck Sigma, Cat. No. 650501) or 
TCA to a final concentration of 20% and proceeded for 1 hour at -20°C or 30 min at 4°C, 
respectively. The proteins were washed twice with acetone and subsequently solubilized 
using 100 mM ammonium bicarbonate (ABC) (Merck Sigma, Cat. No. 09830). Alternatively, 
for filter-aided sample preparation (FASP), proteins were loaded to a filter (Merck-Millipore, 
Microcon 10 kDa, Cat. No. MRCPRT010) after bead beating and reduced by addition of 
DTT and alkylated with iodoacetamide, as described earlier. After alkylation, proteins were 
washed four times with TEAB and ABC buffers. For all protocols, proteolytic digestion was 
performed by Trypsin (Promega, Cat. No. V5111), 1:100 enzyme to protein ratio (v/v) and
incubated at 37°C overnight. For filter-aided sample preparation protocols, peptides were 
eluted from the filters after digestion using ABC and 5% acetonitrile (ACN) (Thermo Fisher, 
Cat. No. 10489553) / 0.1% formic acid (FA) (Thermo Fisher, Cat. No. 10596814) buffers 
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consecutively. For all protocols, solid phase extraction was performed with an Oasis HLB 
96-well μElution plate (Waters, Milford, USA, Cat. No. 186001828BA). Peptide fractions 
were eluted using MeOH buffer containing trifluoroacetic acid (TFA) (Merck Sigma, Cat. 
No. 302031), FA or ABC. Eluates were dried using a SpeedVac vacuum concentrator. Dried 
peptides were resuspended in 3% ACN / 0.01% TFA prior to MS-analysis to give an 
approximate concentration of 500 ng per μL.

Shotgun proteomic analysis. For each protocol an aliquot corresponding to approx. 750 ng 
protein digest was analysed using a one-dimensional shotgun proteomics approach [290].
Each sample was analysed in two technical replicates. Briefly, the samples were analysed 
using a nano-liquid-chromatography system consisting of an EASY nano LC 1200, equipped 
with an Acclaim PepMap RSLC RP C18 separation column (50 μm x 150 mm, 2 μm, Cat. 
No. 164568), and a QE plus Orbitrap mass spectrometer (Thermo Fisher Scientific, 
Germany). The flow rate was maintained at 350 nL·min-1 over a linear gradient from 5% to 
30% solvent B over 90 min, then from 30% to 60% over 25 min, followed by back 
equilibration to starting conditions. Data were acquired from 5 to 120 min. Solvent A was 
H2O containing 0.1% FA, and solvent B consisted of 80% ACN in H2O and 0.1% FA. 
Orbitrap was operated in data-dependent acquisition (DDA) mode acquiring peptide signals 
from 385–1250 m/z at 70,000 resolution in full MS mode with a maximum ion injection time 
(IT) of 100 ms and an automatic gain control (AGC) target of 3E6. The top 10 precursors 
were selected for MS/MS analysis and subjected to fragmentation using higher-energy 
collisional dissociation (HCD). MS/MS scans were acquired at 17,500 resolution with AGC 
target of 2E5 and IT of 75 ms, 2.0 m/z isolation width and normalized collision energy (NCE) 
of 28.

Mass spectrometric raw data processing. 
De novo sequence analysis. De novo sequencing was performed using the algorithm 
available via PEAKS Studio X+ (Bioinformatics Solutions Inc., Waterloo, Canada) [210],
allowing 10 ppm parent ion and 0.5 Da fragment ion mass error, and oxidation as variable 
modification, where the resulting de novo sequences were exported to ‘de novo peptide.csv’ 
files for further unrestricted modification search using TagGraph, as described below. 
Taxonomic profiling. Taxonomic purity assessment using the same de novo peptide 
sequences was performed as described recently by H.B.C. Kleikamp et al. (2021) [291].

Database searching. Database searching against the proteome database from S. cerevisiae
(Uniprot, strain ATCC 204508 / S288C, Tax ID: 559292, June 2020, excluding 13 glycolytic 
isoenzymes) was performed using PEAKS Studio X+, allowing for 20 ppm parent ion and 
0.02 m/z fragment ion mass error, 3 missed cleavages, carbamidomethyl or acrylamide as 
fixed (or none), and methionine oxidation and N/Q deamidation as variable modifications. 
To control false-positive peptide identifications, a uniform 1% false discovery rate (FDR) 
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was applied to peptide spectrum matches (PSM), and subsequently the protein identifications 
required ≥2 unique peptides. Results from the PEAKS DB search were exported to 
‘proteins.csv’ and ‘DB search psm.csv’ files, containing the identified proteins and identified 
DB search peptide-spectrum matches, respectively.

Unrestricted modification search. TagGraph [221] was used to perform unrestricted global 
peptide modification search using the (mzML-formatted) mass spectrometric raw data and 
the de novo sequences obtained from PEAKS Studio, using the yeast proteome database plus 
the CRAPome contaminant sequences [292]. The analysis was performed allowing for 10 
ppm precursor mass tolerance, cysteine carbamidomethylation or acrylamidation as static 
modifications, and methionine oxidation as a differential modification, as described by 
Devabhaktuni et al. (2019) [221]. TagGraph.1.8 was installed on a Windows desktop Docker 
container, and the processing of multiple files was automated via a PowerShell script. An 
FDR of 1%, 10 ppm parent ion and a maximum absolute deviation of 0.1 Da between 
experimental and database modification mass were applied to the analysis results and these 
were exported to ‘.txt’ files for further analysis. Interconversion of mass spectrometric raw 
data. Conversion of the mass spectrometric raw data was performed using peak picking 
‘vendor’ into ‘.mzML’ and ‘.mzXML’ using the msConvertGUI tool (ProteoWizard) [293].

Identification of scans originating from glycopeptides. First, the fragmentation spectra 
were searched for the presence of glycan-typical HexNAc oxonium fragment ions (204.087, 
[M+H+]+) using functions from the Matlab ‘sugar miner’ script as described recently [294].
Those scans indicate glycopeptides–which remain unidentified by the chosen database, or 
open modification search parameters. Scans with strong oxonium ion signals were 
summarized in an ‘.xlsx’ table.

Data processing and visualization. Overall number of modified peptides and types of 
modifications. The results of the unrestricted modification search using TagGraph were used 
to determine the overall volume as well as the types of modifications found after applying 
the different protocols. First, the mass shifts (=deviations from the unmodified peptide mass) 
were collected from the “.txt” files and binned using the Matlab ‘histcounts’ function, at a 
bin width of 0.01 Da. This procedure was done for the combined dataset as well as for each 
protocol separately. Mass shifts with more than 5 occurrences per averaged conditions were 
tested for significant changes across all protocols using Matlabs ‘anova1’ function. Mass 
shifts with significant changes (p<0.01) across all conditions (2 biological and 2 technical 
replicates) were visualized by Euclidean distance clustering using the Matlab ‘clustergram’ 
function, standardizing along the rows (mass shifts) of data, clustering along the columns of 
data, and then clustering along the rows of row-clustered data. Default color variation has 
been used which shows for values between -3 and 3, where values above and below show the 
same maximum color tone. 
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Spectral Average Local Confidence (ALC) score histograms. After the scan numbers of 
each protocol were allocated to different categories, the Average Local Confidence (ALC) 
score distribution for identified and unidentified MS/MS scans was determined to evaluate 
the quality of the unidentified spectra. The ALC score was extracted from the de novo 
sequences ‘.csv’ files and were therefore only determined for the spectra that were de novo 
sequenced. The ALC scores of the identified and unidentified scans were binned separately 
using the ‘histcounts’ function in Matlab. The resulting distributions were plotted as a bar
graph and exported as table. 

Proteome and amino acid sequence coverage. The proteome coverage was determined 
using the PEAKS-DB search results ‘proteins.csv’. For this, the number of proteins per 
protocol was calculated from proteins with >2 unique peptides per protein. The percentage 
of observed proteins for each protocol was subsequently calculated by normalizing to the 
number of total proteins in the S. cerevisiae (Uniprot) protein sequence database. The average 
protein sequence coverage per protocol was further extracted from the PEAKS ‘proteins.csv’ 
output files. The sequence coverage (%) was moreover used to determine the amino acid 
coverage, in which the sequence coverage of each identified protein was summed and related 
to the total number of protein sequences present in the sequence database. The average for 
the proteome and amino acid coverage was calculated for each biological replicate and the 
deviations from the average for each protocol were plotted as bar graphs. A two-tailed 
unpaired Student’s t-test was performed to determine if the relative coverage change between 
protocols was statistically significant.

Ontology analysis. The ‘proteins.csv’ files obtained through PEAKS-DB were used to 
determine the differences in the cellular component distribution. Python 3.8 [295] was used 
to programmatically link the Uniprot accession numbers of the identified proteins (with 2 
unique peptides) to the Gene Ontology (GO) [296] terms using Retrieve/ID Mapping function 
on Uniprot [211]. The GO library was imported using the ‘goatools’ module in Python to 
retrieve the cellular component terms in the GO hierarchy. Functions of the proteins (in 
absolute numbers) were summarized in pie charts based on their cellular component GO 
terms. A protein could be allocated to multiple cellular components.

Overall % of identified fragmentation spectra. The overall number of identified 
fragmentation (MS/MS) spectra for each protocol was determined by combining the outputs 
obtained from TagGraph, PEAKS database search and the sugar oxonium ion search. First, 
scan numbers that did not result into amino acid sequence candidates by PEAKS de novo 
sequencing were allocated to the ’No ALC’ category. Next, identifications were extracted 
from the TagGraph files. Thereby, identified scans were allocated to two categories, 
‘unmodified peptides’ and ‘modified peptides ‘. The scan numbers of the peptides identified 
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with the second search engine were extracted from the PEAKS-DB search peptide-spectrum 
matches files ‘DB search psm.csv’. The scan numbers were compared with the scans of the 
de novo sequences and TagGraph results. Identifications that were only found with PEAKS 
database search, were allocated to the ‘second search engine’ category. The category “sugars” 
represents the scans that were identified as potential glycopeptides. If scans were present in 
multiple categories, including TagGraph, the scans were allocated to TagGraph 
identifications (modified or unmodified peptides). If scans were identified containing sugar 
fragments and by PEAKS database search, the scans were allocated to PEAKS-DB search 
identifications. Furthermore, ‘No ALC‘-allocated scans that could be identified containing 
sugar fragments or via PEAKS database search, were allocated to one of the respective 
categories. Finally, the MS/MS scans that could not be identified by any of the before 
mentioned categories, were allocated to the ‘unidentified scans’ category. As final check, the 
summed scans of all established categories required to be equal to the sum of MS/MS scans 
in the raw mzXML files. The distribution of the scan identifications amongst different 
categories was visualized using stacked bar graphs, in which the number of scans in each 
category was normalized against the total number of MS/MS scans in percentages, for each 
protocol.

Data availability. Mass spectrometric raw data, protein sequence database, and search files 
have been deposited at ProteomeXchange server and are publicly available under the project 
code PXD026806.

Results and Discussion

Comparison of yeast whole lysate sample preparation protocols
A systematic comparison of a matrix of different sample preparation procedures for bottom-
up yeast proteomics experiments was performed to investigate the impact on spectral 
identification rates and quality, achieved proteome coverage, amino acid sequence coverage, 
GO-terms distribution and reagent-induced peptide modifications (Table 1, Figure 1). 
Duplicate aerobic chemostat cultures of the IMX372 S. cerevisiae strain [120] were cultured 
in glucose-limiting conditions (Supplementary Table S1), which provided highly 
reproducible yeast cell biomass. Typical yeast shotgun proteomics experimental workflows 
are complex and consist of multiple steps, including sample collection, cell lysis, extraction 
and denaturation of proteins, (filter-aided) protein precipitation, proteolytic digestion, 
peptide purification (and/or enrichment) and finally, LC-MS/MS analysis (Table 1) [151, 
279]. To this end, proteome samples were taken during steady-state conditions from both 
biological replicates, in which the cellular metabolism was quenched using ice-cold TCA or 
methanol to preserve the proteome and associated post-translational modifications. Cell lysis 
was performed with SDS- or Urea-containing buffers employing bead-beating in all cases. 
Crude cell lysates were then treated with an in-solution or FASP approach, in which proteins 
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were reduced with TCEP or DTT and alkylated with iodoacetamide, acrylamide or 
alternately, were left untreated. For in-solution digestion methods, proteins were precipitated 
with acetone or TCA. After overnight digestion with trypsin, solid-phase extraction (SPE) 
was performed to remove contaminants by using Oasis HLB cartridges, which make use of 
a co-polymer of divinylbenzene and vinyl pyrrolidinone that shows an enhanced retention of 
polar peptides (Waters). Elution from the cartridges was achieved with a variety of buffers 
to assess the influence of different additives (Table 1). Finally, the samples of the different 
protocols were analysed using a (short) one-dimensional gradient with duplicate injections. 

Table 1. Matrix of investigated sample preparation protocols (1–14). Abbreviations: SPE, solid 
phase extraction; TCA, trichloroacetic acid; MeOH, methanol; SDS, sodium dodecyl sulphate; DTT, 
Dithiothreitol; TCEP, Tris(2-carboxyethyl)phosphine; IAA, iodoacetamide; AA, acrylamide; TFA, 
trifluoroacetic acid; FA, formic acid; ABC, ammonium bicarbonate. The detailed protocols are 
provided in the S.I. materials.

# Sampling 
method

Lysis buffer Reducing 
agent

Alkylation 
reagent

Protein 
purification

SPE buffers

1 TCA SDS DTT IAA Acetone TFA

2 TCA SDS DTT IAA Acetone FA + ABC

3 TCA SDS DTT IAA Acetone ABC

4 TCA SDS DTT IAA Acetone MeOH

5 TCA SDS DTT IAA Acetone FA

6 MeOH SDS DTT IAA Acetone TFA + ABC

7 TCA SDS DTT IAA Acetone TFA + ABC

8 TCA SDS DTT IAA TCA TFA + ABC

9 TCA SDS DTT AA Acetone TFA + ABC

10 TCA SDS DTT - Acetone TFA + ABC

11 TCA SDS TCEP IAA Acetone TFA + ABC

12 TCA UREA DTT IAA Acetone TFA + ABC

13 TCA UREA DTT IAA FASP TFA + ABC

14 TCA SDS DTT IAA FASP TFA + ABC
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On average, 35420±5909 (biological replicate 1) and 37261±8271 (biological replicate 2) 
MS/MS scans were obtained across all protocols (Figure 2, Supplemental Figure S1). 
Furthermore, the analysis of the protocols resulted in 23631±5237 and 23477±6590 peptide 
spectrum matches (PSMs) (Figure 2a), resulting in 66% and 61% MS/MS spectrum 
identifications on average (Figure 2b). However, protocols 8 and 14 resulted consistently in 
a considerably lower number of MS/MS spectra for both biological replicates, albeit that a 
comparable amount of proteolytic digest (750 ng) was analysed. 

For protocol 8, protein precipitation was performed with TCA/acetone instead of acetone 
solely. Difficulties in re-dissolving the protein pellet can arise for the TCA/acetone 
precipitation approach and may ultimately impact the overall recovery. It therefore becomes 
necessary to use stronger buffers, larger volumes and additional mechanical disruption of the
pellet, to solubilise the protein [275, 278, 297]. In this study, protein pellets were dissolved 
in ammonium bicarbonate buffers to allow subsequent trypsin digestion, which did not prove 
difficult for acetone-precipitated samples. However, the TCA/acetone procedure led to a 
partially insoluble pellet, and a considerably lower number of proteins were subsequently
identified, compared to when only using acetone-precipitation (20% vs. 29% proteome 
coverage for protocol 8 = TCA/acetone, vs protocol 7 = acetone; Figure 2c). Similar results 
were observed in other studies, which was attributed to the increased protein denaturation 
caused by this approach [275, 298–300].

Samples treated according to protocol 14 were subjected to FASP using an SDS containing 
buffer. SDS is known to interfere with binding and elution during the reverse-phase 
separation of the peptides and severely suppresses ionisation by electrospray ionisation [301–
303]. Multiple rounds of centrifugation were applied to ensure SDS removal, however, 
residual SDS may have still impacted the LC-MS/MS analysis, resulting in a lower total 
number of MS/MS scans (13232 MS/MS spectra on average for protocol 14, vs. 36340 
MS/MS spectra on average across all protocols). However, an earlier study buffer exchanged 
SDS with Urea following solubilisation of the proteins, allowing for high protein 
identification rates, because SDS was likely successfully withdrawn from the sample [279].
Hence, FASP sample preparation in combination with SDS-containing buffers is not 
recommended unless the complete removal of SDS can be ensured.
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Figure 1. Whole cell lysate sample preparation study for yeast and established data processing 
pipeline. A. The employed study performed yeast cultivation in aerobic chemostats, sample collection 
and quenching, cell lysis by bead beating, protein extraction from cells and subsequent reduction and 
alkylation of the proteins. Proteins are then concentrated using protein precipitation or a filter-aided 
approach. Enriched proteins are subsequently digested using Trypsin, where the obtained peptides are 
subjected to solid phase extraction (SPE) to remove contaminants prior to shotgun proteomic analysis. 
B. The obtained MS/MS spectra were de novo sequenced using PEAKS and subsequently identified 
through database (PEAKS-DB) and unrestricted modification searches (TagGraph). A data analysis 
pipeline was established to determine the % of identified spectra, spectral quality, proteome and amino 
acid sequence coverage. Peptides identifications obtained by TagGraph were furthermore used to 
determine the modification profiles for every protocol. Finally, proteome were annotated with GO-
terms to investigate the distribution according to ‘cellular components’.
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Overall proteome coverage is strongly affected by sample preparation procedures
MS/MS spectra were identified using database searching employing common statistical 
filtering criteria (see materials and methods) and requiring at least 2 unique peptides per 
protein identification. The proteome coverage was calculated based on the proteins identified 
per protocol as a percentage of the total number of proteins in yeast (known ORFs). An 
average proteome coverage of approximately 26% and 27% was achieved amongst the 
different methods for biological replicates 1 and 2, respectively (Figure 2c). Small 
differences in the average depth of the proteome coverage between both biological replicates 
were observed, most likely because the experiments were conducted at different time periods 
and, therefore, the instrumental performance may have been slightly different. Three 
protocols (6, 8 and 14) differed substantially from the other procedures. As discussed above, 
for protocols 8 and 14, LC-MS/MS analysis was likely compromised by incompatibility with 
the used reagents. 

Protocol 6, on the other hand, resulted in an average number of 39152 MS/MS spectra, which 
is slightly higher than the average of 36341 MS/MS spectra across all protocols (Figure 2b). 
Since the total ion count was very comparable, its suggestive that a similar amount of 
proteolytic digest was injected to the LC-MS system. This was the only sample that was 
subjected to quenching with methanol as opposed to TCA during sampling. Methanol 
quenching (applied to yeast) might, therefore, significantly impact the number of identifiable 
proteins. TCA as a quenching solution has been also proven useful in quantitative 
phosphoproteomics measurements recently [272]. Methanol, on the other hand, is routinely 
employed to rapidly arrest the cellular metabolism when performing metabolomics studies 
[304]. Methanol has been also used to co-extract metabolites and proteins from yeast, only 
recently [305]. In the present study, the methanol quenching bias was observed consistently 
for all biological and technical replicates. Protein aggregation due to exposure to methanol 
followed by poor resolubilisation is likely the cause for the low proteome coverage, however, 
the exact mechanism remains to be explored. Nonetheless, the highest proteome coverage 
(31% and 32%, for biological replicates 1 and 2, respectively) was obtained with sample 13, 
in which a filter-aided approach was used in combination with Urea buffer. Similar results 
have been found in previous studies, in which FASP outperformed in-solution approaches in 
terms of the number of protein identifications [306, 307].
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Figure 2. Achieved % of identified fragmentation spectra, proteome and sequence coverage for 
the different sample preparation protocols. The number of Peptide Spectrum Matches (PSMs) (A); 
identified scans (%) (B); proteome coverage (%) (C) and proteome sequence coverage (D), were plotted 
against the number of MS/MS scans obtained per protocol. Each coloured circle represents the average 
of averages of two biological replicates with each 2 technical replicates (2x2), while the standard 
deviation is represented by the error bars. In addition, the bars depicted above each plot show the ratios 
of the acquired PSMs, identified scans and proteome (sequence) coverage vs. MS/MS scans for each 
protocol. The ratios are averages of two biological replicates with each 2 technical replicates (2x2), 
while the standard deviation is shown as error bars. The proteome coverage was calculated based on 
the identified proteins per protocol as a percentage of the total number of proteins in yeast (known 
ORFs). In addition, the proteome sequence coverage was calculated based on the identified amino acids 
in the proteomics experiments, as a percentage of the total proteome amino acid sequence (sequence 
coverage).

3

A systematic evaluation of yeast sample preparation protocols

166125 den Ridder BNW.indd   57166125 den Ridder BNW.indd   57 12-04-2023   09:4912-04-2023   09:49



 

58

The proteome coverage does not seem to have been significantly impacted by the type of 
detergent used during lysis (SDS or Urea) for samples 7 and 12, respectively. Typically, SDS 
is used as an ionic and denaturing surfactant that can disrupt cell membranes and cause 
protein denaturation by disrupting protein–protein interactions. Urea, on the other hand, is a 
chaotrope that can bind to proteins, thereby causing protein unfolding [308]. Following 
protein extraction, protein reduction was performed by either TCEP or DTT. The type of 
reducing agent used during sample processing was also not a key determinant in the outcome 
of the proteome analysis. This was very similarly observed for yeast in another study [273].

In this study, proteins were subsequently alkylated with iodoacetamide, acrylamide or 
alkylation was left out completely (samples 7, 9 and 10, respectively). Expectedly, and in 
line with a recent publication [287], the absence of an alkylation step dramatically reduced 
the detection of cysteine-containing peptides, although the depth of the proteome coverage 
remained nearly unchanged. However, the number of MS/MS scans and obtained peptide 
spectrum matches, as well as sequence coverage, was steadily lower for the non-alkylated 
sample (protocol 10), when compared to the alkylated samples (protocols 7 and 9). 

Furthermore, no significant changes in the number of identified proteins could be observed 
for the different solvents used for solid-phase extraction (protocols 1–5, 7, Figure 2 and 
Supplemental Table S2 and S3). Though, the number of MS/MS scans, identified proteins 
and proteome (sequence) coverage was consistently higher for protocol 7 (Figure 2,
Supplemental Table S2 and S3), in which a combination of basic and acidic MeOH buffers 
were used for elution, thereby maximising the recovery of peptides across a large pH range. 
Moreover, TFA (protocol 7) appeared to be a better choice for peptide elution compared to 
formic acid (FA) (protocol 2 and 5) because the proteome (sequence) coverage was 
repeatedly higher when using TFA compared to FA (Supplemental Table S2 and S3). 

A gene ontology (GO) analysis [296] was performed to investigate whether the different 
protocols bias towards specific cellular components, such as cytosolic soluble proteins, or 
oppositely, towards hydrophobic membrane proteins. Therefore, GO terms were assigned to 
proteins based on their ‘cellular component’. Thereby, the distribution of the cellular 
localisation of the observed proteins was comparable across the different protocols, which is 
exemplified in Figure 3 for protocol 13 with the most represented GO terms (biological 
replicate 2, technical replicate 1, Supplemental Table S4). Detected proteins were 
predominantly assigned to intracellular organelle functional GO categories, consisting of e.g.
cytosolic, mitochondrial and ribosomal proteins, which could be explained by their high 
expression levels [309, 310]. Irrespective of the protocol, proteins were extracted using bead 
beating, which is a relatively harsh and likely reproducible approach. Nevertheless, a recent 
study demonstrated that extraction methods can significantly contribute to the variability of 
proteomics experiments [177].
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Commonly, proteins are already reported with a few peptides, e.g. 2 unique peptides. While 
acceptable for qualitative and quantitative analysis, further characterisation of individual 
proteoforms as well as analysis of post-translational modifications demand a higher sequence 
coverage. Therefore, we quantified the fraction of the total proteome amino acid sequence 
space covered for every protocol. An average proteome sequence coverage of 6.7% and 7.0% 
was observed across all protocols for biological replicates 1 and 2, respectively (Figure 2d). 
Hence, for the employed (relatively short) one-dimensional gradient—despite the good 
proteome coverage—a rather small fraction of the amino acid sequence space was actually 
observed in our experiments. In the present study, an average protein sequence of 26% and 
25% was obtained amongst the identified proteins (Supplemental Figure S2). This value is 
proportional to the average amino acid sequence coverage of 28% obtained by Herbert et al.
(2014), who obtained through extensive experiments a near-complete proteome coverage 
[151]. Nevertheless, the proteome coverage strongly depends on the protein amino acid 
sequences, and therefore, on the cleavage specificity of the employed protease(s) [311].

One of the challenges to improve proteome sequence coverage arises from signal suppression 
during electrospray ionisation (particularly for short one-dimensional gradients), where 
peptides with higher basicity tend to ionise preferably, and lower abundant peptides or highly 
hydrophobic or acidic peptides may remain undetected. Longer LC separations, additional 
peptide pre-fractionation, as well as 2-dimensional gradients significantly increases the 
number of identifications [26, 152, 244, 245]. Nevertheless, material requirements, sample 
processing and analysis time will increase proportionally, when using multi-dimensional 

Figure 3. Distribution of Gene Ontology (GO) terms for identified proteins. Based on the 
classifications of GO annotation, the identified proteins (with at least 2 unique peptides) were 
categorized into cellular components and displayed in pie chart format, exemplified here for protocol 
13 (biological replicate 2, technical replicate 1) with absolute protein numbers.
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chromatography or off-line peptide fractionation. Finally, multi-protease digestion has been 
demonstrated to boost not only the protein but also the proteome sequence coverage [251, 
253].

As observed for the proteome coverage, protocols 6, 8 and 14 resulted in a much lower 
proteome sequence coverage (Figure 2d, Supplemental Table S2 and S3). Overall, while 
lysis buffer, reducing agent or SPE elution buffers seemingly did not impact proteome 
coverage, the alkylation step was critical for obtaining a high amino acid sequence coverage.

The observed variability in peptide modifications
By using an unrestricted modification search (TagGraph) 221751 and 181496 mass shifts 
were observed across all used protocols, which derived from 991759 and 1043314 MS/MS 
spectra for biological replicates 1 and 2, respectively (Figure 4). A highly comparable mass 
shift profile was observed for both technical and biological replicates, confirming the 
reproducibility of the chemostat cultivation [184], the sample preparation protocols and the 
shotgun analysis. To discriminate between peptide modifications from biological (co/post-
translational) and sample processing origin, we searched for alterations (or mass shifts) that 
were predominantly (or exclusively) present when using certain sample preparation 
protocols. Hence, we searched for mass shifts that showed a significant change in frequency 
(p<0.01) across all conditions and replicates, of which the averaged occurrences across all 
protocols are shown in Figure 5 (Supplementary Table S5). Albeit we employed 
combinations of well-established sample preparation steps, we observed a distinct number of 
condition-specific modifications, of which some had not been linked to sample preparation 
artefacts before.

For example, two different approaches to quench the cellular metabolism were employed, 
using either TCA or methanol. A mass shift of -89.04 Da was prominent in TCA-arrested 
yeast cells, with the notable exception of protocol 14 (SDS/FASP protocol). Furthermore, we 
used reagents for cell lysis and protein denaturation such as SDS and Urea. Interestingly, we 
did not observe any mass shifts related to the use of those reagents. In aqueous solutions, 
Urea dissociates upon heating over time. One of its degradation products is iso-cyanate, 
which can react with the N-termini of proteins/peptides and at the side-chain amino groups 
of lysine and arginine residues, to mimic in vivo carbamylation (+43 Da). This reaction is 
enhanced by high temperatures; however, Urea solutions in our study were only heated to 
37°C for 1 hour, whereas 56°C is commonly used for protein reduction with DTT or TCEP 
[233]. Furthermore, the use of ammonium-containing buffers (and the removal of Urea before 
overnight digestion) seemed to minimise protein carbamylation when using Urea solutions 
[312], which was also observed in our study. Therefore, the relatively mild procedure used 
by our protocols seemingly avoided carbamylation reactions taking place.
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No significant mass shifts were observed between samples reduced with TCEP or DTT. This 
is in line with an earlier study demonstrating that both reducing agents resulted in the same 
number of protein identifications [235, 273]. Nevertheless, acrylamide appeared there to be 
more efficient in combination with DTT, whereas iodoacetamide performed better with 
TCEP [235]. As expected, alkylation reagent-related mass shifts were the most abundant 
artefacts (e.g., +57.01 for IAA with 61582 and 53462 occurrences). However, the frequently 
reported methionine alkylation and the subsequent neutral loss of -48 Da from the molecular 
peptide ion [M-48+H+]+, which is the loss of the side-chain from oxidised methionine [235],
was rarely detected. Moreover, double alkylation with the characteristic mass delta of +114 
Da was compared to counts for single alkylation (+57 Da) for all samples (on average) below 
<0.20%. That mass addition was also observed in the non-alkylated sample, suggesting that 
this mass shift resulted rather from ubiquitinylation (‘GlyGly’) and not from excessive 
alkylation. The modification analysis further indicated that the applied alkylation procedure 
was sufficiently mild (in particular when removing excess reagent before overnight 

Figure 4. Sum of observed mass shifts in the different protocols using an unrestricted 
modification search approach (TagGraph). The number of occurrences corresponds to the number 
of peptide spectrum matches containing the mass deviation (log scale) for biological replicate 1 (upper 
histogram) and 2 (lower histogram). The total of both biological replicates show a highly comparable
mass-shift profile.
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digestion) with only little off-target, and hardly any excessive, alkylation taking place. On 
the other hand, all protocols that used IAA showed additional +39.98 Da mass additions, 
which presumably derive from an N-terminal S-carbamoylmethyl- cysteine cyclisation 
product [234, 313, 314]. Acrylamide showed only some additional -73.05 Da mass shifts at 
low frequency, the mechanism of which, however, remains to be investigated. Interestingly, 
the protocol (10) employing reduction, but no alkylation resulted in an additional series of 
(albeit low frequent) mass shifts (such as -59.05, 79.9, 94.9, 99.0), which likely originate 
from reactions of the free sulfhydryl group with compounds (naturally) being present in 
cellular extracts. 

An unexpected observation was the very abundant mass addition of +40.03 Da (labelled in 
Unimod as ‘propionaldehyde’ [164]). This mass shift was present in all protocols that 
employed protein precipitation with acetone but was strongly reduced for protocols that used 
TCA with acetone wash, and which was absent in protocols using FASP. This mass shift was 
in a recent study related to acetone artefacts, which in fact can impact some 5% of the 
proteome (peptides with glycine as the second N-terminal amino acid) [277]. The 40 Da mass 
shift, however, can also be misinterpreted for an amino acid substitution from glycine to 
proline. Acetone modification involves aldimine formation between the ketone and the amino 
groups of a peptide, which is regarded as being acid labile and, therefore, rather rearranges 
to a more stable form (imidazolidinone), resulting in the observed +40.03 Da mass addition 
[277]. Interestingly, we observed some few mass additions of +41.03 Da, which may indicate 
the presence of the proposed aldimine intermediate. Other artefacts that presumably also 
derive from acetone, such as +98 Da and to a lesser extent +84 and +112 Da [315], were only 
observed at trace levels or were not present at all. However, it is suggested that those artefacts 
seemed to be more pronounced at elevated pH and, therefore, our protocols might have 
prevented their formation. Even though acetone may increase peptide complexity 
substantially, this procedure is still commonly used in sample preparations, likely because it 
efficiently removes organic compounds such as inhibitors or compromising detergents, such 
as SDS [297].

The +28 Da mass adduct was nearly exclusively found for protocols in which formic acid 
was used during solid-phase extraction, confirming that yeast (at the given growth 
conditions), showed hardly any double methylation events. Previous studies provided similar 
findings, thereby highlighting that the proteome analysis outcome can be strongly affected 
by the use of this reagent [232, 284]. A recent work demonstrated that these unwanted 
modifications can be largely avoided by processing the samples at low temperatures [284].
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Another interesting observation in regard to solid-phase extraction was that the number of 
ammonium adductions (+17 Da) was hardly impacted by the nature of the buffers used to 
elute the peptides from the solid-phase extraction cartridges. Those adducts were supposedly 
carried over from the ammonium bicarbonate buffers, used for proteolytic digestion. 

For the samples prepared with the alternative filter-aided protocols, a number of mass shifts 
were observed that were detected at a much lesser frequency in samples prepared by in-
solution digestion (e.g., one protocol: +41.03, 42.04 or both protocols: -89.05, 11.0 and -2.0). 
On the other hand (albeit at low frequency), a series of mass modifications such as -119.0, -
72.0, 11.98, 12.0, 42.0, 125.07, 128.07, 156.09 and 183.03 were increased or exclusively 
observed, when using filter-aided protocols.

Figure 5. Clustered heat map of most prominent modifications identified by TagGraph across 
the different sample preparation protocols. Dendrogram and standardized clustered heat map of the 
relative change (%) of mass shifts observed across the sample preparation protocols. The mass shifts 
found for each protocol originating from each technical and biological replicate (2x2), were averaged 
per sample and normalized to the number of obtained MS/MS spectra. The bars below the heat map 
show the total counts of modifications observed for each sample and the bars on the y-axis show the 
total counts of the respective mass shift (modification) across the investigated samples.
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Common naturally occurring modifications were also found in the top mass shifts that show 
a significant change in frequency across all protocols. Methylation (+14.01), for example, 
was detected in a higher frequency for protocol 1 and 5, representing protocols in which only 
acidic buffers (TFA and FA, respectively) were used during SPE. Another common post-
translational modification is acetylation (+42.01), which appeared much more frequent in 
protocol 14 (FASP, SDS). However, the mass shifts of these naturally occurring 
modifications can also be a result of various amino acid substitutions [164].

Considerable variations in the fraction of overall identified spectra observed for the 
different sample preparation protocols
The number of identified MS/MS spectra for each sample was determined by combining 
identifications from TagGraph, PEAKS database search and the sugar oxonium ion fragment 
search. First, the spectra were de novo sequenced, where a fraction of all spectra (2.6 % and 
3.8%, on average, for replicates 1 and 2, respectively) did not provide any de novo spectra, 
which were further allocated to the ‘unsequenced’ category (‘no ALC score’, Figure 6, 
Supplemental Table S3). The de novo sequences were then used to perform an unrestricted 
peptide (modification) search using TagGraph, which resulted in the identification of 28% 
and 26% of unmodified and 17% and 14% of modified peptides, on average, for replicates 1 
and 2, respectively (at a 1% peptide FDR). Moreover, PEAKS was used as an 
additional/orthogonal search engine to maximise identifications of unmodified peptides. 
Thereby, the number of confidently identified peptides considerably increased to 20% and 
22%, on average, for replicates 1 and 2, respectively. Because different search engines 
employ individual approaches and scoring matrices, a combination of multiple search 
engines typically achieves significantly more matches [41–48]. The PEAKS database 
(PEAKS-DB) is a hybrid approach that combines elements of de novo sequencing (short 
sequence tag extraction) and database searching [316]. TagGraph, contrarily, is an 
unrestricted de novo sequence-tag approach employing fast string-based searches followed 
by a probabilistic validation model optimised for the identification of modified peptides 
[221]. Furthermore, spectra were screened for known carbohydrate fragments, which indicate 
a glycopeptide spectrum that would likely remain unidentified by any of the above-employed 
approaches and, therefore, were allocated to the category ‘sugars’ (0.8% and 0.6%, on 
average, for replicates 1 and 2, respectively). Finally, the remainder of the de novo sequences 
that could not be allocated to one of the aforementioned categories were categorised as 
‘unidentified’. Here, approximately 31 and 34% remained unidentified for replicates 1 and 
2, respectively.
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As mentioned above, small differences in the identification rates between the two biological 
replicates were observed, presumably due to operational performance differences of the mass 
spectrometer at the different time periods. Still, a very similar pattern in allocation of the 
sequencing spectra is observed between the replicates (Figure 6). Expectedly, protocols 6 
(methanol quenching), 8 (TCA precipitation) and 14 (FASP with SDS buffer) resulted in the 
lowest number of spectral identifications due to possible protein aggregation and following 
losses of protein during precipitation and LC-MS/MS incompatibility of reagents, 
respectively. Furthermore, the number of additional identifications with PEAKS-DB was 
considerably lower than for the other protocols when the samples were quenched with 
methanol. Conversely, a higher number of spectra from potential glycopeptides was observed 
using this protocol. This observation might be explained by the slightly increased fraction of
plasma membrane proteins (Supplementary Table 4), when using this protocol (number 6). 
The other protocols resulted in highly similar profiles and identification rates, with few 
exceptions. A considerably lower number of modified peptides was found for protocols 10 
(no alkylation) and 13 (FASP, Urea). As speculated in the previous paragraph, this 
presumably results from the loss of cysteine-containing peptides, and acetone induced 
modifications for protocols 10 and 13, respectively. Finally, sample 13 (FASP with Urea 
buffer) resulted in one of the highest identification rates with a relatively low number of 
modified peptides. Nevertheless, a large fraction of all spectra remained unidentified.

Figure 6. Overall spectral coverage obtained for the different sample preparation protocols. 
Allocation of total number of MS/MS spectra of each sample (1–14) into different categories: PSMs 
(TagGraph), PSMs modified (TagGraph), identified spectra by second search engine (PEAKS-DB),
spectra containing oxonium fragments, ‘unsequenced’ and unidentified spectra for biological replicate 
1 (A) and 2 (B).
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Investigating ‘the nature of the unidentified fraction’
As also observed in other studies [60, 206], approximately one third of the MS/MS spectra 
remained unidentified in the current study across all protocols. Recurrently, protocols 6, 8 
and 14 led to a significantly higher fraction of unidentified spectra, on average, 44%, 54% 
and 45%, respectively. Other protocols obtained similar results, ranging from 30–35% 
unidentified scans. Protocol 7 (in-solution, IAA) resulted in the highest number of identified 
spectra (70%), showcasing the key role of the type of protocol used on the identification rate. 
The inability to identify spectra can have various causes, such as impurities (or 
contaminations) in the sample, excessive co-fragmentation, poor quality spectra, unexpected 
modifications or peptide sequences not covered by the database (e.g., sequence variants and 
microbial impurities). First, the taxonomic purity of the samples was confirmed by a recently 
published de novo metaproteomic profiling approach [291], in order to exclude the presence 
of sample carry-over from foregoing analyses and to exclude the presence of bacterial 
contaminants. This was performed with protocol 13 for both biological replicates, for which 
no impurities could be identified (data not shown), confirming that no carry-over took place 
and that the yeast cultures were of highest purity.

A high quality of the fragmentation spectra is a prerequisite for confident peptide spectrum 
matching. Therefore, we assessed the quality by de novo sequencing and the associated 
average local confidence score (ALC), as determined by PEAKS [210]. In general, peptides 
with higher ALC scores indicate a more complete peptide fragment ion coverage and, 
therefore, are expected to have a higher chance of correct identification. As example, the 
ALC scores of the (un)identified spectra of biological replicate 1 processed with protocol 13 
is visualised in Figure 7 (Supplemental Table S6). The ALC distribution is, as expected, 
very different for the fraction of identified and unidentified spectra. The ALC scores of the 
unidentified spectra spread predominantly around low numbers, whereasall identified spectra 
showed very high ALC scores). This suggests that reduced quality (peptide fragment ion 
coverage) is the main reason for the lack of identification. Nevertheless, a small fraction of 
the unidentified spectra showed high ALC scores. Most of the de novo sequences were close
to sequences in the yeast protein sequence database and may therefore represent sequence 
variants (e.g., single nucleotide polymorphisms SNPs, or isoform- and allele-specific variants 
of proteins) or additional peptide modifications, which were not covered by the database or 
could not even be identified by the open modification search approach. Furthermore, peptides 
containing unexpected semi-tryptic or nonspecific cleavages may also add to this fraction 
[281].
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Conclusion

Our systematic study on the unicellular organism yeast demonstrates the strong impact of 
several elements within sample preparation protocols, on various aspects of the proteomics 
analysis outcome. The total number of obtained peptide spectrum matches ranged from 
approx. 1x104 to 3x104, the proteome coverage ranged from below 15% to approx. 30%, and 
the overall matched spectra varied in the range from approx. 50 to 70%. The depth of the 
proteome coverage was heavily affected by the sample quenching protocol, where cells 
arrested by TCA resulted in a higher number of protein identifications compared to methanol-
arrested cells. Furthermore, filter-aided procedures, when combined with Urea, outperformed 
other protocols in terms of the number of protein identifications. 

The use of unrestricted modification search moreover enabled to examine for reagent-
induced peptide modifications. The overall frequency of reagent-specific modifications was 
for some protocols significantly lower (particularly for protocols 8 and 14), albeit that also 

Figure 7. Assessing the spectral quality of the acquired fragmentation spectra. The Average Local 
Confidence (ALC) score distribution of identified (orange) and unidentified (grey) spectra, as shown 
for protocol 13 (biological replicate 1). In general, peptides with higher ALC score are more likely to 
provide a confident match during database search (because of the better fragment ion coverage of the 
peptide backbone, and the possibly ‘cleaner’ spectrum). The unidentified fraction from protocol 13 
(grey) shows an ALC score distribution at predominantly lower numbers, indicating that the 
unidentified spectra largely derive from very low-quality spectra, insufficient to provide a confident 
peptide sequence match. The fraction of higher ALC scoring spectra presumably derive from sequence 
variants or unexpected modifications not present in the database. Taxonomic impurities or sample carry 
over can be excluded.
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correlated with the lower number of spectra and decreased total ion current (TIC) observed 
for those protocols. Our analysis confirmed previously identified sample processing induced 
modifications, but also revealed unexpected modifications, such as those related to acetone, 
alkylating agents as well as filter materials.

Approximately 70% of the overall acquired MS/MS spectra could be identified when using 
filter-aided as well as the best performing in-solution protocols. The unidentified spectra 
were predominantly of low-quality, lacking sufficient peptide fragment coverage for a 
confident identification. A maximum proteome coverage and reduced number of reagent-
induced modifications were obtained for the filter-aided approach, even in the presence of 
Urea buffer (when using moderate incubation temperatures). However, this approach 
appeared to be more laborious and requires the availability of suitable filters and centrifuges. 
A comparable performance was obtained with the best performing in-solution protocols, such 
as 7 and 11. More specialised protocols, such as S-trap [317] and ultrasonic FASP digestion 
[318] were not evaluated, but are expected to enable a similarly good proteome coverage at 
reduced processing times.

The use of chemostats in this study ensured high experimental reproducibility, however, the 
results obtained here could be further applied to different types of cultivation (e.g. different 
growth conditions). Across all protocols, protein extraction was performed mechanically 
with bead beating, which proved a reproducible approach. More importantly, the type of 
sample collection proved crucial to obtain a high proteome coverage and should therefore be 
chosen carefully (also when applying to different conditions). Ultimately, we systematically 
evaluated a matrix of sample preparation protocols for the unicellular model eukaryote yeast 
and provide a large resource of protocols and associated mass spectrometric raw data. These 
enable the selection of suitable sample preparation elements, the design of more specialised 
procedures and support the evaluation and analysis of (native) peptide modifications in yeast.

Supplementary Information

Supplementary Excel tables can be found online: https://doi.org/10.1016/j.jprot.2022.104576
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Figure S1. Achieved sequence identification rates, proteome and sequence coverage for the 
different sample preparation protocols (zoomed version of figure 2). The number of Peptide 
Spectrum Matches (PSMs) (A.), identified scans (%) (B.), proteome coverage (%) (C.) proteome 
sequence coverage (D.) were plotted against the number of MS/MS scans obtained per protocol. Each 
colored circle represents the average of four technical replicates obtained from two biological 
replicates, while the standard deviation is represented by the error bars. The proteome coverage was 
calculated based on the proteins identified per protocol as a percentage of the total number of proteins 
in yeast (known ORFs). In addition, the proteome sequence coverage was calculated based on the 
identified amino acids in the proteomics experiments, as a percentage of the total proteome amino acid 
sequence (sequence coverage). 
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Table S1. Growth characteristics of IMX372 (MG strain) in glucose-limited aerobic chemostat 
cultures at a dilution rate of 0.10 h-1.

Bioreactor Replicate 1 Replicate 2

Biomass yield (gx gsucrose
-1) 0.46 0.44

Qglucose (mmol gx
-1 h-1) -1.211 -1.264

Qco2 (mmol gx
-1 h-1) 3.15 3.24

Qo2 (mmol gx
-1 h-1) -3.10 -3.22

Respiratory quotient 1.02 1.00

Carbon recovery (%) 100.01 97.09

Actual dilution rate (h-1) 0.101 0.101

Figure S2. : Distribution of protein sequence coverage obtained after applying different sample 
preparation protocols (1–14). MS/MS spectra were identified using conventional database matching 
with PEAKS-DB in which at least 2 unique peptides had to be found for a reliable protein identification. 
The distribution of the sequence coverage of these identified proteins is shown here for each sample 
for both technical replicates (orange and gray). The average sequence coverage (∙) and median (-) are 
shown in the boxplots. The average sequence coverage across all samples was 26 % and 25 %, for 
biological replicate 1 (A.) and 2 (B.), respectively.
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Abstract

The yeast Saccharomyces cerevisiae is a widely used eukaryotic model organism and 
promising cell factory in industry. However, despite decades of research on yeast 
metabolism, its regulation is not fully understood and its complexity still represents a major 
challenge for engineering and optimizing biosynthetic routes for production of chemicals. 
Recent studies showed the potential of resource and proteome allocation data to enhance 
prediction models for metabolic processes. However the availability of comprehensive and 
accurate proteome allocation data is still limited. To address this knowledge gap, this study 
reports a proteome dynamics study that comprehensively covers the transition from 
exponential to stationary phase for both aerobically and anaerobically grown yeast cells. The 
combination of highly controlled reactor experiments, biological triplicates and standardised 
sample preparation protocols ensures the reproducibility and accuracy of this unique dataset. 
The CEN.PK lineage was chosen for its popularity and relevance for both fundamental and
applied research. Together with the prototrophic, standard haploid strain CEN.PK113-7D, an 
engineered strain with genetic minimization of the glycolytic pathway was investigated, 
leading to the quantitative assessment of 54 proteomes and over 1700 proteins. Anaerobic 
cultures showed remarkably less proteome-level changes than aerobic cultures during the 
transition from exponential to stationary phase, accountable to the lack of diauxic shift in the 
absence of oxygen. These results support the notion that anaerobically growing cells lack 
time and resources to adapt to changes in the environment. The performed proteome 
dynamics study constitutes an important step towards better understanding the complex 
allocation of proteome upon glucose exhaustion and the impact of oxygen on this allocation. 
This new proteome dataset offers a valuable resource e.g. for the development of resource 
allocation model and metabolic engineering efforts.
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Introduction
The yeast Saccharomyces cerevisiae is a widely used eukaryotic model organism and cell 
factory that represents a promising alternative to the fossil fuel-based production of 
chemicals. However, economic competitiveness is still a major hurdle for such bio-based 
processes. A shift towards cell factories therefore requires the development of improved 
strains with high product yield and productivity. However, constructing such cell factories 
involves extensive genetic engineering to rewire native genomes, which have been optimised 
over millions of years of evolution for cell growth and survival. Nevertheless, intensive 
research and development over the past decades have led to successful developments where 
yeast processes were brought to industrial scale, for example for the production of the drug 
precursor artemisinic acid [80, 319–321]. In parallel, in silico approaches to reproduce and 
predict the microbial metabolism have been developed to assist metabolic engineering efforts 
[156]. The complexity of yeast metabolism, however, limits the predictive power of these 
models. A promising approach to improve such models is to consider resource allocation, 
and more particularly, the cost of protein expression [157–161]. A prerequisite for this 
approach, however, is the availability of comprehensive and accurate proteome dynamics 
data established under tightly controlled conditions. Unfortunately, such data are commonly 
not available and are difficult to obtain.

S. cerevisiae displays a remarkable metabolic flexibility, as it tunes its metabolism between 
full respiratory sugar dissimilation and alcoholic fermentation, with different degrees of 
respiro-fermentative metabolism as a function of environmental cues, substrate and oxygen 
supply. The well-known Crabtree effect results in partial repression of respiration and 
therefore in respiro-fermentative growth in the presence of excess sugar (e.g. glucose, 
galactose) even in the presence of oxygen [100]. Conversely, gluconeogenic substrates as 
ethanol or acetate lead to strict respiratory metabolism in aerobic settings. In the absence of 
oxygen, S. cerevisiae will fully ferment carbon sources. However, respiratory and 
fermentative substrate dissimilation have a large impact on ATP yield, as full respiration of 
1 mol of glucose results in 16 moles of ATP, while fermentation of the same amount of 
glucose only yields 2 moles of ATP [322]. The metabolic mode therefore strongly affects 
cellular resources, in particular their optimum allocation for growth and survival. To obtain 
a better insight on how S. cerevisiae responds to changes in substrate and oxygen supplies, 
we monitored its proteome employing tightly controlled bioreactors. Albeit various yeast 
proteomics studies have been performed over the past decade [110, 147, 149, 162, 310, 323–
326], the dynamic proteome responses to substrate availability during all growth phases of 
yeast cultures (exponential, diauxic and stationary growth) were monitored here for the first 
time under both, aerobic and anaerobic conditions using standardized sample preparation 
protocols [327]. Interestingly, only little is known to date about the proteome dynamics under 
anaerobic conditions, in particular during the transition from exponential to stationary phase. 
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Considering eukaryotes such as S. cerevisiae, genetic redundancy is another level of 
complexity for in silico design and experimental development of e.g. cell factories. Many 
genes, more particularly in metabolism, have orthologues with similar functions [113], often 
with a poorly understood physiological role. With minimal genomes in mind, several studies 
have explored the requirement for these redundant genes and implemented top-down 
approaches to reduce genetic redundancy [120, 328, 329]. Such minimized genomes have the 
potential to facilitate the complete redesign and construction of entirely synthetic yeast 
genomes. Moreover, by eliminating isoenzymes with different regulatory and kinetic 
properties, genetic minimization of key metabolic pathways can facilitate the formulation 
and validation of mathematical models. Solis-Escalante et al. constructed a yeast strain in 
which the 26 genes encoding enzymes of the Embden-Meyerhof-Parnas pathway of 
glycolysis, main pathway for sugar utilization, were minimalized to a set of 13 genes in the 
Minimal Glycolysis (MG) strain (Figure 1a) [120]. While this genetically reduced strain 
appeared physiologically comparable to its parent strain (with the full set of glycolytic genes) 
the underlying proteome dynamics and potential protein level adjustments were not 
investigated. In this study, the engineered MG strain and its parental S. cerevisiae were 
investigated side by side, during transition from exponential to stationary phase, in the 
presence or absence of oxygen. The temporal proteome dynamics across all growth phases 
were monitored from triplicate bioreactor cultures. Quantitative shotgun proteomics 
experiments were performed using 10-plex tandem mass tag (TMT) isobaric labelling. The 
use of tightly-controlled reactor experiments in combination with robust sample preparation 
protocols allowed for highly accurate quantitative data. Those therefore constitute highly 
valuable resources for in silico approaches, e.g. to assist metabolic engineering efforts. 
Furthermore, the established proteome data expand the current understanding of protein 
dynamics in yeast during carbon-limited growth–under both aerobic and anaerobic 
conditions–switching from proliferation to stationary phase. The comparison to the minimal 
glycolysis mutant moreover measures the impact of the loss of the minor glycolytic 
isoenzymes on the global proteome.

Materials and Methods
Yeast strains and media. The MG yeast strain IMX372 (MATa ura3-52 his3-1 leu2-3,112 
MAL2-8c SUC2 glk1::SpHis5, hxk1::KlLEU2, tdh1::KlURA3, tdh2, gpm2, gpm3, eno1, 
pyk2, pdc5, pdc6, adh2, adh5, adh4) and CEN.PK113-7D (MATa MAL2-8C SUC2) used in 
this study share the CEN.PK genetic background [120, 288]. Shake flask and batch cultures 
were grown in synthetic medium (SM) containing 5.0 g/L (NH4)SO4, 3.0 g/L KH2PO4, 0.5 
g/L MgSO4·7H2O and 1 mL/L trace elements in demineralized water, set at pH 6. The 
medium was heat sterilized (120°C) and supplemented with 1 mL/L filter sterilized vitamin 
solution and 20 g/L heat sterilized (110 °C) glucose (SMG) [289]. The bioreactor medium 
was supplemented with 0.2 g/L antifoam Emulsion C (Sigma, St. Louise, USA) or with 0.2 
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g/L antifoam Pluronic PE 6100 (BASF, Ludwigshafen, Germany) for anaerobic and aerobic
cultures, respectively. In case of anaerobic cultivations, the medium was also supplied with 
anaerobic growth factors, 10 mg/L ergosterol (Sigma-Aldrich, St. Louis, MO) and 420 mg/L 
Tween 80 (polyethylene glycol sorbate monooleate, Merck, Darmstadt, Germany) dissolved 
in ethanol. Frozen stocks of S. cerevisiae cultures were prepared by the addition of glycerol 
(30% v/v) in 1 mL aliquots for storage at -80 °C.

Bioreactor cultures. Aerobic shake flask cultures were grown at 30°C in a Innova incubator 
shaker (New Brunswick™ Scientific, Edison, NJ, USA) at 200 rpm using 500 mL round-
bottom shake flasks containing 100 mL medium. Triplicate aerobic batch cultures of control 
and MG yeast were performed in 2 L laboratory fermenters (Applikon, Schiedam, The 
Netherlands) with a 1.2 L working volume under aerobic and anaerobic conditions. SM-
medium was used and maintained at pH 5 by the automatic addition of 2 M KOH. Mixing of 
the medium was performed with stirring at 800 rpm. Gas inflow was filter sterilized and 
compressed air (Linde Gas, Schiedam, The Netherlands) or nitrogen (<10 ppm oxygen, Linde 
Gas) was sparged via the bottom of the bioreactor at a rate of 500 mL/min, for aerobic and 
anaerobic cultures, respectively. Dissolved oxygen levels were measured with Clark 
electrodes (Mettler Toledo, Greifensee, Switzerland). The temperature of the fermenters was 
maintained at 30°C. The reactors were inoculated with exponentially growing shake flask 
cultures of S. cerevisiae strain IMX372 and CEN.PK113-7D to obtain an initial optical 
density (OD660) of approximately 0.2. Sampling for HLPC and OD660 measurements was 
done every 90 minutes. Proteome samples were taken at 6, 9, 12, 16.5, 27 and at 7.5, 10.5, 
13.5, 16.5 hours in aerobic and anaerobic conditions, respectively. 

Biomass, metabolites and gas measurements. To monitor growth, OD660 measurements 
were performed on a JENWAY 7200 spectrophotometer (Cole-Parmer, Stone, UK). The 
biomass dry weight was determined in duplicate as described earlier [289]. For extracellular 
metabolite determinations, broth samples were centrifuged for 5 min at 13,000 g and the 
supernatant was collected for analysis with an Aminex HPX-87H ion exchange column 
(Biorad, Hercules, CA, USA). The HPLC was operated at 60°C and 5 mM of H2SO4 was
used as mobile phase at a rate of 0.6 mL/min. Off-gas concentrations of CO2 and O2 were 
measured using an NGA 2000 analyzer. Proteome samples (~3-5 mg dry weight) were taken 
from batch cultures. The samples were collected in multifold in trichloroacetic acid (TCA) 
(Merck Sigma, Cat. No. T0699) with a final concentration of 10%. Samples were centrifuged 
at 4000 g for 5 min at 4°C. Cell pellets were frozen at -80°C [272].

Yeast cell lysis, protein extraction and proteolytic digestion. Cell pellets of the aerobic 
and anaerobic cultures were resuspended in lysis buffer composed of 100 mM 
Triethylammonium bicarbonate (TEAB) containing 1% SDS and phosphatase/protease 
inhibitors. Yeast cells were lysed by glass bead milling by 10 cycles of 1 minute shaking 
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alternated with 1 min rest on ice. Proteins were reduced by addition of 5 mM DTT and 
incubation for 1 hour at 37°C. Subsequently, the proteins were alkylated for 60 min at room 
temperature in the dark by addition of 50 mM acrylamide. Protein precipitation was 
performed by addition of four volumes of ice-cold acetone (-20°C), followed by 1 hour 
freezing at -20°C. The proteins were solubilized using 100 mM ammonium bicarbonate. 
Proteolytic digestion was performed by Trypsin (Promega, Madison, WI), 1:100 enzyme to 
protein ratio, and incubated at 37°C overnight. Solid phase extraction was performed with an 
Oasis HLB 96-well μElution plate (Waters, Milford, USA) to desalt the mixture. Eluates 
were dried using a SpeedVac vacuum concentrator at 50°C and frozen at -80°C. 

Quantitative temporal proteome analysis. Desalted peptides were reconstituted in 100 mM 
TEAB and TMT10-plex reagents (Thermo) were added from stocks dissolved in 100% 
anhydrous acetonitrile (ACN). Peptides were mixed with labels in a 1:8 ratio (12.5 µg to 100 
µg) and incubated for 1 hour at 25°C and 400 rpm and the labelling reaction was stopped by 
addition of 5% hydroxylamine to a final concentration of 0.4%. Labelled peptides were then 
mixed in at approx. equal quantities. Two bridging samples were included in each TMT10-
plex experiment to improve comparability between different experiments. The bridging 
sample was a mixture of the three biological replicates of MG yeast under aerobic conditions 
in the mid-stationary phase. Peptide solutions were diluted with water to obtain a final 
concentration of acetonitrile (ACN) lower than 5%. Solid phase extraction was performed to 
desalt the final peptide mixture. Desalted peptides were subsequently frozen at -80°C for 1 
hour and dried by vacuum centrifugation. Peptides were finally resuspended in 3% 
ACN/0.01% TFA prior to MS-analysis to give an approximate concentration of 500 ng per 
µL. Samples were labelled as indicated in SI table 2.

Shotgun proteomic analysis. An aliquot corresponding to approximately 1 µg protein digest 
was analysed using an one dimensional shot-gun proteomics approach [290]. Briefly, the 
samples were analysed using a nano-liquid-chromatography system consisting of an EASY 
nano LC 1200, equipped with an Acclaim PepMap RSLC RP C18 separation column (50 μm 
x 150 mm, 2 μm, Cat. No. 164568), and a QE plus Orbitrap mass spectrometer (Thermo 
Fisher Scientific, Germany). The flow rate was maintained at 350 nL/min over a linear 
gradient from 5% to 25% solvent B over 180 min, then from 25% to 55% over 60 min, 
followed by back equilibration to starting conditions. Data were acquired from 5 to 240 min. 
Solvent A was H2O containing 0.1% formic acid (FA), and solvent B consisted of 80% ACN 
in H2O and 0.1% FA. The Orbitrap was operated in data-dependent acquisition (DDA) mode 
acquiring peptide signals from 385–1250 m/z at 70 K resolution in full MS mode with a 
maximum ion injection time (IT) of 75 ms and an automatic gain control (AGC) target of 
3E6. The top 10 precursors were selected for MS/MS analysis and subjected to fragmentation 
using higher-energy collisional dissociation (HCD). MS/MS scans were acquired at 35 K 
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resolution with AGC target of 1E5 and IT of 100 ms, 1.2 m/z isolation width and normalized 
collision energy (NCE) of 32. 

Processing of mass spectrometric raw data. Data were analysed against the proteome 
database from Saccharomyces cerevisiae (Uniprot, strain ATCC 204508 / S288C, Tax ID: 
559292, July 2020) using PEAKS Studio X (Bioinformatics Solutions Inc., Waterloo, 
Canada) [210], allowing for 20 ppm parent ion and 0.02 m/z fragment ion mass error, 3 
missed cleavages, acrylamide and TMT10 label as fixed and methionine oxidation and N/Q 
deamidation as variable modifications. Peptide spectrum matches were filtered against 1% 
false discovery rates (FDR) and identifications with ≥2 unique peptides. Changes in protein 
abundances between different time points using the TMT quantification option provided by 
the PEAKSQ software tool (Bioinformatics Solutions Inc., Canada). Auto normalization was 
used for quantitative analysis of the proteins, in which the global ratio was calculated from 
the total intensity of all labels in all quantifiable peptides. Quantitative analysis was 
performed using protein identifications containing at least 2 unique peptides, which peptide 
identifications were filtered against 1% FDR. The significance method for evaluating the 
observed abundance changes was set to ANOVA and the significance score was expressed 
as the -10xlog10(p), where p is the significance testing p-value. The p-value represents the 
likelihood that the observed change is caused by random chance. Results from PEAKSQ 
were exported to ‘proteins.csv’, containing the quantified proteins.

Pathway analysis, functional enrichment, and data visualisation. Briefly, the exported 
‘proteins.csv’ files from PEAKSQ, listing the quantified proteins for each experiment, were 
directly imported into the Python environment. Normalization between data was performed 
using a bridging sample. A function was further established that links Uniprot accession 
numbers and yeast genes (as obtained from https://www.uniprot.org/docs/yeast.txt, and 
which subsequently was used to annotate identified proteins from the experiments with 
correct gene names. The biological triplicates per condition (aerobic and anaerobic) and 
strain (control and MG) were treated separately. Furthermore, each biological replicate 
consisted of two additional technical replicates. To analyse the technical and biological 
replicates, clustermaps were made using a self-built Python function based on the clustermap 
function from the Seaborn package in Python [330], using the Euclidean distances metric and 
the average linkage method. Only proteins detected in all three biological replicates were 
used for the cluster analysis. The fold change of each protein in a specific condition was 
calculated relative to the bridging sample. The average fold changes of the technical 
replicates were subsequently used to determine the standard deviations of the biological 
replicates. The averages of the biological replicates were determined to obtain the four sub-
datasets i) WT aerobic, ii) MG aerobic iii) MG anaerobic and iv) WT anaerobic. All graphs 
ultimately show the analyses of these biological-replicate averages and their corresponding 
standard deviations. 
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To study how protein abundances changed in individual cellular pathways, the obtained 
proteomics data were analysed using the KEGG (Kyoto Encyclopaedia of Genes and 
Genome) pathway database [331]. All the up-to-date KEGG pathways were retrieved with 
the constructed ‘KEGG_tool.py’ code. Here, the Bio.KEGG.REST module from the 
Biopython package in Python was used [332]. Thereby, the functions ‘kegg_list’ was used to 
list all pathways for S. cerevisiae, and ‘kegg_get’ to retrieve gene names that are assigned to 
a specific pathway. Since many pathways have an extensive list of members, the pathways 
in the central carbon metabolism (CCM) were reduced to the most important genes in order 
to enable meaningful visualisation in graphs. Using the above mentioned clustermap 
function, the protein fold changes of the CCM were plotted on a heatmap for each of the 
experiments, without any clustering. For better visualisation of the trends, the data were 
normalised to the mid-exponential (ME) phase. The same function was moreover used to 
display the average absolute intensity of every protein throughout the whole growth curve, 
using log10 and absolute scale, respectively. The significance of a difference in biological-
replicate-average fold changes between two datasets was assessed by performing a two-sided 
two-sample unpaired t-test (also known as Welch’s t-test), using the ‘ttest_ind_from_stats’ 
function from the ‘SciPy.stats’ module in Python [333]. Global proteome changes between 
two experiments or phases were visualised in volcano plots, where the -10log10(p) is plotted 
against the log2(fold change) between the two conditions. These plots were generated using 
the ‘gene_exp.volcano’ a modified version of the GeneExpression.volcano function from the 
‘Bioinfokit.visuz’ module in Python [334]. This function enabled the division of the fold 
changes between two experiments into i) insignificant changes, ii) statistically significant 
changes (but not necessarily biologically significant), iii) statistically and likely biologically 
significant changes. For this study the statistical significance threshold was generally set to 
p <0.05. The (presumed) biological significance threshold was set to a log2 fold change 
threshold of +/- 0.32 (indicating a 1.25 absolute fold change).
A functional enrichment analysis using the STRING database was performed in order to 
determine whether specific GO-terms or KEGG-pathways are enriched under a particular 
condition [335]. For this, Python was used to programmatically accesses the STRING 
database via an API. This created a dictionary containing the more and less abundant proteins, 
the species identifier (4932 for S. cerevisiae), the functional categories that should be 
assessed, the FDR threshold (<0.05 in this study), and an optional set of ‘background genes’ 
with as alternative background the whole species proteome. The function 
‘backgroundgene_2_string’ retrieves the protein-specific string identifiers for the back-
ground genes/proteins, which in this case were all proteins detected across the experiments. 
Estimation of the average protein content for the aerobic and anaerobic growth conditions 
using emPAI and PAI indices was performed according to Yasushi Ishihama et al., 2005 
[61]. Circle graphs were made using the ‘surf’ function in Matlab, where circle areas 
represent the obtained emPAI values.

4      Chapter 4

166125 den Ridder BNW.indd   78166125 den Ridder BNW.indd   78 12-04-2023   09:4912-04-2023   09:49



 

79

Data availability. Mass spectrometric raw data have been deposited to the 
ProteomeXchange Consortium [336] via the PRIDE [337] partner repository and are publicly 
available under the project code PXD031412.

Results 
Capturing proteome dynamics of laboratory control and minimal glycolysis yeast in 
aerobic and anaerobic batch bioreactor cultures
To optimize data reproducibility and reliability, the batch cultures were performed in 
bioreactors in which mixing, aeration and pH were tightly controlled. To further increase 
biological significance, independent triplicate cultures were performed for the two 
investigated strains. The laboratory, prototrophic control strain S. cerevisiae CEN.PK113-
7D, a popular lineage for biotechnology for which several omics datasets are already 
available, was chosen, as well as the ‘minimal glycolysis’ variant (‘MG’, IMX372) lacking 
glycolytic and fermentation minor isoenzymes (Figure 1a). The batch cultures were sampled 
during all growth phases, ranging from proliferation to growth arrest in stationary phase 
(Figure 1b). The presence or absence of oxygen strongly affects yeast physiology and results 
in differences in metabolism and growth phases. During growth on glucose, aerobic cultures 
both respire and ferment, producing ethanol and other fermentation products. This growth on 
glucose is followed by a diauxic growth phase during which the fermentation products are 
fully respired until stationary phase. Conversely, in the absence of oxygen, S. cerevisiae fully 
ferments glucose and does not respire. Dissimilation of fermentation products requires 
oxygen, anaerobic cultures therefore directly switch from exponential growth on glucose to 
stationary phase, without diauxic phase. These physiological differences were reflected in 
the growth and metabolites profiles (SI Table 1 and Figure 1b). Aerobic proteome dynamics 
were monitored in time with sampling at 6, 9, 12, 16.5 and 27 hours of growth, corresponding 
to mid-exponential, late exponential, early-diauxic, mid-diauxic and stationary growth 
phases, respectively (Figure 1b). To align sampling time points to physiology, anaerobic 
cultures were sampled at 7.5, 10.5, 13.5 and 16.5 hours of growth, corresponding to mid- and 
late exponential, early stationary and stationary growth phase, respectively (Figure 1b). 
After cell lysis and trypsin digestion, peptide samples of three biological replicates per 
condition were labelled using TMT10-plex reagents, mixed equally and subjected to a 4-hour 
gradient shotgun proteomics experiment (SI Table 2). On average, 1175 and 1106 proteins 
were quantified in the control yeast under aerobic and anaerobic conditions respectively, with 
at least two unique peptides and 1% FDR. Similarly, 1131 and 1127 proteins were quantified 
confidently on average for the aerobic and anaerobic cultures of the MG strain. In total, across 
all TMT experiments, 1734 proteins were quantified (SI Table 3), which is close to 40% of 
the total proteome considering the expression of ~4500 proteins at any time [338]. Moreover, 
the absolute protein amount was estimated based on the number of sequenced peptides per 
protein [61]. The total protein content was estimated based on the protein identifications and 
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further extrapolated to the proteins generally expressed in the cell, indicating that more than 
99% of the protein content was quantified in our study (SI Figure 1, SI Table 4). The 
detected proteins were predominantly assigned to intracellular organelles functional GO 
categories, consisting of e.g. cytosolic, mitochondrial and ribosomal proteins (Figure 1c, SI 
Table 5), which could be explained by their high expression levels [309, 310]. A similar GO-
term assignment was found for both strains and conditions. 

The crude protein quantification profiles were further analysed using a Python data 
processing pipeline to enable a tailored visualisation and interpretation of the large-scale data. 
To this end, the data from the 14 separate TMT experiments were compared for their temporal 
and conditional protein abundance changes of control (CEN.PK113-7D) and MG yeast 
strains under (an)aerobic conditions. Data are represented as fold-change for each protein in 
a specific condition relative to a bridging sample. To improve comparability between 

Figure 1. Comprehensive and temporal proteomic profiling of the transition from proliferation 
to stationary phase in laboratory control and minimal glycolysis yeast under aerobic and 
anaerobic conditions. A. Schematic overview of glycolysis in control (CEN.PK113-7D, black) and 
MG yeast (IMX372, blue). The blue proteins are retained in MG yeast. *Adh3 is a mitochondrial 
protein. B. Yeast growth in aerobic and anaerobic cultures. Glucose (red), ethanol (yellow) and OD660

concentrations were measured during the different growth phases of aerobic and anaerobic batch 
cultures of control yeast and MG strain. The values shown are from three biological replicate cultures, 
standard deviations indicated by the error bars. The dotted grey lines indicate time points at which 
samples were taken for proteome analysis. Proteome samples were therefore taken from each biological 
replicate in the aerobic cultures after 6, 9, 12, 16.5 and 27 hours of growth, in the mid-exponential 
(‘ME’), late-exponential (‘LE’), early-diauxic (‘ED’), mid-diauxic (‘MD’) and (mid-) stationary (‘MS’) 
growth phase, respectively. Furthermore, proteome samples were taken of the anaerobic cultures after 
7.5, 10.5, 13.5 and 16.5 hours of growth, in the ME, LE, early-stationary (‘ES’) and MS growth phase, 
respectively. Proteome samples were subjected to quantitative shotgun proteomics experiments, using 
10-plex TMT isobaric labelling and a one-dimensional, 4-hour chromatographic separation. Database 
searching and quantitative analysis was performed using PEAKS X and by a tailor-made Python data 
processing pipeline. C. Annotation of yeast protein functions using Gene Ontology (GO) terms. Based 
on the classifications of GO annotation, the overall functions of the identified yeast proteins (with at 
least 2 unique peptides present) were categorized into cellular component, and displayed in pie chart 
format with absolute protein numbers (average of three biological replicates). The global proteome 
changes between the Mid-Exponential and Mid-Stationary phase under aerobic and anaerobic 
conditions in control and MG strain were visualised in volcano plots. The fold changes were normalized 
to the aerobic and anaerobic Mid-Exponential phases. The log2 of the abundance fold change between 
the two conditions was plotted against the significance (-log10p), using a p-value threshold of <0.05 and 
a fold change threshold of >1.25 (which corresponds to a log2 fold change threshold +/- 0.32). 
Significant protein fold changes of Mid-Stationary proteins were coloured red if higher, blue if lower, 
or peach if similar to their mid-exponential equivalents. The exact numbers can be found in Table 1. 
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experiments, the bridging sample used in all TMT experiments was a mixture of the three
biological replicates of the MG yeast aerobic stationary phase (SI Table 2). 

To assess experimental reproducibility, global proteome data were compared with cluster 
analysis based on Euclidean distances using three biological replicates per strain and 
condition and two technical replicates per time point within each biological replicate. Heat 
map visualization showed clustering of replicates of the different growth phases per strain 
and condition, confirming the reproducibility of the reactor experiments and proteome 
analyses (SI Figure 2). The average protein abundance of three biological replicates per 
condition and strain was therefore used in following analyses.

Oxygen availability strongly affects global proteome dynamics across the growth curve
To explore the impact of oxygen availability on the yeast proteome, we first focused on the 
growth phases with the most marked change in the global proteome between aerobic and 
anaerobic cultures for the control strain CEN.PK113-7D, i.e. stationary and mid-exponential 
phases. While a similar number of proteins were quantified in the presence and absence of 
oxygen, the number of differently expressed proteins between stationary and mid-exponential 
phases varied significantly between both conditions (p-value <0.05 and fold change of +/-
1.25). For aerobic cultures, 364 proteins were significantly more abundant under carbon 
starvation (stationary phase), while this only accounted for 78 proteins under anaerobiosis 
(Figure 1c, Table 1). Furthermore, a significantly lower abundance was observed in the 
stationary phase for 174 proteins compared to exponential growth in the presence of oxygen, 
as to 42 proteins only in the absence of oxygen (Figure 1c, Table 1).

Deprived of usable carbon source, stationary phase yeast cells arrest growth, thereby entering 
a state of decreased metabolism and biosynthesis, and overall lower transcription and 
translation rates [339, 340]. Accordingly, ribosomal proteins have been shown to be 
expressed at lower levels in stationary phase [154, 341]. In good agreement with physiology, 
the abundance of proteins involved in processes associated with protein synthesis and cellular 
growth showed decreased abundance in the transition between exponential and stationary 
growth phase under both aerobic and anaerobic conditions, e.g. ‘gene expression’, ‘ribosome 
assembly’ and ‘cellular macromolecule biosynthetic process’ (SI Table 6 and 7).

In the presence of oxygen, yeast cells transition from respiro-fermentation on glucose to full 
respiration using ethanol as primary carbon source. This increase in respiratory activity was 
nicely reflected in the proteome as proteins more abundant in stationary phase than 
exponential phase were typically associated with mitochondrial respiration in aerobic 
conditions including processes as ‘generation of precursor metabolites and energy’, 
‘mitochondrion organization’ and ‘transmembrane transport’ (SI Table 6). Understandably, 
in non-respiring, anaerobic cultures this response was not observed. In these cultures, mostly 
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proteins involved in carbohydrate catabolic and disaccharide metabolic processes were more 
abundant in stationary than in mid-exponential phase, potentially to ensure survival in 
growth-arrested cells. Interestingly, proteins in cellular components involving ‘cell 
periphery’ and the ‘plasma membrane’ were also found to be more abundant (SI Table 7).

Table 1. Number of proteins with significant changes during the transition to subsequent growth 
phases under aerobic and anaerobic conditions in CEN.PK113-7D. The total number of proteins 
indicates the number of proteins that were detected in at least two biological replicates in both phases 
that were compared. Proteins were normalized to the former growth phase. A p-value threshold of 0.05, 
and a fold change threshold of 1.25 (which corresponds to a log2 fold change of +/- 0.32) was used to 
select proteins that are represented in the table. 

CEN.PK113-7D 
growth transition

# Proteins 
quantified

# More 
abundant

# Less 
abundant

Anaerobic
Late exponential / Mid-Exponential 1092 1 22
Early stationary / Late Exponential 1092 52 3
Stationary / Early Stationary 1092 0 0
Stationary / Mid-Exponential 1092 78 42

Aerobic
Late exponential / Mid-Exponential 998 12 21
Early Diauxic / Late exponential 998 67 4
Mid-Diauxic / Early Diauxic 1168 125 24
Stationary / Mid-Diauxic 1168 90 34
Stationary / Mid exponential 1168 364 174

Comparing proteome data across growth phases revealed that the diauxic shift is the event 
with the strongest impact on proteome rearrangement, with 24 proteins with lower and 125 
proteins with higher abundance between the beginning of the diauxic growth phase and the 
mid-diauxic phase (Table 1, SI Table 6). The diauxic shift was characterized by an increased 
abundance in proteins involved in aerobic respiration, fatty acid metabolism, and the 
generation of precursor metabolites and energy, in line with the switch from respiro-
fermentative to fully respiratory metabolism. Conversely, the set of proteins with decreased 
abundance during the diauxic shift was enriched for proteins involved in protein synthesis in 
the cytosol. This result is also in line with the decreased growth rate, and thereby protein 
synthesis rate, of yeast cells grown on ethanol media as compared to glucose [342].

Under anaerobiosis, most proteome changes occurred in the transition between exponential 
and stationary growth (55 proteins, i.e. 46% of all detected changes in abundance throughout 
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all phases). Notably, prolonged cultivation during the stationary phase under anaerobiosis 
did not further alter the proteome (Table 1, SI Table 7).

Impact of oxygen on proteome rearrangements in central carbon metabolism across 
growth phases
Central carbon metabolism (CCM) consists of key pathways required for the conversion of 
carbon sources into the 12 building blocks for the synthesis of cellular components, and 
encompasses ca. 150 transport proteins and enzymes [329]. The flow of carbon and electrons 
via the CCM therefore responds to carbon source nature and abundance. As oxygen 
availability dictates how much ATP molecules can be produced from the carbon source, 
CCM also responds to oxygen availability. The proteins involved in CCM are therefore 
expected to be considerably affected by glucose and oxygen availability. In our study, 101 
out of 142 CCM proteins (SI Table 8) were successfully quantified in at least one of the main 
four conditions (Figure 2a). In the presence of oxygen, 71 proteins had significantly different 
abundance over the time-course, while in the absence of oxygen this only resulted in 18 
significant protein abundance changes over the growth curve. 

S. cerevisiae harbours a set of 17 proteins able to transport hexoses, known as Hxt proteins. 
Their expression is primarily dictated by hexose, and mostly glucose, abundance. Being 
membrane-bound and with low abundance, Hxt proteins are typically difficult to find in 
proteome studies, and their high level of homology makes their identification challenging. 
Nevertheless, six Hxt proteins were quantified in the present dataset: Hxt2, 3, 4, 5, 6 and 7.
Four of these Hxts could be quantified in all samples, irrespective of strain and oxygen 
supply. Hxt6 and Hxt7 share high protein sequence similarity (>99%) and were therefore 
considered as a single protein group. These were the most abundant Hxts and were 
consistently more abundant upon glucose exhaustion in all tested conditions (Figure 2a), in 
good agreement with their high affinity for glucose [343]. Hxt3 and Hxt4, also identified in 
all conditions, responded differently in the presence and absence of oxygen. Abundance of 
Hxt4, high affinity transporter, was logically increased upon glucose exhaustion, but was 
then decreased when reaching stationary phase in aerobic cultures, while it remained high 
under anaerobiosis. Hxt3, low affinity transporter expressed at high and low glucose 
concentration [344], decreased in abundance across the growth curve, markedly in aerobic 
stationary phase. Hxt5 was only detected in the control strain in the presence of oxygen, but 
its abundance was in line with its induction by non-fermentable carbon sources and 
decreasing growth rates [343]. Hxt2, only detected in anaerobic cultures of the control strain, 
was also responding as expected for a high affinity transporter, with increased abundance 
upon glucose exhaustion.

Among the 26 glycolytic and fermentation proteins, 13 major isoforms are constitutively 
expressed with high abundance, while the remaining are minor isoforms with lower 
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abundance and condition-dependent expression [119, 120]. This notion was well reflected in 
the present comprehensive dataset, in which 23 of these proteins could be quantified in both 
conditions of the control strain. All major isoenzymes were found, their abundance remaining 
stable across growth phases under anaerobiosis, but was slightly decreased in stationary 
phase under aerobiosis (Figure 2a). Most minor isoenzymes were detected, although not 
always in all conditions. Tdh1, minor glyceraldehyde-3P dehydrogenase expressed with and 
without oxygen, was systematically more abundant upon glucose exhaustion. Similarly, Glk1 
and Hxk1, glucose-repressed isoenzymes of the predominant hexokinase 2, were also more 
abundant upon glucose exhaustion. Adh2, alcohol dehydrogenase repressed by glucose and 
induced by ethanol [345], was only detected in the presence of oxygen and its abundance was 
strongly increased in mid-diauxic phase. In all conditions, the estimated glycolytic protein 
content (Figure 2b and c) was superior to the remainder of the CCM proteins.

The TCA cycle, a set of 22 proteins located in the mitochondrion, is particularly active during 
respiration. The majority of the TCA cycle proteins were detected and their abundance was 
generally strongly increased during the diauxic shift, but unchanged during anaerobic 
cultures (Figure 2a). A small group of proteins were unaffected by progression through the 
growth phase under anaerobiosis, among which Pda1, Pdb1 and Lat1, three of the five 
subunits of the pyruvate dehydrogenase complex, and Aco2 and Idp1. Interestingly, the 
temporal abundance of Frd1 and Osm1, proteins important for e.g. protein folding in 
anaerobic conditions [346], was also unaffected in the presence and absence of oxygen. Many 
CCM metabolites cross the mitochondrial membrane via transporter proteins, and increased 
respiratory activity is expected to increase the flux of metabolites between cytosol and 
mitochondria. Accordingly, the temporal profile of the seven quantified mitochondrial 
transporters increased after glucose exhaustion aerobically, but not anaerobically, with a 
marked increase for Odc1 and Sfc1, carboxylic acids antiporters. Despite the increase in 
respiratory activity during the diauxic shift and phase, reflected in the TCA cycle proteins, 
the abundance of anaplerotic proteins Pyc1, Pyc2 and Mae1 remained unchanged. 
Conversely, the abundance of the gluconeogenic proteins Fbp1 and Pck1 and glyoxylate 
cycle proteins MLs1 and Icl1, required for ethanol utilization, was strongly increased upon 
glucose exhaustion aerobically, but were logically very stable anaerobically. Growth on non-
fermentable carbons sources requires a complex metabolic rearrangement to supply cytosolic 
and mitochondrial acetyl-CoA. Proteins involved in acetate and acetyl-CoA metabolism were 
accordingly overall increased in expression during the diauxic phase, particularly Acs1 and 
Ach1, but were not visibly affected by glucose exhaustion under anaerobiosis.
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Redox metabolism, key for cell survival, is balanced according to oxygen availability. While 
respiring cells can oxidize the NADH produced during glucose assimilation via oxidative 
phosphorylation, two-steps glycerol formation from dihydroxyacetone phosphate (DHAP) is 
the major electron sink for yeast when oxygen is absent. Abundance of the four paralogs, 
Gpd1 and Gpd2, and Gpp1 and Gpp2 was not strongly affected across the different phases 
and growth conditions (SI Figure 3a), in agreement their reported respective transcriptional 
regulation and (in)activation by post-translational modification (phosphorylation) [347]. The 
only marked changes were the decreased abundance of Gpp1 in the presence of oxygen, and 
Gpp2 increased abundance upon glucose exhaustion in the absence of oxygen. In aerobic 
conditions, NADH is oxidized by external or internal NADH dehydrogenases which shuttle 
the electrons into the mitochondrial electron transfer chain. Contrarily, anaerobic yeast 
cultures reoxidize the excess NADH formed in biosynthesis via glycerol production [348].
Finally, Gut2 marked increased abundance during the diauxic shift under aerobiosis can be 
explained both by its role in glycerol utilization or in maintaining the redox balance (SI 
Figure 3a). 

Oxygen-dependent dynamics in other pathways
Respiration is an important mechanism for energy conservation in the presence of the 
electron acceptor oxygen. After the diauxic shift, respiration becomes the main ATP source 
for the cells. Accordingly, the abundance of the ATP synthases and cytochrome oxidases in 
the oxidative phosphorylation pathway increased significantly after glucose exhaustion (SI 
Figure 6). For anaerobic cultures, however, the abundance of these proteins remained 
constant over the entire growth curve. Respiring cells are prone to generation of reactive 

Figure 2. Yeast control and MG strain central carbon metabolism (CCM) protein abundance 
levels, under aerobic and anaerobic conditions. A. The heat map shows the temporal log2 fold 
changes of the enzymes of the CCM of control (CEN.PK113-7D) and MG (IM372) yeast for the mid-
exponential (ME), late-exponential (LE), early-diauxic (ED), mid-diauxic (MD), and mid-stationary 
(MS) phases, compared to the mid-exponential (ME) phase for each condition separately. The proteins 
belonging to specific pathways of the CCM are each highlighted with different colours. White gaps in 
the figure indicate that the protein was not detected, or that it has been deleted in case of the MG mutant 
strain, in any of the biological replicates of the respective growth phase. No filtering for significance 
or fold-change thresholds was performed and all enzymes that were detected were included in the 
shown heatmap. B. The circle graph (1: control aerobic, 2: MG aerobic, 3: control anaerobic and 4: 
MG anaerobic) and the bar (C.) graph show the protein abundance expressed as the exponentially 
modified protein abundance index (emPAI) for the proteins of the CCM. The emPAI estimates the 
absolute protein amount in proteomics by the number of sequenced peptides per protein. The values 
are calculated from at least one biological replicate, standard deviations are indicated by the error bars 
in the bar graph. The circle areas directly correlate to the obtained emPAI values of the individual 
proteins for each condition. C. The absolute emPAI values of control strain CEN.PK113-7D under 
aerobic conditions, similar values were found for the other conditions.
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oxygen species (ROS), for instance by the production of superoxide during electron transfer 
during oxidative phosphorylation, which can induce the expression of stress tolerance genes 
[349]. Accordingly, Sod1 and Sod2, enzymes that detoxify superoxide and produce hydrogen 
peroxide [350], were significantly more abundant under aerobic conditions, compared to 
anaerobic conditions (SI Figure 6). Moreover, their abundance increased by at least two-fold 
towards the stationary phase compared to log growth in the presence of oxygen, while the 
protein abundance remained constant under anaerobic growth. A similar protein profile was 
found for the peroxisomal and mitochondrial catalase A (Cta1) that detoxifies hydrogen 
peroxide. Nevertheless, the abundance of Ccs1, copper ion chaperone to Sod1, was relatively 
constant and similar between both conditions in the control strain (SI Figure 6).

Heme synthesis, encompassing a set of 8 Hem proteins, also depends on oxygen availability 
[351]. In this study, 7 Hem proteins could be quantified. Hem2, 3, 12 and 15 protein 
abundance were either similar for aerobic and anaerobic conditions, or higher aerobically 
(Figure 3a). However, Hem13, Hem13 and Hem14 were only quantified or higher abundant 
under anaerobic conditions, although Hem14 only in one biological replicate with a few 
peptides. On the other hand, Hem13 was confidently quantified with more than 10 peptides 
for each biological anaerobic replicate, while it was not found aerobically. Surprisingly, both 
Hem13 and Hem14 require oxygen for enzymatic activity. 

Finally, sterol synthesis also requires oxygen and ergosterol is therefore supplied as anaerobic 
growth factor during anaerobic yeast cultures [108]. Here, 17 Erg proteins were found in 
either aerobic and/or anaerobic conditions (Figure 3b). Interestingly, Erg proteins that need 
oxygen, such as Erg1, Erg3, Erg11 and Erg25-28 were either solely present anaerobically or 
more abundant in anaerobic cultures compared to aerobic cultures. 

Survival in stationary phase
A previous study has shown a strong effect of oxygen availability and the presence of 
transition through diauxic phase on yeast cells robustness during stationary phase [352]. This 
work proposed that oxygen availability had a positive effect on adenylate energy charge, 
longevity, stress response and thermotolerance during stationary phase. However, this study 
was based on changes in transcript levels, without confirmation on what happened at protein 
level. In particular little is known about the proteome dynamics under anaerobic conditions.

To fill this knowledge gap, the proteome differences between stationary phase in anaerobic 
and aerobic conditions were studied. In the presence of oxygen, 249 proteins were more 
abundant and 125 less abundant than in the absence of oxygen (p-value < 0.05 and fold 
change of ± 1.25, SI Table 9, SI Figure 4). In stationary phase, aerobic cells still rely on 
respiration and proteins involved in respiration were accordingly more abundant under 
aerobic conditions. Conversely, in the absence of oxygen, yeast cells enter the stationary 
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phase rather abruptly after glucose depletion. Proteins associated with processes as 
‘biosynthesis’, ‘glycolysis’ and ‘cytoplasmic translation’ were more abundant in anaerobic 
stationary cells compared to aerobic conditions. Several ribosomal proteins were also more 
abundant, supposedly due to the lack of time and resources to adjust to the altering conditions. 
Furthermore, proteins involved in storage metabolism, in particular glycogen metabolism, 
were enriched anaerobically.

To ensure survival during stationary phase, yeast cells accumulate storage carbohydrates in 
sugar-rich conditions, that can be used as carbon and energy source during famine. Anaerobic 
cultures are entirely dependent on glycogen and trehalose as energy storage components. 
Conversely, the presence of oxygen enables yeast cells to metabolize other available nutrients 
such as lipids and amino acids [102, 106, 353]. Several proteins involved in glycogen 
metabolism were more abundant in anaerobic compared to aerobic cultures (SI Figure 3b).
Glucose-6P is the starting point for glycogen metabolism and is converted into Glucose-1P 
by Pgm1 or Pgm2. Both proteins were detected under aerobic and anaerobic conditions, 
although Pgm2 was detected with higher coverage and confidence in each biological replicate 
as it is the major isoform. Pgm2 abundance increased strongly (approx. 2.8-fold) after glucose 
depletion under anaerobic conditions. Unfortunately, Pgm2 was only detected in aerobic 
conditions after glucose exhaustion, although it was less abundant compared to anaerobic 
conditions. Glucose-1P is subsequently converted to UDP-glucose by Ugp1. This enzyme 
was consistently more abundant in the absence of oxygen over the entire growth curve.
Nevertheless, the protein profile was similar under both conditions, as the abundance of Ugp1 
increased considerably after glucose was depleted. In the following step, glycogen synthesis 
is initiated by Glg1 and Glg2, which were not found in our analysis. Subsequently, glycogen 
is generated by Gsy1/2. Only Gsy1 was detected in our experiments with sufficient 
confidence in the anaerobic cultures. Glycogen is a polymer that can be branched by Glc3, 
however, this enzyme was not quantified in our study. Glycogen can also be utilised by Gph1 
to form glucose-1P again or by Gdb1 for conversion to glucose. Here, only Gph1 showed a 
profile comparable to Pgm2. 
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Trehalose is a second storage metabolite in yeast, which is synthesized from UDP-glucose. 
It is converted into trehalose-6P by Tps1, and subsequently into trehalose by Tps2. Trehalose 
is utilised by Nth1, Nth2 and Ath1 and converted into glucose again. In our study, the 
enzymes leading up to trehalose have similar protein profiles under aerobic and anaerobic 
conditions, in which the protein abundance increased significantly after glucose depletion (SI 
Figure 3b). Trehalose utilisation, however, was more difficult to capture as only Nth1 was 
quantified with a low number of unique peptides under aerobic and anaerobic conditions. 
Furthermore, in the absence of oxygen, yeast cells cannot catabolize fatty acid by beta-
oxidation as energy reserve during carbon starvation. Proteins such as Fox2, Pox1 Cat2 and 
Crc1, showed relatively constant expression levels over the anaerobic growth curve, while 
abundance increased drastically after glucose depletion in the presence of oxygen (SI Figure 
6).

Finally, aerobic stationary phase cells are known to acquire increased robustness and stress 
tolerance during the transition into stationary phase. However, previous studies indicate that 
this does not apply to anaerobic cultures to the same extent [352]. Stress proteins include a 
range of heat shock proteins (Hsp) with various functions. The fold changes and levels of 
Hsp proteins were comparable in the presence or absence of oxygen in exponential growth 
phase (SI Figure 5) but were more abundant in both aerobic and anaerobic conditions 
towards the end of the growth curve in the MS phase. This increase was markedly larger in 
the aerobically cultured cells, resulting in a significantly lower anaerobic fold change of the 
proteins in the stationary phase.

Proteome-level alterations following genetic minimization of the glycolytic pathway
The MG strain genetic reduction consisted in the removal of the 13 minor enzymes involved 
in glycolysis and fermentation, only leaving the 13 major isoenzymes. The present dataset 
shows that most minor isoenzymes were expressed and quantifiable in all samples from 
aerobic and anaerobic batch cultivations, with the exception of Gpm2 and Adh5 only detected 
in anaerobic cultures, Adh2 only in aerobic cultures, and Adh4, Gpm3 and Pyk2 that were 

Figure 3. Protein profiles of CEN.PK113-7D in non-respiratory oxygen-dependent pathways 
during aerobic and anaerobic growth. The biological-replicate-averaged fold-change values were 
plotted against the time relative to glucose depletion in hours, for proteins involved in heme (A) and 
sterol (B) synthesis. The different colours of the line graphs represent: orange the control strain under 
anaerobic conditions (WT_AN), light blue: the control strain under aerobic conditions (WT_O2). The 
error bars show the standard deviation of the mean of the three biological replicates. The grey dashed 
line represents the glucose concentration in time in millimolar (mM), shown on the secondary y-axis. 
The number of quantified peptides per biological replicate are given in brackets. Asterisks (*) and 
circumflexes (ˆ) indicate the significance between the aerobic and anaerobic experiments. P-values are 
indicated as follows: < 0.001 (***), < 0.01 (**), < 0.05 (*), and < 0.1 (ˆ).
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not detected at all (Figure 4). Tdh2, Eno1 and Adh2 were abundant in batch cultures and 
deletion of the minor isoenzymes might therefore affect yeast physiology (Figure 5). The 
MG strain was previously well characterized by physiological and transcriptome analysis in 
the presence of oxygen, revealing that the physiology and transcriptome of the MG strains 
was nearly identical to that of the control strain with a full set of glycolytic and fermentation 

Figure 4. Comparison of major glycolytic enzyme abundances under aerobic and anaerobic 
growth between control yeast and minimal glycolysis (mutant) strain. The biological-replicate-
averaged fold-change values were plotted against the time relative to glucose depletion in hours. The 
different colours of the line graphs represent: red for the MG (IMX372) strain under anaerobic 
conditions, dark blue the MG strain under aerobic conditions, orange the control (CEN.PK113-7D) 
strain under anaerobic conditions, light blue: the control strain under aerobic conditions. The error bars 
show the standard deviation of the mean of the three biological replicates. The grey dashed line 
represents the glucose concentration in time in millimolar (mM), shown on the secondary y-axis. 
Asterisks (*) and circumflexes (ˆ) indicate the significant changes between the control and MG strain. 
P-values are indicated as follows: < 0.001 (***), < 0.01 (**), < 0.05 (*), and < 0.1 (ˆ).
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genes. The proteome of the MG strain was however not explored, and little is known about 
the response of the MG strain to anaerobiosis. Under anaerobiosis, the fluxes through 
glycolysis and the fermentation pathway are substantially higher than in aerobiosis [133], the 
deletion of all minor isoenzymes might therefore have a different cellular impact in the 
presence and absence of oxygen. As previously observed, the physiology of the MG and 
control strain in aerobic and anaerobic cultures was near-identical (SI Table 1) [120].

Table 2. Number of proteins with significant changes between CEN.PK113-7D and minimal 
glycolysis (IMX372) yeast under aerobic and anaerobic conditions. The MG protein abundances 
were normalized to the protein levels of control yeast (CEN.PK113-7D) of the same growth phase under 
the same condition. A p-value threshold of 0.05 was used to select for significant proteins and a fold 
change threshold of 1.25 (log2 fold change of +/- 0.32) was used to select for up or down-regulated 
proteins. The total number of proteins indicates the number of proteins that were detected in at least 
two biological replicates in both phases that were compared. 

The difference in abundance of the glycolytic and fermentation proteins between the MG and 
the parental control strain was assessed by comparing the expression levels across the entire 
growth curve using a two-sided two-sample t-test. Remarkably, all major isoenzymes 
displayed identical time profiles between MG and control strain, very stable under 
anaerobiosis, and decreasing after mid-diauxic phase under aerobiosis (Figure 4). Also, with 
the exception of Fba1 and Tdh3, the abundance of glycolytic and fermentation proteins was 
well conserved between the MG and control strains. Under anaerobic conditions, Tdh3 
abundance was consistently higher for all growth phases by 40–50% in the MG strain as 
compared to the control strain (p-value <0.01), but not aerobically. The estimated protein 
amount of Tdh2 in the control strain is approximately 1/3 of the estimated protein amount of 
Tdh3, both under aerobic and anaerobic conditions (Figure 5). Tdh1 levels were also 
markedly increased after glucose depletion in the control strain (Figure 2a). The loss of these 
relatively abundant minor isoenzymes and subsequent overall reduction of glyceraldehyde-

MG mutant vs. 
Control yeast

# Proteins quantified # More abundant # Less abundant

Anaerobic
Mid exponential 978 10 13
Late exponential 978 10 8
Early stationary 978 8 18
Stationary 978 7 6

Aerobic
Mid-Exponential 1019 18 10
Late-Exponential 950 33 13
Early-Diauxic 1019 15 9
Mid-Diauxic 1019 3 3
Stationary 1019 3 2
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3P activity in the MG strain might have caused a cross-regulation and increased abundance 
of Tdh3. Interestingly, while the minor isoenzyme Eno1 was also abundant in the control 

Figure 5. Estimated abundances of the glycolytic isoenzymes under aerobic and anaerobic 
conditions in CEN.PK113-7D. The Exponentially Modified Protein Abundance Index (emPAI) for 
the isoenzymes detected in glycolysis under aerobic (red) and anaerobic (blue) conditions, which 
estimates the absolute protein amount in proteomics by the number of sequenced peptides per protein. 
The values are calculated from at least one biological replicate culture, standard deviations indicated 
by the error bars. *Adh3 is a mitochondrial protein. 
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strain (Figure 5), its deletion had no visible effect on Eno2 level in the MG strain (Figure 
4). Fba1 abundance was slightly (~20–40%) but significantly higher in the MG than in the 
control strain, both in the presence and absence of oxygen. Fba1 does not have isoenzymes, 
this difference in abundance could therefore not be attributed to cross-regulation. Fba1 is an 
abundant protein in yeast, operating far from saturation [133], and the flux through glycolysis 
is not increased in the MG as compared to the control strain. This increase in Fba1 abundance 
is therefore not likely explained by a need for higher aldolase capacity in the MG strain. 

Overall, the enzyme level adjustments within the glycolytic and fermentation pathways 
following the deletion of the minor isoenzymes were remarkably small, but slightly more 
pronounced under anaerobic conditions. In line with this mild phenotype, the proteome was 
not visibly affected by the deletion of the minor isoenzymes (statistical significance cut-off 
of 0.05 (5%), fold change threshold of +/-1.25. Table 2, SI Table 10 and 11). Consequently, 
no enriched or depleted GO terms or KEGG pathways, could be identified. The metabolic 
comparability between both strains was therefore underlined by their similar CCM enzyme 
abundance and global proteome profiles (Figure 2a).

Discussion

Yeast proteome dynamics have been studied for aerobic and anaerobic conditions over the 
past decades [110, 144, 324, 326]. However, the transition from exponential into stationary 
phase under anaerobic conditions has not been investigated to date. This provides the most 
comprehensive study to date of the S. cerevisiae CEN.PK113-7D proteome response to 
oxygen and nutrient availability using tightly controlled batch bioreactor cultures. Moreover, 
biological triplicates and optimised sample preparation protocols ensure the accuracy and 
reproducibility of the present dataset. Additionally, this study investigates the impact of 
genetic minimization of the glycolytic pathway using the recently established ‘minimal 
glycolysis’ strain [23]. The present dataset therefore enables the quantitative analysis of 54 
individual proteomes, thereby covering approx. 40% of all yeast proteins and ca. 99% of the 
complete protein biomass in yeast. The high reproducibility in the dataset was also 
highlighted by the strong similarities between the proteomes of the MG and control yeast. 
This comprehensive and accurate dataset therefore provides an ideal resource for applied and 
fundamental studies in yeast, and more particularly for in silico proteome allocation studies.

The most remarkable result from this study is the substantially smaller proteome response of 
yeast cells grown under anaerobiosis as compared to aerobiosis. In both conditions yeast cells 
have to tune their metabolism to the transition from glucose excess to exhaustion, leading to 
a shift from exponential to stationary growth. These drastic changes however triggered a far 
milder response than the aerobic transition to and out of diauxic phase, which represented 
58% of the measured changes in protein abundance. During the diauxic shift, cells rewire the 
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proteome for respiratory growth on ethanol as main carbon source. This transition leads to a 
multitude of physiological and morphological changes, e.g. smaller cell size, increased 
mitochondrial volume, decreased growth rate, increased respiration rate and therefore 
increased ROS production, induction of gluconeogenesis and glyoxylate cycle, and large 
changes in fluxes in central carbon metabolism. These changes were well mirrored by the 
modifications in proteome allocation. For instance an increase in mitochondrial protein 
abundance was observed, while the glycolytic proteins were downregulated [143, 147, 149, 
323]. Transition from diauxic phase to stationary phase led to the further modification of the 
abundance of ca. 120 proteins. Conversely, as little as 55 proteins showed altered abundance 
after glucose depletion under anaerobiosis, and prolonged cultivation in stationary phase did 
not further alter the proteome. Using the exact same strain and experimental set-up, 
Bisschops et al. (2015) [155] showed a stronger and faster decrease in viability upon glucose 
exhaustion for anaerobic than aerobic cultures. Based on physiological and transcriptome 
data, the authors attributed this lack of robustness to cells inability to adapt to glucose 
exhaustion in the absence of oxygen. Conversely, in the presence of oxygen the diauxic shift 
gives the time and resources to transition from fast growth to growth arrest. The present 
proteomics study supports this view in different ways. The small protein response during the 
transition from sugar excess to depletion suggests that the anaerobic cells do not have the 
means, or proper regulatory network to adjust to the new conditions. Furthermore, aerobic 
cultures acquire robustness and stress tolerance during the transition into stationary phase 
thanks to the expression of a set of ‘stress-response’ genes [354], such as heat shock proteins 
(Hsp) that increase tolerance to high temperatures. Both aerobic and anaerobic cultures 
showed a similar ‘stress signalling’ as shown by the increase in Hsp proteins towards 
stationary phase, however this increase was far less pronounced in anaerobic cultures. 
Abundance of Hsp was therefore substantially lower in the absence of oxygen, in line with 
the lower transcription of Hsps and lower thermo-tolerance of anaerobic stationary phase 
cultures as compared to aerobic cultures observed by Bisschops et al. [155]. Considering that, 
for practical and financial reasons, industrial-scale processes favour anaerobic environment, 
the present results bring valuable information for the construction of metabolism predictive 
models [156, 160, 163, 355–359].

In the presence of oxygen, yeast cells switch to respiration once glucose is depleted. 
Accordingly, the abundance of respiration-related proteins increased upon glucose 
exhaustion in aerobic cultures, while the protein profiles in anaerobic cultures remained 
constant. Several other non-respiratory pathways in S. cerevisiae are oxygen-dependent, such 
as fatty acid beta-oxidation, heme- and sterol synthesis. Expectedly, most detected proteins 
in these pathways were aerobically more abundant or contained similar abundance profiles 
to anaerobic cultures. Nevertheless, oxygen-dependent protein Hem13 involved in heme 
synthesis was only confidently quantified under anaerobic conditions and the lack of 
detection in aerobic conditions suggests that it is far less abundant. Transcription of HEM13
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is repressed by oxygen and heme itself [360, 361], and therefore it lacks repression in the 
absence of oxygen and thus increasing its abundance. Similar protein profiles under 
anaerobic conditions were previously found for Hem1, Hem14 and Hem15 [326]. Several 
oxygen-dependent Erg proteins were also more abundant or solely detected under 
anaerobiosis. Here, transcription of various Erg proteins is regulated by oxygen and the 
absence leads to increased expression of Erg proteins [362] [363].

Glycolysis and alcoholic fermentation are well-studied pathways that play an important role 
in sugar conversion in the biotechnology industry. Earlier studies have shown that major 
glycolytic isoenzymes are abundant proteins which expression remains relatively stable 
irrespective of the growth environment, although these measurement often rely on transcript 
data, or enzyme assays that cannot distinguish between isoenzymes [120]. The present 
proteome dataset confirms that the abundance of most major glycolytic isoenzymes 
decreased during the diauxic shift and further during stationary phase in the presence of 
oxygen. Conversely, their abundance was unaffected by the transition to stationary phase 
under anaerobic environment. Aerobic cultures in stationary phase therefore display 
substantially lower glycolytic enzymes levels than anaerobic cultures, for instance a 2.5- to 
3.5-times lower abundance of Pgk1, Gpm1, Pdc1 and Adh1. While this difference in 
abundance is not expected to affect survival in stationary phase, in which the glycolytic flux 
is extremely low or absent, it will influence the ability of stationary phase cells to reach fast 
growth when transitioned to sugar-rich medium. When exposed to anaerobic sugar excess, 
cells grown aerobically to stationary phase have to allocate resources to increase the 
abundance of glycolytic enzymes and reach fast growth, while cells pre-cultured 
anaerobically do not. This aspect should be considered during the start-up phase of anaerobic 
industrial fermentations and their modelling. 

The expression of minor isoenzymes is condition-dependent and several are reported to have 
distinct functions, especially during changes in carbon source availability. The present 
dataset shows that the presence of oxygen only visibly affected the abundance of Eno1, Tdh1 
and Hxk1, as the abundance was significantly higher after glucose depletion under anaerobic 
conditions compared to aerobic conditions (Figure 2). While some minor isoenzymes have 
substantial abundance in yeast cells (Figure 5, e.g. Eno1, Tdh2, Hxk1), their removal did not 
trigger substantial changes in abundance of the major isoenzymes. It is however notable that 
Tdh3, glyceraldehyde dehydrogenase major isoenzyme, showed a ca. 1.5–fold increase in 
abundance in the MG strain compared to the control strain under anaerobic conditions 
(Figure 4). The same trend was observed aerobically, albeit much less pronounced. As most 
glycolytic enzymes, glyceraldehyde dehydrogenase operates at overcapacity, meaning that 
the enzyme capacity largely exceeds the flux catalysed in vivo [364]. Therefore, Tdh3 
increased abundance in the MG strain does most likely not result from the need to compensate 
for Tdh1 and Tdh2 deletion to maintain the glycolytic flux. The glyceraldehyde 
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dehydrogenase isoenzymes do not have any well-described moonlighting function. However, 
next to their cytosolic localization, they are also found in the cell wall in which they might 
play a yet uncovered role. The composition and structure of S. cerevisiae cell wall is affected 
by oxygen and several cell wall proteins are specifically enriched under anaerobiosis (e.g.
cell wall mannoprotein of the Srp1p/Tip1p family) [365], which might explain the observed 
cross-regulation in the MG strain. Fba1 was also mildly but significantly upregulated in the 
MG mutant both aerobically (1.2 to 1.4–fold change) and anaerobically (1.15–fold change). 
As Fba1 does not have isoenzymes and is solely responsible for the glycolytic flux, its change
in abundance is difficult to explain. Fba1 is also involved in vacuolar function as subunit of 
the vacuolar V-ATPase [130]. However, as no or little differences were observed in other 
components of the V-ATPase between MG and the control strain, the molecular mechanism 
leading to Fba1 slightly higher abundance in MG remains unclear. Many factors can alter the 
functionality of proteins, including post-translational modifications, protein localisation, or 
interactions with other proteins or biomolecules [167, 366]. A recent study suggested that 
phosphorylation regulates the activity of most glycolytic enzymes [158]. However, the stable 
abundance of glycolytic proteins between the MG and the control strain was well reflected 
in the stability of in vitro enzyme activity [120], suggesting the lack of differences in post-
transcriptional regulation between the MG and control strains. Overall, remarkably few 
proteome changes were observed as consequence of glycolysis genetic reduction. This 
similarity between MG and control strain further support the role that MG can play as 
simplified model organism in proteome allocation studies, and to explore the role of post-
translational modifications in the regulation of glycolysis.

The complete proteome dynamics and abundance data for the batch reactor cultured 
CEN.PK113-7D strain and the related ‘minimal glycolysis’ mutant strain for aerobic and 
anaerobic growth, can be found in the SI Table 12. Mass spectrometric raw data and 
unprocessed search files are publicly available via the PRIDE repository under the project 
code PXD031412.
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SI Table 1. Biomass-specific substrate consumption and product formation rates of MG 
(IMX372) and control (CEN.PK113-7D) strain during aerobic and anaerobic exponential growth.
The average and standard deviations were calculated for three biological replicates per strain. The 
biomass specific consumption or formation rates were calculated for the substrate glucose (qs), ethanol 
(qEtOH), glycerol(qGlyc), acetate (qAce), carbon dioxide (qCO2), and oxygen (qO2). Significant differences 
(p<0.05) between control and MG yeast were calculated with a two-sided two-sample unpaired t-test 
and are highlighted with an asterisk. #The qCO2 of IMX372 under anaerobic conditions is likely 
underestimated due to technical complications in the CO2 off gas analysis equipment.

Aerobic Anaerobic

CEN.PK113-7D IMX372 CEN.PK113-
7D IMX372

Average Stdev Average Stdev Average Stdev Average Stdev
µmax (h-1) 0.413 0.012 0.396 0.002 0.366 0.003 0.355 0.012

qs

(mmol.gDW-1.h-1) -18.890 1.029 -18.585 0.580 -23.264 1.792 -20.677 0.659

qEtOH

(mmol.gDW-1.h-1) 30.166 1.999 27.063 0.446 31.814 3.049 30.999 1.677

qGlyc

(mmol.gDW-1.h-1) 1.736 0.074 1.518 0.147 4.607 0.395 4.297 0.198

qAce

(mmol.gDW-1.h-1) 0.494 0.082 0.493 0.080 0.560 0.092 0.540 0.045

qCO2

(mmol.gDW-1.h-1) 33.024 2.056 28.175 0.912 32.037 1.213 27.053*# 1.262

qO2

(mmol.gDW-1.h-1) 9.479 0.533 7.978* 0.149

RQ 3.517 0.173 3.574 0.215
Ybiomass/glucose 

(gDW.gglucose-1) -0.022 0.001 -0.021 0.001 -0.016 0.001 -0.017 0.000

Yethanol/glucose 

(mol.mol-1) 1.598 0.111 1.458 0.025 1.379 0.032 1.503 0.129

Yglycerol/glucose

(mol.mol-1) 0.092 0.009 0.082 0.009 0.199 0.027 0.208 0.004

Yacetate/glucose 

(mol.mol-1) 0.026 0.003 0.026 0.004 0.024 0.004 0.026 0.001

Carbon recovery 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000
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SI Figure 1. Estimated absolute abundance of detected proteins across all experiments. The 
absolute abundance was estimate using the Exponentially Modified Protein Abundance Index (emPAI) 
for all identified proteins across all experiments. The absolute protein amount is estimated by the 
number of sequenced peptides per protein. The abundance of each protein is an average of all 
experiments and detected in at least one biological replicate.  
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SI Figure 2. Cluster analysis of abundance changes of proteins from the control and MG yeast 
strain under aerobic and anaerobic conditions. The replicates were clustered based on Euclidean 
distances and with the average linkage method. The protein fold changes were normalised to the 
average of all the ME-phase experiments. The log2 of the fold changes was calculated and plotted so 
that no fold change (=0) is coloured white, a negative fold change is coloured blue and a positive fold 
change red. The columns labels represent the reactor number - indicating the biological replicate - the 
growth phase, and the technical replicate (TR) number. ME: mid-exponential, LE: late-exponential, 
ED: early-diauxic, MD: mid-diaux, ES: early-stationary, MS: mid-stationary.
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SI Figure 3. Protein profiles of CEN.PK113-7D in glycerol, glycogen and trehalose metabolism 
during aerobic and anaerobic growth. The biological-replicate-averaged fold-change values were 
plotted against the time relative to glucose depletion in hours for proteins involved in glycerol (A) and 
glycogen and trehalose (B) metabolism. The different colours of the line graphs represent: orange the 
control strain under anaerobic conditions (WT_AN), light blue: the control strain under aerobic 
conditions (WT_O2). The error bars show the standard deviation of the mean of the three biological 
replicates. The grey dashed line represents the glucose concentration in time in millimolar (mM), shown 
on the secondary y-axis. The number of quantified peptides per biological replicate are given in 
brackets. Asterisks (*) and circumflexes (ˆ) indicate the significance between the aerobic and anaerobic 
experiments. P-values are indicated as follows: < 0.001 (***), < 0.01 (**), < 0.05 (*), and < 0.1 (ˆ).
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SI Figure 4. Global proteome changes between aerobically and anaerobically cultured 
CEN.PK113-7D yeast cells. The log2 of the abundance fold change between the two conditions 
(normalised to the aerobic experiments) was plotted against the -log10 of the p-value. The mid-
exponential (ME), late-exponential (LE) and mid-stationary (MS) phases were compared. P-value 
threshold < 0.05, fold change threshold > 1.5 (log2 fold change threshold +/- 0.32).
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SI Figure 5. Fold changes (FC) of heat shock proteins from CEN.PK113-7D under aerobic and 
anaerobic conditions. The biological-replicate-averaged FCs were plotted against the time relative to 
glucose depletion (0h) in hours. Orange: CEN.PK113-7D under anaerobic conditions, light blue
CEN.PK113-7D under aerobic conditions. The error bars show the standard deviation of the mean of 
the three biological replicates. In the legend, the numbers between brackets represent the number of 
unique peptides that were found in each biological replicate. The grey dashed line represents the 
glucose concentration in time in millimolar (mM), shown on the secondary y-axis. Asterisks (*) and 
circumflexes (ˆ) indicate the significance between the aerobic and anaerobic experiments. Different p-
values were indicated: < 0.001 (***), < 0.01 (**), < 0.05 (*), and < 0.1 (ˆ).
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Abstract

Post-translational modifications modulate protein properties in response to environmental or 
developmental changes. To date, more than one hundred different types of modifications 
have been identified across all domains of life. Nevertheless, the majority of modifications 
are rare and their biological roles have not been identified to date. On the other hand, 
modifications such as phosphorylation, acetylation or glycosylation, are very abundant and 
are known to translate important functions such as regulating enzyme activity, protein 
stability and degradation, signalling, or cell morphology. These modifications have also been 
frequently studied in many microbes such as E. coli and yeast. However, studies on post-
translational modifications usually cover only a single or a few modifications. Furthermore, 
studies commonly only investigate sequence regions that are accessible via tryptic peptides. 
Consequently, the presence of other modifications or less assessable sequence regions are 
overlooked. However, measuring all possible modifications creates an enormous 
combinatorial sequence space that is difficult to capture by current methods. Unfortunately, 
there are currently no effective solutions to this challenge. Nevertheless, when studying 
modifications in fundamental processes such as the regulation of the metabolic flux, or 
metabolic diseases such as cancer, the complete repertoire of possible post-translational 
modifications needs to be considered. Furthermore, some modifications may represent 
attractive targets for engineering microbial cell factories to improve enzymatic conversions 
and yields. In this study, we describe and provide a proof of concept for an approach that 
enables to quantify the global degree of modification for individual enzymes from complex 
cell lysates. This approach quantifies the unmodified fraction of each peptide, and therefore 
considers all types of modifications, regardless their chemical nature. Quantification of the 
complete protein sequence is realised by the aid of a cell free synthesis produced protein 
standard. Finally, we exemplify this approach by monitoring the global protein modification 
changes of the glycolytic enzyme Pyk1 in yeast, during transition from proliferation to 
stationary phase under aerobic conditions. Interestingly, the majority of sequence regions 
showed significant changes at least at one point during the growth curve. Further 
development of this approach could allow to monitor complete metabolic pathways. Such 
experiments allow to explore the role of post-translational modifications in the regulation of 
metabolic pathways in yeast and beyond.
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Introduction

Through billions of years of evolution, cells acquired different levels of regulation to control 
cellular behaviour. In particular microbial cells require to adapt rapidly to the ever changing 
environment. Transcriptional and translational control are arguably the best understood levels 
of control. However, these mechanisms are relatively slow (minutes to hours) and merely 
affect the protein abundance. Moreover, these types of regulation have failed to explain many 
of the observed responses associated with metabolic operations [133]. Nevertheless, 
allosteric regulation and post-translational modification (PTM) enable an additional layer of 
regulation. Both mechanisms can rapidly change the metabolic phenotype [186] and PTMs 
have attracted a lot of attention recently. PTMs are enzyme-mediated, covalent modifications 
of the protein backbone and can serve multiple purposes, such as regulation of enzyme 
activity, protein localization, or interaction with other cellular molecules [182, 201].

Proteome dynamics in S. cerevisiae predominantly depends on nutrient availability and 
drastic changes are observed in the central carbon metabolism upon substrate level changes 
[146, 147, 324, 325, 367]. A major challenge is to understand how these metabolic pathways 
are controlled by these complex regulatory mechanisms. Several recent studies confirmed 
that a large fraction of the yeast proteome is post-translationally modified at least once during 
the life time of a protein [189, 368]. For example, glycolysis, a central pathway in nearly all 
living cells (including yeast), is known to be highly regulated on multiple levels. Glucose is 
oxidized into two pyruvate molecules in this pathway to generate energy, while many 
intermediates provide branching points to other pathways in cell metabolism [99].
Furthermore, glycolysis is coupled to fermentative production of ethanol under conditions of 
oxygen limitation and/or sugar excess [100]. Glycolytic enzymes are amongst the most 
abundant proteins in the cell and therefore these enzymes are regulated at multiple layers. 
Recently, it has been demonstrated that regulation of the glycolytic flux is predominantly 
caused by post-translational processes [133, 158]. Interestingly, increased phosphorylation 
resulted in decreased enzyme activity and lower growth rates of S. cerevisiae under glucose-
limited conditions, indicating a negative correlation between phosphorylation and activity of 
metabolic enzymes [142]. In addition, the shuttling between nucleus and cytoplasm of 
Hexokinase 2 is also regulated by phosphorylation [141]. Protein phosphorylation is one of 
the most frequent modifications, but also most studied PTMs in yeast, however, also other 
modifications such as methylation [369], acetylation [165], succinylation [252],
ubiquitination [169], nitration [370] and O-mannosylation [371] have been reported for 
glycolytic enzymes. Outside of glycolysis, glycosylation of proteins, through O-
mannosylation and N-glycosylation, can play an important role in various cellular processes 
including protein folding, cell-cell interaction and cell wall integrity [256, 372–375].
Interestingly, yeast shows also some rare modifications such as lipoylation, which only 
modifies a few enzyme complexes across the complete yeast proteome [190, 191].
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PTMs are commonly identified directly (or after enrichment) from whole cell lysate digests 
using liquid chromatography coupled to high-resolution tandem mass spectrometry [180].
Advances in resolution, accuracy and quantitative properties of mass spectrometers 
continuously enhanced the possibilities to explore complex biological samples. While this 
has led to the discovery of many new modifications and modification sites across all proteins 
(also in yeast [189]), the modification stoichiometry and occurrence under different 
conditions remains generally unexplored. Knowing the degree of modification and their 
stoichiometry, however, is important to understand the possible biological significance of the 
modification for an enzyme or pathway, respectively. Detection of post-translational 
modifications is usually based on bottom-up approaches, in which proteins are cleaved into 
peptides using a protease to systematically identify modification sites [18]. The stoichiometry 
of the modified peptides can be measured by various approaches. The absolute amount of a 
modified variants, for example, can be measured by using stable isotope-labelled (modified) 
peptide standards [69, 376], which is also referred to as absolute quantification (AQUA) [69].
Similarly, stable isobaric labelling e.g. via SILAC (stable isotope labelling by amino acids in 
cell culture) allows to accurately determine the relative abundance changes of the modified 
peptide over time [377, 378]. However, as modified peptides are often low abundant,
enrichment or targeting of the modified peptides (selective reaction monitoring, SRM, or
parallel reaction monitoring, PRM) is employed [379, 380]. Tandem Mass Tags (TMTs) have 
also been used to enhance the detectability of low-abundant peptides, as the differently 
labelled peptides appear as single (combined) peaks in the spectra [381–383]. However, 
determining the modification stoichiometry from the relative signal intensity of native and 
modified peptide is misleading because both can be expected to differ in the ionisation 
efficiency. To overcome this issue, Steen et al. developed a label-free quantification approach 
to determine the ‘flyability’ of a phosphorylated variants and its unmodified peptide 
counterpart to calculate the stoichiometry [384]. Nevertheless, this method provides only an 
approximation and it cannot be applied to different types of PTMs. As mentioned before, 
methods usually focus on a single type of modification (or only a few) but neglect the possible 
spectrum of other modifications that may be present on the same protein or pathway [366, 
385]. Moreover, it is known, that very often several different types of modifications are 
present on one protein simultaneously, and that modifications may interact with other 
modifications (often referred to as “PTM cross-talk”), which makes them functionally 
associated [169–171, 386]. Therefore, Mertins et al. developed a method which used serial 
enrichment to simultaneously study phosphorylation, acetylation and ubiquitination [387].
Other studies also achieved the identification of several different modifications via 
enrichment strategies, however, none of these groups measured the modification site 
stoichiometry [172, 173, 265]. An a priori knowledge on the presence of the types of 
modifications (out of all possible) is generally not available, and targeting all possibly 
modifications across several modification sites is not achievable. Furthermore, there is no 
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generic enrichment strategy for all types of modifications, and it is also not possible to 
produce and measure standards for all possible peptide variants. 

Therefore, a method that quantifies the unmodified peptide fraction instead of the modified 
peptide provides an elegant solution to this challenge. Here, the quantification is done without 
identifying or localising the individual modifications and modification sites. If a peptide is 
modified by any type of modification (or several), the fraction of the unmodified peptide will 
decrease proportionally. This provides thus a quantitative measure of the overall degree of 
modification on a protein or a pathway, respectively. Changes in the degree of modification 
can be easily monitored even from complex cell lysates. This allows therefore to study 
changes in response to environmental conditions to investigate possible regulatory roles in a 
protein. Nevertheless, this approach requires an unmodified reference peptide for every 
peptide sequence of a protein [388]. Furthermore, this strategy requires a complete sequence 
coverage, in order to cover the complete spectrum of possible modifications sites. The 
production of synthetic peptides for single proteins (e.g. 3–5 unique peptides per protein) is 
relatively affordable, but it becomes increasingly expensive, when the complete protein 
sequence, different proteolytic fragments and complete metabolic pathways have to be 
considered. Secondly, accurate quantification with synthetic peptides can be challenged, 
because the peptides do not reflect biases from sample preparation [389]. A solution to this 
is the alternative synthesis of combined amino acid strings, referred to as “quantitative 
concatamer” (QconCAT) proteins [70]. Here, proteotypic peptides from multiple proteins are 
concatenated into a designer gene that is labelled with stable isotopes in cell free systems 
[390]. However, full sequence coverage of the target proteins is not obtained by this 
approach. Interestingly, the recombinant small scale production of complete proteins using 
cell-free protein synthesis has become popular in recent years [391–393]. Advantageously, 
this approach provides proteins which are fully unmodified [394]. Mair et al. (2016) used 
such an approach to quantify the degree of phosphorylation on Alzheimer’s disease-
associated proteins [395], while other recent studies used protein standards produced through 
cell free protein synthesis systems to generate reference peptides in quantitative proteome 
analyses [396, 397]. However, a comparable strategy has not yet been applied to monitor the 
(unknown) modification landscape of native metabolic enzymes in the presence of complex 
cell lysates.

An additional challenge when analysing metabolic enzymes is the coexistence of 
isoenzymes. Isoenzymes often show a large sequence homology, and they may lack unique 
peptide sequences for large parts of the protein. For example, in yeast glycolysis, 8 out of the 
12 enzyme-catalyzed reactions are represented by multiple paralogous genes, which share 
similar amino acid sequences (~30–99% identity). These paralogs consist of major and minor 
isoforms, which resulted from a whole genome duplication event in an ancestor of S. 
cerevisiae [119, 120]. Advantageously, the recently established minimal glycolysis (MG)
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strain [120]–in which the redundant isoenzymes have been removed–provides an ideal 
proteome model to study the PTM landscape of glycolytic enzymes. Additionally, no 
phenotypic response has been observed as a result of the deletion of the minor isoenzymes, 
which confirms the suitability of such a strain for studying the regulation of metabolic 
enzymes [120, 398].

In this study, we exemplify the quantification of the degree of modification of the key 
glycolytic enzyme Pyk1 from yeast. For this, we evaluated the use of cell free synthesis 
produced Pyk1 protein standard to provide for every peptide across the protein backbone a 
reference signal. We validate different quantification approaches including high-resolution 
fragmentation free quantification, and quantification based on reporter ions using tandem 
mass tag (TMT) labelling. The TMT approach generally provides improved sensitivity and 
accuracy for low abundant peptides which has been also demonstrated for single-cell 
proteomics approaches only recently [399]. Additionally, a multi-protease approach was 
tested to confirm that a near complete sequence coverage can be achieved in the presence of 
complex cell lysates. Ultimately, further developments of this approach will enable to 
quantify the degree of modification of complete metabolic pathways. This will allow to 
deconvolute the contribution of post-translational modifications in the regulation of 
fundamental metabolic pathways in yeast and beyond.

Materials and Methods
Yeast strains, media and storage. The MG yeast strain IMX372 (MATa ura3-52 his3-1
leu2-3,112 MAL2-8c SUC2 glk1::SpHis5, hxk1::KlLEU2, tdh1::KlURA3, tdh2, gpm2, gpm3, 
eno1, pyk2, pdc5, pdc6, adh2, adh5, adh4) used in this study shares the CEN.PK genetic 
background [120, 288]. Shake flask and batch cultures were grown in synthetic medium (SM) 
containing 5.0 g·L-1 (NH4)SO4, 3.0 g·L-1 KH2PO4, 0.5 g·L-1 MgSO4·7H2O and 1 mL·L-1 trace 
elements in demineralized water. The medium was heat sterilized (120°C) and supplemented 
with 1 mL·L-1 filter sterilized vitamin solution and 20 g·L-1 heat sterilized (110 °C) glucose 
(SMG) [289]. The bioreactor medium was supplemented with 0.2 g·L-1 antifoam Pluronic 
PE 6100 (BASF, Ludwigshafen, Germany). E. coli cultures were grown in Luria-Bertani 
(LB) liquid medium or on LB solid plates containing 100 μg·mL-1 ampicillin. Frozen stocks 
of E. coli or S. cerevisiae cultures were prepared by the addition of glycerol (30% v/v) in 1 
ml aliquots for storage at -80 °C.

Bioreactor cultures and proteome sampling. MG yeast proteome samples were taken from 
aerobic batch cultures in the study by den Ridder et al. [398] or aerobic chemostat cultures 
in den Ridder et al. (2022) [327]. Briefly, triplicate aerobic batch cultures of MG yeast were 
performed and sampled for proteome analysis in different growth phases of the aerobic yeast 
growth curve. Proteome samples (approx. 5 g·L-1 dry weight) were taken at 6, 9, 12, 16.5, 27 
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hours to reflect the proteome in mid-exponential, late-exponential, early-diauxic, mid-
diauxic and stationary growth phase. For the chemostat samples, proteome samples (approx. 
3.6 g·L-1 dry weight) were taken at steady state conditions. In both cases, proteome samples 
were collected in multifold in trichloroacetic acid (TCA) (Merck Sigma, Cat. No. T0699) 
with a final concentration of 10%. Samples were centrifuged at 4,000 g for 5 min at 4°C. Cell 
pellets were frozen at -80°C [272].

Cell free production of complete protein standards. The HXK2, PFK1, PFK2, PGK1 and 
PYK1 genes from S. cerevisiae were transferred to the pT7-ptT7 backbone to allow for 
expression in the cell-free synthesis system (New England Biolabs, Bioke, Leiden, The 
Netherlands). PCR amplification with Phusion® Hot Start II Polymerase of pUD1079 with 
primers 16233 and 16234 was performed to create a linearized backbone (SI table 1 and 2). 
The HXK2, PFK1, PFK2, PGK1 and PYK1 genes were PCR amplified from pUDE767, 
pUDE769, pUDE770, pUDE774 and pUDE777 with primers 16235 and 16236, 16829 and 
16830, 16831 and 16832, 18189 and 18190, 16833 and 16834, respectively. PCR products 
were separated by electrophoresis on 1% (w/v) agarose gels in 1 x TAE buffer (Thermo 
Fisher Scientific) at 100 V for 30 minutes. The PCR products were incubated with 0.5 μL 
(10 U·μL-1) DpnI (Thermo Fisher Scientific) for 1 hour at 37 ˚C to remove template DNA. 
DNA fragments obtained by PCR were purified using the GenElute™ PCR Clean-Up Kit 
(Sigma-Aldrich). When unspecific PCR products were observed, the fragments were excised 
on a Safe Imager™ 2.0 Blue-Light transilluminator (Thermo Fisher Scientific) and purified 
using the Zymoclean Gel DNA Recovery Kit (Zymo Research, Irvine, CA, USA) according
to the manufacturer’s instructions. The pT7-ptT7 linearized backbone was then Gibson 
assembled using NEBuilder HiFi DNA Assembly (New England Biolabs) with the PCR 
amplified HXK2, PFK1, PFK2, PGK1 or PYK1 gene, resulting in plasmids pUD1081, 
pUD1107, pUD1108, pUD1184 and pUD1109, respectively. Restriction analysis was 
performed with FastDigest™ restriction enzymes (Thermo Fisher Scientific) according to the 
manufacturer’s protocol with one minor adjustment. The restriction mixture was incubated 
for 1 hour at 37˚C. Plasmid DNA was isolated from E. coli using the Sigma GenElute Plasmid 
kit (Sigma-Aldrich) following the manufacturer’s protocol, while yeast plasmids were 
isolated using the Zymoprep Yeast Plasmid Miniprep II Kit (Zymo Research). Constructed 
plasmids were transformed to DH5α E. coli electrocompetent cells or XLI-blue chemically 
competent cells. Chemical transformation was done according to the manufacturer’s protocol 
(Zymo Research). Sanger sequencing was performed by BaseClear (Leiden, the Netherlands)
or Macrogen Europe (Breda, the Netherlands). For diagnostic purposes, PCR amplification 
was performed with DreamTaq polymerase (Thermo Fisher Scientific) according to the 
manufacturer’s instructions. Vectors containing glycolytic genes were expressed in the 
PURExpress E6840 (New England Biolabs) according to the manufacturer’s instructions 
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with minor changes. Briefly, 250 ng template DNA was used for a single protein synthesis 
reaction. The reaction was incubated at 25°C for 3 hours and frozen directly at -20°C.

Yeast cell lysis, protein extraction and proteolytic digestion. Cell pellets of the (an)aerobic 
cultures were resuspended in lysis buffer composed of 100 mM TEAB containing 1% SDS 
and phosphatase/protease inhibitors [327]. Yeast cells were lysed by glass bead milling and 
thus shaken 10 times for 1 minute with a bead beater alternated with 1 min rest on ice. 
Proteins were reduced by addition of 5 mM DTT and incubated for 1 hour at 37°C. 
Subsequently, the proteins were alkylated for 60 min at room temperature in the dark by 
addition of 50 mM acrylamide. Protein precipitation was performed by addition of four 
volumes of ice-cold acetone (-20°C) and proceeded for 1 hour at -20°C. The proteins were 
solubilized using 100 mM ammonium bicarbonate. Proteolytic digestion was performed by 
Trypsin (Promega, Madison, WI), 1:100 enzyme to protein ratio, and incubated at 37°C 
overnight. Solid phase extraction was performed with an Oasis HLB 96-well μElution plate 
(Waters, Milford, USA) to desalt the mixture. Eluates were dried using a SpeedVac vacuum 
concentrator at 50 °C and frozen at -80 °C.

TMT labelling for quantitative proteomics experiments. Desalted peptides were 
reconstituted in 100 mM TEAB and TMT labels from the TMTsixplex isobaric label reagent 
set and TMT10plex isobaric label reagent set (Thermo Fisher Scientific) were added from 
stocks equilibrated in 100% anhydrous acetonitrile (ACN). Peptides were mixed with TMT 
labels in a 1:5 ratio (20 µg to 100 µg) and incubated for 1 hour at 25 °C and 400 rpm and the 
labelling reaction was stopped by addition of 5% hydroxylamine to a final concentration of 
0.4% [400]. Labelled peptides from yeast cultures were then mixed in an equal manner, while 
peptides from protein standards were labelled and prepared for MS analysis separately. 
Samples were labelled as shown in SI table 3 and 4 for TMTsix-plex and TMT10-plex 
experiments, respectively. Peptide solutions were diluted with water to obtain a final 
concentration of ACN lower than 5%. Solid phase extraction was performed to desalt the 
mixture. Desalted peptides were subsequently frozen at -80 °C for 1 hour and dried by 
vacuum centrifugation. Peptides were finally resuspended in 3% ACN/0.01% TFA prior to 
MS-analysis to give an approximate concentration of 500 ng per µl. Additionally, 
fractionation of TMT mixtures was performed for some samples using the Pierce High pH 
Reversed-Phase Peptide Fractionation Kit (Thermo Fisher Scientific) according to the 
manufacturer’s instructions. The completeness of TMT labelling was confirmed by short 
shotgun proteomics experiments and subsequent database searching where the TMT label 
was used as variable modification. Here, the percentage of TMT-labelled N-termini and 
Lysine were translated into a total labelling efficiency (SI Matlab code 1). Only experiments 
with >95% labelling efficiency were used.
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Synthetic peptide standards. Synthetic peptide standards for S. cerevisiae Pyk1 for the 
sequences LTSLNVVAGSDLR (>98% purity level), TSIIGTIGPK (>98% purity level), 
GDTYVSIQGFK (>99% purity level) and AGAGHSNTLQVSTV (>99% purity level) were 
purchased from Thermo Fisher Scientific (Table 2). Identity and purity were furthermore 
confirmed by separate in house mass spectrometric analysis.

Mass spectrometric analysis. 
Shotgun proteomic analysis of unlabelled proteomics samples. An aliquot corresponding 
to approximately 0.75 µg protein digest was analysed using a one dimensional shotgun 
proteomics approach [290]. Briefly, the samples were analysed using a nano-liquid-
chromatography system consisting of an EASY nano LC 1200, equipped with an Acclaim 
PepMap RSLC RP C18 separation column (50 μm x 150 mm, 2 μm, Cat. No. 164568), and 
a QE plus Orbitrap mass spectrometer (Thermo Fisher Scientific, Germany). The flow rate 
was maintained at 350 nL·min-1 over a linear gradient from 5% to 30% solvent B over 40 
min, then from 30% to 60% over 15 min, followed by back equilibration to starting 
conditions. Data were acquired from 5 to 60 min. Solvent A was H2O containing 0.1% FA 
and 3% ACN, and solvent B consisted of 80% ACN in H2O and 0.1% FA. The Orbitrap was 
operated in data-dependent acquisition (DDA) mode acquiring peptide signals from 385–
1250 m/z at 70,000 resolution in full MS mode with a maximum ion injection time (IT) of 
100 ms and an automatic gain control (AGC) target of 3E6. The top 10 precursors were 
selected for MS/MS analysis and subjected to fragmentation using higher-energy collisional 
dissociation (HCD). MS/MS scans were acquired at 17,500 resolution with an AGC target of 
1E5 and IT of 100 ms, 1.2 m/z isolation width and normalized collision energy (NCE) of 28.

Shotgun proteomic analysis of TMT labelled proteomics samples. An aliquot 
corresponding to approximately 1 µg protein digest was analysed using a one dimensional 
shotgun proteomics approach [290]. Briefly, the samples were analysed using a nano-liquid-
chromatography system consisting of an EASY nano LC 1200, equipped with an Acclaim 
PepMap RSLC RP C18 separation column (50 μm x 150 mm, 2 μm, Cat. No. 164568), and 
a QE plus Orbitrap mass spectrometer (Thermo Fisher Scientific, Germany). The flow rate 
was maintained at 350 nL·min-1 over a linear gradient from 5% to 25% solvent B over 100 
min, then from 25% to 55% over 25 min, followed by back equilibration to starting 
conditions. Data were acquired from 5 to 130 min. Solvent A was H2O containing 0.1% FA 
and 3% ACN, and solvent B consisted of 80% ACN in H2O and 0.1% FA. The Orbitrap was 
operated in data-dependent acquisition (DDA) mode acquiring peptide signals from 385–
1450 m/z at 70,000 resolution in full MS mode with a maximum IT of 50 ms and an AGC 
target of 3E6. The top 10 precursors were selected for MS/MS analysis and subjected to 
fragmentation using HCD. MS/MS scans were acquired at 17,500 and 35,000 resolution for 
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TMTsixplexTM and TMT10plexTM, respectively, with AGC target of 2E5 and IT of 75 ms,
0.7 m/z isolation width and NCE of 32.

Parallel reaction monitoring. Targeted analysis was performed using the Parallel Reaction 
Monitoring (PRM) modus of the QE plus Orbitrap mass spectrometer. The m/z and retention 
time of peptide targets were first obtained through a shotgun approach and subsequently 
targeted in a ±2.5 or 4 min retention time window using 32 normalized collision energy in 
positive mode. Inclusion lists can be found in SI Table 5 – 8. 

High-resolution label free quantification. An aliquot of approximately 100 ng protein 
standard was injected for LC-MS analysis. The flow rate was maintained at 350 nL min-1

over a linear gradient from 5% to 25% solvent B over 40 minutes, followed by a gradient to 
50% B over 15 min. Solvent A was H2O containing 0.1% FA and 3% ACN, and solvent B 
consisted of 80% acetonitrile in H2O and 0.1% FA. The Orbitrap was operated in MS1 mode 
only over a mass range of 350-1250 m/z at 140K resolution.

Processing of mass spectrometric raw data.
Database searching for shotgun proteomics experiments using PEAKS (native and 
TMT labelled). Data were analysed against the proteome database from Saccharomyces 
cerevisiae (Uniprot, strain ATCC 204508 / S288C, Tax ID: 559292, July 2020) using PEAKS 
Studio X (Bioinformatics Solutions Inc., Waterloo, Canada). For confirming the quality of 
the protein standard from the pure system, a combined database comprised of the S. 
cerevisiae and E. coli proteome was used (TrEMBL, Tax ID: 204508 and 83333, 
respectively), excluding the minor redundant glycolytic isoenzymes of S. cerevisiae. As 
contaminant database, cRAP, the common Repository of Adventitious Proteins (GPM) was 
used. The search allowed for 20 ppm parent ion and 0.02 m/z fragment ion mass error, 3 
missed cleavages, acrylamide as fixed cysteine modification and methionine oxidation and 
N/Q deamidation as variable modifications. In the case of a 15N-stable isotopically labelled 
sample, the mass increase of nitrogen from its standard atomic weight to 15N (+0.9970 Da) 
is set as fixed PTM for each nitrogen atom, to a maximum of 4 for Arginine. For TMT 
labelled samples, the TMT label (+229.16) Da was considered as additional fixed 
modification for all N-termini and lysine (Lys) residues. Peptide spectrum matches were 
filtered against 1% false discovery rates (FDR) and identifications with ≥2 unique peptides. 
Mass spectrometric raw data from TMT experiments were additionally analysed using 
PEAKS Q for changes in protein abundances between different time points. Auto 
normalization was used for quantitative analysis of the proteins, in which the global ratio was 
calculated from the total intensity of all labels in all quantifiable peptides. Quantitative 
analysis was performed using protein identifications containing at least 2 unique peptides, 
which peptide identifications were filtered against 1% FDR. The significance method for 
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evaluating the observed abundance changes was set to PEAKS Q and the significance score 
is calculated as the -10log10 of the significance testing p-value.

Analysis of targeted (PRM) experiments. To perform quantitative analysis of the peptide 
ratios, a MATLAB pipeline was developed that essentially calculated ratios of internal 
standard to sample for proteins of interest. Briefly, the raw MS data were converted to 
‘.mzXML’ formats using the msConvertGUI tool (ProteoWizard) [293] which were further 
imported into the Matlab environment using the function “mzxmlread()”. The target 
fragments of each selected peptide (‘targets_annotated.xlsx’) for quantification of identified 
MS2 scans were obtained from ‘PSM ion.csv’ files, exported from PEAKS DB. Peptide ratios 
were determined by selecting the three most abundant fragments per peptide from the MS2 
data using the ‘get_fragments’ function. All ions for these fragments were collected using 
the ‘get_peak_max’ function, both from the sample and in the internal standards. Here, the 
maximum of the extracted ion current (XIC) peak area for each peptide was determined and 
the associated scan ± max. two scans (if the area is more than 50% of the maximum peak 
area) were used for collection of the fragment intensities. Dividing the fragment intensities 
between the intensity of the native yeast sample and the protein standard provided an array 
of peptide ratios. For TMT-labelled samples, the ratios were determined based on the 
associated label fragments. The established codes can be found in SI Matlab code 2 and 3.

Analysis of high-resolution experiments. For integration of peak areas, Skyline version 4.2 
was used [401]. In Skyline, data were analysed against the proteome database from S. 
cerevisiae and E. coli. The search allowed for 0.015 m/z fragment ion mass error, one missed 
cleavage, carbamidomethylation and 15N (+ 0.9970 Da) as fixed cysteine and amino acid 
modification. The spectral library was built using peptide spectrum matches obtained from 
PEAKS DB (.pep.xml) from LC-MS/MS scan.

Data availability. The established Matlab data processing pipeline and mass spectrometric 
raw data have been deposited at 4TU research server and are available at 
https://doi.org/10.34894/WOSYOT.
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Results and Discussion 
The cell free production of (complete) protein standards
Our approach aims to quantify the unmodified peptide fraction across the protein backbone 
to provide an overall view on the degree of modification (Figure 1). This approach therefore 
does not require the identification of individual modifications. However, to cover the 
complete amino acid sequence in order to consider all possible modification sites, we 
required to produce a complete protein standard rather than a few synthetic peptides. A 
similar procedure has been descried recently by Mair et al., which however was not expanded 
to complex samples such as metabolic enzymes from whole cell lysates or complete pathways 
[71, 395]. Unfortunately, chemical synthesis of peptides chains is not suitable for producing 
larger proteins. However, the inverse approach only requires small quantities of protein 
reference material. Therefore, we investigated the suitability of cell free expression to provide 
analytical quantities of complete protein standards. Commercial cell free expression systems 
such as the PURExpress system, contain all necessary components for the in vitro
transcription and translation of proteins (Figure 2a). This approach has also shown to 
successfully produce complete proteins with >100 kDa, only recently [402]. Therefore, we 
tested the cell free production of some key enzymes in the glycolytic pathway: Hxk2, Pfk1, 
Pfk2, Pgk1 and Pyk1 (Figure 2b). To facilitate the expression, plasmids that carry the 
glycolytic genes in combination with E. coli expression requirements (such as the T7 
promotor and terminator) were constructed. The backbone of the control plasmid was used 
as template DNA for Gibson Assembly (Figure 2a). SDS-PAGE analysis of the produced 
enzymes already confirmed the successful expression of Hxk2 (54 kDa) and Pyk1 (55 kDa) 
(Figure 2b), however, the protein yields for Pfk1 (109 kDa), Pfk2 (106 kDa) and Pgk1 (45 
kDa) were not sufficient to confirm successful synthesis (data not shown). 

Purification of the synthesized proteins was tested following the manufacturer’s instructions 
for Hxk2 [327]. However, the purification provided only low yields, and the purified material 
contained still a large number of E. coli background proteins. Additionally, the purification 
procedure risked inducing chemical post-isolation artefacts, which could compromise our 
quantification experiments.
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Figure 1. Schematic overview of the inverse quantification approach of the modification degree 
of metabolic enzymes. 1. Yeast cells are cultivated and sampled under highly controlled conditions. 
2. Proteins are subsequently extracted from the cells using standardized sample preparation protocols. 
3. At the same time, cell free synthesis is used to provide analytical quantities of unmodified protein 
reference standards. To this end, a plasmid is constructed that carries the gene of interest in combination 
with E. coli expression requirements such as the T7 promotor and terminator. 4. Addition of the 
constructed plasmid to the PURE system enables synthesis of the protein standard. 5. Native yeast 
proteins and the generated protein standard are then separately digested using proteases including 
trypsin, GluC and chymotrypsin to ensure full protein sequence coverage. 6. Accurate quantification is 
enabled through labelling and subsequent mixing of the native yeast and protein standard peptides. 7. 
The peptides are quantified via a targeted analysis (PRM). The TMT labelled peptides act furthermore 
as reference signal and as “carrier proteome” to enable a reproducible and sensitive detection and (8) 
quantification based on the reporter ions. 9. Peptide rations are determined by comparing the reporter 
ions to the synthetic reference standard. A decrease in signal indicates thereby an increase in the degree 
of modification for this part of the sequence.
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Therefore, we decided to use the crude mixture without purification as reference standard for 
our experiments. To confirm the correct production of the produced protein standards, in-
solution digestion followed by a shotgun proteomic analysis was performed. This confirmed 
the identity of all the enzymes, albeit the sequence coverage (when using Trypsin) varied 
between 88–52% (Hxk2 88%, Pfk1 77%, Pfk2 52%, Pgk1 66% and Pyk1 89%). Differences 
in sequence coverage could be explained by protein size, as Pfk1 and Pfk2 are almost twice 
the size of the other glycolytic proteins. Therefore, the protein yield could be lower because 
more translation and transcription components are used compared to smaller proteins. This 
could further impact the detection of more difficult to measure peptides, and therefore reduce 
the achievable coverage in our proteomics experiments. Nevertheless, C-terminal peptides 
were obtained from all enzymes, including Pfk1 and Pfk2, indicating that a small fraction of 
full-length protein was produced. Surprisingly, Pgk1, the smallest glycolytic protein in this 
study, showed a very low protein sequence coverage (66%). However, inspection of the 
protein sequence revealed that a significant number of the tryptic peptides were relatively 
small (<7 amino acids) and therefore likely escaped the successful detection [21].

Nevertheless, a complete sequence coverage usually requires a multi-protease approach [251, 
403]. Therefore, we applied a three proteases approach (Trypsin, Chymotrypsin and GluC) 
which subsequently increased the sequence coverage to nearly 100% for Hxk2 and Pyk1 
(Figure 2c). Nevertheless, the achievable sequence coverage depends always on the amino 
acid sequence of the investigated protein (and therefore on the obtained fragments and their 
properties) [21]. For example, even the application of more than 5 proteases could not provide 
100% sequence coverage for BSA, in a recent study [253]. Furthermore, in order to 
investigate spike-in experiments with heavy isotope protein standards, Hxk2 and Pyk1 were 
also produced using 15N stable isotope labelled amino acids. The correct synthesis of these 
heavy protein standards was finally confirmed by in-solution digestion and shotgun 
proteomic analysis. This provided a sequence coverage comparable to the one observed for 
the light proteins (83% for 15N versus 88% for 14N for Pyk1 and 76% for 15N versus 84% for 
14N for Hxk2). Interestingly, additional in-gel digestion for these proteins resulted in a similar 
sequence coverage as obtained for the in-solution digestion. This demonstrated that the 
maximum sequence coverage can be already obtained from relatively complex protein 
mixtures. To further confirm the comparability of the light and the heavy standards, both 
Hxk2 standards were mixed in equal amounts directly after synthesis (to eliminate any 
variance in sample preparation), digested and analysed in order to determine peptide ratios. 
The calculated peptide ratios (light/heavy) appeared to be constant (0.77, SD=0.044) across 
the complete protein backbone. The only exception was the N-terminal peptide MVHLGPK 
which showed an unexpected ratio of approx.1.2 (SI Figure 1). This was presumably caused 
by interference with an unrelated co-eluting peptide, but it was not further investigated in the 
current study. 
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SDS-PAGE and proteomic analysis confirmed the synthesis of complete Pyk1 and Hxk2. 
However, the presence of truncated proteins, perhaps at lower quantities, cannot be ruled out 
completely. For the case that the “full-sized protein” is the main product of the cell free 
synthesis, N and C-terminal peptides should be present at similar quantities. The intensity of 
the observed mass spectrometric signal for every peptides depends heavily on the ionization 
efficiency [404]. Therefore, the observed signals cannot be used to perform a quantitative 
comparison of different peptide sequences. An accurate quantification can only be achieved 

Figure 2. Cell free protein synthesis of Hxk2 and Pyk1 and analysis by SDS-PAGE and shotgun 
proteomics. A. Schematic of cell free protein synthesis. Template DNA carrying the gene of interest 
together with a T7 promotor and terminator, is required to initiate protein synthesis with E. coli 
transcription and translation machinery. Synthesis can be performed with 14N or 15N amino acids to 
create a light or heavy protein. In vitro protein synthesis was performed over 3 hours. B. SDS-PAGE 
analysis of 14N Hxk2 (54 kDa) and Pyk1 (55 kDa) using PURExpress In Vitro Synthesis kit. Proteins 
were separated by electrophoresis on a 10% polyacrylamide gel in Tris-Glycine SDS buffer and stained 
with Coomassie Brilliant Blue. Lane 1: BLUeye Prestained Protein Ladder. Lane 2: 125 ng Bovine 
Serum Albumin (BSA) as a reference sample (67 kDa). Lane 3: 250 ng BSA. Lane 4: 500 ng BSA. 
Lane 5: reaction mixture of Hxk2 synthesis. Lane 6: reaction mixture of Pyk1 synthesis. Lane 7: 
BLUeye Prestained Protein Ladder. Lane 8: reaction mixture of positive control (Dhfr, 18 kDa). C.
Graphical representation of Hxk2 and Pyk1 sequence coverage of 14N Hxk2 and Pyk1 syntheses. Filled 
sections show the relative portion of the entire sequence that was observed after digestion by each 
enzyme. Trypsin, GluC and Chymotrypsin digestions are represented in blue, and orange, respectively.
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efficiency [404]. Therefore, the observed signals cannot be used to perform a quantitative 
comparison of different peptide sequences. An accurate quantification can only be achieved 

Figure 2. Cell free protein synthesis of Hxk2 and Pyk1 and analysis by SDS-PAGE and shotgun 
proteomics. A. Schematic of cell free protein synthesis. Template DNA carrying the gene of interest 
together with a T7 promotor and terminator, is required to initiate protein synthesis with E. coli 
transcription and translation machinery. Synthesis can be performed with 14N or 15N amino acids to 
create a light or heavy protein. In vitro protein synthesis was performed over 3 hours. B. SDS-PAGE 
analysis of 14N Hxk2 (54 kDa) and Pyk1 (55 kDa) using PURExpress In Vitro Synthesis kit. Proteins 
were separated by electrophoresis on a 10% polyacrylamide gel in Tris-Glycine SDS buffer and stained 
with Coomassie Brilliant Blue. Lane 1: BLUeye Prestained Protein Ladder. Lane 2: 125 ng Bovine 
Serum Albumin (BSA) as a reference sample (67 kDa). Lane 3: 250 ng BSA. Lane 4: 500 ng BSA. 
Lane 5: reaction mixture of Hxk2 synthesis. Lane 6: reaction mixture of Pyk1 synthesis. Lane 7: 
BLUeye Prestained Protein Ladder. Lane 8: reaction mixture of positive control (Dhfr, 18 kDa). C.
Graphical representation of Hxk2 and Pyk1 sequence coverage of 14N Hxk2 and Pyk1 syntheses. Filled 
sections show the relative portion of the entire sequence that was observed after digestion by each 
enzyme. Trypsin, GluC and Chymotrypsin digestions are represented in blue, and orange, respectively.
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with synthetic peptide standards. Therefore, synthetic peptides were purchased covering N 
and C-terminal sequence regions of Pyk1. More specifically, peptides 1 and 2 were from the 
N-terminus, while peptides 3 and 4 covered C-terminal parts of the protein (Table 1). We 
used the 15N labelled protein standard because it allowed for direct, label free (MS1 level) 
comparison of the cell free protein standard and the synthesised peptides. Moreover, different 
quantities of the synthetic peptide standards were spiked to the protein to find an optimal 
ratio (Table 1). Surprisingly, the ratios 15N/14N (peptides from cell free protein 
standard/synthetic peptides) differed strongly across the protein backbone. For example, we 
obtained for peptide 1 an approx. 19-fold larger ratio compared to peptide 4 (Table 1). 
Furthermore, peptide 2 obtained an approx. 3.5-fold smaller ratio compared to peptide 1. In 
a second experiment, we cut the gel band representing the complete Pyk1 protein and 
compared it to the synthetic peptide standards with known quantities (like before). Here, the 
ratios 15N/14N (Cell free protein peptide/synthetic peptide) were very comparable ranging 
from 0.8 to 1.4, confirming the correctness of our testing procedure. This indicates that the 
protein synthesis is interrupted already at early stages in many cases. Truncated versions of 
the protein are not uncommon in cell free protein synthesis, and multiple reasons could cause 
break up or slowing down of the translation process. For example, the depletion of tRNAs 
through peptidyl-tRNA drop-off can halt translation [405]. Here, the use of low-usage Arg 
codons (AGA and CGA) proximal to the start codon could lead to premature termination of
protein translation [406]. In our study, a low-use Arg codon (AGA) appears on position 3 of 
the S. cerevisiae gene, very close to the start codon, which might therefore challenge 
translation. This might cause the depletion of the tRNA pool in the system. Genes optimized 
for E. coli codon usage could be used to overcome this issues [405]. However, our envisaged 
study (monitoring modification changes of glycolytic enzymes across the yeast growth curve) 
does not necessarily require exactly the same amounts of peptide across the protein backbone. 
Only relative peptide ratio changes across a growth curve are monitored, which would 
indicate the presence of modification dynamics and possible functional roles.
  

Table 1. Full-sized cell free synthesized Pyk1 analysis. The peptide intensity of cell free synthesized 
Pyk1 with 15N amino acids was compared to chemically synthesized 14N peptide standards to assess 
full-sized cell free protein synthesis.

Ratio 15N/14N peptide
# Sequence Position 0.25 ng 1 ng 10 ng Gel
1 LTSLNVVAGSDLR 7-19 70.0 16.7 1.4 0.8
2 TSIIGTIGPK 21-30 19.2 4.7 0.4 1.5
3 GDTYVSIQGFK 476-486 0.017 0.012 0.013 0.7
4 AGAGHSNTLQVSTV 487-500 3.8 0.9 0.1 1.4
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Peptide ratio determination using tandem mass tags
Stable isotope labelled protein standards allow to spike the standard into the cell lysate for a 
combined digestion, detection, and quantification of the light and heavy variants in MS1. 
This minimizes biases in the peptide ratios because both variants undergo exactly the sample 
preparation procedures. However, quantification at the MS1 level requires a prior 
identification of the peptides via fragmentation experiments and ratios can be unexpectedly 
influenced by co-eluting background peptides derived from other proteins. Finally, the 
analysis of time course experiments requires separate experiments for every time point, and 
experiments can demand long measurement times. Therefore, we aimed to investigate an
approach that overcomes the above-mentioned drawbacks, by making use of tandem mass 
tag labelling (TMT). Labelling approaches enable a more accurate quantification compared 
to when using label free approaches [65]. For this, the cell-free synthesized protein standards 
are digested and subsequently labelled with a TMT label. The TMT labelled peptides act 
furthermore as reference signal and as “carrier proteome” to enable a reproducible and 
sensitive detection and quantification based on the reporter ions. This also allows a very 
accurate and fast analysis of time series experiments due to its multiplexing nature. 10-plex 
TMT-labelling, for example, can combine up to 10 samples in a single analysis (e.g. 4 time 
points plus protein standard, each in duplicates) (Figure 1). More specifically, the observable 
peptides from the target protein are first determined by a shotgun proteomics experiment. 
Those create an inclusion list for the quantitative analysis using parallel reaction monitoring 
(PRM). Finally, an in house developed Matlab data processing pipeline is used to facilitate 
reproducible, automated ratio determination for the targeted peptides (SI Matlab code 2 and
3). The specificity and sensitivity of the PRM method however is affected by the number of 
peptide targets and the size of the retention time window (and therefore number of 
overlapping scans). The number of targets was therefore kept <100 to guarantee a sufficient 
number of measurement points across the chromatographic peaks. 

Nevertheless, a possible challenge when using MS2 quantification for TMT labels is the 
reporter ion bias introduced by co-isolation of peptides. Therefore, to minimize such co-
isolation related interferences, different isolation windows of 0.7, 1.2 and 1.6 m/z were tested 
for their quantitative performance using a targeted method (SI Table 5). However, similar 
peptide ratios and standard deviations were obtained in duplicate measurements for all three 
isolation windows (average peptide ratios 0.416±0.185, 0.426±0.202 and 0.437±0.197 were 
obtained for the isolation windows 0.7, 1.2 and 1.6 m/z; Figure 3). A vast majority of 
obtained peptide ratios was consistent between the replicates, and also no significant drop in 
sensitivity was observed using Spearman’s rank correlation coefficient (Figure 3). However, 
to minimize the risk of co-isolation in any future experiments, the smallest isolation window 
(0.7 m/z) was selected. 
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The accuracy of the measured peptide ratios may also be influenced by the protein abundance 
ratios. Ideally, the abundance of the standard is equal to the target protein in the native yeast 
proteome. However, the amount of the target protein in the yeast sample may significantly 
change across the growth curve. Therefore, we investigated the impact of different standard 
to target protein ratios on the outcome. For this, we prepared a dilution series where one 
volume of Pyk1 standard was spiked into 16, 8 and 4 volumes of native yeast proteome. We 
subjected the dilution series to a targeted proteomics analysis (SI Table 6) and compared the 
differences in the number of targeted peptides and their ratios. The sequence coverage varied 
from 76%, 71% and 83% for ratios 16:1, 8:1 and 4:1 native yeast proteome to Pyk1 standard, 
respectively. Although ratios for the individual fragments varied to some degree, the mean 
peptide ratio obtained for all targeted peptides were in the same order of magnitude. The 
average peptide ratios (Pyk1 standard vs. IMX372 proteome) obtained from the different 
spikes 4:1, 8:1 and 16:1 resulted in rations: 1.046 ± 0.659, 0.377 ± 0.323 and 0.186 ± 0.129, 
respectively, which followed the expected linear decrease. However, albeit the trend was as 
expected, the higher dilutions (e.g. 16:1) resulted in a reduced number of confidently 
identified peptides. This indicates that the Pyk1 standard peptides also served as a carrier 
base level for peptide identification. Therefore, the top 10 peptides with highest intensities in 
each of the dilutions were verified for their linearity in the dilution series (Figure 4a). To 
compare the different slopes between the peptides, the peptide ratios were normalized to the 
16:1 peptide ratios (Figure 4b). The slopes of the peptides were not significantly different 
(p>0.01), indicating that a linear increase in peptide ratios relates to a linear increase in the 
amount of protein. 

Figure 3. Isolation window optimization of the targeted (PRM) quantification approach. 
Spearman’s correlation plots of calculated peptide ratios of detected Pyk1 peptide intensities from two 
different growth phases (late-exponential and stationary growth phase in aerobic MG yeast) using the 
PRM approach. Windows of 0.7 m/z (A), 1.2 m/z (B) and 1.6 m/z (C) were tested in duplicate PRM 
measurements. 
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Furthermore, we aimed to assess the reproducibly of our targeted quantification approach. 
First, a replication series was studied, in which three technical replicates of chemostat-grown
S. cerevisiae lysates were labelled with three different TMT labels (127, 128, 129) and mixed 
with the in vitro synthesized Pyk1 labelled with the 131 TMT. The sample was analysed in 
duplicates using the targeting approach (SI Table 7), and ratios were calculated for Pyk1 
lysate peptides compared to the Pyk1 standard in channel 131). Thereby, the average peptide 
ratio (Pyk1 proteome vs. Pyk1 standard) from duplicate measurements were 0.21 ± 0.20, 0.23 
± 0.25 and 0.27 ± 0.25 for channel 127, 128 and 129, respectively. This illustrates that peptide 
ratios when using different reporter channels are fairly stable, with only small differences 
(possibly due to pipetting errors). However, deviations from the average peptide ratios (Pyk1 
proteome vs. Pyk1 standard) showed slightly increasing ratios from channels 128, 129 to 130 
(Figure 5). Several peptides displayed relatively large deviations from the average ratio 
(because of overall signal abundancies). The increased ratios indicated that these specific 
peptides are more abundant in the native Pyk1 proteome compared to the Pyk1 standard, 
which might be due to differences in sample preparation. Finally, correlation between the 
calculated peptide ratios obtained from the duplicate measurements was calculated using 
Spearman’s rank correlation coefficient (SCC) to assess reproducibility of the ratios. The 

Figure 4. Evaluation of linearity and limit of detection. A. A dilution series of Pyk1 standard to 
yeast lysate was established (1:16, 1:8, 1:4) to study the limit of detection and the linearity of the 
approach. Peptide intensities were measured using the developed PRM assay for the top 10 detected 
peptides with the best detectability in the complete dilution series. Average Pyk1 peptide ratios of 
duplicate measurements and standard deviations are indicated by the error bars. B. Normalized peptide 
ratios of top 10 detected peptides with highest intensities and detectability in the complete dilution 
series. Peptide intensities were normalized against the 16:1 dilution ratio (Pyk1 reference vs. native 
proteome). Linear regression of the dilution series of each peptide resulted in comparable slopes for all 
different peptides and dilutions.
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average SCC of the two ratios obtained by separate analysis runs for each TMT tag was 0.96, 
0.94 and 0.95 for TMT labels 127, 128 and 129, respectively.

However, finally, a full sequence coverage would be required to quantify the complete PTM 
landscape of Pyk1. Off-line fractionation of the proteome reduces background signals which 
can improve sequence coverage. Here, the Trypsin-digested TMT mixture of the IMX372 
(MG) aerobic growth curve was fractionated in eight fractions using reversed phase 
separation based on hydrophobicity. LC-MS/MS analysis increased the number of protein 
identifications from 1275 to 2500, however, the sequence coverage of Pyk1 was only 
increased to 83%. However, an in silico investigation of the amino acid sequence of Pyk1 
confirmed that the remaining parts do not provide peptides that can be identified by LC-MS. 
Previously, it has been shown that the use of multiple proteases is required to significantly 
increase the sequence coverage of in vitro synthesized Pyk1. Therefore, we performed a 
digestion with Trypsin, Chymotrypsin and GluC. Indeed, the Pyk1 sequence coverage was 
increased to approx. 95% using one-dimensional LC-MS/MS analysis runs (with individual 
sequence coverages of 71%, 66% and 45% for Trypsin, Chymotrypsin and GluC, 
respectively). The multi-protease strategy is therefore preferred over fractionation as it 
provides higher sequence coverage with lower instrument operation time.

Figure 5. Evaluation the reproducibility of the inverse quantification approach. A. The 
reproducibility of the targeted quantification was evaluated using a series of three technical replicates 
of chemostat-grown yeast labelled with different TMT labels (127, 128 and 129) and mixed with the 
in vitro synthesized Pyk1 protein standard, labelled with 131. Deviations (%) from the average Pyk1 
peptide ratios (native yeast vs. Pyk1 standard) of duplicate measurements are indicated by the bars. B.
The boxplot shows the median ratios obtained from the different reporter ions. Except single outliners, 
peptide ratios were generally +/-25% of the median. The experiment shown was performed using MS2 
reporter ion quantification. The accuracy is expected to be improved using MS3 reporter ion 
quantification.
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Quantifying the degree of modification for Pyk1 across aerobic growth
Finally we wanted to exemplify the quantification approach to a growth curve of IMX372 
(MG) yeast. MG yeast was cultivated in aerobic batch cultures in triplicate and samples were 
taken at 6, 9, 12, 16.5 and 27 hours of growth, corresponding to mid-exponential, late 
exponential, early-diauxic, mid-diauxic and stationary growth phases, respectively [398] (SI 
Figure 2). The changing environmental conditions are expected to induce regulatory 
responses on the proteome, e.g. via post-translational modifications. To this end, IMX372 
samples from each of the 5 growth phases were TMT-labelled and each mixed with the TMT 
labelled peptides of the Pyk1 standard. 37 unmodified, tryptic peptides across the protein 
backbone were selected for targeting (SI Table 8). This provided a sequence coverage of 
nearly 70%. Peptide ratios were determined for each growth phase using the developed 
Matlab tool (Figure 6a, SI Figure 3). An average ratio across all detected peptides was 
calculated for each growth phase which resulted in ratios of 0.94, 0.99, 0.87, 0.79 and 0.43 
for mid-exponential, late exponential, early-diauxic, mid-diauxic and stationary growth 
phases, respectively. The overall decreasing peptide ratios indicate an overall decrease in 
native Pyk1 content across the aerobic growth, which was consistent with our previous study 
[398]. The peptide ratios were normalized to the Pyk1 content (according to normalization 
factors determined by PEAKS Q) to eliminate protein abundance related influences. All 
ratios were further normalized to the first growth phase, ‘ME’ (Figure 6b). Peptides 
abundances were considered changed if the fold change was larger than ±20% compared to 
the base sample ‘ME’ (Figure 6b and 6c). After normalization to the ‘ME’ growth phase, 
peptide ratios across Pyk1 were averaged at 0.92, 0.99, 1.02 and 0.87 late exponential, early-
diauxic, mid-diauxic and stationary growth phases, respectively. 

Interestingly, throughout the growth curve, peptides were observed with positive and 
negative fold changes. Most peptides contained negative fold changes, indicating that the 
fraction of unmodified peptide was decreased, or that the fraction of modified peptide 
increased (Figure 1). On the other hand, positive fold changes compared to the base sample 
indicate that the protein may be present in a modified form at the beginning of the growth 
curve. Only three out of 37 targeted peptides appeared to be unchanged across the growth 
curve, while the 34 other peptides showed changes >20% at least in one of the growth phases. 
The stationary growth phase resulted in the largest changes. In non-proliferating, aerobic 
conditions, proteins are susceptible to aging processes such as oxidation by reactive oxygen 
species (ROS) [239]. This may severely influence the stoichiometry of unmodified peptide 
fraction. Normalized to the mid-exponential phase, the early-diauxic growth phase contained 
the least number of modified peptides. The largest fold change was observed for the peptide
in the position 69–91. It shows an increase of 166% in the mid-diauxic phase. This region of 
the protein is also known to be susceptible to phosphorylation, ubiquitination, acetylation and 
succinylation [169, 252, 407, 408]. In addition, the peptide in the position 414–425 contained 
the highest modified fraction in the mid-stationary phase, albeit no modifications have yet 
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been reported in this particular sequence. Peptide in position 205–216 also displayed a high 
degree of modification in the mid- and late-exponential phase (~50%). Previously, it has been 
demonstrated that the S213 and R216 residues are prone to phosphorylation [409] and 
methylation [166], respectively, although the functional roles have not been proven yet. 

Well-characterized areas of Pyk1, such as the fructose-1,6-bisphosphate (FBP) binding area 
(T403) [410], were also quantified. FBP allosterically activates Pyk1 in the presence of 
glucose. Alteration of this area through PTMs might prevent FBP from binding to favor 
respiration following the diauxic shift as opposed to fermentation during proliferation. 
However, the peptide covering the sequence from 397–409) showed that apparent 
modification rather occurred before the diauxic shift. The residues 402–407 of Pyk1 interact 
with the 6’-phosphate of FBP and changes from threonine to a glutamic acid hinder FBP 
binding in a previous study [410]. Another important part of Pyk1 is the active site at R49, 
which position the phosphoryl transfer process of phosphoenolpyruvate (PEP) and ADP to 
ATP and pyruvate [410]. Catalytic activity of Pyk1 is abolished and yeast is unable to grow 
when R is changed to an A [409]. The peptide covering the position 43–49 showed 
modification only in the the mid-stationary phase, indicating that the unmodified active site 
might be important for growth. In the second step of the catalytic activity a proton is 
transferred by T298. The sequence region 287–312 appeared to be modified in the early-
diauxic and stationary phase. During gluconeogenic growth, Pyk1 is inactivated while still 
present in the cell [411]. This, for example, could be accomplished via modification of the 
active site using PTMs. 

Another interesting sequence region of Pyk1 is the low compositional complexity (LCR) area 
(position 369–394), which allows for reversible aggregation to preserve protein function 
under stress. Here, phosphorylation prevents aggregation during exponential growth, while 
dephosphorylation allows aggregation taking place [409]. One peptide covered this sequence 
region (position 370–394) and a significant degree of change (or possible modification) was 
observed in the late-exponential and stationary phase. 

Finally, a well investigated phosphorylation site is S22, which has been shown to decrease 
the activity in vitro [412]. However, in our study, we only detected minor changes for this 
sequence regions (20–30, and 21–30). This observation was supported by the study of Xia et
al. [158], in which no correlation could be detected between in vivo protein activity and this 
phosphorylation site. Phosphorylation of S22 has been demonstrated to provide a more active 
Pyk1 in the absence of FBP [412]. On the other hand, a study by Xu et al. suggests that 
phosphorylation is not required for Pyk1 activity, but that it is predominantly controlled by 
allosteric regulation [413].
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Figure 6. The degree of modification for yeast Pyk1 across anaerobic growth. A. the graph shows 
the average peptide ratios for native Pyk1 in yeast from exponential to stationary phase under anaerobic 
conditions (5 different sampling points). B. the graph shows the peptide rations from graph A 
normalized to the first time point (=1), C. the graph shows the normalized log2 fold change of the Pyk1 
peptides, shown in graph A. The panel below shows the position of the individual tryptic peptide 
sequences of Pyk1 that were quantified in this experiment. Red regions were covered in this proof-of-
concept experiment. Grey regions did not provide quantifiable tryptic peptide fragments. Those would 
require one of the alternative proteolytic enzymes (GluC or Chymotrypsin). 
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In summary, our approach has been exemplified for Pyk1. Nearly all peptides show 
significant changes in the fraction of unmodified peptides across the aerobic growth curve. 
Changes in abundance of the unmodified peptides could be due post-translational 
modification (or chemical), but it may also be due to missed cleavages (induced by adjacent 
natural or chemical modifications). We observed various regions of the protein that were 
covered by multiple peptides due to missed cleavages. Therefore, the use of multiple 
proteases may be necessary to provide additional confirmation for the observed changes.

Outlook and conclusions
Here, we demonstrate and evaluate an approach for the quantification of the degree of 
modification for complete proteins in the presence of complex cell lysates. The approach 
quantifies the unmodified fraction of peptides, and therefore does not require the 
identification and localisation of individual modifications and modification sites. 
Furthermore, we evaluated the production of analytical quantities of complete protein 
standards using cell-free synthesis. TMT labelling furthermore allowed to determine peptide 
rations across complete growth curves simultaneously. Finally, we established a Matlab data 
processing pipeline to rapidly determine and visualise peptide ratios. Nevertheless, the 
accuracy of the peptide ratio determination could be further improved using MS3 
quantification, because the additional isolation and fragmentation of fragment ion peaks 
eliminates interference from unrelated peptides [68]. Nevertheless, a recent study showed a 
high degree of correlation between MS2 and MS3 quantification, and MS2 usually shows a 
higher sensitivity [140, 414].

Furthermore, in this study we only monitored the changes in the degree of modification of a 
single (key) enzymes in yeast glycolysis. However, given the versatility and multiplexibility 
of our approach, it could be expanded to complete pathways such as the 12 enzymatic 
reactions of glycolysis. Nevertheless, the uniqueness of the individual peptide sequences is 
critical to the method, which could be ensured by using multiple proteases [415]. Our study 
also demonstrates that native protein standards are not necessary to determine relative 
changes of the unmodified fraction. Relative changes between peptide abundances across 
different time points could simply be determined using a mix of all conditions as reference 
signal. This could be also used to monitor changes across complete proteomes, thereby 
indicating proteome fractions that are preferably regulated by PTMs. However, this would 
only reveal the fold change, but not the absolute value of the modified fraction. 

Finally, albeit this approach has been demonstrated using yeast, it could be also employed to 
enzymes from other cell types such as mammalian cells. For example, post-translational 
modifications in human glycolysis has been associated with the Warburg effect in cancer, 
which increases the glycolytic flux by approx. 200 times in tumour cells compared to normal 
cells [91, 416].
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Supplementary Information

Matlab scripts can be found online: https://doi.org/10.34894/WOSYOT

SI Figure 1. Comparison of cell free synthesized Hxk2 with light (14N) and heavy (15N) amino 
acids. Peptide intensities of the detected light Hxk2 peptides relative to their heavy counterpart resulted 
in peptide ratios across the Hxk2 protein. All ratios appear to be relatively constant approx. 0.77 (light 
to heavy ratio), with a standard deviation of 0.044, except for the N-terminal peptide (MVHLGPK) 
which shows an unexpected ratio of approximately 1.2.
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SI Figure 2. Yeast growth in aerobic batch cultures (Figure adapted from Chapter 4, published in 
Maxime den Ridder et al., bioRxiv, 2022. https://doi.org/10.1101/2022.09.23.509138). The MG yeast 
growth in anaerobic batch cultures was described in Chapter 4 (den Ridder et al., bioRxiv 2022), where 
the glucose levels are shown by the red curve, ethanol by the orange curve and the OD660 by the purple 
curve (three biological replicate cultures, where standard deviations are shown as error bars). Proteome 
samples were taken after 6, 9, 12, 16.5 and 27 hours, which corresponded to the mid-exponential 
(‘ME’), late-exponential (‘LE’), early-diauxic (‘ED’), mid-diauxic (‘MD’) and (mid) stationary (‘MS’)
growth phases.
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SI Figure 3. Example of Pyk1 peptide ratio determination visualized with Matlab tool. The raw 
MS data were imported into the Matlab environment to determine the peptide ratios (native Pyk1 vs. 
Pyk1 standard), exemplified here with 9 peptides. The target fragments of each selected peptides for 
quantification of identified MS2 scans were obtained. Peptide ratios were determined by selecting the 
three most abundant fragments per peptide from the MS2 data. All ions for these fragments were 
collected both from the sample and in the internal standards (upper panel). Here, the maximum of the 
extracted ion current (XIC) peak area for each peptide was determined and the associated scan ± max. 
two scans (if the area is more than 50% of the maximum peak area) were used for collection of the 
fragment intensities. Dividing the fragment intensities between the intensity of the native yeast sample 
and the protein standard provided an array of peptide ratios (middle panel). For TMT-labelled samples, 
the ratios were determined based on the associated label fragments (lower panel).
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SI Table 1. Primers used in this study. 
  

Name Purpose Sequence
16233 Amplification of pT7 - tT7 

backbone FW
TGAGGATCCCGGGAATTCTC

16234 Amplification of pT7 - tT7 
backbone RV

ATGTATATCTCCTTCTTAAAG
TTAAACAAA

16235 Amplification of HXK2 FW ATACGACTCACTATAGGGTCTAGAAATAA
TTTTGTTTAACTTTAAGAAGGAGATATACAT
ATGGTTCATTTAGTCCAAA

16236 Amplification of HXK2 RV ACCACCTTAATTAAAGGCCTCCTGCAGGTT
AACCTTACTCGAGAATTCCCGGGATCCTCA
TTAAGCACCGATGATACCAA

16829 Amplification of PFK1 FW ATACGACTCACTATAGGGTCTAGAAATAAT
TTTGTTTAACTTTAAGAAGGAGATATACAT
ATGCAATCTCAAGATTCATG

16830 Amplification of PFK1 RV ACCACCTTAATTAAAGGCCTCCTGCAGGTT
AACCTTACTCGAGAATTCCCGGGATCCTCA
TCATTTGTTTTCAGCGGCTA

16831 Amplification of PFK2 FW ATACGACTCACTATAGGGTCTAGAAATAA
TTTTGTTTAACTTTAAGAAGGAGATATACA
TATGACTGTTACTACTCCTTTTGTGA

16832 Amplification of PFK2 RV ACCACCTTAATTAAAGGCCTCCTGCAGGTT
AACCTTACTCGAGAATTCCCGGGATCCTCA
TTAATCAACTCTCTTTCTTCCAACC

16833 Amplification of PYK1 FW ATACGACTCACTATAGGGTCTAGAAATAA
TTTTGTTTAACTTTAAGAAGGAGATATAC
ATATGTCTAGATTAGAAAGATTGACCT

16834 Amplification of PYK1 RV ACCACCTTAATTAAAGGCCTCCTGCAGGT
TAACCTTACTCGAGAATTCCCGGGATCCT
CATTAAACGGTAGAGACTTGCA

18189 Amplification of PGK1 FW ATACGACTCACTATAGGGTCTAGAAATA
ATTTTGTTTAACTTTAAGAAGGAGATATA
CATATGTCTTTATCTTCAAAGTT

18190 Amplification of PGK1 RV ACCACCTTAATTAAAGGCCTCCTGCAGG
TTAACCTTACTCGAGAATTCCCGGGATC
CTCATTATTTCTTTTCGGATAAGA
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SI Table 2. Plasmids used in this study.
 

 

 

 

 

 

 

 

 

 

SI Table 3. TMT labeling schemes of experiment using TMT6-plex. 
 

Experiment TMT label

126 127 128 129 130 131
Isolation
window - MG - LE - - MG – MS -

Replication - MG -
chemostat

MG -
chemostat

MG -
chemostat - Pyk1

standard
 

SI Table 4. TMT labeling schemes of experiment using TMT10-plex. 
  

Name Relevant characteristics Reference

pUD1079 ampR pT7-EcDHFR-tT7 [402]
pUD1081 ampR pT7-ScHXK2-tT7 This study
pUD1107 ampR pT7-ScPFK1-tT7 This study
pUD1108 ampR pT7-ScPFK2-tT7 This study
pUD1109 ampR pT7-ScPYK1-tT7 This study

pUD1184 ampR pT7-ScPGK1-tT7 This study
pUDE767 ampR ScHXK2 [417]
pUDE769 ampR ScPFK1 [417]
pUDE770 ampR ScPFK2 [417]
pUDE774 ampR ScPGK1 [417]
pUDE777 ampR ScPYK1 [417]

Experiment TMT label
126 127N 127C 128N 128C 129N 129C 130N 130C 131

Standard to 
yeast ratio -

MG –
che-

mostat
- - - - -

Pyk1 
stand-

ard
- -

Aerobic 
Growth 
curve

MG -
ME

MG -
LE

MG -
ED

MG -
MD

MG
- MS

Pyk1 
stand-

ard
- - - -
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SI Table 5. PRM inclusion list of LC-MS/PRM analysis of the isolation window experiment.

 

# Amino acid sequence Start End m/z Start 
(RT)

End 
(RT)

1 LTSLNVVAGSDLR 7 19 787.4584 40.38 48.38

2 LTSLNVVAGSDLRR 7 20 577.3416 32.76 40.76

3 TSIIGTIGPK 21 30 722.9597 34.26 42.26

4 TNNPETLVALR 31 41 728.9183 29.99 37.99

5 TNNPETLVALRK 31 42 605.3673 28.2 36.2

6 KAGLNIVR 42 49 443.6304 18.52 26.52

7 AGLNIVR 43 49 486.3138 19.22 27.22

8 MNFSHGSYEYHK 50 61 653.3260 23.48 31.48

9 SVIDNAR 62 68 502.2904 9.16 17.16

10 KSEELYPGRPLAIALDTK 69 86 672.9026 40.08 48.08

11 SEELYPGRPLAIALDTK 70 86 777.7821 44.49 52.49

12 ACDDKIMYVDYK 120 131 741.3971 36.34 44.34

13 IMYVDYK 125 131 695.3950 37.58 45.58

14 GVNLPGTDVDLPALSEK 178 194 1.092.1196 51.12 59.12

15 GVNLPGTDVDLPALSEKDKEDLR 178 200 792.9481 46.06 54.06

16 NGVHMVFASFIR 205 216 536.2953 42.6 50.6

17 TANDVLTIR 217 225 616.3632 25.86 33.86

18 IENQQGVNNFDEILK 241 255 1.110.1052 46.2 54.2

19 VTDGVMVAR 256 264 588.8331 21.15 29.15

20 GDLGIEIPAPEVLAVQK 265 281 736.4393 55.42 63.42

21 SNLAGKPVICATQMLESMTYNPRPTR 287 312 852.7037 52.75 60.75

22 AEVSDVGNAILDGADCVMLSGETAK 313 337 998.8442 66.01 74.01

23 GNYPINAVTTMAETAVIAEQAIAYLPNYDD
MR 338 369 936.9655 73.7 81.7

24 NCTPKPTSTTETVAASAVAAVFEQK 370 394 1.103.9353 53.27 61.27

25 AIIVLSTSGTTPR 397 409 772.9632 32.29 40.29

26 YRPNCPIILVTR 414 425 582.3406 30.08 38.08

27 GVFPFVFEK 438 446 764.4523 56.68 64.68

28 GVFPFVFEKEPVSDWTDDVEAR 438 459 1.009.8557 63.1 71.1

29 INFGIEK 460 466 639.8940 37.23 45.23

30 AKEFGILK 467 474 797.0199 31.6 39.6

31 KGDTYVSIQGFK 475 486 677.4045 34.87 42.87

32 GDTYVSIQGFK 476 486 836.9685 39.6 47.6

33 AGAGHSNTLQVSTV 487 500 785.9225 18.46 26.46
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SI Table 6. PRM inclusion list of LC-MS/PRM analysis of the yeast to standard ratio experiment.

# Sequence Start End m/z Start
(RT)

End
(RT)

1 MNFSHGSYEYHK 50 61 490.2513 19.31 24.31
2 GVNLPGTDVDLPALSEK 178 194 1092.1301 40.99 45.99
3 GVNLPGTDVDLPALSEKDKEDLR 178 200 792.9557 36.99 41.99
4 EVLGEQGKDVK 226 236 630.3882 18.9 23.9
5 IENQQGVNNFDEILK 241 255 1110.1074 38.75 43.75
6 GDLGIEIPAPEVLAVQK 265 281 736.4479 43.89 48.89
7 AEVSDVGNAILDGADCVMLSGETAK 313 337 998.8536 45.97 50.97
8 GNYPINAVTTMAETAVIAEQAIAYLPNYDDMR 338 369 1.248.9556 51.5 56.5
9 NCTPKPTSTTETVAASAVAAVFEQK 370 394 828.2118 42.65 47.65

10 GVFPFVFEKEPVSDWTDDVEAR 438 459 757.6505 45.41 50.41
11 LTSLNVVAGSDLR 7 19 525.3141 32.64 37.64
12 LTSLNVVAGSDLRR 7 20 433.2631 26.99 31.99
13 TSIIGTIGPK 21 30 722.9679 27.99 32.99
14 RTSIIGTIGPK 20 30 801.0186 21.12 26.12
15 TNNPETLVALR 31 41 728.9265 24 29
16 TNNPETLVALRK 31 42 907.5564 22.8 27.8
17 KAGLNIVR 42 49 443.6350 15.36 20.36
18 AGLNIVR 43 49 486.3183 15.95 20.95
19 SVIDNAR 62 68 502.2899 7.39 12.39
20 KSEELYPGRPLAIALDTK 69 86 672.9095 32.85 37.85
21 SEELYPGRPLAIALDTK 70 86 1166.1819 35.87 40.87
22 KSEELYPGRPLAIALDTKGPEIR 69 91 648.9904 33.33 38.33
23 SEELYPGRPLAIALDTKGPEIR 70 91 961.8915 35.66 40.66
24 TGTTTNDVDYPIPPNHEMIFTTDDK 92 116 820.9146 34.78 39.78
25 TGTTTNDVDYPIPPNHEMIFTTDDKYAK 92 119 968.7561 33.92 38.92
26 IMYVDYK 125 131 695.4029 30.89 35.89
27 ACDDKIMYVDYK 120 131 1111.6069 29.68 34.68
28 IIYVDDGVLSFQVLEVVDDK 142 161 908.8496 48.68 53.68
29 GVNLPGTDVDLPALSEKDK 178 196 885.8498 37.22 42.22
30 NGVHMVFASFIR 205 216 803.9471 35.14 40.14
31 TANDVLTIR 217 225 616.3707 20.98 25.98
32 EVLGEQGK 226 233 659.3981 15.86 20.86
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33 TANDVLTIREVLGEQGKDVK 217 236 718.9285 36.39 41.39
34 IIVKIENQQGVNNFDEILK 237 255 967.9169 43.53 48.53
35 VTDGVMVAR 256 264 392.8954 17.2 22.2
36 IIVKIENQQGVNNFDEILKVTDGVMVAR 237 264 958.3091 45.52 50.52
37 GDLGIEIPAPEVLAVQKK 265 282 641.9037 40.2 45.2
38 SNLAGKPVICATQMLESMTYNPRPTR 287 312 852.7134 42.06 47.06
39 AIIVLSTSGTTPR 397 409 515.6505 26.61 31.61
40 YRPNCPIILVTR 414 425 582.3466 25.09 30.09
41 GVFPFVFEK 438 446 509.9761 44.17 49.17
42 EPVSDWTDDVEAR 447 459 874.4291 29.73 34.73
43 INFGIEK 460 466 426.9365 30.28 35.28
44 AKEFGILK 467 474 797.0281 26.38 31.38
45 AKEFGILKK 467 475 488.3332 25.34 30.34
46 EFGILKK 469 475 508.0090 26.29 31.29
47 GDTYVSIQGFK 476 486 836.9764 32.02 37.02
48 KGDTYVSIQGFK 475 486 1015.6074 28.43 33.43
49 AGAGHSNTLQVSTV 487 500 524.2886 15.24 20.24
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SI Table 7. Inclusion list of LC-MS/PRM analysis of the replication experiment.
 

# Sequence Start End m/z Start 
(RT)

End
(RT)

1 LTSLNVVAGSDLR 7 19 787.4585 39.64 44.64

2 TSIIGTIGPK 21 30 722.9612 33.54 38.54

3 TNNPETLVALR 31 41 728.9189 29.14 34.14

4 AGLNIVR 43 49 486.3138 18.38 23.38

5 KAGLNIVR 42 49 664.9419 17.39 22.39

6 SVIDNAR 62 68 502.2909 9.1 14.1

7 KSEELYPGRPLAIALDTK 69 86 896.8673 39.67 44.67

8 TGTTTNDVDYPIPPNHEMIFTTDDK 92 116 1094.2080 42.23 47.23

9 IMYVDYK 125 131 695.3965 36.78 41.78

10 IIYVDDGVLSFQVLEVVDDK 142 161 908.8405 70.96 75.96

11 GVNLPGTDVDLPALSEK 178 194 1092.1160 50.12 55.12

12 GVNLPGTDVDLPALSEKDKEDLR 178 200 792.9481 45.18 50.18

13 TANDVLTIR 217 225 411.2446 25.14 30.14

14 EVLGEQGK 226 233 659.3923 18.28 23.28

15 IENQQGVNNFDEILK 241 255 1110.1064 45.35 50.35

16 VTDGVMVAR 256 264 588.8336 20.78 25.78

17 GDLGIEIPAPEVLAVQK 265 281 1104.1521 54.52 59.52

18 SNLAGKPVICATQMLESMTYNPRPTR 287 312 852.7034 51.87 56.87

19 AEVSDVGNAILDGADCVMLSGETAK 313 337 749.3846 64.98 69.98

20 GNYPINAVTTMAETAVIAEQAIAYLPN
YDDMR 338 369 936.9662 74.45 79.45

21 NCTPKPTSTTETVAASAVAAVFEQK 370 394 1103.9351 52.28 57.28

22 AIIVLSTSGTTPR 397 409 772.9642 31.67 36.67

23 YRPNCPIILVTR 414 425 582.3413 29.52 34.52

24 GVFPFVFEKEPVSDWTDDVEAR 438 459 757.6445 62.08 67.08

25 EPVSDWTDDVEAR 447 459 874.4193 35.89 40.89

26 INFGIEK 460 466 639.8949 36.43 41.43

27 AKEFGILK 467 474 797.0205 30.92 35.92

28 GDTYVSIQGFK 476 486 836.9692 39.12 44.12

29 AGAGHSNTLQVSTV 487 500 785.9220 17.5 22.5
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SI Table 8. Inclusion list of LC-MS/PRM analysis of the IMX372 aerobic growth curve 
experiment.

# Sequence Start End m/z Start 
(RT)

End
(RT)

1 LTSLNVVAGSDLR 7 19 787.4594 108.3 118.3

2 LTSLNVVAGSDLRR 7 20 577.3424 97.3 107.3

3 RTSIIGTIGPK 20 30 534.3429 70.9 80.9

4 TSIIGTIGPK 21 30 722.9599 99.9 109.9

5 TNNPETLVALR 31 41 728.9191 86.2 96.2

6 TNNPETLVALRK 31 42 605.3674 83.4 93.4

7 KAGLNIVR 42 49 443.6313 47.1 57.1

8 AGLNIVR 43 49 486.3132 47.4 57.4

9 MNFSHGSYEYHK 50 61 490.2458 45.2 55.2

10 SVIDNAR 62 68 502.2899 16 26

11 KSEELYPGRPLAIALDTK 69 86 672.9028 107.5 117.5

12 SEELYPGRPLAIALDTK 70 86 777.7833 110.9 120.9

13 KSEELYPGRPLAIALDTKGPEIR 69 91 648.9845 107.7 117.7

14 IMYVDYK 125 131 695.3956 105.5 115.5

15 ACDDKIMYVDYK 120 131 741.399 104.5 114.5

16 GVNLPGTDVDLPALSEK 178 194 1092.12 115.7 125.7

17 GVNLPGTDVDLPALSEKDKEDLR 178 200 792.9467 111.6 121.6

18 NGVHMVFASFIR 205 216 536.2957 109.3 119.3

19 TANDVLTIR 217 225 616.3638 70.7 80.7

20 EVLGEQGK 226 233 659.3925 49.6 59.6

21 EVLGEQGKDVK 226 236 630.3834 65.3 75.3

22 IENQQGVNNFDEILK 241 255 1110.11 112.5 122.5

23 VTDGVMVAR 256 264 588.8328 53.4 63.4

24 GDLGIEIPAPEVLAVQK 265 281 1104.158 119 129

25 GDLGIEIPAPEVLAVQKK 265 282 855.5275 114.9 124.9

26 SNLAGKPVICATQMLESMTYNPRPTR 287 312 852.7064 116.5 126.5

27 NCTPKPTSTTETVAASAVAAVFEQK 370 394 1103.937 117.4 127.4

28 AIIVLSTSGTTPR 397 409 515.6449 93 103

29 YRPNCPIILVTR 414 425 582.3406 87.6 97.6

30 GVFPFVFEK 438 446 764.452 120.1 130.1

31 GVFPFVFEKEPVSDWTDDVEAR 438 459 1009.854 123.5 133.5

32 INFGIEK 460 466 639.8939 105 115

33 AKEFGILK 467 474 797.02 91.1 101.1
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34 AKEFGILKK 467 475 488.3284 86.1 96.1

35 KGDTYVSIQGFK 475 486 677.4014 102.4 112.4

36 GDTYVSIQGFK 476 486 836.969 107.6 117.6

37 AGAGHSNTLQVSTV 487 500 785.9233 47.9 57.9
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Outlook  

Mass spectrometry-based cellular proteomics has become routine in many fields of research 
[1–4]. However, the application to industrial microbes is still in its infancy. For example, 
albeit the yeast S. cerevisiae has been subjected to many proteomic studies over the past 
decades, the regulation of its complex metabolism and its proteome dynamics under different 
substrate conditions has not been fully explored to date. Additionally, many features (e.g.
protein modifications) have been investigated in isolation, or under poorly controlled 
conditions. However, predictive models and engineering efforts, e.g. to improve industrial 
strains require (quantitative) large-scale data established under highly controlled conditions. 
The research presented in this thesis described advanced protocols for the large-scale study 
of the yeast proteome. Furthermore, proteome dynamics data and methods to quantify protein 
modifications have been established, that support metabolic engineering efforts in order to 
advance yeast as cell factory and eukaryotic model organism.

In cellular proteomics, the conclusion is drawn from the identified spectra. This however 
leaves often large volumes of sequencing spectra uninterpreted. A fraction of these 
unidentified spectra derives from peptides that carry unexpected modifications. Chapter 2
highlighted the importance of interpreting these signals, e.g. in order to provide a better 
understanding of post-translational modifications, which are potential metabolic regulators. 
For this, the recently advanced unrestricted (open) database searching tools provide a 
promising solution. However, currently, post-translational modifications are still poorly 
covered in cellular proteomics studies.

Additionally, when studying protein modifications or performing quantitative proteomics 
experiments, an effective, but also mild sample preparation protocol is required. Therefore, 
Chapter 3 described a study where a matrix of different sample preparation protocols was 
investigated. Their performance was evaluated using a combination of orthogonal search 
algorithm, including open database searching to identify modifications. The majority of the 
unidentified sequencing spectra were predominantly of low-quality, which lack sufficient 
peptide fragment coverage for a confident identification. This study established a large 
resource of protocols and associated mass spectrometric raw data for future studies. 
Nevertheless, next generation algorithms have been developed only recently to increase 
spectra identification rates. For example, “ionbot” is a new search engine that employs 
machine learning to interpret complex peptide fragmentation spectra, which significantly 
increases the peptide identification rate [418]. Sample preparation is still expected to remain 
a major contributor to data variation and poor comparability between proteomics experiments 
[177]. Recently, more specialized protocols, such as S-trap and ultrasonic filter aided sample 
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preparation (FASP) digestion demonstrated an excellent proteome coverage at reduced 
processing times [317, 318]. Automated methods, such as immobilized enzymatic reactor 
(IMER) methods, are even more promising as these are directly coupled to LC-MS/MS and
thereby enable automated digestion and online MS/MS analysis [419].

In addition to changes in protein modifications, protein abundance changes can be a response 
to the changing environment conditions (e.g. substrates, or substrate levels). In Chapter 4,
S. cerevisiae was subjected to altering substrate (glucose) levels in aerobic and anaerobic 
batch cultures. The objective of this study was to capture the proteome dynamics in response 
to oxygen availability under dynamic glucose conditions. Interestingly, anaerobic conditions 
showed substantially less protein abundance changes. This supports the notion that 
anaerobically growing cells lack the time and resources needed to adapt to the change to 
carbon-depleted environment. However, the viability of the cells should be measured to 
support this hypothesis. In addition, aerobic stationary phase yeast have the ability to restart 
growth once limiting nutrients become available again [420]. Such experiments could 
demonstrate the readiness of yeast cells to re-enter the growth cycle after exposure to growth-
arresting conditions. Stationary phase yeast cultures can function as model to explain the role 
of respiration and reactive oxygen species in aging, longevity and apoptosis, in particular
when comparing aerobic to anaerobic conditions. Moreover, industrial-scale processes 
favour anaerobic environments for practical and financial reasons. Therefore, the established
large-scale proteome data provide a valuable resource for the development of predictive 
models. In this large-scale set-up, global modification profiles of S. cerevisiae could be 
monitored over time in the (an)aerobic batch culture set-up used in Chapter 4, as previously 
it had been indicated that acetylation occurred more frequently in growth-arrested cells 
compared to exponentially growing yeast cells [15]. Certain modifications may be sensitive 
to oxygen availability and this could be explored with open search algorithms.

Quantitative proteome data were captured for a large fraction of the yeast protein biomass. 
Still, a deeper proteome coverage could be achieved by employing additional peptide 
fractionation, e.g. by using high pH reversed-phase fractionation, or strong cation exchange 
chromatography. However, in Chapter 4, 54 proteomes were quantified, and additional 
fractionation would have tremendously increased the data acquisition time, by at the same 
time only little additional insights regarding main metabolic routes. Additionally, studying 
post-translational modifications in the yeast central metabolic pathways, such as glycolysis, 
requires simplified strains. Therefore, Chapter 4 included a minimal glycolysis yeast strain 
where the minor glycolytic paralogues were eliminated. Surprisingly, only minor protein-
level differences were observed between the wild-type and the minimal glycolysis strain 
under different oxygen and glucose levels. However, more subtle changes could likely be 
resolved by employing more accurate methods, or additional statistical (clustering) 
approaches [324]. Nevertheless, the lack of profound proteome response (under the tested 
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conditions) qualifies the minimal glycolysis strain as simplified model for studying post-
translational modifications in yeast glycolysis.

The potential of post-translational modifications, such as phosphorylation, to regulate
enzyme activity has been many times demonstrated over the past decades. However, the 
spectrum of all possible modifications and their contribution to the regulation of the 
metabolic flux is only poorly understood, in particular for microbes. Moreover, the
knowledge about the possible protein modifications in yeast has been curated from many 
different studies, with often very different experimental setups, culturing conditions, and 
analysis methods. Furthermore, the analysis of single types of modifications became standard 
practice, while the global analysis (and quantification) of all possible modifications remains 
a challenge. Therefore, Chapter 5 provides proof of concept for a method that allows to 
quantify the global spectrum of protein modifications for metabolic enzymes directly from 
complex cell lysates. Thereby, a protein standard was produced by cell free synthesis, which 
aimed to quantify the unmodified peptide fraction across the protein backbone of metabolic 
enzymes. The standard furthermore acted as a ‘carrier proteome’ to enable a reproducible 
and sensitive quantification. The method was exemplified for the glycolytic enzyme Pyk1, 
across different phases of an aerobic growth. Interestingly, several regions of the protein 
showed changes in the degree of protein modification. Peptides were found increasingly 
modified in the stationary growth phase, in which proteins are susceptible to aging processes 
such as oxidation by reactive oxygen species, that may severely influence the stoichiometry 
of unmodified peptide fraction [239]. Nevertheless, the accuracy of the peptide ratio 
determination should be further verified using MS3 quantification, where the additional 
isolation and fragmentation eliminates interference from unrelated peptides [95]. Moreover,
certain peptide sequences may be more sensitive to oxygen, pH and temperature conditions,
and small differences in sample handling could bias the outcome (e.g. via increased 
oxidation, or deamidation products). A more complete proteome sequence coverage can also 
be obtained by employing the tested multi-protease approach. Additionally, the modification 
landscape should be also monitored under highly dynamic conditions, such as substrate 
perturbations, as post-translational modifications can regulate on a very short time-scale.
Comparison to steady-state conditions could point towards modifications with regulatory 
functions. Finally, knowledge on the actually occurring modifications (and modification 
sites) will help to understand protein complex formation and enzyme–substrate interactions. 
This method is thus expected to identify effective intervention points and targets for 
metabolic engineering efforts.

Over the past decade, several other advanced proteomics approaches have been developed, 
which are expected to bring new insights into the field of microbial proteomics. For example, 
data-independent methods, where all peptides within a pre-selected m/z range are subjected 
to fragmentation, have been continuously improved over the past years [49]. This enables 
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highly reproducible and rapid quantification of large numbers of peptides across large 
numbers of experiments. Furthermore, advanced algorithms allow now to employ 
conventional database searching algorithm for the analyse of these complex fragmentation 
spectra [421]. Ion mobility (IM) is another technology that is increasingly employed in large-
scale cellular proteomics experiments. IM enables additional peptide separation based on size 
and shape, more particularly, based on the peptide’s collisional cross section. Ion mobility 
mass spectrometry already demonstrated improved selectivity, quantification accuracy and 
proteome coverage [36]. The application of “field asymmetric ion mobility spectrometry” 
(FAIMS) allowed the separation of peptides which differed only in their peptide modification 
site [422]. In another ion mobility technique, called trapped ion mobility that is employed in 
the timsTOF Pro mass spectrometer (Bruker), the ions are additionally trapped at different 
positions in an ion tunnel device before separation in the following mass analyser [34–36].
TIMS is also the foundation of the parallel accumulation-serial fragmentation (PASEF) 
technology, in which MS/MS precursor selection is synchronized with TIMS separation [37].
This process increases sequencing speed by 10-fold and consequently proteome coverage 
without loss of sensitivity. Shorter measurement times can be also realised by super high 
resolution mass spectrometers such as the scimaX “magnetic resonance mass spectrometer” 
(MRMS). This instrument has a mass resolution exceeding twenty million. In some 
applications the use of flow injection analysis enables extreme throughput, by eliminating 
the time-consuming chromatographic separation step. Albeit this has been hardly employed 
for cellular proteomics, such instruments enable the advanced chemical interpretation of 
(unexpected) post-translational modifications. Furthermore, quantitative proteomics using 
isobaric reagents can profit from real-time search algorithms. Those identify fragment spectra 
within milliseconds (after measurement) and only trigger the (time consuming) acquisition 
of quantitative spectra upon confident peptide identification [423, 424]. In comparison to 
standard quantitative workflows, the acquisition time was reduced by half, while obtaining 
the same proteomic depth.

Current mass spectrometry-based proteomics approaches require relatively large amounts of 
proteins and are time consuming (several hours per measurement). Consequently, proteins 
are extracted from many cells. This provides information only from the population average. 
However, cell to cell heterogeneity, and possible (metabolic) sub-populations are not 
resolved. Recent advancements in single-cell proteomics demonstrated the quantitative 
analysis of more than 1000 proteins from single (mammalian) cells [425]. However, single-
cell proteomics is still in its infancy. Sample preparation and sensitivity are still limiting 
factors for the application to microbial cells [426]. Furthermore, current mass spectrometry-
based approaches also show limitations towards detecting and quantifying proteoform 
heterogeneity. For example, the combination of (different) post-translational modifications
on the same protein may be crucial for certain functions (protein-protein interactions). These 
questions are very challenging, or even impossible to address by current mass spectrometry-
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based proteomics approaches. Interestingly, promising next generation proteomics 
approaches are currently under development. For example, single-molecule Fluorescence 
resonance energy transfer (FRET)-based protein fingerprinting performs tagging of specific 
amino acids with fluorescent reporters that are subsequently detected optically [427, 428].
Nanopore sequencing is another method where single, full-sized proteins are analysed. 
Thereby, the protein chain is driven through a nanopore by an external electric field or the 
pull of molecular motor and the amino acids could be sequenced by the change in current 
[429]. Promising detection of post-translational modifications has already been shown with 
such setups [430]. These techniques are revolutionary but are currently still in early stages of 
development.
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