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Abstract: For a better understanding of the hydrotalcite-like phase with SEM-EDS microanalysis, the
present research paid special attention to the data acquisition and interpretation of this technique. A
lower Mg/Al ratio was obtained when using a higher accelerating voltage, and a beam energy of
10 kV was more appropriate than 15 kV for investigation when the slag rim was thin, to compromise
to meet the requirements of obtaining an adequate overvoltage ratio and minimizing the interference.
Additionally, it was noted that the Mg/Al ratio decreased from zones rich in hydrotalcite-like phase
to zones rich in the C−S−H gel phase, and indiscriminately fitting scatter points selected from the
slag rim would bias the Mg/Al ratio of the hydrotalcite-like phase. According to the standard-based
microanalysis, it was concluded that the analysis total of the hydrates within the slag rim was in the
range of 30–40%, lower than that located in the cement matrix. Besides the water chemically bound
in the C−S−H gel phase, the hydrotalcite-like phase also contained a certain amount of hydroxide
ions and chemically bound water.

Keywords: hydrotalcite-like phase; accelerating voltage; standard-based and standardless microanalysis;
compositional zonation

1. Introduction

As a mature addition, ground-granulated blast furnace slag (slag for short) has been
used as a supplementary cementitious material (SCM) in the cement industry for close to
a century in Europe, North America, etc. [1–4]. The activation of slag particles depends
mainly upon the breakdown of the slag network structure by OH− ions, released from the
hydration of cement clinkers. Secondary precipitations, e.g., the C−S−H gel phase and the
hydrotalcite-like phase, originating from the hydration of the slag, have been identified [5].
These two phases are intermixed with each other, forming the so-called ‘inner’ products of
slag within the original slag particle area (also called as the slag rim). The results from [6]
pointed out that the blended mixture of the C−S−H gel phase and the hydrotalcite-like
phase was formed by an in situ reaction between the surface of the unhydrated slag particles
and the OH− ions in the nearby pore solution. Based on FEI Nova NanoSEM 630 and
FEI Talos F200X, the author in [7] put forward a hypothesis that the positively charged
hydrotalcite-like phase layers were strongly attracted to the negatively charged C−S−H
gel phase layers in the rim of the slag. On the other hand, instead of intimately mixing
with each other, the results in [8] illustrated three distinct regions around unhydrated
slag particles owing to the spatial zonation of the hydrotalcite-like phase, the C−S−H gel
phase, and the Ca−Al phase. In a previous work [9], we also characterized the elemental
compositions of the slag rim in a 40-year-old slag concrete sample. A clear zonation
phenomenon was observed, and it was concluded that the formation and distribution of
the hydrates within the slag rim were determined by the original slag particle size and the
low mobility of magnesium.
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Hydrotalcite, also referred to as Layered Double Hydroxides (LDHs), is well recog-
nized as an anionic clay because of its strong anion-exchange property [10]. It can be
expressed as the general formula

[
M2+

1−x M3+
x (OH)2

]
An−

x/n • yH2O, where M2+ and M3+

are divalent and trivalent cations, respectively, An− is the anion fixed in the interlayer
with a valence of n, and x equals M3+/(M2+ + M3+) in molar fraction, ranging from 0.17
to 0.33 [11–13]. In naturally occurring hydrotalcite, the most common anion detected is
carbonate (CO3

2−). Nonetheless, hydrotalcite can accommodate various anionic species in
the interlayer without restriction. Meanwhile, water molecules occupy the free space of the
interlayer via hydrogen bonding [12,14,15].

In cement chemistry, hydrotalcite represents a group of phases, e.g., Mg-Al LDHs
formed in the slag-containing paste and Ca-Al LDHs, the hydration products of tricalcium
aluminate (C3A) [16]. The present research mainly focuses on Mg-Al LDHs, the main
precipitation sourced from the hydration of the slag. Two parameters should be addressed
when referring to hydrotalcite. One is the Mg/Al (atomic) ratio and the other one is
the interlayer anion, the amount of which is dependent on the Mg/Al ratio for electro-
neutrality. In general, the Mg/Al ratio of hydrotalcite can be obtained from the slope of the
regression line when fitting the scatter plot of Mg/Si against Al/Si, by means of scanning
electron microscopy (SEM), e.g., in [17–21], or transmission electron microscopy (TEM),
e.g., in [22–24]. According to the results in [25], the Mg/Al ratio of hydrotalcite formed
in the slag cement and alkali-activated slag pastes was not fixed and differed over a wide
range. In most cases, the value was less than 2.0, the probable minimum value for natural
and synthesized hydrotalcite [26]. Thus, the term ‘hydrotalcite-like phase’ is used to name
it in cementitious systems. As for its interlayer anion, it was confirmed to be hydroxide
(OH−) under a sealed curing condition, through evolved gas analysis [22].

As mentioned, through backscattered electron (BSE) in tandem with energy-dispersive
spectrometry (EDS), SEM has made a considerable contribution to understanding the
hydrotalcite-like phase formed in slag cement and alkali-activated slag systems. On the
other hand, SEM is probably the most widely misused technique in cement science, and a
very high proportion of published articles provides no useful or misleading information.
For example, an accelerating voltage of 15 kV was frequently reported to perform point
analysis/line scanning at the slag rim [18–21]. However, little research noted the mismatch
between the interaction volume under this accelerating voltage and the thickness of the
slag rim. Its influence on the determined Mg/Al ratio was therefore scarce. Additionally,
owing to the short curing age of most experiments carried out in the laboratory, the effect
of the compositional zonation within the slag rim on determining the Mg/Al ratio was
also unknown. Therefore, for the better understanding of the hydrotalcite-like phase
with SEM-EDS microanalysis, the authors in the present paper laid emphasis on, e.g., the
influence of the accelerating voltage on determining the Mg/Al ratio, its analysis total
based on the quantitative microanalysis, etc. It is believed that the results obtained in the
current study can provide guidance for the best use of SEM including data acquisition and
interpretation and contribute to the understanding of the hydrotalcite-like phase formed in
various cementitious systems.

2. Materials and Methodology
2.1. Sample Information

Two slag concrete samples (A and B) collected from a field in the Netherlands were
studied in the paper, the service lives of which were approximately 40 years. A brief
introduction of them is given in Table 1.
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Table 1. Descriptive information of the slag concrete samples studied in the paper.

Sample

A
The sample was sourced from a parking garage built around 1980. It was in

Jupiterstraat, Hoofddorp. The cement was partially replaced by blast
furnace slag.

B
The sample was collected from a wind deflection screen near Calandbrug,
Europoort Rotterdam (Port of Rotterdam), which was built in 1985. The

cement type was reported as CEM III/B.

To characterize the hydrates formed in these two samples, thermogravimetric analysis
(TGA) was performed. Slices taken from each specimen were placed in isopropanol solu-
tion to extract the free water. To obtain particles with a diameter < 63 µm, the fragments
were crushed, ground with a mortar, dried in an oven of 40 ◦C, and sieved manually.
TGA was carried out on a Netzsch STA 449 F3 Jupiter coupled with a mass spectrom-
eter (MS) Netzsch QMS 430 C. The emission of H2O and CO2 after heating was thus
identified. Sample powders of about 50 mg were heated at a rate of 10 ◦C per minute
from 40 to 800 ◦C in an argon environment.

The DTG (derivative thermogravimetric) results of these two samples are shown in
Figure 1. The main hydrates formed in these two samples were similar. The peak between
400 and 500 ◦C, originating from the dehydroxylation of portlandite, almost disappeared.
The peaks located at ~250 and 350 ◦C indicated the precipitation of the hydrotalcite-like
phase. The peak at 100–150 ◦C suggested the presence of the C−S(A)−H gel phase. The
shoulder at ~200 ◦C implied the formation of calcium monosulfoaluminate, from the
transformation of ettringite over time [4].
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Figure 1. The DTG results, H2O and CO2 MS curves of (a) sample A and (b) sample B, respectively.
CH: portlandite; Ht: hydrotalcite-like phase; Ms: calcium monosulfoaluminate.

As for the H2O and CO2 MS curves, the mass loss before 300 ◦C was mainly due to the
evaporation of H2O. On the other hand, the decomposition of the carbonate-type phases
dominated the mass loss after 500 ◦C, as verified by the CO2 MS curve. These phases can
be ascribed to the carbonation of specimens after such a long service life. In particular, the
peak at ~700 ◦C can be considered as the decomposition of calcite. Meanwhile, both H2O
and CO2 were released from 350 to 450 ◦C. In other words, some hydroxide ions initially
fixed in the interlayer space of hydrotalcite-like phase were exchanged for carbonate ions
after ~40 years of natural exposure.

2.2. SEM-EDS Microanalysis

All samples of approximately 6 mm in height were cut and immersed in isopropanol
solution to stop hydration. Afterwards, the samples were dried in a 40 ◦C oven and then
impregnated with epoxy resin. Polished sections down to 0.25 µm were prepared. Finally,
the well-polished samples were carbon coated in a Leica EM CED 030 carbon evaporator.

An FEI Quanta FEG 650 ESEM equipped with a silicon drift Thermo Fischer EDS
detector was employed in a high vacuum chamber condition. All microanalysis was
performed at a working distance of 10 mm. For other instrumentally related parameters,
the readers can refer to [27]. Hydrates in the rim of the slag were characterized with both
standard-based (quantitative) and standardless (semi-quantitative) microanalysis. Because
the current research concentrated on the precipitations within the slag rim (the hydrotalcite-
like phase in the particle), only four elements were involved, i.e., Ca, Si, Al, and Mg. Thus,
four compounds (see Table 2) were selected as quantitative microanalysis standards from a
commercial mineral standard mount (MINM25-53 Serial BW from Astimex Scientific Ltd.,
Toronto, ON, Canada). As for the other trace elements, e.g., Ti, Mn, Fe, K, Na, S, etc., they
were not considered here due to their significantly low mass percentage [27]. For standard-
based (std.-based) microanalysis, the calibration to the reference standard mounts was
modeled with NIST DTSA-II Microscopium software [28,29]. The unknown spectra were
quantified by the k-ratio fitting routine, using the ratio of the intensity of the X-ray peaks
in unknown and standards of known compositions and by applying matrix correction
procedures. Additionally, oxygen was quantified stoichiometrically. As for standardless
microanalysis, it relied on the internal standards provided by the commercial software
Pathfinder (Thermo Fisher Scientific). For the detailed introduction to the quantitative
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microanalysis process, the readers can also refer to [27]. It is worthwhile to mention here
that the results of the std.-based microanalysis are mainly presented in Section 3.2.

Table 2. Compounds used as the standards for the quantitative EDS microanalysis.

Target Element Mineral Composition

Ca Calcite CaCO3
Si Quartz SiO2
Al Albite NaAlSi3O8
Mg Dolomite MgCa(CO3)2

3. Results and Discussion
3.1. The Thickness of the Slag Rim and the Interaction Volume of the Electron
3.1.1. The Thickness of the Slag Rim

During the hydration of slag grains, secondary formations, including the hydrotalcite-
like phase and the C−S−H gel phase, are precipitated within the original slag particle areas,
forming dark rims around unhydrated slag grains [5]. The slag rim thickens accompanied
by the continuous dissolution of the unhydrated slag particles and the precipitation of
hydrates with the extension of the curing age. Generally, the thickness of the slag rim
depends on several factors, e.g., the reactivity of the slag, the slag replacement level, the
pH of the pore solution, the curing age, etc. Figure 2a,b illustrate the representative mi-
crostructures of samples A and B, respectively. After such a long hydration time (decades),
fully and partially hydrated slag grains were observed frequently across the matrix, and
the thickness of the slag rim fluctuated considerably, in the range of 1~10 µm.
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3.1.2. Accelerating Voltage and Interaction Volume

For the work of electron microscopy, the electrons accelerated by the instrument
experience a series of collisions with atoms on the surface of the material. The volume
in which these collisions occur is considered as the ‘interaction volume’. The interaction
volume of cementitious materials, the elements of which present a comparatively low
atomic number, is about a few microns [30].

The interaction volume targeted at the slag rim was estimated by Monte Carlo sim-
ulation in CASINO version 2.48 software (https://www.gegi.usherbrooke.ca/casino/,
accessed on 4 July 2007) at accelerating voltages of 5, 10, and 15 kV, respectively (For
some useful tutorials, please refer to https://www.gegi.usherbrooke.ca/casino/tutorial/
tutorial_frames.html, accessed on 4 July 2007). Figure 3 illustrates the maximum penetra-
tion depth of the electron trajectories into a hypothetical slag rim. The lateral dimension
was close to the depth of the interaction volume [31]. As can be seen, an increase in the
penetration depth from ~0.5 µm at 5 kV to ~3.0 µm at 15 kV and a corresponding rise in the

https://www.gegi.usherbrooke.ca/casino/
https://www.gegi.usherbrooke.ca/casino/tutorial/tutorial_frames.html
https://www.gegi.usherbrooke.ca/casino/tutorial/tutorial_frames.html
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interaction volume from less than 0.5 µm3 at 5 kV to ~25.0 µm3 at 15 kV was determined
by the simulation.
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Figure 3. Monte Carlo simulation of the penetration of 200 electrons accelerated at 5, 10, and 15 kV
into the slag rim.

Therefore, one should be careful to select the accelerating voltage to perform EDS
analysis when comparing the thickness of the slag rim with the lateral dimension of
interaction volume. A 15 kV or higher accelerating voltage is irrational for samples with a
thin slag rim (<~3.0 µm), as a large quantity of interference from both the unhydrated slag
grain and the surrounding cement matrix would be incorporated into the analysis. As for
10 kV, the researchers should also be very careful as the lateral dimension of the interaction
volume at this voltage is slightly greater than 1 µm, also greater than the thickness of some
rims formed around very large slag particles (Figure 2).

On the other hand, the overvoltage ratio is another factor that should be noted when
determining the accelerating voltage. It is the ratio of the beam energy E0 to the ionization
energy Ei, in the form of E0/Ei. In the study with an electron microscope, E0 is the
accelerating voltage, and Ei is the considered X-ray energy in keV. For optimized SEM-EDS
microanalysis, the typical overvoltage ratio should be at least 2 for the highest energy
line and no more than 20 for the lowest energy line of interest, to properly measure the
element with the highest X-ray energy (Kα) [31]. As calcium Ca (Kα = 3.692 keV) is
usually the element with the highest X-ray energy in the rim, a beam energy of at least
7.5 kV is required.

3.1.3. The Influence of the Accelerating Voltage on Determining the Mg/Al Ratio of the
Hydrotalcite-like Phase

As discussed in Section 3.1.2, there is a tradeoff for choosing the accelerating voltage
between the requirements of obtaining an adequate overvoltage ratio and minimizing
the interference. In this section, 10 and 15 kV were adopted to give a direct demonstra-
tion of the influence of the accelerating voltage on determining the Mg/Al ratio of the
hydrotalcite-like phase.

Figure 4a,b display two representative BSE micrographs of the microstructure of sam-
ple B. EDS line scan-profiles of the elements (Ca, Si, Al, and Mg) along the dissection line
A-B under 10 and 15 kV accelerating voltages and the corresponding Mg/Al atomic ratio
are shown in Figure 4(a1,a2,a3), respectively. Similarly, the results along the dissection
line C–D are displayed in Figure 4(b1,b2,b3), correspondingly. In general, the Mg/Al
atomic ratio varied slightly in regions where the concentrations of Mg and Al were sta-
ble, e.g., the unhydrated slag particle area along line A-B and the middle region along
line C-D. Although a larger interaction volume was generated and more interference was
incorporated by the higher accelerating voltage, it did not exert a significant impact on the
Mg/Al ratio of these areas.
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However, a clear fluctuation regarding the Mg/Al ratio was observed near the border
connected to the cement matrix under different accelerating voltages. A higher accelerating
voltage led to a reduced Mg/Al ratio, as circled in Figure 4(a3,b3). As shown in the EDS
line scan-profiles (Figure 4(a1,a2,b1,b2)), the Mg concentration presented as a peak in the
border of the slag rim, whereas it decreased in both sides, especially in the side of the
cement matrix, where the Mg content decreased to null approximately. On the other hand,
the reduction in the Al concentration in both sides was not as significant as that of Mg,
and it even levelled off in the side of the ‘inner’ products. Thus, for a larger interaction
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volume generated by a higher accelerating voltage, the interference from the cement matrix
(nearly null Mg content) would be incorporated, and the average reduction in the Mg
concentration would be more remarkable, resulting in a lower Mg/Al ratio in the border of
the slag rim.

Note that for the slag-containing systems hydrated for a short period, commonly
less than one year for most experiments conducted in the laboratory, the thickness of the
slag rim is even smaller, and the EDS scatter points are inevitably selected close to the
border. To minimize the interference from the surroundings, a beam energy of 10 kV is
more appropriate than 15 kV.

3.2. Std.-Based and Standardless Microanalysis

In this section, a beam energy of 10 kV was adopted as the accelerating voltage for
both std.-based and standardless microanalysis. About 50 scatter points located at the slag
rim were analyzed for each mixture, and the average values are reported in Table 3.

Table 3. Results based on the std.-based and standardless EDS microanalysis.

Mg/Al % Analysis Total

Std.-Based Standardless Std.-Based Standardless

Sample A 1.74 1.86 33.4 100.0
Sample B 1.79 1.91 31.2 100.0

Due to the presence of the chemically bound water in the C−S−H gel phase and
the hydrotalcite-like phase, the analysis total of each point could not reach 95–105%, as
hydrogen was not taken into the calibration. Compared to the analysis total of the hydrates
in the cement matrix, which ranged from 65 to 85% [32,33], the analysis total of the hydrates
within the slag rim was much lower, in the range of 30–40%. It was reasonable, as aside
from the water chemically bound in the C−S−H gel phase, the hydrotalcite-like phase also
contained a certain amount of hydroxide ions and chemically bound water. Furthermore,
note that these two samples experienced some extent of carbonation (Figure 1), and carbon
(C) was not considered in the study. Additionally, it was found that the Mg/Al atomic
ratio obtained from these two methods was somehow different. In the works of [34–36], the
authors elaborated the differences between std.-based and standardless EDS microanalysis,
which were most likely caused by the uncertainties in the k-ratio protocol of the standardless
microanalysis.

3.3. Compositional Zonation within Slag Rim

As mentioned earlier, the hydrotalcite-like phase is blended with the C−S−H gel
phase, forming the so-called ‘inner’ products of the slag. Initially, the ‘inner’ products
mainly consist of a virtually featureless shell of gel. This gel may be homogeneous and
intermediate in composition between the C−S−H gel phase and the hydrotalcite-like
phase [37]. With the hydration proceeding, a distinct increase in the Mg concentration and
a decrease in the Ca content were found in the rim of the slag (see Figure 4). Meanwhile,
clear compositional zonation was identified within the slag rim over time [8,9]. Under
this circumstance, the C−S−H gel phase and the hydrotalcite-like phase were separated
from each other as much as possible, and scatter points could be targeted only at the
hydrotalcite-like phase.

In Figure 2a,b, clear compositional zonation was observed in the rim of sample A
and B, respectively. Thus, EDS scatter points were targeted at the regions rich in the
hydrotalcite-like phase (relatively dark coloration with a low mean atomic number) and
the C−S−H gel phase (relatively light coloration with a comparatively higher mean atomic
number), separately. Some typical scatter points are illustrated in Figure 5, with elemental
compositions exhibited in the table below. Points 1 and 4 were located at regions rich in
the hydrotalcite-like phase, and the Mg/Al ratio was in the range of 1.5–2.0. Points 2 and
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3 were in areas accumulated with the C−S−H gel phase, and it was noted that the Mg
content was reduced to approximately null in these regions.
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compositions exhibited in the table below.

Moreover, the scatter plots of the Mg/Si vs. Al/Si of sample A and B are given
in Figure 6a,b, respectively. It is recognized that the slope of regression line indicates
the Mg/Al atomic ratio of the hydrotalcite-like phase [30,38,39]. The points along the
established trend line (or ‘tie-line’) suggest the binary mixture of the hydrotalcite-like phase
and the C−S−H gel phase. As can be seen, the scatter points selected from the regions
abundant in the hydrotalcite-like phase were in the upper part of graph, characterized
by Mg/Si > 1.0 or even 1.5. On the contrary, the other points representative of areas rich
in the C−S−H gel phase were situated in the lower part, and the prominent feature was
Mg/Si < 1.0. Note that the fitted Mg/Al ratio decreased from a zone rich in the hydrotalcite-
like phase to a zone rich in the C−S−H gel phase, as the Mg concentration decreased
significantly. At the same time, regression lines fitting all points were also present in the
graphs (blue dashed line). Apparently, an indiscriminate fitting would bias the Mg/Al
ratio of the hydrotalcite-like phase. Researchers should be aware of the spatial distribution
of the hydrates when the zonation phenomenon occurs in the rim and choose the right
regions to conduct point analysis.
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4. Conclusions

The authors in the present paper provided some critical reflections on characterizing
the Mg/Al atomic ratio of the hydrotalcite-like phase formed in the cement–slag system
through SEM-EDS microanalysis. The main conclusions were drawn as follows:

1. During microanalysis, the beam energy of 10 kV was more appropriate than 15 kV for
samples with a thin slag rim to compromise to meet the requirements of obtaining an
adequate overvoltage ratio and minimize the interference.

2. A lower Mg/Al ratio was obtained when a higher accelerating voltage was employed.
The effect was especially distinct in the border of the slag rim where there was a
significant fluctuation in the Mg content.

3. The analysis total of the hydrates within the slag rim was in the range of 30–40%,
lower than that in the cement matrix. Aside from the water chemically bound in the
C−S−H gel phase, the hydrotalcite-like phase also contained a certain amount of
hydroxide ions and chemically bound water.

4. It was noted that the Mg/Al ratio decreased from zones rich in the hydrotalcite-like
phase to zones rich in the C−S−H gel phase. Indiscriminately fitting scatter points
selected from the slag rim would bias the Mg/Al ratio of the hydrotalcite-like phase.

These conclusions based on the cement–slag system can also be extended to character-
ize the hydrotalcite-like phase formed in other cementitious systems, e.g., alkali-activated
slag paste, dolomite-containing paste, etc. Meanwhile, as hydrotalcite-like can bind var-
ious anionic species in the interlayer space under various aggressive environments, it is
also believed that the results obtained in the current study can provide guidelines for the
best use of SEM to investigate the correlation between the hydrotalcite-like phase and the
durability-related issue of the systems.
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