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Abstract. Contextual models like BERT are highly effective in numer-
ous text-ranking tasks. However, it is still unclear as to whether con-
textual models understand well-established notions of relevance that are
central to IR. In this paper, we use probing, a recent approach used to
analyze language models, to investigate the ranking abilities of BERT-
based rankers. Most of the probing literature has focussed on linguistic
and knowledge-aware capabilities of models or axiomatic analysis of rank-
ing models. In this paper, we fill an important gap in the information
retrieval literature by conducting a layer-wise probing analysis using four
probes based on lexical matching, semantic similarity as well as linguistic
properties like coreference resolution and named entity recognition. Our
experiments show an interesting trend that BERT-rankers better encode
ranking abilities at intermediate layers. Based on our observations, we
train a ranking model by augmenting the ranking data with the probe
data to show initial yet consistent performance improvements (The code
is available at https://github.com/yolomeus/probing-search/).

1 Introduction

Large contextual models such as BERT [14] have delivered impressive and
robust performance gains in many NLP and IR tasks. However, these over-
parameterized contextual models are still used as functional black boxes with
little understanding of what the contextual embedding spaces actually encode.
Towards this, probing was introduced as a procedure to investigate whether spe-
cific linguistic properties or factual information are present in contextual text
representations [6], which enable large contextual models to perform well on lan-
guage tasks. Probes offer insight into otherwise functionally opaque contextual
models. Most of the effort in designing probes is to ground the behavior of large
contextual models in well-understood linguistic properties and world knowledge.
For example, a part-of-speech (POS) probe investigates to what degree con-
textual representations encode POS information in their representations. This
innate ability to encode POS is typically investigated by learning a lightweight
classifier, called a probe, to predict the POS property from the embeddings. The
performance of a probe measures the quality of the contextual representations.
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Fig. 1. Procedural overview: in the first set of experiments, we probe for different
abilities of neural ranking models (e.g., BM25, semantic similarity). We then utilize
the information where the model best captures these properties to give additional
training signals to that specific layer during multi-task learning.

Consequently, various task-specific probing tasks have been developed to inves-
tigate contextual embeddings for linguistic and factual knowledge [6,36,48,55].

This paper focuses on large contextual models that have been applied with
major success in information retrieval tasks. However, there is limited work on
probing for IR and, particularly, to text ranking tasks. Until now, most studies
focused on probing for linguistic [23,48] or factual knowledge [35,36] of pre-
trained models, e.g., finding that BERT’s layers and their abilities coincide with
the classical NLP pipeline [47] or that dependency parse trees can be decoded
from BERT’s embeddings [23]. There has also been work on investigating the
evolution of higher-level factual and linguistic knowledge through the layers of
large contextual models [47,52]. Most of the existing work in explaining the
behavior of contextual ranking models is through IR axioms [7,41,51]. Although
axioms are well-established, formal descriptions of what makes a good text ranker,
they have limited modeling of semantic similarity and have been shown to have
limited applicability to explain neural rankers [7,51].

1.1 Research Questions

We aim to fill the gap of characterizing the performance of neural rankers in
terms of IR abilities by proposing probing methods. Through probing, we try to
understand the behavior of ranking models by grounding it on well-understood
IR properties and best practices for text ranking – matching, semantic similarity,
in conjugation with essential linguistic properties of named entity recognition,
and coreference resolution. We answer the following research questions:

RQ 1. What abilities do neural rankers acquire to perform the ranking task?

RQ 2. Can we apply the knowledge to build better ranking models?

1.2 Summary of Contributions

First, we construct probing datasets for the probing tasks of lexical match-
ing, semantical similarity, named entity recognition (NER), and coreference
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resolution from the MS MARCO dataset [49]. Next, we measure – (a) the
degree to which a ranking model understands the IR property (accuracy) and,
(b) the degree to which the property is extractable from the ranking model (min-
imum description length). Figure 1 depicts and overview of our experiments. We
conduct extensive experiments using multiple probes over multiple layers of a
BERT-fine-tuned ranking model. Other than existing works that predominantly
report only probing results, we operationalize our findings by constructing multi-
task learning-based ranking models using auxiliary tasks based on probes.

Results. Our probing study shows that ranking models prioritize lexical and
semantical similarity and coreference information over NER abilities. Moreover,
we usually find intermediary layers (4–6) to best capture these concepts. We also
find that training ranking models in a multi-task learning setup (i.e., ranking
and the aforementioned ranking subtasks) can be beneficial - especially when we
use our probing results to inform on which layer to train the subtasks.

2 Related Work

Probing large and overparameterized contextual models was introduced by Con-
neau et al. [11] in the NLP community to improve their interpretability. This
work aims to probe neural rankers to understand their IR abilities as a step
towards explainable IR [4]. Specifically, probing is a posthoc interpretability app-
roach that, instead of optimizing fidelity [40,45,46], tries to ground the knowl-
edge or abilities stored in the parametric memory of neural rankers.

2.1 Probing for Linguistic Properties

Tenney et al. [48] proposed aggregating individual word embeddings to move
from word-level probing to subsentences, allowing to probe for coreference
and other semantic, long-range concepts. Consequently, many works used this
methodology. Zhao et al. [56] investigated how contextualized BERT embed-
dings are. Tenney et al. [47] probed BERT and found early layers to focus on
lower-level concepts, such as syntax, and more-involved higher layers on concepts
such as semantics. Subsequent work improving the probing paradigm either by
contextualizing the probing results with suitable baselines [21,54], introducing
control tasks [22], or characterizing embedding vs classifier performance [37,50].
For detailed overview of the probing literature until 2019, we refer to the review
by Belinkov and Glass [6]. We include many of the best practices in the litera-
ture in our work. Many works have investigated task-specific probing [2,52]. Most
related to our work is Wallat et al. [52], who also perform a layer-wise probing
to check the retention of factual knowledge in BERT. Their layer-wise analysis
suggests that most factual knowledge resides in the later layers of the models,
with the ranking model outperforming other fine-tuned models in knowledge
retention. We instead probe for ranking abilities.
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2.2 Probing in IR

In the context of IR, MacAvaney et al. [31] study the ranking models using
a large set of diagnostic probes such as term-frequency. They also study the
effects of shuffling word orders or paraphrasing on the ranking performance. Fan
et al. [16] show that the ranking model improved in capturing synonym detection
information while sacrificing the ability to identify named entities. While both of
these works investigated the abilities of IR models, they focus on only the final
representation of that is derived from the last layer of the model. We believe that
investigating the flow of information through the intermediate layers can yield
additional insights. Furthermore, both [16,31] do not contextualize the probing
results with standard probing baselines like control tasks, or a measure of ease
of extraction (e.g., MDL) as recommended in the probing literature [5].

2.3 Axiomatic Interpretability

Similar to probing, neural rankers have also been diagnosed or interpreted using
IR axioms [7,41,51]. These works either directly rank documents according to
specific axioms such as “if document A contains more query terms than document
B, then A should be ranked higher” [20], check whether rankers conform with
axioms using diagnostic datasets [41], or try to explain neural rankers with these
axioms [7,51]. However, most of these approaches have reported limited success.
Völske et al. [51] find that axiomatic explanations frequently fail if models are
not confident in their decision and that the existing axioms are insufficient in
explaining the complex decisions of ranking models [7]. By investigating the
acquired abilities of ranking models, we position our work between the existing
high-level investigation into factual knowledge containment [52] and explaining
model decisions by shallow features (i.e., axioms) [51].

2.4 Understanding Relevance Factors Without Probing

Apart from probing, the attention patterns of ranking models have been under
investigation, finding that redundant attention often focuses on tokens with a
high document frequency (e.g., punctuation) [53] and that the attention cap-
tures inverse-document frequency information [9]. Furthermore, Qiao et al. [38]
investigate the attention and term-matching behavior of BERT and find that it
focuses more on query tokens that appear in the document, suggesting attention
and lexical matching being deciding factors for BERT’s performance gains. Rau
and Kamps [39] study the role of NLP abilities in the effectiveness of neural
ranking models. By constructing inputs without word order information, they
find that while word order seems highly relevant for BERT’s pretraining, it is
not necessary for relevance estimation.

2.5 Data Augmentation in IR

In the second part of our paper, we use additional training signals from our probe
tasks to train ranking models. While there is existing work that utilized infor-
mation such as BM25 to train rankers either with weak supervision [13] or by
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data augmentation [3,44], our work is, to the best of our knowledge, the first to
operationalize probing results to build more effective ranking models. We specif-
ically probe the representations of the common early interaction BERT ranker
as proposed by Nogueira et al. [33], which applies a linear layer to the [CLS]
token in order to estimate relevance. Besides early interaction methods, there
have been recent works on late interaction models [18,26,29], where independent
document and query representations only interact in the last layer.

3 Probing BERT Ranking Models

The ability of a text ranker to effectively rank documents given an underspecified
query is based on many well-understood principles in IR like term matching,
document frequency, and length normalization, among others [32]. In this work,
we are interested in BERT rankers, but our analysis can naturally be extended
to other overparameterized contextual rankers with multiple transformer layers.

3.1 Problem Statement

Given a trained (or fine-tuned) text ranking model M, we are interested in
measuring the degree to which output representations of M satisfy or adhere
to well-understood ranker properties. For each ranking property i, a probing
dataset Pi is constructed. To measure if a property i is well-captured in M, our
objective is to train a probing classifier or simple a probe gi given the output
representation/s or embedding from M to generalize on the probing dataset Pi.

3.2 Layerwise Probing

We conduct probing analysis on multiple layers of M to assess the evolution of
ranking properties across layers of the ranking model. For each of our ranking
subtasks (Sect. 3.4) and each layer of the model, we train a simple MLP classifier
over the model’s output representations or embeddings.

We follow the probing paradigm that is based on the general assumption that
an above-chance performance on the probing tasks indicates the presence of task
knowledge in the embeddings. These probing performances need to be put into
context by how hard the task is (e.g., by comparing performance with suitable
baselines [54]) and how much of the performance can actually be attributed
to the classifier [37,50]. Towards addressing these concerns, we first carefully
select random and pre-trained baselines to compare against (refer Sect. 4.2) and
secondly use the minimum description length (MDL) to measure attributability.
Next, we detail our probing setup with MDL.

3.3 Probing with Minimum Description Length

By applying the information-theoretic concept of minimum description length to
the probing paradigm, Voita and Titov [50] address the question: how well the
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model encodes certain information? If the embedding encodes a concept such as
named entities more efficiently, it can describe this information more precisely.
In that case, the minimum description length will be shorter than in embeddings
that do not capture named entity information.

To compute MDL, we use the online code definition [42]. For this, the dataset
D = {(xi, yi)}N

i=1 is divided into timesteps 1 = t0 < t1 < . . . < tS = N . After
encoding block t0 with a uniform code, for each following timestep, a probing
model pθi

is trained on the samples (1, . . . , ti) and used to predict over data
points (ti + 1, . . . , ti+1). The full MDL is then computed as a sum over the
codelengths of each pθi

and the uniform encoding of the first block:

L(y1:n|x1:n) = t1 log2 C −
S−1∑

i=1

log2 pθi
(yti+1:ti+1 |xti+1:ti+1) (1)

where C is the number of target classes. Following Voita and Titov [50], we
choose timesteps at 0.1, 0.2, 0.4, 0.8, 1.6, 3.2, 6.25, 12.5, 25, 50 and 100% of the
dataset.

Similarly to Fayyaz et al. [17], we reformulate MDL to compression. For this,
MDL is scaled in relation to the codelength of a uniform encoding:

compression =
N log2(C)

MDL
(2)

where N is the number of targets, and C is the number of target classes. Since
MDL depends on the total number of targets, a relative measure, like compres-
sion, is more practical for comparing tasks. Furthermore, both accuracy and
compression are to be maximized, while MDL is to be minimized.

MDL is only defined for classification tasks as it requires the number of
target classes. Therefore, we reformulate regression tasks to classification tasks
by binning target scores into k = 10 equally sized class bins.

3.4 Probing Tasks

For a selection of principled ranking abilities, we utilize well-known abilities of
ranking models from the information retrieval (IR) literature: Arguably, one
of the most fundamental ranking subtasks is a model’s ability to match text,
which has been widely used either for classical ranking models [43] or to inform
the pre-finetuning of neural rankers [27]. Furthermore, we probe for the ranking
model’s ability to match according to the semantic meaning [30]. Given that a
large part of queries focus on entities and that named entity recognition (NER)
can have a positive impact on IR [25], we include NER as one of our tasks.
Lastly, we include coreference resolution, which is not canonically associated
with principled ranking. With the established importance of entity recognition,
we wonder how well ranking models can perform the matching of entity surface
forms between queries and documents.

For our experiments, we compile a list of abilities that neural ranking models
might employ for predicting document relevance. We choose our tasks as follows:
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BM25 Prediction. The BM25 algorithm [43] uses lexical matching to estimate
relevance and is widely used in ranking. We ask whether neural rankers encode
the necessary information to perform well at measuring lexical similarity. The
BM25 formula includes inverted document frequencies of the terms; therefore, to
accurately predict BM25, the ranker needs to implicitly learn term distributions
in the dataset. We use query document pairs from the MS MARCO test set
and predicted BM25 scores as labels to create the probing dataset.

Semantic Similarity. Like lexical matching, it seems very probable that part
of the ranking model’s performance can be attributed to semantic matching. We
test whether semantic similarity information resides in the embeddings of our
rankers. Similar to existing work in axiomatic IR [51], we estimate the semantic
similarity between query and document pairs by the cosine similarity between the
average GloVe [34] query and document embeddings (after stop-word removal).

Named Entity Recognition. Since user queries usually ask for some infor-
mation about entities, we test the models’ ability to identify entities. To do so,
we use the Spacy [24] named entity recognizer and tag all named entities in MS

MARCO query-document pairs.

Coreference Resolution. Queries are often underspecified [10]. We, therefore,
include the probing task of coreference resolution between entity mentions in
the query and surface form occurrences in the document into our suite of tasks.
Given a query “trump birthplace”, the task is to match an entity from the query
(“trump”) to surface forms in a document (e.g., “Donald Trump”, “the former
president”). To find coreference pairs, we use Huggingface’s neuralcoref1.

4 Experimental Setup

4.1 Datasets

MS MARCO: We use the TREC Deep Learning track (2019) dataset (TREC-

DL) for evaluation. Our models are evaluated on the TREC-DL test split which
contains 200 queries. For creating training and development splits we use MS

MARCO, containing 532k queries. To retrieve documents from the corpus of
∼ 8.8mio passages, we use BM25.

Probing: Since our (contextual) ranking models are trained on MS MARCO,
we explicitly use the MS MARCO test set to create our probing datasets.
For this, we uniformly sample 60k query-passage pairs, where 40k are used for
training, and 10k for validation and testing, respectively.

4.2 Models

We conduct our probing experiments on BERT [14], using three different base
models throughout our experiments:
1 https://github.com/huggingface/neuralcoref.

https://github.com/huggingface/neuralcoref
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1. bert-base-uncased - the publicly available2 pre-trained BERT model
consisting of 12-layer, 768 dimensions, 12-heads, 110M parameters. The length
of the input is restricted to 512 tokens.

2. bert-msm-passage - bert-base model, fine-tuned on MS MARCO for the
TREC-DL 2019 passage level ranking task [12]

3. bert-msm-doc - the bert-base model, fine-tuned on MS MARCO for the
TREC-DL 2019 document level ranking task.

The ranking models were trained with a similar setup as Nogueira et al. [33] for
up to 20 epochs on using the binary cross-entropy objective.

4.3 Training Probe Models

For all tasks, we train a 2-layer MLP probe model with self-attention pooling
(similar to [48]) for up to a maximum of 50 epochs and perform early stopping
after 10 epochs if no improvement in validation loss has been measured. As
an optimization algorithm, we use Adam [28] with a batch size of 32 and clip
gradients with an L2-norm greater than 5. We start with a learning rate of 1e–4
and half it at the end of an epoch if the validation loss does not improve.

5 Results

To establish which ranking ability is learned by fine-tuning on ranking datasets
(RQ 1), we compare the performance of a fine-tuned passage ranking (bert-
msm-passage) and a document ranking model (bert-msm-doc) to two base-
lines: 1) a pretrained model without fine-tuning, and 2) model with random
weight initialization. For a pre-trained model, we use a BERT model (bert-
base-uncased). Furthermore, we use BERT input embeddings with random
weight initialization as a source of random embeddings [54].

Fig. 2. Probing results over the layers for the BM25 task.

2 https://huggingface.co/bert-base-uncased.

https://huggingface.co/bert-base-uncased
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Fig. 3. Probing results over the layers for the semantic similarity task.

Fig. 4. Probing results over the layers for the NER task.

5.1 Matching Ability of Ranking Models

Figure 2 presents the degree to which fine-tuned BERT models have learned to
predict BM25 or, in other words, exhibit the ability to perform term match-
ing. The plot on the left shows task accuracy and the plot on the right shows
compression over the layers (metric introduced in Sect. 3.2). First of all, and
expectedly, we can see that all three models capture more BM25 information
than random embeddings to a large degree. While the accuracy seems to dif-
fer only slightly, we can observe that the compression of bert-msm-passage

is markedly higher than for the other two models. A higher compression score
means the BM25 information is more easily decodable from the ranking mod-
els’ embeddings. By probing all layers of our models, we can also understand in
which layer the matching ability is best captured. It is evident that the BM25
knowledge increases until layer 5 or 6 and then slowly decreases until layer 11. In
layer 12, the performance decreases starkly - a result that is in line with multiple
works finding that the last layer is the most task-specific and therefore performs
worse in other tasks ([2,52] inter alia). Additionally, recent work by Ghasemi et
al. [19] suggests that BERT rankers do not fully rely on lexical matching, which
is also indicated by BM25 knowledge decreasing in the later layers.

5.2 Ability to Capture Semantic Similarity

The probing results for semantic similarity are shown in Fig. 3. Again, we can
observe similar trends. Semantic similarity appears to be best captured in layer
4 (compared to layers 5 or 6 for BM25). Like with BM25, we can see the rank-
ing models’ compressions to be slightly improved over the pre-trained model –
suggesting that training the models on ranking emphasizes understanding and
capturing semantic similarity.
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Fig. 5. Probing results over the layers for the coreference resolution task.

5.3 Other Abilities

Figures 4 and 5 show the probing performance on NER and coreference reso-
lution, respectively. Interestingly, we find that the ranking models do not spot
entities better than a pre-trained model (Fig. 4). Although the results suggest
that the identification of entities is not a priority, matching surface forms of
entities is better encoded after fine-tuning on the ranking task.

5.4 Insights and Summary

Our first insight is that, compared to bert-msm-doc, bert-msm-passage shows
a better accuracy-compression trade-off in all the auxiliary tasks considered.
In other words, not only does bert-msm-passage exhibit primitive ranking
abilities, but these abilities are easily extractable for text ranking tasks. Sec-
ond, all considered auxiliary tasks are best encoded at intermediary layers and
slowly decrease towards the final layer. This shows that deep contextual models
used as rankers extract features that are in some sense compositional in nature,
with lower-level abilities being exhibited in the lower layers. We believe that the
abilities we deal with are intermediate abilities. Existing layerwise studies have
shown that ranking models exhibit higher-level abilities in the last few layers
[52]. Finally, we observe that BM25, semantic similarity, and coreference resolu-
tion are better encoded in ranking models. NER, on the other hand, seems to
be deprioritized by the re-ranking models in our study, confirming earlier results
[16].

6 Can the Probing Results Be Used for Building Better
Rankers?

Until now, we have established that fine-tuned ranking models exhibit basic
linguistic and information retrieval abilities. To answer RQ 2, we operationalize
our findings. Towards this, along with the ranking training set, we construct
three task datasets (BM25, NER, semantic similarity). As in this setting, we
aim for learning ranking on MS MARCO, we only use queries from the train set
to prevent test overlap. For each task, we sample 100k queries and, using BM25,
retrieve 10 documents each. This results in 1 million samples per task which is
approximately the size of our pointwise MS MARCO training set.
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We employ a multi-task learning (MTL) setup where we train the rank-
ing task together with individual ranking subtasks (Sect. 3.4). To support the
model’s learning process, we directly funnel the subtask signal into the model
at the corresponding layer where it was best captured (as identified during the
probing experiments) and supply the ranking signal in the last layer.

6.1 MTL Training

Multi-task learning is an approach of training multiple tasks in parallel with
shared representations to share knowledge across tasks [8]. This has been shown
to improve generalization. To train on multiple tasks simultaneously, we uni-
formly draw samples from the pool of both datasets until the batch size is
reached. We then pass the resulting mixed batch through the language model
and retrieve the intermediate output representations at each layer. For simplicity,
average pooling over the sequence dimension is performed at the desired layers,
and a task-specific 2-layer MLP is applied, which takes the following form:

MLP(x) = W1σ(W0x + b0) + b1 (3)

with W0 ∈ R
m×n, W1 ∈ R

n×k and b0 ∈ R
n, b1 ∈ R

k as learnable parameters
and σ as the RELU activation. Analogously to our probing experiments, we cast
regression to classification tasks by binning the targets into k = 10 categories.
For our loss function, we use the simple scaling scheme proposed in [1]

L(yi, ŷi) =
CE(yi, ŷi)
log ki

(4)

where yi and ŷi are target and prediction for datapoint i respectively, CE is the
cross-entropy loss and ki denotes the number of target classes for point i, e.g. for
a binary target ki = 2. For experiments with the pairwise objective, we similarly
use margin loss with λ = 0.2.

Table 1. Effect of different loss objectives on ranking with BM25 as auxiliary task on
the TREC-DL 2019 dataset. pt and pr refer to the pointwise and pairwise training
objectives. * marks a significant improvement (p-value < 0.1).

Model Layer MAP MRR nDCG@10 nDCG@20 P@10 P@20

Ranking (pt-baseline) 12 0.436 0.926 0.678 0.653 0.784 0.685
Ranking + BM25 (pt) 5 0.437 0.947 0.682 0.652 0.791 0.680

Ranking (pr-baseline) 12 0.433 0.965 0.681 0.652 0.772 0.670
Ranking + BM25 (pr) 5 0.452* 0.965 0.685 0.673* 0.786 0.708*
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Table 2. Effect of layers on MTL performance on the TREC-DL 2019 and 2020
dataset. While we train the ranking task (pointwise loss) always on the final layer, we
experiment with different layers for the auxiliary tasks (BM25, named entity recogni-
tion, semantic similarity). Bold values indicate the best performance out of all con-
figurations of that specific model (e.g., for all Ranking+BM25 models). */** mark a
significant improvement (p-value < 0.1/0.05 respectively).

Model Layer TREC 19 TREC 20
MAP MRR nDCG@10 MAP MRR nDCG@10

Ranking (baseline) 12 0.436 0.926 0.678 0.446 0.875 0.674

Ranking + BM25 5 0.437 0.947 0.682 0.454 0.900 0.680
6 0.439 0.953* 0.690 0.460** 0.932* 0.689

12 0.420 0.912 0.659 0.450 0.927 0.668

Ranking + NER 4 0.447* 0.950 0.685 0.466** 0.922** 0.705**
5 0.444 0.934 0.680 0.451 0.859 0.679

12 0.447 0.944 0.688 0.464** 0.912 0.691

Ranking + Sem 1 0.436 0.934* 0.682 0.451 0.910 0.687
4 0.440 0.928 0.682 0.453 0.897 0.677

12 0.436 0.928 0.669 0.458* 0.913 0.683

6.2 MTL Results

First, we train both ranking-only and MTL (Ranking + BM25) models in pair-
wise and pointwise fashion. Table 1 presents these results.

The experiment suggests that the multi-task training setup with training
BM25 on layer 5, as well as ranking on layer 12, improves the overall task per-
formance. While there is an improvement in the pointwise training, we observe
larger improvements in the pairwise setting.

Insight. Combining the ranking task with auxiliary tasks can improve the over-
all ranking performance.

6.3 Effect of MTL Layers on Performance

Next, we investigate if selecting the layer with the best probing performance
does hold a benefit over choosing the last layer in our MTL setup.

Table 2 presents the results of multi-task training setups with the ranking
task on layer 12 and auxiliary tasks on varying layers. Given significantly higher
training times in the pairwise setting, we trained these models with a pointwise
objective. It is evident that for the BM25 task, there is a benefit to selecting the
MTL layer according to the probing results. Using the 12th layer for training
both ranking and BM25 leads to a degradation in ranking performance (com-
pared to the baseline model). Adding semantic-similarity based data augmenta-
tion, however, yields no clear trend on the TREC-DL 2019 and 2020 datasets.
We hypothesize that BERT embeddings and the self-attention mechanism are
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sufficient in estimating query document similarity for the re-ranking task. Also,
the construction of gold labels by using GloVe embeddings might not capture
semantic similarity as it is used by BERT. For NER, we see all chosen layers
to be beneficial. This might be the result of ranking models dropping NER to
some capacity (see Fig. 4) and directly forcing the model to include NER infor-
mation being helpful for the ranking task and specifically the entity-driven MS

MARCO dataset. The probing study results suggest that NER information is
not prioritized while acquiring the ability to rank passages.

Insight. Choosing the MTL layer according to the probing results can outper-
form choosing the last layer.

6.4 Threats to Validity

The general shortcoming of probing studies is that a high probing accuracy is
not a causal reason for applicability during inference [5,15,50]. Secondly, the
decrease in probing task performance over the later layers suggests that the
model prioritizes other, potentially compositional, information over our consid-
ered IR abilities. At this point, we do not fully understand what information
is used for relevance estimation. The MTL experiments are a first step towards
applying the information gathered from probing studies and are able to show
some statistically significant improvements using a very simple MTL setup. The
question of how much performance improvement is possible by augmenting addi-
tional training signal at intermediary layers will require additional research on
the optimal location, tasks, as well as the right amount of training signal to be
supplied.

7 Discussion and Conclusion

In this paper, we study the abilities acquired by neural ranking models. To
do so, we construct probing datasets from MS MARCO and study how well
ranking models encode lexical and semantic similarity, named entity recognition,
and coreference resolution. We find ranking models to better encode lexical and
semantic similarity as well as coreference resolution. Unlike previous work, which
only investigated the final layer, we find these abilities to be best captured at
an intermediary layer and to drop toward the final layer, posing the question of
what information ranking models utilize for relevance estimation. We later use
this information on which layers best encode the tasks to inform our multi-task
learning setup. Our experiments show that training the ranking task on the final,
and the auxiliary task (e.g., lexical similarity) on the layer with the best probing
performance can outperform training both tasks on the final layer. More work,
exceeding our naive MTL setup, has to be done to see how much improvement
really is possible. Nevertheless, we see potential in adding ranking subtasks to
the training setup for improving generalization and data efficiency. To the best
of our knowledge, this is the first work to show that the probing results are not
purely informational and can be used to improve the model-building process.
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