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A R T I C L E  I N F O   
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A B S T R A C T   

This paper presents a convenient and efficient method to predict the mechanical solutions of a laminated Liquid 
Crystal Elastomers (LCEs) system subjected to combined thermo-mechanical load, based on a back propagation 
(BP) neural network which is trained by machine learning from a database established by analytical solutions. 
Firstly, the general solutions of temperature, displacement, and stress of any single layer in the LCEs system are 
obtained by solving the two-dimensional (2D) governing equations of both heat conduction and thermoelasticity. 
Then, the unknown coefficients in above general solutions are determined by a transfer-matrix method based on 
the continuity condition at the interface of adjacent layers and the combined thermo-mechanical loads condition 
at the surface of the LCEs system. The formula derivation and calculator program are verified through conver-
gence studies and comparisons with FEM results. Finally, a database with displacements of LCEs system in a 
temperature field subjected to 561 sets of mechanical loads is established based on the presented analytical 
model. The BP neural network based on above database is further applied to establish the relationship between 
deformation and mechanical load to predict the elastic deformation of the LCEs system in a temperature field 
subjected to a mechanical load. Moreover, the BP network can also inverse the coefficients of mechanical load 
which induces the specific deformation in a temperature field. The numerical examples show that: (1) The 
deformation of a laminated LCEs system due to thermal load is limited within the range of human temperature 
changes from 36 ◦C to 40 ◦C. (2) The thickness of the LCE is a sensitive parameter on the deformation at the 
bottom surface of the system. (3) The accuracy of predicted displacements induced by the thermo-mechanical 
load and the inversed mechanical load based on deformation of the LCEs system in a temperature field using 
BP neural network reaches 99.6% and 98.5% respectively.   

1. Introduction 

Heart failure and stroke associated with atrial fibrillation are the 
most terrible and common diseases. Mechanical atrial contractile assist 
devices can effectively reduce the mortality and incidence rate of pa-
tients. Therefore, using intelligent materials to support atrial contractile 
function is put forward. Liquid Crystal Elastomer is one of smart 
biomedical materials which is usually called artificial muscles, since it 
can respond reversibly to external stimulation such as temperature and 
result in unique movement or tension (Gennes et al., 1997). Many re-
searches (Thomsen et al., 2001; Li et al., 2004) show that LCEs will 
become contraction with the increase of temperature. It means that LCEs 

have negative thermal expansion. P. D. Gennes (1997) found that 
through the change of temperature, the LCE is stimulated to produce 
deformation, which is very similar to the work of human muscles. 
However, LCEs system is generally laminated with other material layers 
to meet some special functional requirements in architecture (Lu et al., 
2019; Shenoy et al., 2002). Therefore, it’s a trend to develop new gen-
eration of cardiac systolic assist device consisting of laminated LCEs 
with flexible substrate material and attached to the surface of the heart 
to support atrial contractile function. For such atrial contractile assist 
devices, the relationship between a continuously distributed mechanical 
load and the deformation at the bottom surface of a laminated LCEs 
system in a temperature field is a significant mechanical performance 
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worth paying attention to. 
The LCEs system can be modelled as a simply supported laminated 

beam subjected to combined thermo-mechanical load. Many researchers 
have made great efforts in the analysis of laminated beams based on 
various theories, such as the classical beam theory (CBT) (Sharma and 
Kaur, 2015), first-order shear deformation theory (FOSDT) (Asadi et al., 
2014) and higher-order shear deformation theory (HOSDT) (Thai and 
Vo, 2012; Wu and Zhao, 2012). The CBT based on Euler-Bernoulli hy-
pothesis is popular in engineering due to its simplicity. As the influence 
of transverse shear deformation is ignored, the calculation accuracy of 
thick beam in the classical theory is low (Ren et al., 2021). FOSDT is 
proposed by assuming the through-thickness distribution of transverse 
shear strain to be constant and hence has been widely applied into 
thermo-mechanical problems. Timoshenko (1925) pioneered FOSDT to 
solved the bending of bi-metal strip under uniform thermal loads. 
However, the assumed constant transverse shear strain component is 
considered with their respectively shear correction factor. This value 
depends on the material coefficients, geometry, boundary conditions 
and loading conditions, which is difficult to calculate. Therefore, HOSDT 
is further introduced to avoid the shear correction factors. It is devel-
oped based on the assumption of a higher-order variation of axial and 
transverse displacements through the depth of the beam. Kapuria et al. 
(2003) used a new high-order zigzag line theory to analyse the thermal 
stress of composite beams under thermal load. In addition, Carrera 
Unified Formulation (CUF) is a more beneficial alternative in the anal-
ysis of laminated beams, plates, and shells (Carrera and Giunta, 2010; 
Carrera, 2001; Carrera et al., 2016a). CUF considers the transverse 
deflection as a function with Taylor’s expansions of N-order, which is a 
major advantage because the effect of transverse normal strain can be 
considered in the analysis. Carrera and his collaborators (Giunta et al., 
2013; Carrera et al., 2016b) have successfully proposed a class of the 1D 
finite element-CUF models for static uncoupled thermoelastic analysis of 
some complex structures with non-uniform cross-section. This method 
has the advantages of high precision in the bending frequency compu-
tation, high reliability in predicting complex phenomena, and signifi-
cant capability in reducing the computational cost. 

Comparing with the results based on CBT, FOSDT, and HOSDT, the 
results based on the elasticity theory are more accurate since no hy-
potheses introduced in the analysis (Eslami et al., 2013; Xu and Zhou, 
2009, 2012). The analytical solution based on the elasticity theory not 
only ensures the calculation accuracy, but also has a higher calculation 
efficiency than finite element numerical method. Eslami et al. (2013) 
reviewed the thermoelastic theory and presented its application in some 
practical problem. Xu et al. (Xu and Zhou, 2009, 2012) studied the 
thermoelastic solutions of simply supported beams and plates with 
variable thickness under mechanical and thermal loads. The above re-
searches used the thermoelastic theory to present the analytical solution 
of a single-layer structure and laid theoretical foundation for the anal-
ysis of multi-layer laminated structures. Blanc M et al. (Blanc and 
Touratier, 2007) proposed an analytical model of heat conduction for 
multi-layer structures based on the equivalent single-layer method, 
which can satisfy both the continuity of temperature and normal heat 
flux at the interface. Qian et al., 2015a, 2015b presented the analytical 
solutions of temperature, displacement and stress of simply supported 
composite beams and plates under thermal load based on the 2D ther-
moelastic theory. Based on the similar 2D thermoelastic theory, Zhang 
et al. (2019) analysed the influence of temperature field on the me-
chanical properties of a laminated beam made of 
temperature-dependent materials. 

It should be noted that above researches presented different methods 
to obtain the mechanical solutions of laminated beams subjecting to 
different loads. However, it is of practical significance to present a 
simple calculation scheme that can establish the relationship between 
the deformation and the load of the multi-layer laminated beams. And 
then, engineers can get rid of the original cumbersome calculation and 
predict the mechanical solutions of a laminated system more 

conveniently and quickly. As a method of machine learning, the Artifi-
cial Neural Network (ANN) is a mathematical computing system 
inspired by the biological neural network in which try to constitute 
human brain for learning and analysis to achieve self-optimization 
(Mitchell, 2003). It can be used to classify, predict, and cluster data. 
ANN can acquire, represent, and compute a mapping from one multi-
variate space of information to another. Back propagation neural 
network is one of the most common applications of ANN to predict the 
certain outputs based on the training of input parameters (Hagan et al., 
2002). The ANN prediction method is successfully applied to various 
fields of engineering (Mitchell, 2003; Hagan et al., 2002; Balla et al., 
2021; Do et al., 2020; Bagheripoor and Bisadi, 2013; Sattari et al., 2013). 
Pidaparti and Palakal (2015) developed a BP neural network to pre-
dicting the stress-strain behaviour of graphite-epoxy laminates based on 
a training experimental data set consisting of 959 points. Teti et al. (Teti 
and Caprino, 1994) used an artificial neural network to accurately 
predict the residual tensile strength of composite laminates containing 
artificially implanted holes based on the experimental results. Ziane 
et al. (2015) used an artificial neural network to accurately predict the 
fatigue strength of composite laminates with different fiber orientations. 
The above researches indicate that ANN have been used in modelling the 
mechanical behaviour of composite materials. However, few studies 
have applied neural network to the study and prediction of mechanical 
properties of laminated beams subjected to combined 
thermo-mechanical loads. 

In this paper, a mechanical atrial contractile assist devices made of 
layered liquid crystal elastomer is modelled as a simply supported 
laminated beams. An analytical solution based on two-dimensional 
thermoelastic theory of simply supported laminated LCEs system sub-
jected to thermo-mechanical loads is presented in this paper to establish 
a database that used to train BP neural network models for the predic-
tion of mechanical solutions. The convergence studies and comparisons 
with FEM results are presented to confirm the validity of the formula 
derivation and calculator program of the analytical solution. Some 
parametric studies are presented by using analytical model to analyse 
the influence of the thermo-mechanical loads, and the thickness of LCE 
on the mechanical properties of the LCEs system. The BP artificial neural 
network established from learning the above database is further applied 
to predict the elastic deformation which induced by mechanical load in 
the specific temperature field. Moreover, the BP method based on the 
database can also inverse the coefficients of mechanical load which in-
duces the deformation of the LCEs system in the specific temperature 
field. The mechanical solutions of a laminated LCEs system obtained 
from the trained BP neural network models are also compared with 
original results to evaluate the predicting accuracy. 

2. Theoretical model 

2.1. Analytical model for a simply supported multi-layered LCEs system 

2.1.1. Basic equations and general solutions of the i-th layer in system 
A laminated LCEs system with length L and thickness H is simplified 

as a simply supported two-dimensional beam model with p layers as 
shown in Fig. 1(a). Since the LCEs system in human body may subject to 
a fever, the temperature within the beam increases and reaches stability. 
Finally, the temperatures on the top and bottom surfaces of the beam are 
stable at Tt (x) and Tb (x) along the beam. Meanwhile, the bottom sur-
face of the beam is subjected to a continuously distributed mechanical 
load q(x). To conveniently analyse the mechanical performance of the i- 
th layer (i = 1, 2, …p) with uniform thickness hi of the beam, a local 
Cartesian coordinate system as shown in Fig. 1(b) is built with the axes 
along the length and thickness denoted by x and yi, respectively. The 
material properties of the i-th layer are described by the elastic modulus 
Ei, the Poisson ratio μi, the thermal expansion coefficient αi and the 
thermal conductivity ki. 

Consider an arbitrary i-th layer in the local Cartesian coordinate 
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system x-yi, the 2D heat conduction equation is given as 

∂2Ti(x, yi)

∂x2 +
∂2Ti(x, yi)

∂y2
i

= 0 (1)  

Where Ti (x,yi) is the temperature distribution field of the i-th layer. 
The general solution of Eq. (1) can be approximately expanded in 

Fourier series with finite terms as 

Ti(x, yi)=
∑∞

m=1
tmi(yi)sin(αmx) (2)  

Where αm = mπ/L. Combined with Eq. (2) and Eq. (1), Ti (x,yi) can be 

expressed as 

Ti(x, yi)=
∑∞

m=1
[Emi cosh(αmyi)+Fmi sinh(αmyi)]sin(αmx) (3) 

Emi and Fmi are unknown coefficients depending on the temperature 
conditions at the upper and lower surfaces of the i-th layer. 

The two-dimensional thermoelastic constitutive equations for the i- 
th beam layer are given as 

σxi(x, yi) =
Ei

1 − μ2
i

(
∂ui(x, yi)

∂x
+ μi

∂vi(x, yi)

∂yi

)

−
EiαiTi(x, yi)

1 − μi
,

σyi(x, yi) =
Ei

1 − μ2
i

(
∂vi(x, yi)

∂yi
+ μi

∂ui(x, yi)

∂x

)

−
EiαiTi(x, yi)

1 − μi
,

τxyi(x, yi) =
Ei

2(1 + μi)

(
∂vi(x, yi)

∂x
+

∂ui(x, yi)

∂yi

)

(4)  

Where σxi(x, yi) and σyi(x, yi) are the normal stresses of the i-th layer 
respectively; τxyi(x, yi) is the shear stress. ui(x, yi) and vi(x, yi) are the 
displacements in the x and y directions respectively. In the absence of 
body forces, the stress components of the i-th layer should satisfy the 
following equilibrium equations 

∂σxi(x, yi)

∂x
+

∂τxyi(x, yi)

∂yi
= 0,

∂σyi(x, yi)

∂yi
+

∂τxyi(x, yi)

∂x
= 0 (5) 

To satisfy the following boundary condition of a simply supported 
beam 

σxi(0, yi)= σxi(L, yi) = 0, vi(0, yi) = vi(L, yi) = 0 (6)  

the general solutions of displacement fields for the i-th layer can be 
assumed as 

ui(x, yi)=
∑∞

m=1
Umi(yi)cos(αmx), vi(x, yi) =

∑∞

m=1
Vmi(yi)sin(αmx) (7) 

By substituting Eq. (7) into Eqs. (4) and (5), two differential equa-
tions concerning Umi(yi) and Vmi(yi) can be derived. Then, the 
displacement fields and stress fields of the i-th layer can be figured out 
and rewritten in a matrix form as follows   

The unknown coefficients Ami, Bmi, Cmi and Dmi in the general solu-
tions of Eq. (8) will be obtained based on the two following boundary 
conditions. Firstly, the continuity of displacements and stresses between 
adjacent layers of laminated beams. Secondly, the force boundary con-
ditions at the top and bottom surfaces of the beam. Similarly, the un-
known coefficients Emi and Fmi will be obtained based on the 
temperature continuity of adjacent layers and the temperature boundary 
condition at the top and bottom surfaces of the laminated beam. The 
expressions of the elements in matrix TFmi and matrix TTmi are shown in 
Appendix. 

2.1.2. Determine the coefficients of temperature field 
According to Eq. (2), the temperature and heat flux in the beam can 

be expressed as: 
⎡

⎢
⎣

Ti(x, yi)

ki
∂Ti(x, yi)

∂yi

⎤

⎥
⎦=

∑∞

m=1
Kmi(yi)sin(αmx) (9) 

From Eq. (3), Kmi(yi) can be expressed as: 

Kmi(yi)=Cmi(yi)[Emi Fmi ]
T (10) 

in which Cmi(yi) =

[
cosh(αmyi) sinh(αmyi)

kiαm sinh(αmyi) kiαm cosh(αmyi)

]

. 

Then, the relationship of the temperature and heat flux on the upper 
and lower surfaces of the i-th layer can be deduced from Eq. (10) as 
Kmi(hi) = [Cmi(hi)C− 1

mi (0)]Kmi(0). Following the continuity of tempera-
ture and heat flux between the upper surface of the i-th layer and the 
lower surface of the i+1-th layer of the laminated beam, i. e. Km(i+1) (0) 
= Kmi (hi), the relationship between the temperature and heat flux of the 

1
2

x

y

p
...
i
... i

yi

x
hi

L
(a) (b)

H

Tb(x)

Tt(x)

q(x)

Fig. 1. Two-dimensional multi-layer simply supported beam under combined thermo-mechanical load.  

⎡

⎢
⎢
⎢
⎣

ui(x, yi)
vi(x, yi)

σxi(x, yi)
σyi(x, yi)

τxyi(x, yi)

⎤

⎥
⎥
⎥
⎦
=

∑∞

m=1

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

TF11
mi TF12

mi TF13
mi TF14

mi

TF21
mi TF22

mi TF23
mi TF24

mi

TF31
mi TF32

mi TF33
mi TF34

mi

TF41
mi TF42

mi TF43
mi TF44

mi

TF51
mi TF52

mi TF53
mi TF54

mi

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎣

Ami
Bmi
Cmi
Dmi

⎤

⎥
⎥
⎦+

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

TT11
mi TT12

mi

TT21
mi TT22

mi

TT31
mi TT32

mi

TT41
mi TT42

mi

TT51
mi TT52

mi

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

[
Emi
Fmi

]

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

×

⎡

⎢
⎢
⎢
⎣

cos(αmx)
sin(αmx)
sin(αmx)
sin(αmx)
cos(αmx)

⎤

⎥
⎥
⎥
⎦

(8)   
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q-th layer (q = 1,2, …p) and the first layer can be obtained: 

[Emq Fmq ]
T
=

{

C− 1
mq

(
hq
)
[
∏1

i=q
Cmi(hi)C− 1

mi (0)

]}

Cm1(0)[Em1 Fm1 ]
T (11) 

The temperature boundary condition of the top and bottom surfaces 
of the laminated beam is: 

T1(x, 0)=Tb(x),Tp
(
x, hp

)
= Tt(x) (12) 

Substituting Eq. (3) into Eq. (12) and using Fourier series, Eq. (12) 
can be expressed in the following form: 
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Em1 =
2
L

∫ L

0
Tb(x)sin(αmx)dx

cosh
(
αmhp

)
Emp + sinh

(
αmhp

)
Fmp =

2
L

∫ L

0
Tt(x)sin(αmx)dx

(13) 

Combined with Eq. (11) and Eq. (13) in the case of q = p, Em1, Fm1, 
Emp and Fmp can be solved. Then submitting Em1, Fm1 into Eq. (11), the 
unknown coefficients Emi and Fmi in arbitrary layer can be obtained. 
Finally, the temperature distribution field is obtained by substituting 
these coefficients Emi and Fmi back into Eq. (3). 

2.1.3. Determine the coefficients of displacement and stress fields 
Eq. (8) can be rewritten as: 

⎡

⎢
⎢
⎣

ui(x, yi)

vi(x, yi)

σyi(x, yi)

τxyi(x, yi)

⎤

⎥
⎥
⎦=

∑∞

m=1
Wmi(yi) ×

⎡

⎢
⎢
⎣

cos(αmx)
sin(αmx)
sin(αmx)
cos(αmx)

⎤

⎥
⎥
⎦ (14)  

Where 

Wmi(yi)=

⎡

⎢
⎢
⎣

Umi(yi)

Vmi(yi)

Ymi(yi)

Zmi(yi)

⎤

⎥
⎥
⎦ = Dmi(yi)

⎡

⎢
⎢
⎣

Ami
Bmi
Cmi
Dmi

⎤

⎥
⎥
⎦+ Gmi(yi) (15) 

in which Dmi(yi) =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

TF11
mi TF12

mi TF13
mi TF14

mi

TF21
mi TF22

mi TF23
mi TF24

mi

TF41
mi TF42

mi TF43
mi TF44

mi

TF51
mi TF52

mi TF53
mi TF54

mi

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, Gmi(yi) =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

TT11
mi TT12

mi

TT21
mi TT22

mi

TT41
mi TT42

mi

TT51
mi TT52

mi

⎤

⎥
⎥
⎥
⎥
⎥
⎦

[
Emi
Fmi

]

. 

It should be noticed that Gmi(yi) here is a known functional matrix 
since the coefficients Emi, Fmi have be obtained in section 2.1.2. Ac-
cording to Eq. (15), the relationship between the displacements and 
stresses of the upper and lower surfaces of the i-th layer has 

Wmi(hi)=Dmi(hi)D− 1
mi (0)[Wmi(0) − Gmi(0)] + Gmi(hi) (16) 

Considering the continuity of displacements and stresses between 
adjacent layers of laminated beams, the displacement and stress on the 
upper surface of the i-th layer beam must be equal to these on the lower 
surface of the (i+1)-th layer, i.e. Wm(i+1) (0) = Wmi (hi). Based on the 
transfer matrix method, the relationships of the displacement and stress 
between the upper surface of the q-th layer (q = 1,2, …p) and the lower 
surface of the first layer can be obtained as: 

Wmq
(
hq
)
=

[
U11

m U12
m

U21
m U22

m

]

Wm1(0) +
[

S1
m S2

m S3
m S4

m

]T (17)  

Where 

[
U11

m U12
m

U21
m U22

m

]

=
∏1

i=q
Dmi(hi)D− 1

mi (0)

A mechanical load is applied to the bottom surface of the laminated 
beam, and the boundary conditions of the top and bottom surfaces of the 
beam are 

σy1(x, 0)= q(x), τxy1(x, 0) = 0, σyp
(
x, hp

)
= 0, τxyp

(
x, hp

)
= 0 (18) 

Using Fourier series, the mechanical load q(x) can be expressed in the 
following form: 

q(x)=
∑∞

m=1
qm sin(αmx) (19)  

with qm = 2
L

∫L

0

q(x)sin(αmx)dx. 

Substituting Eqs. (18) and (19) into Eq. (17), Eq. (17) can be divided 
into 2 s-order matrix equations as follows: 

[
0
0

]

=U21
m

[
Um1(0)
Vm1(0)

]

+ U22
m

⎡

⎢
⎢
⎢
⎣

2
L

∫L

0

q(x)sin(αmx)dx

0

⎤

⎥
⎥
⎥
⎦
+

[
S3

m

S4
m

]

(20)  

[
Ump

(
hp
)

Vmp
(
hp
)

]

=U11
m

[
Um1(0)
Vm1(0)

]

+ U22
m

⎡

⎢
⎢
⎢
⎣

2
L

∫L

0

q(x)sin(αmx)dx

0

⎤

⎥
⎥
⎥
⎦
+

[
S1

m

S2
m

]

(21) 

Um1(0) and Vm1(0) can be obtained from the above equations. Then 
the unknown coefficients Ami, Bmi, Cmi and Dmi can be further obtained by 
submitting Um1(0) and Vm1(0) into the following equation which is 
combined by Eqs. (17) and (15): 

[
S1

m S2
m S3

m S4
m

]T
= −

∑q

j=1

{
∏j

i=q

[
Dmi(hi)D− 1

mi (0)
]
}

Gmj(0)+
∑q

j=2

{
∏j

i=q

[
Dmi(hi)D− 1

mi (0)
]
}

Gm(j− 1)
(
hj− 1

)
+ Gmq

(
hq
)
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⎡

⎢
⎢
⎣

Ami
Bmi
Cmi
Dmi

⎤

⎥
⎥
⎦=D− 1

mi (hi)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
U11

m U12
m

U21
m U22

m

]

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Um1(0)

Vm1(0)

2
L

∫L

0

q(x)sin(αmx)dx

0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+

⎡

⎢
⎢
⎢
⎢
⎢
⎣

S1
m

S2
m

S3
m

S4
m

⎤

⎥
⎥
⎥
⎥
⎥
⎦

− Gmi(hi)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(22) 

Finally, substituting the coefficients back into Eq. (8), any unknown 
displacements and stresses of the system can be solved. 

2.2. BP neural network prediction methods 

The relationship between the deformation and the surface mechan-
ical load at the bottom surface of LCEs system in a temperature field is a 
significant mechanical performance for the evaluation of an atrial con-
tractile assist devices. The above presented analytical model provides an 
efficient method to calculate the deformation of the LCEs system in the 
case of a given combined thermo-mechanical load. However, the surface 
mechanical load cannot be inversed by a specific deformation in a 
temperature field according to the above analytical method. The artifi-
cial neural network, which is composed of several nodes connected to 
form an operation model, can imitate the human brain to handle a lot of 
disperse and parallel distributed data. Artificial neural network can 
obtain an unknown relationship between input and output information 
through training and learning of the database, and then complete the 
output of predicted data through the given input. The larger the data-
base, the more accurate the output result. On the basis of this fact, a back 
propagation (BP) neural network (Liu et al., 2021) is introduced and 
applied to establish the relationship between deformation and me-
chanical load of the LCEs system in a temperature field. 

BP neural network is a kind of artificial adaptive neural network with 
a multi-layer learning network structure and a way of supervised 
learning called back propagation algorithm. BP neural network belongs 
to static neural network with forward feedback. The output from BP 
networks only depends on the current input. The back propagation al-
gorithm can minimize the mean square error between the predicted 
results and the expected ones by adjusting the weights. The prediction 

process using BP neural network is as follows: Firstly, the input infor-
mation is propagated forward through the hidden layer to generate the 
output information. If there is an error between the output results and 
the expected results, the error will be propagated back. The error can be 
reduced by adjusting the weight and threshold based on the reverse 
information. After repeated learning and training, the weight and 
threshold corresponding to the minimum error are determined. Finally, 
the obtained weights are used to perform the output prediction of the 
new input data set. 

A following polynomial function is presented to describe a continu-
ously distributed symmetric mechanical load applied on the bottom 
surface of the LCEs system to establish the training database. With the 
increase of expansion order n, the function q(x) can simulate different 
continuously distributed symmetric mechanical loads. 

q(x)=
∑∞

n=1
an(x − L/2)2n− 2 (23)  

Where an (n = 1, 2, 3, …) are the coefficients of the surface mechanical 
load. So the database used for training the BP artificial neural network 
can be established by selecting different expansion order n and different 
coefficients an of q(x) to calculate the displacements of several points at 
the bottom surface of the laminated LCEs system in a temperature field 
based on the present analytical model. 

As a machine learning method, the BP neural network consists of an 
input layer, a hidden layer and an output layer as shown in Fig. 2. The 
following equation is used to determine the number of hidden layers of 
the neural network. 

N =
̅̅̅̅̅̅̅̅̅̅̅̅
O + I

√
+ J (24)  

Where N, O and I are the number of hidden layers, output layers and 
input layers respectively. J is a constant in the range of 1 to 10 for 

Fig. 2. The structure of the BP neural network: (a) predict the deformation based on the mechanical load; (b) inverse the mechanical load based on the deformation.  

Fig. 3. The triple-layer LCEs system under combined thermo-mechanical load.  
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adjustment. 
For the purpose of predicting the vertical displacements at the bot-

tom surface of LCEs system which is induced by a specific mechanical 
load in temperature field, the coefficients an of the mechanical load in 
the database are the input information while the vertical displacements 
of the corresponding position are the output information, as shown in 
the Fig. 2(a). On the other hand, for the purpose of inversing the me-
chanical load which induces a specific elastic deformation of the LCEs 
system in temperature field, the vertical displacements at the corre-
sponding position in the database are the input information while the 
coefficients an of the mechanical load in the database are the output 
information, as shown in the Fig. 2(b). 

3. Results and discussion 

3.1. Convergence and comparison studies 

An LCEs system consists of two side LCE layers and a flexible sub-
strate layer in middle as shown in Fig. 3 is considered in the following 
convergence and comparison studies to verify the accuracy and cor-
rectness of the present analytical model. The length of the structure is L 
= 2 cm. The thickness of each layer is h1 = h2 = h3 = 10 μm, the Young’s 
modulus are E1 = E3 = 6 MPa, E2 = 4 × 103 MPa, and the Poisson ratio 
are μ1 = μ3 = 0.499, μ2 = 0.34. The coefficients of thermal expansion are 
α1 = α3 = －1.5 × 10-4 ◦C -1, and α2 = 2.5 × 10-5 ◦C -1. The thermal 
conductivities are k1 = k3 = 0.22 W/(m⋅◦C), k2 = 0.12 W/(m⋅◦C). Two 
mechanical loads are considered in the example by uniform, and 
quadratic polynomial distribution functions, respectively. The bottom 
and top surfaces of LCEs system are subjected to a constant temperature 
load Tb (x) = 36 ◦C and Tt (x) = 37 ◦C, respectively. 

Table 1 shows the convergence of the displacements at two points, 
where the coordinates (x, y) equal to (0.5 cm, 10 μm) and (1.5 cm, 20 
μm), under two different mechanical loads at the bottom surface of 
laminated LCEs beam. It can be seen from Table 1 that the values of 
displacements converge with the increase of expansion order m. The 
results of m = 40 is the same as those of m = 30 and 35. Therefore, in the 
following numerical examples, the series terms are all set to m = 40. 

In the finite element model (FEM) model, two-dimensional four-node 
plane stress PLANE13 element is selected for finite element analysis. The 
material parameters of three beams mentioned above are input into the 

Material Models function of the software, and then assigned to different 
beams before meshing. The displacement constraints corresponding to a 
simply supported beam are applied in the finite element software. 
Temperature condition 37 ◦C is added to the line at the top and 36 ◦C is 
added to the line at the bottom of the model. The mesh density analysis 
is presented in Table 2 to ensure the convergence and reliability of the 
FE results. It can be seen from Table 2 that the results converge with the 
increase of the number of elements. Table 3 shows the comparison of the 
displacements results between the present analytical model and the FE 
model with 24000 elements. Since the LCEs systems under the thermo- 
mechanical loads possess the symmetries, six points at the bottom sur-
face on the left side of the laminated beam are considered with the x 
coordinates equal to 0 cm, 0.2 cm, 0.4 cm, 0.6 cm, 0.8 cm, and 1 cm, 
respectively. 

Eq. (25) is used to evaluate the relative error between the analytical 
results from the present model and numerical results from FEM. It can be 
seen from Table 3 that the relative errors between the present analytical 
model and FEM is less than 2.5%. 

E=

⃒
⃒
⃒
⃒
F − R

F

⃒
⃒
⃒
⃒× 100% (25)  

Where F is the FEM results, R is the present analytical results. 

3.2. Parametric studies 

The following numerical examples are presented to study the influ-
ence of thermo-mechanical load and layer thickness on the vertical 
displacements at the bottom surface of the LCEs system. Unless other-
wise mentioned, calculation parameters of the LCEs system used in the 
following examples are the same as those mentioned in Section 3.1. 

Fig. 4 shows the influence of temperature on the vertical displace-
ment at the bottom surface of the LCEs system which subjected to uni-
form and quadratic polynomial distributed loads at the bottom surface 
respectively. The LCEs system is pasted on the surface of the heart, and 
the temperature cannot be kept constant all the time. When a fever 
occurs, the body temperature may rise from 36 ◦C to 40 ◦C. The tem-
perature at bottom surface of the system is kept constant at 36 ◦C. The 
top surface of the system is considered with different temperature loads 
from 36 ◦C to 40 ◦C with a gradient of 1 ◦C. It can be seen from Fig. 4 that 
the bottom surface become contraction with the increase of the 

Table 1 
Convergence of displacements under different mechanical loads in a temperature field.  

q(x) 
(N/cm) 

Load graph Position Dis. Expansion order m in the solution 

5 10 15 20 25 30 35 40 

0.1 x = 0.5 cm, 
y = 10 μm 

u (μm) − 3.99 − 4.16 − 4.11 − 4.11 − 4.12 − 4.11 − 4.11 − 4.11 
v (mm) 0.464 0.464 0.464 0.464 0.464 0.464 0.464 0.464 

x = 1.5 cm, 
y = 20 μm 

u (μm) 4.70 4.87 4.82 4.82 4.83 4.82 4.82 4.82 
v (mm) 0.464 0.464 0.464 0.464 0.464 0.464 0.464 0.464 

(x-1)2+0.1 x = 0.5 cm, 
y = 10 μm 

u (μm) − 3.40 − 3.57 − 3.52 − 3.52 − 3.53 − 3.52 − 3.52 − 3.52 
v (mm) 1.29 1.29 1.29 1.29 1.29 1.29 1.29 1.29 

x = 1.5 cm, 
y = 20 μm 

u (μm) 5.29 5.46 5.41 5.42 5.41 5.42 5.42 5.42 
v (mm) 1.29 1.29 1.29 1.29 1.29 1.29 1.29 1.29  

Table 2 
Result of mesh density analysis.  

Position Dis. Element quantities (Element size) 

6000 (5μm × 20μm) 12000 (5μm × 10μm) 15000 (2μm × 20μm) 24000 (5μm × 5μm) 30000 (2μm × 10μm) 60000 (2μm × 5μm) 

x = 0.1 cm, 
y = 0 μm 

u (μm) − 15.69 − 11.55 − 7.89 − 7.88 − 7.88 − 7.88 
v (mm) 0.0091 0.0091 0.0091 0.0091 0.0091 0.0091 

x = 0.8 cm, 
y = 20 μm 

u (μm) − 9.58 − 5.43 1.77 − 1.76 − 1.76 − 1.76 
v (mm) 0.045 0.045 0.045 0.045 0.045 0.045  
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temperature. This is because LCE has a negative thermal expansion. The 
numerical results show that the vertical displacement at the middle of 
the laminated LCEs system increase 0.047mm with each additional 1 ◦C 
of temperature increase. It is indicated that the deformation of lami-
nated LCEs system due to temperature variation is limited within the 
range of human temperature changes from 36 ◦C to 40 ◦C. 

Fig. 5 shows the influence of thickness of each LCE layer on the 
vertical displacement of the LCEs system. The thickness of the flexible 
substrate in the middle layer is kept as 10 μm, and the thickness of each 
LCE layer are 10 μm, 50 μm and 100 μm respectively. It can be seen from 
Fig. 5 that the thickness of each LCE layer has a significant influence on 

Table 3 
Comparison of the present displacements with FEM results at bottom surface under different mechanical loads.  

q(x) 
(N/cm) 

Dis Method x = 0 cm x = 0.2 cm x = 0.4 cm x = 0.6 cm x = 0.8 cm x = 1 cm 

0.1 u (μm) Present − 7.254 − 5.670 − 4.131 − 2.697 − 1.331 0 
FE − 7.224 − 5.637 − 4.098 − 2.663 − 1.298 0 
Error 0.41% 0.58% 0.80% 1.26% 2.48% 0% 

v (mm) Present 0 0.2060 0.3877 0.5290 0.6184 0.6490 
FE 0 0.2045 0.3848 0.5247 0.6126 0.6417 
Error 0% 0.73% 0.75% 0.81% 0.94% 1.13% 

(x-1)2+0.1 u (μm) Present − 4.366 − 3.019 − 2.022 − 1.260 − 0.609 0 
FE − 4.353 − 3.003 − 2.005 − 1.244 − 0.594 0 
Error 0.30% 0.53% 0.84% 1.27% 2.46% 0% 

v (mm) Present 0 0.5799 1.081 1.460 1.693 1.772 
FE 0 0.5762 1.074 1.449 1.678 1.753 
Error 0% 0.64% 0.65% 0.75% 0.89% 1.07%  

Fig. 4. The influence of temperature on the vertical displacement at the bottom surface of LCEs system.  

Fig. 5. The influence of LCE thickness on the vertical displacement at the bottom surface of LCEs system.  

Table 4 
Calculation parameters used for establishing the database of a LCEs system in a 
temperature field (Tb (x) = 36 ◦C, Tt (x) = 37 ◦C)  

Coordinates of six points at left half of the 
bottom surface 

Coefficients Scale of coefficients 

x = 0 to 1 cm 
with a gradient of 0.2 cm; 
y = 0 

a2 From 0 to 5 a gradient 
of 0.1 

a1 From 0 to 1 a gradient 
of 0.1  
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the vertical displacement at the bottom surface of LCEs system. The 
displacement at the middle of the bottom surface of the LCEs system 
with the thickness of each LCE layer of 50 μm is reduced by more than 
65% compared with that of the system with 10 μm LCE layers. The 
displacement of the system with the thickness of each LCE layer of 100 
μm is reduced by more than 98% compared with that of the system with 
10 μm LCE layers. Therefore, reducing the thickness of LCE layer is an 

effective way to improve the deformation performance of the LCEs 
system. 

3.3. Verification of BP neural network prediction 

The BP neural network model introduced in this paper can be used to 
predict the deformation of the LCEs system subjected the mechanical 
surface load, as well as inverse mechanical load which induces the 
specific deformation in a temperature field. A database with 561 sets of 
data consists of both the coefficients of mechanical load in Eq. (23) and 
corresponding displacements of six points at left half of bottom surface 
of the LCEs system in the temperature field Tb (x) = 36 ◦C, Tt (x) = 37 ◦C 
is obtained by the present analytical solution. The database is used to 
train the BP neural network model. The scales of the mechanical load 
coefficients used for training the BP model is presented in Table 4. There 
are five new data sets presented in Table 5, which are not part of the 
training data, used to evaluate the accuracy of the BP neural network to 
predict the mechanical solution of the LCEs system. The adjustment 
constant J is selected as 6 in this example. So the hidden layer of the BP 
neural network is set as 9 based on the in Eq. (23). The learning rate, the 
maximum number of network training and the minimum mean square 
error are set as 0.01, 1000 and 0.00001 respectively. 

3.3.1. Predict the deformation subjected to mechanical load 
In this section, the coefficients an are set as the input information and 

the vertical displacements at the bottom surface are set as the output 
information to establish the BP model. The predicted displacements are 
compared with the calculated results from the present analytical solu-
tions. The prediction error is calculated by Eq. (25) to represent the 
accuracy of the neural network. 

Table 5 
Five group of mechanical loads applied on the bottom surface of the LCEs system in a temperature field and their corresponding vertical displacements.  

No. The given coefficients of 
mechanical load 

The given vertical displacements at the bottom surface (y = 0) of LCEs system obtained by present analytical solution (mm) 

a1 a2 Point 1 (x = 0 cm) Point 2 (x = 0.2 cm) Point 3 (x = 0.4 cm) Point 4 (x = 0.6 cm) Point 5 (x = 0.8 cm) Point 6 (x = 1.0 cm) 

#1 0.65 0 0 1.245 2.353 3.219 3.769 3.957 
#2 0.2 0.135 0 0.445 0.839 1.144 1.336 1.402 
#3 0.8 0.05 0 1.547 2.923 3.999 4.682 4.916 
#4 0.6 1.563 0 1.735 3.258 4.429 5.163 5.412 
#5 1 0.86 0 2.227 4.199 5.732 6.698 7.029  

Fig. 6. Comparison between the predicted solutions and the analytical solu-
tions of vertical displacements. 

Fig. 7. Prediction errors of the vertical displacements.  
Fig. 8. Comparison between the predicted solutions and the analytical solu-
tions of mechanical loads. 
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error =
⃒
⃒
⃒
⃒
R − P

R

⃒
⃒
⃒
⃒× 100% (26) 

Where P is the predicted results, R is the calculated analytical results. 
Five sets of coefficients of mechanical loads listed in Table 5 are used for 
the prediction. Fig. 6 shows the comparison between the given vertical 
displacements by presented analytical solutions and the predicated so-
lutions by BP model. It can be seen from Fig. 6 that the predicted results 
are in good agreement with the calculated displacements. The error 
analysis of vertical displacements predicted by BP neural network is 
shown in Fig. 7. It can be seen from Fig. 7 that the average error of 
displacement prediction by BP neural network is less than 0.4%. It is 
indicated from Fig.7 that BP neural network is an effective method to 
predict vertical displacement of a LCEs system in a temperature field 
subjected to continuously distributed mechanical loads. And the results 
shows that the size of the database used in this paper is enough to predict 
the results with low error. 

3.3.2. Inverse mechanical load based on the deformation 
In this section, the vertical displacements are selected as the input 

information and the coefficients an of the mechanical load are selected as 
the output information to establish the BP model. Five sets of displace-
ments at six points at the left half of bottom surface of the laminated 
beam listed in Table 5 are used for inversing the coefficients of me-
chanical load in Eq. (23). Fig. 8 shows the comparison between the 
curves of inversed mechanical loads and those of given mechanical 
loads. It can be seen from Fig. 8 that the inversed mechanical loads agree 
with the curves of given mechanical loads. The error analysis of me-
chanical loads inversed by BP neural network is shown in Fig. 9. It can be 
seen from Fig. 9 the average errors of mechanical load predicted by BP 
neural network are less than 1.1%. It confirms the effectiveness of using 

BP neural network to inverse the mechanical load which induces the 
vertical displacement at the bottom surface of a LCEs system in a specific 
temperature field. 

4. Concluding remarks 

This paper presents a convenient and efficient method to predict the 
mechanical solutions of a laminated LCEs system subjected to combined 
thermo-mechanical load based on an analytical model and a BP neural 
network. The analytical solution of a simply supported laminated beam 
is derived by heat conduction and thermoelastic theory and verified by 
the convergence and comparison studies. The relative error between the 
analytical solution and the FEM results is less than 2.5%. The BP neural 
network models are established by training a database which contains 
the information of 561 sets of mechanical solutions obtained by the 
present analytical solutions. Some numerical examples are presented to 
analyse the influence of thermo-mechanical load and the thickness of 
LCE on the mechanical properties of the LCEs system. Two BP neural 
network models are presented to show the accuracy of the predictions. 
Following conclusions are presented based on the results of numerical 
examples:  

(1) Within the body temperature changes from 36 ◦C to 40 ◦C, the 
deformation of LCE laminated system is limited. If greater 
deformation is required, a mechanical load needs to be applied.  

(2) Reducing the thickness of LCE layer is an effective way to 
improve the deformation of the LCEs system. It is necessary to 
select LCE layer with small thickness to meet the deformation 
requirements of the heart. 

(3) BP neural network is an efficient method to predict the me-
chanical solutions of a laminated LCEs system subjected to a 
thermo-mechanical load through database learning. The accu-
racy of vertical displacement at the bottom surface of LCEs sys-
tem predicted by BP neural network can reach 99.6%, while the 
accuracy of mechanical load applied at the bottom surface of 
LCEs system inversed by BP neural network can reach 98.9%. 
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Appendix 

The elements in the matrix TFmi are as follows: 

TF11
mi = cosh(αmyi)

TF12
mi = sinh(αmyi)

TF13
mi =

3 − μi

1 + μi

L
mπ sinh(αmyi) + yi cosh(αmyi)

Fig. 9. Prediction errors of mechanical loads.  
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TF14
mi =

3 − μi

1 + μi

L
mπ cosh(αmyi) + yi sinh(αmyi)

TF21
mi = sinh(αmyi)

TF22
mi = cosh(αmyi)

TF23
mi = yi sinh(αmyi)

TF24
mi = yi cosh(αmyi)

TF31
mi =αm cosh(αmyi)

− Ei

1 + μi  

TF32
mi =αm sinh(αmyi)

− Ei

1 + μi  

TF33
mi =

[
3 + μi

1 + μi
sinh(αmyi)+αmyicosh(αmyi)]

− Ei

1 + μi  

TF34
mi =

[
3 + μi

1 + μi
cosh(αmyi)+ αmyisinh(αmyi)]

− Ei

1 + μi  

TF41
mi =αm cosh(αmyi)

Ei

1 + μi  

TF42
mi =αm sinh(αmyi)

Ei

1 + μi  

TF43
mi =

[
1 − μi

1 + μi
sinh(αmyi)+αmyicosh(αmyi)]

Ei

1 + μi  

TF44
mi =

[
1 − μi

1 + μi
cosh(αmyi)+ αmyisinh(αmyi)]

Ei

1 + μi  

TF51
mi =αm sinh(αmyi)

Ei

1 + μi  

TF52
mi =αm cosh(αmyi)

Ei

1 + μi  

TF53
mi =

[
2

1 + μi
cosh(αmyi)+ αmyisinh(αmyi)]

Ei

1 + μi  

TF54
mi =

[
2

1 + μi
sinh(αmyi)+αmyicosh(αmyi)]

Ei

1 + μi 

The elements in the matrix TTmi are as follows: 

TT11
mi = − 2αi

L
mπ cosh(αmyi)

TT12
mi = − 2αi

L
mπ sinh(αmyi)

TT21
mi = 0  

TT22
mi = 0  

TT31
mi =αi cosh(αmyi)

Ei

1 + μi  

TT32
mi =αi sinh(αmyi)

Ei

1 + μi  

TT41
mi = − αi cosh(αmyi)

Ei

1 + μi  

TT42
mi = − αi sinh(αmyi)

Ei

1 + μi  
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TT51
mi = − αi cosh(αmyi)

Ei

1 + μi  

TT52
mi = − αi sinh(αmyi)

Ei

1 + μi  
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