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The near wake of discrete roughness elements on
swept wings

G. Zoppini1,†, T. Michelis1, D. Ragni2 and M. Kotsonis1

1Section of Aerodynamics, Delft University of Technology, 2629 HS Delft, The Netherlands
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(Received 2 August 2022; revised 7 February 2023; accepted 11 February 2023)

This work presents the first experimental characterization of the flow field in the vicinity
of periodically spaced discrete roughness elements (DRE) in a swept wing boundary layer.
The time-averaged velocity fields are acquired in a volumetric domain by high-resolution
dual-pulse tomographic particle tracking velocimetry. Investigation of the stationary flow
topology indicates that the near-element flow region is dominated by high- and low-speed
streaks. The boundary layer spectral content is inferred by spatial fast Fourier transform
(FFT) analysis of the spanwise velocity signal, characterizing the chordwise behaviour
of individual disturbance modes. The two signature features of transient growth, namely
algebraic growth and exponential decay, are identified in the chordwise evolution of the
disturbance energy associated with higher harmonics of the primary stationary mode.
A transient decay process is instead identified in the near-wake region just aft of each DRE,
similar to the wake relaxation effect previously observed in two-dimensional boundary
layer flows. The transient decay regime is found to condition the onset and initial amplitude
of modal crossflow instabilities. Within the critical DRE amplitude range (i.e. affecting
boundary layer transition without causing flow tripping) the transient disturbances are
strongly receptive to the spanwise spacing and diameter of the elements, which drive
the modal energy distribution within the spatial spectra. In the super-critical amplitude
forcing (i.e. causing flow tripping) the near-element stationary flow topology is dominated
by the development of a high-speed and strongly fluctuating region closely aligned with the
DRE wake. Therefore, elevated shears and unsteady disturbances affect the near-element
flow development. Combined with the harmonic modes transient growth these instabilities
initiate a laminar streak structure breakdown and a bypass transition process.
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G. Zoppini, T. Michelis, D. Ragni and M. Kotsonis

1. Introduction

Laminar to turbulent transition of swept wing boundary layers (BLs) in low turbulence
environments is dominated by the development of stationary crossflow instabilities (CFI,
Bippes 1999; Wassermann & Kloker 2002; Saric, Reed & White 2003; Serpieri & Kotsonis
2016). The onset and downstream evolution of stationary CFI is highly sensitive to
surface roughness (Radeztsky, Reibert & Saric 1999; Saric et al. 2003) including the
residual small-amplitude distributed roughness of the wing surface finishing. Therefore,
many experimental and numerical works dedicated to the investigation of CFI apply an
artificial forcing in the form of arrays of discrete roughness elements (DRE) periodically
arranged along the wing span (Reibert et al. 1996; Saric, Carrillo & Reibert 1998; Serpieri
& Kotsonis 2016). The resulting BL flow is spanwise uniform and is dominated by
the development of a monochromatic stationary CFI mode, developing with the same
spanwise wavelength as the one corresponding to the DRE inter-spacing.

The process through which external disturbances enter the BL and convert into modal
perturbations is called receptivity (Morkovin 1969) and is still posing a significant
challenge towards the elucidation of swept wing transition. In fact, despite the widespread
use of DRE (or equivalent discrete forcing methods) in experimental and numerical
studies, only a few numerical simulations focussed on the characterization of the
near-element flow features in three-dimensional (3-D) BLs (Kurz & Kloker 2014, 2016;
Brynjell-Rahkola et al. 2017). The direct investigation of these flow features could give
fundamental insights into the initial phases of the receptivity process. However, the
characterization of the near-element flow in an experimental context is limited by two
main factors. On the one hand, due to the diverse and disparate scales of the flow
phenomena involved, the near-element flow region is posing considerable challenges for
state-of-art flow measurement techniques. As an example, the investigation presented
in this work is performed on a swept wing model of more than 1 m chord and span,
developing a BL characterized by δ99 � 1.4 mm at 15 % chord (Serpieri & Kotsonis
2015). On the other hand, despite being mostly affected by surface roughness, numerous
other parameters (such as free-stream turbulence, local pressure gradient and possible
non-modal interactions in the element vicinity) are also involved in the receptivity process.
These aspects complicate the implementation of numerical prediction tools capable of
thoroughly simulating the near-element flow features. Lastly, a unifying feature that further
increases the challenge in understanding these processes is the high three-dimensionality
of the local flow, as shown by Kurz & Kloker (2014, 2016). Accordingly, the investigation
of such a flow scenario requires the use of volumetric velocity measurement techniques.
Notwithstanding the intricacies of the problem, the direct numerical simulation (DNS)
investigations conducted by Kurz & Kloker (2014, 2016) and Brynjell-Rahkola et al.
(2017), provide a detailed description of the DRE near-element flow topology. These works
identified the dominant flow structures and their behaviour in super-critical and critical
amplitude forcing configurations. Throughout this work the definition of super-critical
amplitude forcing configurations applies to forcing cases with sufficiently high DRE
amplitude to induce flow transition in the vicinity of the roughness array, preventing
the development of modal instabilities. Critical amplitude forcing configurations instead
induce a set of instabilities in the DRE vicinity that develops into stationary modal CFI
downstream, which ultimately drive the BL flow transition to turbulence. In both scenarios,
a recirculation region is identified immediately aft of the element. This is accompanied
by the formation of a complex set of vortical systems that develop around the element.
Specifically, a pair of counter-rotating horseshoe vortex (HSV) legs originating from
the roll-up of the BL streamwise vorticity upstream of the element, develops from the
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The near wake of discrete roughness elements on swept wings

element’s flanks. In turn, these HSV legs induce a weaker inner pair of counter-rotating
vortices through the lift-up effect (Landahl 1980). The development of such vortical
systems compares well with the flow field incurred by an isolated discrete roughness
element or a DRE array in 2-D BLs (Baker 1979; Klebanoff, Cleveland & Tidstrom
1992; Ergin & White 2006; Kurz & Kloker 2016). Additionally, a dedicated investigation
conducted by the authors experimentally measures the near-wake flow of an isolated
element in a 3-D BL, observing comparable flow topology and structure development
(Zoppini, Ragni & Kotsonis 2022a). For the sake of clarity, throughout this work the
distinction between the near-wake and far-wake region is based on the chord location at
which the primary stationary disturbance recovers a modal behaviour (i.e. x/c = 0.164
in the present work), thus growing exponentially further downstream (i.e. in the far
wake). This aspect is further discussed in § 3.1 and illustrated in figure 7. However,
the downstream evolution of the vortical structures in the far wake of the roughness
element shows significant differences between the 2-D and 3-D BLs. Namely Kurz &
Kloker (2016) showed that the presence of the crossflow velocity component in the
swept wing base flow leads to a loss of flow symmetry, as the resulting flow field
is dominated by the crossflow direction of rotation. Accordingly in 3-D BLs vortical
structures co-rotating with the CFI (defined as co-crossflow structures for the sake of
brevity) are sustained in their downstream evolution, while the counter-rotating structures
are damped. As a result, only one leg of each vortical system is sustained in the flow field
either initiating the development of modal instabilities or driving the laminar breakdown
of the streak structures and the onset of turbulence (i.e. causing bypass transition). The
latter case typically occurs in the presence of super-critical forcing configurations featuring
high-amplitude DRE. Due to the strong local wall-normal and spanwise shears, near-wake
unsteady instabilities (often of Kelvin–Helmholtz type) with excessive initial amplitude
and rapid local growth develop and trigger transition in the element vicinity, effectively
bypassing the development of modal CFI (Klebanoff et al. 1992; Reshotko 2001; Ergin &
White 2006).

Several efforts have been made towards scaling this particular problem. The discrete
roughness-induced transition behaviour can be satisfactorily predicted based on the
roughness Reynolds number i.e. Rek = (k × |u(k)|)/ν (Gregory & Walker 1956; Tani
1969; Klebanoff et al. 1992). This geometrical parameter accounts for the element height
(k) and local BL development through |u(k)| (i.e. the local undisturbed BL velocity at k)
and ν (the kinematic viscosity). Specifically for low Rek (i.e. Rek < 200 for the current
experimental set-up, also used in Zoppini et al. 2022b) the sustained HSV leg is amplified
past the element far wake and develops into a modal stationary crossflow vortex. For
higher Rek the recirculation region forming aft of the element is strong enough to amplify
unsteady disturbances in the wake-induced shear layer, which provide the first seed for
unsteady laminar breakdown (Acarlar & Smith 1987; Klebanoff et al. 1992; Zoppini et al.
2022a). As such these near-wake instabilities persist and grow in the wake flow field,
contaminating the laminar flow regions and initiating the BL transition to turbulence
shortly downstream of the element location (Kurz & Kloker 2016; Brynjell-Rahkola et al.
2017). Previous investigations showed that comparable behaviour characterizes 2-D BLs
forced by isolated roughness elements or DRE arrays (e.g. Klebanoff et al. 1992; Ergin &
White 2006; Casacuberta et al. 2019; Bucci et al. 2021).

Despite the significant insights on the near-element flow topology and instability
development offered by the discussed DNS studies, the characterization of the DRE–CFI
onset relation is yet to be defined. This is particularly evident in the lack of dedicated
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experimental studies of these effects. Nonetheless, a wider body of literature is dedicated
to the investigation of the near-wake features induced by roughness elements in 2-D BLs
(e.g. White, Rice & Ergin 2005; Tempelmann, Hanifi & Henningson 2012a; Cherubini
et al. 2013; Bucci et al. 2021). In particular, many of the reported works identify transient
growth as a fundamental mechanism occurring in the near-wake region, relating the
downstream onset of modal instabilities (i.e. critical behaviour) or the occurrence of
bypass transition (i.e. super-critical behaviour) to the initial algebraic growth of the
near-wake disturbances. Given the similarities of the near-element flow fields between 2-D
and 3-D BL cases, it can be expected that transient growth mechanisms might be active
also in the latter. Some evidence of such behaviour was shown by a previous experimental
investigation conducted by the authors (Zoppini et al. 2022b). Furthermore the highly
three-dimensional flow developing in the near wake of critical and super-critical roughness
elements has been widely investigated through global stability analysis (e.g. Denissen
& White 2013; Loiseau et al. 2014; Kurz & Kloker 2016). However, in their numerical
investigation, Kurz & Kloker (2016) outlined that the instability mechanism dominating
the bypass transition scenario is not necessarily a global instability. Rather, depending on
Rek, it can develop as a purely convective instability in the element near wake, further
accommodating the possible presence of transient mechanisms in the near-wake flow.

More specifically, transient growth is a linear instability mechanism driving the
algebraic amplification of initially small-amplitude disturbances which exponentially
decay shortly downstream (e.g. Corbett & Bottaro 2001; Schmid & Henningson 2001;
Levin & Henningson 2003; Lucas 2014). This phenomenon typically occurs in shear
layers that are otherwise stable to modal instabilities. Transient growth mechanisms govern
the linear superposition of individually stable non-orthogonal disturbance modes (e.g.
Schmid & Henningson 2001; Lucas 2014). Therefore, the occurrence of such mechanisms
in the element’s near wake (and consequently in the initial phases of the receptivity
process) would relate to the presence of non-modal flow interactions. From a mathematical
standpoint, the occurrence of transient growth can be related to the non-normal
nature of the Orr–Sommerfeld/Squire operator, which features mutually non-orthogonal
eigenmodes (Schmid & Henningson 2001). As such, a disturbance resulting from the linear
superposition (i.e. vectorial sum) of individually decaying non-orthogonal solutions of the
stability problem (Mack 1984; Herbert 1993) can experience algebraic growth.

From a physical point of view the transient growth process can be related to the
presence of a lift-up mechanism (Landahl 1980) characterizing flow fields dominated
by instabilities in the form of streamwise structures (Corbett & Bottaro 2001; Reshotko
2001; Henningson 2006). Specifically in the case of DRE embedded in a laminar 3-D
BL a disturbance in the form of a streamwise vortex will transfer momentum across the
BL, inducing a strong streamwise velocity perturbation (i.e. streak). The original vortical
structures may be locally stable and undergo exponential decay, however, the increased
disturbance energy associated with the streamwise momentum redistribution can exceed
the energy decay of the streak, thus leading to transient growth (Landahl 1980; Breuer
& Kuraishi 1994; Corbett & Bottaro 2001). The transient growth phase is typically brief,
albeit intense, and is rapidly hindered by the exponential decay of the energy associated
with the dominant modes (Schmid & Henningson 2001; Henningson 2006). Nonetheless,
its occurrence drives the growth of the near-wake instabilities, conditioning the onset of
modal instabilities (Breuer & Kuraishi 1994; Corbett & Bottaro 2001; Lucas 2014; Zoppini
et al. 2022b) or inducing rapid laminar breakdown (i.e. bypass transition) depending
on the achieved amplitude peak (Andersson, Berggren & Henningson 1999; Reshotko
2001). Specifically, in a 3-D BL forced by DRE amplitudes corresponding to low Rek,
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The near wake of discrete roughness elements on swept wings

the evolution of the transient near-wake instabilities can determine the initial amplitude of
the triggered modal instabilities with important consequences for their downstream growth
and eventual transition (Breuer & Kuraishi 1994; Corbett & Bottaro 2001; Lucas 2014).

The experimental investigations by White & Ergin (2003) and White et al. (2005)
showed that, in 2-D BLs, algebraic growth is a fundamental mechanism in the near-wake
flow evolution. The analysis of the spatial Fourier energy distribution indicates that the
observed transient process is mainly sustained by the third and fourth harmonics of the
dominant stationary mode (corresponding to the wavelength forced by the applied DRE
array). The modal energy associated with such harmonics grows algebraically immediately
aft of the element, followed by exponential decay shortly after while scaling with Re2

k in
the transient flow region. These results have been confirmed by the DNS investigation
by Fischer & Choudhari (2004), albeit overestimating the modal energy measured in
the experiments. Furthermore, previous investigations dedicated to 2-D BL receptivity
characterized the near wake of DRE of various shapes (i.e. square, hump, micro-ramp
and cylinders) and sizes (represented by the height-to-diameter ratio of the considered
geometries) (e.g. Rizzetta et al. 2010; Ye, Schrijer & Scarano 2016). Both these parameters
appear to affect the near-wake velocity field to such an extent that differences could
be observed in the spanwise frequency spectra incurred by the different geometries.
Accordingly, already the modification of the roughness height-to-diameter (k/d) ratio can
affect the identified transient growth phenomena and consequently the onset of modal
CFI, as outlined by White et al. (2005). However, White et al. (2005) describe relatively
simple modelling functions based on the element geometry and on the chordwise location
of the modal energy peak that approximate well the observed transient energy growth of
the harmonic modes.

Previous investigations conducted by the authors dedicated to the DRE near wake in a
3-D BL (Zoppini et al. 2022b) also identified the occurrence of a transient mechanism
with modal energy distribution comparable to White et al. (2005). However, in the cited
investigation the spatial resolution of the experimental measurements was insufficient
to identify the algebraic growth of the instabilities, which is a fundamental trait of the
transient growth process. Accordingly, the role of the transient growth mechanism in
conditioning the onset of modal instabilities as well as their dependence on the external
forcing configuration could not be clearly outlined. The available literature framework
shows that the receptivity process of forcing cases with sub-critical forcing amplitude
(i.e. originating weak CFI that only marginally affect the transitional process) can be
approximated by a direct geometrical dependence of the initial modal amplitude on the
DRE geometry. This applies to forcing configurations in which the initial CFI amplitudes
scale with the element geometry either represented by the simple element height (k,
Schrader, Brandt & Henningson 2009; Tempelmann et al. 2012b) or by a geometrical
parameter such as Rek (expressing a dependence on k2). The former cases feature very low
forcing amplitude configurations (i.e. k lower than 10 % of the local BL displacement
thickness, Hunt & Saric 2011; Tempelmann et al. 2012b). The latter instead includes
the results by Kurz & Kloker (2014) outlining that the receptivity process of roughness
elements with height lower than 30 % of the local BL displacement thickness is described
by a receptivity coefficient that linearly depends on k (hence the initial amplitude of the
modal CFI relates to k2). This behaviour is particularly evident for configurations with
varying DRE aspect ratio (k/d, e.g. increasing height for a constant DRE diameter),
while the initial amplitude sensitivity to the element height is reduced for constant aspect
ratio geometries (Kurz & Kloker 2014). Evidently, the complexity of receptivity under
variations of a multitude of governing parameters (such as roughness height, diameter,
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location etc.) complicates the deterministic definition of specific receptivity regimes.
Nonetheless, to classify these receptivity regimes in intuitively accessible terms,
throughout this work the aforementioned configurations are grouped under the
k-dependent receptivity definition as they are represented through a direct relation with
k showing only minor dependence on the effective DRE shape. It must be stressed here
that k-dependent receptivity does not exclude dependence on other parameters (such as
diameter or geometrical shape), but rather denotes the dominant influence of roughness
height on the conditioning of the initial modal amplitudes. Higher amplitude elements
follow a receptivity process with no clearly outlined dependence on the external forcing
geometry. Therefore, a clear receptivity model for the characterization of the critical
amplitude cases considered in the present work is still missing. Additionally, in the
super-critical amplitude forcing the near-wake flow receptivity is likely dominated by
mechanisms leading to bypass transition processes (Andersson et al. 1999; Ergin & White
2006; Kurz & Kloker 2016).

The above-surveyed works highlight the importance of near-wake mechanics in the
analysis of receptivity to roughness elements. Nevertheless, a systematic experimental
flow field exploration in 3-D BLs (i.e. swept wings) is currently not available. As such,
the current work aims at deepening the near-wake flow analysis, confirming the presence
of transient growth mechanisms and characterizing their role in the initial conditioning
of the modal CFI. In particular, the BL receptivity to DRE arrays of various amplitudes
is characterized, delivering a conceptual model detailing the 3-D BL receptivity to
critical and super-critical DRE, thus extending the transitional paths model proposed
by Morkovin, Reshotko & Herbert (1994). A first-of-its-kind experimental investigation
of the near-element flow field is provided, accessing the 3-D time-averaged velocity
fields in the element vicinity through specialized high-resolution dual-pulse tomographic
particle tracking velocimetry (PTV) and the shake-the-box algorithm. The presented
experimental data detail the near-element stationary flow topology and identify the
dominant flow structures and their spatial organization both for critical and super-critical
DRE amplitudes. The modal composition of the flow field is investigated by means of a
spanwise spatial spectral analysis. Additionally, the high spatial resolution of the acquired
data details the total perturbation as well as the amplitude and energy growth associated
with individual modes in the element near-wake region. Finally, the flow development is
monitored under varying DRE configurations, investigating the receptivity of instabilities
to the forcing amplitude and wavelength.

2. Methodology

2.1. Swept wing model, wind tunnel and flow stability
The experimental measurements presented in this work are performed using an in-house
designed swept wing model extensively described in Serpieri & Kotsonis (2015). The
wing features a constant streamwise chord (c = 1273 mm) and a sweep angle of 45◦.
A favourable pressure gradient characterizes the wing up to x/c = 0.63 thus allowing
thorough investigation of primary and secondary CFI and ensuing BL transition (Serpieri
& Kotsonis 2016). Additionally, given the high sensitivity of CFI to surface roughness,
the wing surface is carefully polished, ensuring a low and uniform roughness level
(Rq = 0.2 µm, Serpieri & Kotsonis 2015).

The presented measurements are performed in the low-speed Low Turbulence wind
Tunnel (LTT) at TU Delft, an atmospheric closed return tunnel featuring low free-stream
turbulence level in the test section flow. Specifically, at the tested conditions the
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free-stream turbulence level is Tu = 0.025 % of the free-stream speed in the 2–5000 Hz
frequency band (Serpieri 2018). All measurements are performed at a fixed angle of attack
(α = −3.36◦) and various free-stream Reynolds numbers (Rec = 1.35 × 106, 1.85 × 106,
2.17 × 106). Stability solutions are computed for the three measured Rec based on a
steady and incompressible solution of the 2.5-D BL equations and linear stability theory
(LST, Mack 1984). The procedure followed is extensively described in Serpieri (2018)
and is omitted here for the sake of brevity. Referring to the Rec = 2.17 × 106 case, the
computed stability solutions predict the wavelength and evolution of the most unstable
mode (λ1 = 8 mm), providing a reliable basis for the experimental forcing configurations
design.

The xyz reference system used in this work has its x and z axes orthogonal and
aligned to the leading edge, respectively, with corresponding velocity components u, v,
w. Throughout this work, the wall-normal direction (y) is non-dimensionalized by the
experimentally measured unperturbed (i.e. no DRE applied) BL displacement thickness at
x/c = 0.165 for Rec = 2.17 × 106, hereafter defined δ̄∗ = 0.46 mm.

2.2. Spanwise periodic DRE
As previously discussed, numerous investigations dedicated to CFI apply DRE arrays on
the wing surface towards focussing the BL development into a single monochromatic
mode (e.g. Reibert et al. 1996; Saric et al. 2003). In the current application, the forced
mode (i.e. the inter-spacing of the elements λf 1) is chosen to coincide with the wavelength
of the most unstable stationary CFI mode λ1, corresponding to 8 mm, as predicted by
LST and found in previous works (Serpieri 2018). Typically, the DRE array is applied
in the vicinity of the forced mode neutral point, thus close to the wing leading edge.
However, recent investigations by the authors (Zoppini et al. 2022b) showed that this
forcing configuration can be geometrically upscaled and moved at further downstream and
experimentally more accessible chord locations. In particular, in the present measurements
the DRE arrays are placed at xDRE/c = 0.15, where the unperturbed (i.e. no DRE
applied) experimental BL displacement thickness is δ∗ = 0.44 mm (corresponding to
δ99 = 1.4 mm). In comparison, the boundary layer thickness at x/c = 0.02 is estimated
to be δ∗ = 0.14 mm (corresponding to δ99 = 0.6 mm). While still extremely thin, the BL
at x/c = 0.15 is sufficiently thick to be measured by the high spatial resolution optical
velocimetry technique used in this work. Additionally, the local growth rate of the modal
CFI can be described by ∂N/∂x, where N is the N-factor evolution provided by the LST
solution at Rec = 2.17 × 106. The ∂N/∂x value at x/c = 0.15 is comparable to the value
obtained in the vicinity of the dominant mode neutral point (i.e. within a 10 % difference),
further validating the possibility of investigating the near-wake flow development for the
downstream applied DRE array.

Various forcing configurations are investigated to characterize the receptivity of the
near-element flow features to the DRE amplitude (k) and forcing wavelength (λf 1).
Specifically, four different element heights (nominally k1 = 0.1 mm, k2 = 0.2 mm, k3 =
0.3 mm and k4 = 0.4 mm) and three different forcing wavelengths are considered.
Following the definition of λi = λ1/i, forcing wavelengths λ3/2 � 5 mm, λ1 � 8 mm
and λ2/3 � 11 mm are measured. Throughout this work, the λ1 = 8 mm mode is
associated with the most unstable mode at all considered Reynolds number cases. More
specifically, stability solutions computed at the lower and higher Rec indicate that the
most unstable CFI mode corresponds to wavelengths of 10 mm to 8 mm, respectively
(Zoppini et al. 2022b). Hence, within the range of Rec investigated in this work, the
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Figure 1. Geometrical parameters of the measured forcing configurations computed from numerical BL
solutions. Colour map based on k/δ∗, symbols based on DRE height, legend indicating nominal element
height [mm].

λ1 = 8 mm mode is either the most unstable mode or among the most unstable modes
in the vicinity of xDRE/c.

The DRE elements are manufactured in house by computer numeric controlled (CNC)
laser cutting of a 100 µm thickness self-adhesive black polyvinyl chloride (PVC) foil.
Various heights can be obtained by pasting multiple layers of foil on top of each other prior
to the cutting procedure. Each element is designed to be cylindrical with a diameter of d =
2 mm, however, practical limits in the manufacturing process entail slight deviations in
their actual shape. The elements have been fully characterized through a statistical study by
using a scanCONTROL 30xx laser profilometer (405 nm wavelength and 1.5 µm reference
resolution) to extract their wavelength, diameter and height (table 2, Zoppini et al. 2022b).

The measured forcing configurations can be described through a purely geometrical
scaling by defining the ratio between the DRE height (k) and the unperturbed BL
displacement thickness at xDRE/c (k/δ∗, Schrader et al. 2009). This parameter can
be accompanied by the roughness Reynolds number Rek = (k × |u(k)|)/ν (Gregory &
Walker 1956; Reibert et al. 1996) also accounting for the local BL evolution. Numerous
investigations showed that the receptivity to roughness only depends on k for small
DRE amplitudes with a fixed diameter (Tempelmann et al. 2012b; Kurz & Kloker
2014). However, previous investigations by White et al. (2005) showed that, for a
2-D BL, Re2

k offers a partial but valuable scaling of the near-element flow evolution.
Additionally, Rek proves successful in predicting the criticality of the considered forcing
configurations. In particular, in the present work configurations featuring Rek � 200
behave super-critically (Zoppini et al. 2022b), therefore they are only considered in § 4
dedicated to the characterization of the near-element features of super-critical amplitude
DRE. The geometrical parameters corresponding to the investigated forcing cases are
reported in figure 1. A correlation of the considered cases to previous investigations
can be obtained using the Von Doenhoff & Braslow (1961) diagram, relating the critical
roughness Reynolds number to the inverse aspect ratio of the forcing elements (i.e. d/k)
in 2-D base flows. For the sake of conciseness, a direct graphical comparison is omitted,
however, the reference critical and super-critical cases (i.e. Rec = 2.17 × 106 with DRE
amplitude k3 or k4) respectively correspond to d/k = 6.7, 5 and

√
Rek = 13.8, 18.1. Hence,

the critical case falls on the lower bound of the transitional region identified by Von
Doenhoff & Braslow (1961), while the super-critical case falls well inside it.
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The near wake of discrete roughness elements on swept wings

2.3. Dual-pulse tomographic PTV
The 3-D velocity distribution in the DRE vicinity is acquired through specialized
high-resolution dual-pulse tomographic PTV (Malik & Dracos 1993; Wieneke 2012;
Schanz, Gesemann & Schröder 2016). The measured 3-D domain is centred at x/c =
0.165 and extends for almost x/c = 0.027, y/δ̄∗ � 6 and z/λ1 = 3.5 in the streamwise,
wall-normal and spanwise directions, respectively.

The 3-D measurement volume is illuminated with a Quantel Evergreen Nd:YAG
dual cavity laser (200 mJ pulse energy at λ = 532 nm), optically accessing the test
section through a Plexiglas window on the test section floor. Through a suitable optical
arrangement, the laser beam is shaped into a 40 mm wide and almost 4 mm thick sheet
parallel to the wing surface in the area of interest. The flow is imaged through 4 sCMOS
LaVision Imager cameras (2560 × 2160 pixel, 16-bit, 6.5 µm pixel pitch), installed on
the outer side of the test section with a tomographic aperture of approximately 45◦. Each
camera is equipped with a 200 mm lens, a 2X teleconverter and a lens-tilt mechanism
adjusted to comply with the Scheimpflug condition. The resulting focal length is 400 mm
for each camera, featuring an aperture number f# = 11 to keep the particles in focus
throughout the entire volume depth. The distance between the imaged plane (i.e. the model
surface) and the camera sensors is �1 m, resulting in a magnification factor of �0.41 and
spatial resolution of 67 px mm−1. The flow is seeded by dispersing 0.5 µm droplets of a
water–glycol mixture in the wind tunnel circuit.

For each investigated configuration, 4000 image pairs are acquired at a frequency
of 15 Hz. The time interval between paired images is set to 8 µs, corresponding to a
free-stream particle displacement of almost 10 px. A dual layer target is used for calibrating
the tomographic imaging system, further correcting the obtained mapping functions using
the volume self-calibration procedure (Wieneke 2008; Schanz et al. 2012). The resulting
calibration uncertainty is �0.04 px. The image pairs are processed in LaVision DaVis 10
through a shake-the-box, 2-pulse algorithm (Wieneke 2012; Schanz et al. 2016) estimating
the 3-D velocity field within the acquired volume. The LaVision DaVis 10 processing
also provides an estimate of the velocity uncertainties (Janke & Michaelis 2021), which
for the present case average to 1.8 % of the local velocity in the BL region. An in-house
developed Matlab routine is then employed to perform trajectory binning and conversion
to a Cartesian grid. The final vector spacing results in approximately 0.25 mm in the xz
plane and 0.04 mm along the y-direction.

2.4. Velocity field reconstruction and processing
The time-averaged (ū, v̄, w̄) and standard deviation (u′, v′, w′) velocity fields are obtained
for all three velocity components in the xyz domain. For the sake of conciseness, the main
data processing techniques adopted throughout this work are hereafter briefly described as
applied to ū, while the treatment of v̄ and w̄ follows a similar procedure. The wall-normal
BL velocity profile (ūb) is estimated by averaging the ū velocity signal along z for each
fixed xy location. At each chordwise location, the free-stream velocity ū∞ is estimated as
the average of ūb for y > δ99 and its value at x/c = 0.165 is used to non-dimensionalize
the three velocity components. The disturbance velocity field (ūd) is computed at each
(x, y∗, z) as ūd = ū(x, y∗, z) − ūb(x, y∗), with y∗ representing a fixed wall-normal location.
The analysis of such velocity fields allows for the extraction of the amplitudes of the
high- and low-speed streaks (Andersson et al. 2001). The wall-normal disturbance velocity
profile (〈ū〉z) is computed as the root mean square of the ūd velocity signal along z (Reibert
et al. 1996; Tempelmann et al. 2012b). Furthermore, a spatial fast Fourier transform
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(FFT) analysis is performed on the spanwise velocity signal at each xy location (FFTz(ū)),
characterizing the BL spectral composition as well as the development of the dominant
spanwise mode and its harmonics. This allows for the computation of the total and the
modal (i.e. per individual FFT mode) instability amplitude by integrating respectively 〈ū〉z
or the individual FFT mode shape functions along y up to the local BL δ99 (Reibert et al.
1996; Downs & White 2013). This provides an estimation of the velocity disturbances’
growth and evolution along the airfoil chord. Following White et al. (2005), the CFI energy
is instead computed as E(ū) = ∫ δ99

0 (〈ū〉z)
2 dy. The summation of the disturbance energy

associated with each of the three velocity components provides the total disturbance
energy E(ū). Similar processing is applied to the individual FFT shape functions to
compute the modal energy evolution.

By considering all three velocity components available through the tomographic PTV
measurement, the 3-D coherent structures dominating the near-wake flow are identified
by applying a vortex identification criterion, namely the Q-criterion (Hunt, Wray & Moin
1988). The flow field is first decomposed into its spectral components and is reconstructed
accounting for a truncated set of Fourier modes to improve the data signal-to-noise ratio.
The reconstructed domain includes the statistically represented flow field incurred by one
DRE element and is rotated to obtain a reference frame (xR, yR, zR) with xR aligned with
the crossflow vortex axis, yR coincident with y, and zR normal to the xRyR plane. The
corresponding time-averaged velocity components are named ūR, v̄R, w̄R.

3. Critical near-element flow

3.1. Stationary disturbance topology
Direct characterization of the near-element flow topology and dominant stationary
disturbances is obtained through the time-averaged and standard deviation velocity
fields. The critical wavelength forcing configuration (i.e. λf 1 = λ1) at Rek = 192 is
considered hereafter as the baseline case for the stationary flow topology investigation.
The corresponding disturbance velocity field (ūd) is reported in figure 2(a–c), while
figure 2(d–f ) presents the temporal standard deviation contours (u′).

Owing to the volumetric measurement, the stationary flow features dominating the
near-element flow evolution can be identified in both the xz and yz planes. Specifically, the
velocity contours in figure 2(a–c) reveal a low-speed streak developing aft of each DRE
in correspondence to the element’s wake. This low-speed region is accompanied by two
high-speed streaks developing on its flanks. The resulting streak alternation corresponds
well to the horseshoe vortex legs wrapping around and extending aft of the element,
identified by previous investigations (Baker 1979; Kurz & Kloker 2016). In between
neighbouring roughness elements the incoming BL maintains a laminar behaviour as the
velocity disturbances introduced by each DRE are highly localized in correspondence to
the individual element’s wake. The identified stationary flow topology closely resembles
the near-element flow of isolated DRE in 2-D or 3-D BLs (e.g. Baker 1979; Loiseau
et al. 2014; Bucci et al. 2021; Zoppini et al. 2022a). This is also in agreement with the
findings of Von Doenhoff & Braslow (1961), in which the near-element behaviour of the
individual elements of a DRE array was found to be comparable to that of an isolated
DRE if they are arranged at a wavelength λf 1 > 3d. Nonetheless, due to the presence
of the crossflow velocity component in the base flow, the stationary structures identified
in the near-element flow region follow an asymmetric downstream development (Kurz
& Kloker 2016; Brynjell-Rahkola et al. 2017; Zoppini et al. 2022a). In particular, in
figure 2(a) the outboard high-speed streak (denoted by a solid line) is decaying in the
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Figure 2. (a–c) Values of ūd and (d–f ) u′ for forcing case λf 1 = λ1, Rek = 192 (for k3) in (a,d) the xz plane
at y = 0.55δ̄∗; (b,e) the yz plane at x1 = 0.154c (vertical dashed line in a,d) and (c, f ) at x2 = 0.174c (vertical
dash-dot line in a,d). Disturbance profiles at (h) x1 and (i) x2 for all three velocity components; element height
(solid horizontal black line); LST λ1 shape function (dashed grey line) scaled to match 〈ū〉z maximum; element
height (horizontal full line).

downstream direction and is substituted by the development of an outboard low-speed
streak (denoted by a dash-dot line). Instead, the inboard high-speed streak (indicated by a
dashed line) persists until the end of the acquired domain albeit decreasing in amplitude.
This results in a far-wake flow dominated by an almost periodic alternation of high- and
low-speed regions, respectively induced by the evolution of the inboard high-speed streak
and the merging of the outboard low-speed streak and the low-speed wake. The ensuing
BL velocity modulation is a typical feature of a modal stationary CFI, resulting from the
momentum redistribution across the BL induced by the crossflow vortices (figure 2(c),
Bippes 1999; Saric et al. 2003). Based on the observed development, a near-wake flow
region can be defined (i.e. x/c < 0.164), which is mostly affected by the stationary
streak structures development, while the far-wake flow region (i.e. x/c > 0.164) is mostly
dominated by modal CFI development (as further discussed in figure 7). Furthermore,
the identified streak structures develop by following a constant phase trajectory which is
oriented at an angle of �6◦ towards the inboard direction with respect to the free-stream
flow (i.e. the X direction). This mild tilting compares well with the angle forming between
developing stationary crossflow vortices and the free-stream velocity in the same set-up
at more downstream chord locations, as experimentally measured and predicted by LST
(Serpieri 2018).
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The standard deviation fields reported in figure 2(d–f ) indicate that in the element
vicinity the regions of higher unsteadiness are mostly located in correspondence to the
identified streak structures. In particular, stronger unsteady velocity fluctuations appear at
the interface between the outboard low-speed and high-speed streaks, representing a local
high (mostly spanwise) shear region (Klebanoff et al. 1992; Kuester & White 2015; Berger
& White 2020). This suggests that the near-wake disturbances onset and downstream
evolution are strongly related to the wall-normal and spanwise shear layers induced by
the recirculation region developing in the element’s wake (figure 2(e), Brynjell-Rahkola
et al. 2017; Zoppini et al. 2022a). The overall level of unsteady fluctuations reduces
further downstream accompanied by the progressive weakening of the streaks structures.
Additionally, as the flow structures evolve downstream of the higher-fluctuation regions
locally shift in correspondence to the inboard high-speed streak. Despite the observed
early rise of strong unsteady disturbances, the overall transition scenario occurring in
the present case appears to be driven by a typical modal CFI breakdown, as revealed
by global thermography-based imaging (not shown here for brevity). Hence, it can be
expected that the unsteady fluctuations detected at the end of the imaged domain further
decay downstream.

Stationary disturbance velocity profiles (〈ū〉z) are extracted at two representative chord
locations x1/c = 0.154 and x2/c = 0.174 (figure 2h,i). The reduction of the disturbance
profile amplitude at x2 reflects the weakening of the streak structures at more downstream
locations. In addition, the developing flow disturbances are observed to grow in size along
the wall-normal direction, as their maximum value moves from y = 0.55δ̄∗ to y = 1.05δ̄∗.
This effect is evident in the yz plane ūd and u′ contours, and can be related to the natural
thickening of the BL as well as to the development of the modal CFI downstream of x/c =
0.164 (Saric et al. 2003). Specifically, at x1 (figure 2b,e,h) the velocity streaks developing
in the element vicinity only affect the near-wall BL region, reaching the amplitude peak
value at a wall-normal distance comparable to the element height. On the contrary, the
downstream evolution of the developing structures (figure 2c, f,i) affects the whole BL
wall-normal extent through the well-known momentum modulation associated with the
CFI development (Bippes 1999; Saric et al. 2003). Nonetheless, the absence of a secondary
lobe in the disturbance velocity profiles and the relatively low maximum amplitude of
the stationary disturbances (〈ū〉z < 0.05ū∞) indicate a largely linear evolution of CFI
within the investigated domain. This is reflected in the close match between 〈ū〉z and the
numerically computed local LST shape function for the λ1 mode evolution (figure 2i).

Overall, both the ūd contours and 〈ū〉z profiles in figure 2 show that the streak structures
developing in the near-wake region undergo an initial growth phase while decaying shortly
downstream. The behaviour of the individual streaks can be quantified by extracting the
streak amplitude (Astr), estimated as the maximum (minimum) ūd value for the high-
(low-)speed streaks, respectively. The resulting Astr is reported in figure 3(a) for three
Rek configurations obtained by modifying the DRE array amplitude. Both in Rek = 192
and Rek = 90 cases the high-speed streaks feature an initial growth phase followed by
subsequent decay which is more evident for the higher-amplitude forcing. The low-speed
streak is instead showing a monotonic decay of the absolute amplitude value. Similar
behaviour is seen for the lowest forcing amplitude considered (i.e. Rek = 21). However,
the measurement accuracy in this case is hindered by the overall weaker amplitude values,
therefore this configuration is disregarded in the remainder of this work.

In addition to the localized amplitude estimations, a relative streak amplitude metric
is defined as AAnd = 0.5 × (max(ūd) − min(ūd)) based on the criterion introduced by
Andersson et al. (2001). The resulting estimation is reported in figure 3(b) and shows that
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Figure 3. Streak amplitude analysis for varying Rek: (a) Astr for high-speed (full line) and low-speed (-.)
streaks; (b) AAnd and amplitude limit for laminar streak breakdown (-., Andersson et al. 2001). Element location
(shaded grey region).

the initial growth phase and subsequent decay concentrate within comparable chordwise
extent for the two higher Rek considered. Additionally, based on the AAnd definition
Andersson et al. identified a critical streak amplitude value of approximately 0.2ū∞ as
a sufficient onset condition for laminar breakdown of the developing velocity streaks in
2-D BLs. This value is not reached in the presented cases, in agreement with the laminar
evolution of the flow structures observed in figure 2 and confirming the Rek predictions.
Nonetheless, the relatively high initial amplitude of the induced near-wake disturbances
(especially in case Rek = 192) can lead to increased unsteadiness and enhanced shear layer
development in the element near-wake flow, as shown in figure 2(e).

Capitalizing on the volumetric information, the application of vortex identification
criteria to the measured flow field allows for the characterization of the 3-D coherent
structures dominating the near-element flow evolution. Specifically, in the current analysis
the Q-criterion (Hunt et al. 1988) is applied to the time-averaged velocity field as described
in § 2.3. The identified coherent structures are projected on the vortex-aligned coordinate
frame (xR, yR, zR) and represented in figure 4 by a positive (i.e. Q = 0.005, red) and a
negative (i.e. Q = −0.01, blue) Q-criterion iso-surface. As outlined before, the near-wake
flow development of each DRE is dominated by strong spanwise and wall-normal shear
layers initiated by the recirculating flow region located aft of the element, identified by
the green ūR = 0 iso-surface in figure 4(a). Accordingly, the flow region corresponding
to the low-speed element wake is characterized by negative values of the Q-criterion in
figure 4(a). Conversely, the positive iso-surface identifies two coherent flow structures
developing on the high-shear sides of the low-speed element’s wake. These structures
develop in correspondence to the positive streamwise vorticity regions and correlate well
with the development of the vortical systems wrapping around and developing aft of each
DRE as well as with the formation of the high-/low-speed streaks alternation.

Specifically, Kurz & Kloker (2016) describe two vortical systems forming in the element
vicinity: an HSV originating from the element’s sides and an inner vortex pair (IV) arising
in correspondence to the element’s low-speed wake. In both vortex systems, only the leg
conforming to the crossflow direction of rotation (i.e. co-crossflow leg) is supported by
the base flow, the other leg decaying shortly downstream. Accordingly, the two coherent
structures identified by the presented Q-criterion iso-surface correspond well to the
sustained co-crossflow HSV and IV legs. Further downstream of the inboard leg likely
develops into a crossflow vortex, while the outboard structure appears to decay towards the
downstream end of the imaged domain. The counter-crossflow HSV and IV legs described
by Kurz & Kloker (2016) are not identified by the current Q-criterion application possibly
due to their lower intensity and rapid decay.
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Figure 4. (a) The Q-criterion iso-surfaces Q = 0.005 (red) and Q = −0.01 (blue) for Rek = 192 case; ūR = 0
iso-surface (green). Streamwise vorticity contours and Q-criterion iso-lines in (b) yRzR plane at x/c = 0.16 and
(c) xRzR plane at y/δ̄∗ = 0.55. Full blue lines Q > 0 levels (5 between 0.005, 0.01), full black line Q = 0.005
level, grey dash-dot lines Q < 0 levels (5 between −0.001, −0.01).

Towards confirming the observed flow features, iso-lines of the Q-criterion in the yRzR
and xRzR planes are reported in figure 4(b,c), extracted at x/c = 0.16 and y/δ̄∗ = 0.55,
respectively. The flow region surrounding the low-speed wake of the DRE is characterized
by the development of the identified co-crossflow HSV and IV legs, as shown by the
spatial organization of the Q > 0 isolines. Additionally, the streamwise vorticity contours
reported in figure 4(b,c) confirm that the two iso-surfaces describe co-rotating structures
corresponding well to the co-crossflow HSV and IV legs. Finally, the Q > 0 iso-lines
as well as the chordwise evolution of the streamwise velocity contours confirm that the
outboard structure decays while the inboard leg persists up to the domain end.

The results discussed so far characterize the near-wake stationary flow topology,
however, they offer little insight regarding the observed growth and subsequent decay
of the identified streak structures. To further investigate this aspect a spatial spectral
analysis of the time-averaged spanwise velocity signal is presented hereafter, outlining
the chordwise evolution of the individual Fourier modes.

3.2. Spectral analysis and transient growth identification
To investigate the spectral composition of the near-element flow development and
to identify the dominant instability modes and their evolution, a spatial FFT in the
spanwise direction (i.e. z, § 2.3) is applied to the time-averaged velocity components.
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Figure 5. Spanwise FFT analysis for (a,b) Rek = 192 and (c,d) Rek = 90. (a,c) FFT spectra in the xλ plane;
(b,d) 〈ū〉z profiles and λf 1 FFT shape function at x1 (dashed vertical line in a,c) and x2 (dash-dot vertical line
in a,c). The LST λ1 shape function (- -) scaled to match 〈ū〉z maximum; element height (horizontal full line).
Here, V stands for FFTz(ū)/ū∞.

The spatial spectra development in the xλ plane extracted at the wall-normal location of
the disturbance maximum in the near-wake region (namely the maximum of 〈ū〉z at x1, i.e.
y/δ̄∗ = 0.55) for Rek = 192 and Rek = 90, are reported in figure 5(a,c).

In both considered cases, high spectral energy is contained in the forced mode λf 1 = λ1
both in the near-wake and in the far-wake flow region. However, in the near-wake region
(i.e. at x1) the spectral energy appears to be distributed among a wide range of higher
harmonics (i.e. smaller wavelengths defined as λfi = λf 1/i). This effect can be related
to the highly localized velocity deficit region developing in the element’s wake, which
acts as a pseudo-pulse containing all spatial frequencies. Thus, the geometrical constraints
given by the finite diameter of the DRE and their inter-spacing (i.e. d and λf 1) drive the
spectral energy distribution among a wide set of harmonic modes to properly describe the
near-wake flow features (Zoppini et al. 2022b). The identified spectral components do not
necessarily correspond to natural modal instabilities (i.e. eigensolutions to the disturbance
equations), nonetheless, they are fundamental to representing the near-wake development
in the modal FFT space. Accordingly, the harmonics of the dominant stationary mode
achieve comparable or even higher spectral peaks in the element vicinity (figure 5a,c).
As an example, for Rek = 192 up to 56 % of the total disturbance energy is contained by
the dominant mode and its first four harmonics. Further downstream at x2, the λf 1 mode
is dominating the far-wake development, only accompanied by weak λf 2 and λf 3 modes
reflecting the typical traits of linear CFI modal evolution.

The behaviour of individual FFT modes is further outlined by considering the dominant
features of the λf 1 mode shape function compared with the disturbance velocity profile 〈ū〉z
(figure 5b,d). At x1, the 〈ū〉z profile reaches significantly higher peak amplitude values than
the λf 1 shape function, confirming the significant contribution of the higher harmonics
to the near-wake flow development. However, as previously observed, the disturbances’
evolution is confined within the BL region closer to the wall. Accordingly, the 〈ū〉z and λf 1
shape function peak is reached at a wall-normal distance comparable to the DRE height.
This location corresponds well to the maximum fluctuation loci typically identified in
the wake of isolated DRE (Klebanoff et al. 1992; Berger & White 2020; Zoppini et al.
2022a). Nonetheless, further downstream (i.e. at x2) the BL development is satisfactorily
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approximated by the λf 1 mode, as shown by the amplitude and shape match of the two
profiles. Such behaviour is indicative of the onset and growth of modal CFI, as is confirmed
by the similarities between 〈ū〉z and the λ1 mode shape function extracted from the local
LST solution (figure 5(b,d), Mack 1984; Serpieri 2018). This agreement further suggests
that nonlinear interactions have a limited effect on the modal CFI development within the
acquired domain.

The total disturbance amplitude (Aint(ū)) and disturbance energy (E(ū)) as well as
the amplitude (Aint,λfi(ū)) and disturbance energy (Eλfi(ū)) of individual FFT modes are
estimated as described in § 2.4. The chordwise evolution of the extracted amplitude and
energy is reported in figure 6 for cases Rek = 192 and Rek = 90. Overall, the amplitude
and energy evolution is similar, however, both quantities are presented at this stage as
they will be the subject of independent analysis in the remainder of the work. After the
initial peak and decay due to the presence of the low-momentum region in the element’s
wake, the total disturbance evolution undergoes mild amplitude (energy) variations in the
element vicinity. However, the amplitude of the dominant λf 1 mode rapidly decays in
the near-wake region, recovering values comparable to Aint(ū) further downstream. The
observed energy recovery can be traced back to the inherently unstable nature of the
primary stationary mode, which in this 3-D BL scenario should be continuously growing
up to and beyond the downstream domain end according to LST (Mack 1984; Serpieri
2018). In the near wake, the harmonic λf 2 mode follows the primary stationary mode
trend, albeit retaining lower-amplitude values up to the domain end. On the contrary, the
higher harmonics reported (i.e. λf 3, λf 4, λf 5 and λf 6) all show a mild amplitude growth
in the range x/c = 0.151–0.16 before decaying further downstream. The behaviour of the
individual FFT modes combined with the almost invariant total disturbance amplitude
evolution indicates the presence of stationary transient mechanisms which, despite the
mild amplitude variations they induce, actively condition the near-wake flow development
(Landahl 1980; White et al. 2005; Tempelmann et al. 2012a; Zoppini et al. 2022b).
In fact, as discussed later, the occurrence of transient growth mechanisms can lead to
rapid initial growth of the near-wake instabilities, enhancing the CFI onset amplitude and
initiating them in the far-wake region. In turn, the onset conditions impact the downstream
evolution and eventual breakdown of CFI, as widely discussed in Saric et al. (2003).
Additionally, these aspects can further explain the inability of simply linear and modal
solvers to accurately describe the BL receptivity to DRE, possibly providing the necessary
insights to improve these predictions. White et al. (2005) in their investigation dedicated to
a non-swept BL already outlined that non-modal mechanisms, and in particular transient
growth, are fundamental features of the near-wake flow development. Despite the reduced
chordwise extent of the development of the transient mechanisms in the present set-up,
namely 1.5 % chord (i.e. �9.5d), the evolution of the individual FFT modes is strongly
comparable to the results of White et al. (2005). The λf 1 and λf 2 modes rapidly decay
while the growth of modes λf 3 and λf 4 appear to sustain the total disturbance amplitude,
thus driving the transient process.

Past theoretical works (Landahl 1980; Breuer & Kuraishi 1994; Corbett & Bottaro 2001)
showed that BLs dominated by instabilities in the form of streak structures can be subject
to transient growth mechanisms. These can lead to rapid initial growth of the near-wake
instabilities, enhancing the CFI onset amplitude and downstream development that then
follows an exponential growth process. In the present case, the occurring transient growth
mechanisms are not sufficiently strong to induce the Aint(ū) growth. Nonetheless, the
stationary transient disturbances appear to actively dominate and condition the near-wake
flow, while the modal CFI onset occurs at a finite distance from the element. Hence, a
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solution λ1 mode (solid lines). A0 shown by filled black markers.

modal framework such as that provided by the LST method is not sufficient to thoroughly
characterize the near-wake evolution.

Based on these considerations, the disturbance amplitude downstream of the initial
transient growth phase can be considered as an approximation of the initial amplitude for
the modal CFI growth (i.e. A0). More specifically, the primary stationary mode amplitude
(Aint,λf 1) compared with the total disturbance amplitude evolution (figures 6 and 7a)
indicates that the effect of the transient growth is limited to the near-wake flow region.
In particular, aft of x/c � 0.164 the primary stationary CFI (i.e. λf 1) contains more than
80 % of the total disturbance energy, thus being representative for the modal development
of the total disturbance. Therefore, the Aint,λf 1 value at x/c � 0.164 is considered to be
representative of the λf 1 mode onset amplitude (A0, black full marker in figure 7a),
as confirmed by the exponential (i.e. modal) growth of the CFI further downstream.
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The resulting A0 estimations for cases Rek = 192 and 90 are respectively A0 � 0.012ū∞
and A0 � 0.008ū∞.

Based on the extracted A0 values, the experimental effective N-factor (Saric et al.
2019) can be defined as Neff = ln(Aint,λf 1/A0). The classical Neff definition proposed
by Saric et al. (2019) considers the amplitude of the disturbances at the DRE location
as the reference amplitude. However, in this work Neff is computed based on the A0
extracted at the first location where the disturbances are found to grow exponentially (i.e.
x/c = 0.164). Figure 7(b) compares the experimental and LST (NLST , Mack 1984; Serpieri
2018) effective N-factor evolutions. For the purpose of this comparison, all the obtained
Neff are offset such that NLST(xDRE/c) = 0. This procedure allows for the extraction of
the N-factor values starting from the xDRE location. In agreement with the observed
Aint,λf 1 trend, the experimental Neff undergoes an initial decay followed by rapid growth.
Further downstream, the experimental and numerical Neff curves collapse, confirming the
exponential growth of the CFI downstream of x/c = 0.164. This behaviour suggests that
linear stability solutions can provide a good approximation of the initial linear phases
of development of CFI granted that the onset amplitude A0 is known downstream of the
near-wake transient growth region. Specifically, for the considered case the A0 estimate
1.4 % (i.e. 9d) downstream of the element location provides a satisfactory prediction. The
numerical amplitude evolution can then be computed as ALST = A0 eNLST and is reported
in figure 7(a), collapsing well on the experimental amplitude trends downstream of the
transient growth phase. The upstream extrapolation of the LST amplitude estimation
to the DRE location in figure 7(a) reveals the inability of fully modal assumptions to
accurately predict the CFI receptivity to surface roughness (Zoppini et al. 2022b). This
further highlights the importance of non-modal/transient effects in the near-wake region
development, as these effectively define the A0 value based on both the forcing geometry
(mostly represented by λf and d) and the local BL characteristics (i.e. Rek).

In conclusion, the FFT analysis discussed beforehand suggests that transient and
non-modal mechanisms are driving the near-wake flow evolution, conditioning the onset of
the emerging modal CFI. A transient growth process can be described as the combination
of two signature features, i.e. an initial algebraic growth followed by an exponential
decay of the developing disturbances. Therefore, to confirm the nature of the identified
transient mechanisms and how these condition the CFI onset, further efforts have been
dedicated to the identification of these features in the experimental disturbance energy
development.

3.3. Algebraic growth in disturbance energy and scalability
To further characterize the nature of the stationary transient growth identified in the
near-element flow, the modal disturbance energy evolution is investigated. Throughout
the following discussion various Rek cases are considered, obtained by modifying the
element amplitude (cases Rek = 90 and Rek = 192 considered beforehand) or varying
the free-stream Reynolds number for a fixed element height (cases Rek = 100, Rec =
1.35 × 106 and Rek = 153, Rec = 1.85 × 106 featuring k3 elements). In all cases the
forcing wavelength is kept constant at λf 1 = λ1 = 8 mm.

As shown in figure 6, the FFT dominant stationary mode undergoes a decay–growth
pattern, while modes λf 3 − λf 6 follow an evident growth–decay pattern indicative of
the transient mechanism occurring in the near-wake flow region. The modal disturbance
energy (defined as the wall-normal integral of streamwise kinetic energy per individual
FFT mode, § 2.4) is reported in figure 8(b–e) for modes λf 3 − λf 6 at the different Rek
considered. The observed energy development confirms that these modes initially grow in
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the element near wake, each reaching a maximum value (indicated as the red marker) and
decaying further downstream. Both the maximum energy value and its distance from the
element (xmax) depend on Rek, while the overall chordwise extent of the transient behaviour
reduces for decreasing modal wavelengths.

To further describe the growth and decay of the λf 3 and λf 4 FFT modes, White et al.
(2005) proposed two transient growth model functions following the work by Böberg
& Brösa (1988). Specifically, the two functions encompass the description of the initial
algebraic growth and the exponential decay trends as follows:

Eλf 3 = a3(x − xDRE) exp(−(x − xDRE)/b3) with b3 = (xmax − xDRE) (3.1)

and

Eλf 4 = a4(x − xDRE)2 exp(−(x − xDRE)/b4) with b4 = 0.5(xmax − xDRE). (3.2)

In these models, coefficients a3 and a4 account for the algebraic growth rate as well as for
the disturbance energy scaling with Rek. Coefficients b3 and b4 instead are representative
of the exponential decay and directly relate to the chordwise extent of the transient region.
In particular, the latter coefficients can be associated with the location of the corresponding
mode energy maximum (xmax), as indicated in (3.1) and (3.2). The evolution of the
disturbance energy pertaining to λf 3 follows a faster growth in the immediate vicinity
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of the element, while displaying a broader peak with respect to the λf 4 modal energy
evolution. As such, the λf 3 energy is described by a linear dependence on the chordwise
distance from the element (3.1), while the λf 4 energy follows a quadratic dependence on
x/c (3.2). The latter model function is applied to describe the energy evolution of modes
λf 5 and λf 6 as well. To fit the transient growth model functions to the experimental energy
trends, only the data acquired downstream of x/c = 0.151 are considered to exclude the
initial steep amplitude decay observed immediately aft of the element. The resulting fitted
curves for the modelling of the energy transient evolution are reported in figure 8(b–e) as
full black lines.

Despite being designed to describe stationary transient disturbances in a 2-D BL,
the proposed modelling functions satisfactorily represent the λf 3 and λf 4 modal energy
evolution in the considered 3-D BL case. The initial algebraic growth of λf 3 (figure 8b)
is correctly captured by the linear model function, despite mild offset of the maximum
location. The following exponential decay is also well modelled and shows once
more that the extent of the transient behaviour is comparable throughout the different
Rek considered. Satisfactory matching is obtained for the λf 4 modal energy evolution
(figure 8c), even if the peak value is mildly overestimated for the higher Rek cases. The
model function confirms that the modal energy trend associated with modes λf 5 and
λf 6 follows an initial algebraic growth and exponential decay as well (figure 8d,e). The
solid match observed between the quadratic–exponential fit and the energy evolution of
modes λf 4 − λf 6 reflects the quadratic dependence of the energy on x/c, coming from
its definition in § 2.3. The fact that the behaviour of the λf 3 modal energy is better
approximated by the linear–exponential model outlines the importance of the receptivity
process and its sensitivity to the external forcing geometry in conditioning the evolution
of individual FFT modes (Choudhari & Fischer 2005; White et al. 2005).

Differently from the 2-D BL scenario investigated by White et al. (2005), in the
3-D BL considered in this work the primary stationary mode λf 1 is inherently unstable
(LST and experimental measurements, Serpieri 2018). Therefore, this mode undergoes an
initial energy decay in the near-wake region in correspondence to the harmonics energy
growth region while it grows further downstream (figures 6 and 8a). Furthermore, the
characterization of the CFI initial amplitude (figure 7) showed that the λf 1 mode rapidly
recovers to exponential growth downstream of the transient growth region occurring in the
element near wake. Given these considerations, the initial decay and subsequent growth
of λf 1 in the element vicinity can be regarded as composed of a linear algebraic decay
followed by exponential growth. Figure 8(a) shows that the experimental disturbance
energy development is well approximated by the transient growth model function of (3.1)
also for the λf 1 mode if the sign of the a coefficient is inverted. As such, the energy
evolution of the primary stationary mode describes a negative (i.e. opposite) transient
growth process which conditions both the near-wake evolution and the receptivity of
critical amplitude DRE. Within this work, this energy evolution is indicated as transient
decay to express its direct opposition to the traditional transient growth process. This
behaviour correlates well with the wake relaxation process described by Ergin & White
(2006) in 2-D BL scenarios. Specifically, they identified the transient evolution of the
steady instabilities to drive the near wake towards a more stable state prior to the onset
of modal instabilities. However, in the 3-D BL scenario considered in the presented work,
the base flow is inherently unstable to CFI, hence the wake relaxation is rapidly followed
by the onset and growth of modal CFI independently of the amplitude value reached by
the decaying instabilities. Nonetheless, the λf 1 transient decay fundamentally conditions
the onset amplitude of the modal CFI, influencing their modal growth further downstream,
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as also discussed in § 3.2 and figure 7 and observed in previous investigations (Breuer &
Kuraishi 1994; Corbett & Bottaro 2001; Lucas 2014).

In their investigation White et al. (2005) identified that both a and xmax are well
approximated by a linear dependence on Rek. Given the mathematical composition of the
considered transient growth model functions, the disturbance energy evolution is expected
to scale with Re2

k . The total disturbance energy and the energy of individual FFT modes
scaled by Re2

k are reported in figure 9. Both the scaled total disturbance and modal energy
curves almost collapse onto a single curve for the reported cases. The energy associated
with the dominant mode evolution (figure 9b) is strongly scalable both in the transient
decay region and in the far-wake flow field, where it recovers a modal behaviour and
grows exponentially. Instead, the scaled energy of the harmonic FFT modes (figure 9c,d)
shows comparable behaviour in the near-wake region where transient growth occurs, even
if the lower Rek considered features a mildly different evolution of the algebraic growth
process. Additionally, the energy associated with the harmonic modes rapidly decays in
the element far wake in agreement with the linear development of the primary stationary
mode observed in the downstream flow region.

The results reported so far indicate that a transient growth mechanism driven by the
primary stationary mode and its higher harmonics is dominating the near-wake evolution
almost independently of the considered Rek. Specifically, the λf 1 modal energy undergoes
a transient decay, while the energy associated with the harmonic modes λf 3 − λf 6 undergo
a transient growth process. Both processes are localized within the near-wake region and
feature an initial algebraic decay (growth) phase followed by exponential growth (decay)
respectively. It must be noted that, given the modal energy growth characterizing the
harmonics evolution and the energy decay featured by the primary stationary mode, the
identified transient processes can potentially co-exist with nonlinear mechanisms. The
acquired dataset, however, does not provide sufficient information to prove this hypothesis.
Nonetheless, transient growth processes in 3-D BLs receptive to critical DRE need to be
accounted for to correctly estimate the modal instabilities’ initial amplitude and growth
despite their very mild effect on the total disturbance amplitude evolution. This can be
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regarded as one of the main differences between the investigated 3-D scenario and the
more typical wake relaxation or bypass transition configurations widely characterized
for 2-D BLs, in which the primary streak mode simply decays downstream if not strong
enough to cause laminar breakdown.

Overall, the observed transient energy evolution scales well with Re2
k . The current

investigation only considers DRE of cylindrical shape, but modifications of the spanwise
array wavelength (i.e. element inter-spacing) and DRE diameter appear to significantly
affect the identified transient mechanisms by conditioning the modal energy distribution.
In fact, the relation between the chosen element inter-spacing (i.e. λf 1), setting the
primary stationary mode wavelength, and the element diameter (d) conditions the range of
wavelengths following an algebraic growth process (i.e. modelled by (3.2)). Specifically,
for the considered critical forcing case λf 3 � 1.3d, λf 4 � 1d, λf 5 � 0.8d and λf 6 � 0.7d.
This can be related to the effect of the finite element diameter on the spatial arrangement
and spacing of the HSV system (Munaro 2017), which further contributes to defining the
strength of the near-wake transient growth process (Choudhari & Fischer 2005; White
et al. 2005). Thus, the investigated parameter range has been expanded by modifying the
DRE array forcing wavelength λf 1 to further investigate the steady transient disturbances
receptivity to the forcing geometry.

3.4. Variations of forcing wavelength
The results discussed in § 3.3 outlined a significant dependence of the modal energy
distribution and consequently of the occurring transient processes in the near wake on
the geometry of the considered problem (parametrized using λf 1 and d). Therefore, to
further investigate the effects of the external forcing configuration the receptivity of the
near-wake steady transient disturbances to a modification of the forcing wavelength is
explored. At this point, it must be clarified that none of the forcing cases considered in
this section leads to BL transition in the element vicinity, hence they fall in the critical
amplitude forcing definition. Nonetheless, to distinguish between configurations forcing at
wavelength λf 1 < λ1 and λf 1 > λ1 the definitions of sub-critical wavelength (SBW) and
super-critical wavelength (SPW) forcing are respectively used throughout the following
discussion. With reference to figure 1, in the previous sections cases Rek = 100, 153 and
192 have been inspected in a critical wavelength forcing configuration (i.e. forcing the
most unstable mode λ1). In the following analysis, for each of the considered Rek a SBW
(λf 1 = λ3/2, Saric et al. 1998) and a SPW (λf 1 = λ2/3) array are investigated. It should be
noted that according to LST analysis the λ1 wavelength corresponds to the most unstable
mode in all considered configurations, however, modes λ3/2 and λ2/3 are both locally
amplified at the DRE location of application.

Considering the SBW forcing case, the velocity contours reported in figure 10 show that
the near-wake flow topology retains its main characteristics, albeit being dominated by a
λ3/2 flow periodicity. A low-speed streak develops in correspondence to each element’s
wake, while two high-speed streaks form on the wake’s sides. The streaks evolution
compares well with the critical wavelength case, as confirmed by the AAnd estimation
(figure 10d). Moreover, the extracted FFT spectra indicate that the near wake features high
spectral energy content for the forced λf 1 = λ3/2 mode and its harmonics (figure 10e). The
spectral energy associated with harmonic modes decays further downstream, leaving a BL
modulated by the development of a sub-critical CFI (Saric et al. 1998). The disturbance
velocity profiles compare well with the λf 1 FFT shape function towards the downstream
end of the acquired domain, while the amplitude differences observed in the near wake are
attributed to the harmonics contributions (figure 10c).
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The near-element flow for the SPW forcing case (not reported for the sake of brevity)
is characterized by similar features as the so-far considered cases. Once more, the
harmonics have an important role in the element’s near wake, while rapidly decaying
shortly downstream. Additionally, the Rek = 192 forcing case reaches an AAnd amplitude
close to the laminar breakdown threshold identified by Andersson et al. (2001).
Nonetheless, the streak amplitude rapid decay prevents the onset of laminar breakdown
in the near-element region.

Despite the variation of the dominant flow periodicity due to the modified forcing
wavelength, the near-element stationary flow topology reflects all the dominant flow
features discussed for the λf 1 = λ1 forcing case. Accordingly, stationary transient growth
disturbances drive the near-wake evolution also in the SBW and SPW configurations. In
particular, figure 11 shows the chordwise evolution of the total disturbance amplitude
and of the amplitude of individual FFT modes (where λfi = λf 1/i) for the two forcing
wavelengths considered. In both cases the decay of the dominant mode (i.e. the forced
mode λf 1) combined with the evolution of the total disturbance amplitude indicate that a
transient growth mechanism is driving the near-wake evolution and relaxation. Figure 6
outlined that in the λf 1 = λ1 forcing case the evolution of stationary transient disturbances
is mostly represented by the transient decay of mode λf 1 and the transient growth of
FFT modes λf 3 − λf 6 (i.e. 1.3d–0.7d). However, figure 11 shows that a change of λf 1
leads to a redistribution of the disturbance energy associated with the individual FFT
modes. More specifically, in the SBW forcing (figure 11a) the harmonic modes λf 2 and
λf 3 undergo a strong transient growth process. Additionally, the λf 4 mode is only giving
a mild contribution, while the higher harmonics are rapidly decaying. The SPW forcing
reported in figure 11(b) is characterized by the decay of the first three harmonic modes
(i.e. λf 1 − λf 3). In this case, the transient growth behaviour appears to be only weakly
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Figure 11. Values of Aint(ū) for the total disturbance field and for the λf 1 − λf 6 FFT harmonics for forcing
cases Rek = 192 and (a) λf 1 = λ3/2, (b) λf 1 = λ2/3. Element location (grey shaded region); PTV uncertainty
(blue shaded region).

sustained by mode λf 4 with more significant contributions of modes λf 5 and λf 6. In the
latter case, the larger element spanwise inter-spacing leaves the possibility of stronger
modal interactions (Saric et al. 1998), justifying the more irregular amplitude trends
observed. These observations further highlight that besides affecting the overall modal
CFI development, the geometry of the external forcing tends to drive the non-modal
processes and the behaviour of the instabilities also in the near-wake flow region. In fact,
the energy distribution within the FFT spectra appears to favour the modes corresponding
to wavelengths close to the DRE diameter. This is the case for wavelengths λf 2 = 1.25d
and λf 3 = 0.8d in the SBW case; or for wavelengths λf 5 = 1.1d and λf 6 = 0.9d in the
SPW scenario.

Nonetheless, the primary stationary mode appears to undergo transient decay both in
the SBW and SPW forcing scenarios, almost independently from the forcing wavelength
modification. This is confirmed by comparing the experimental amplitude trends with the
LST prediction, as already outlined in the analysis presented in figure 7. The corresponding
results are reported in figure 12 for Rek = 192 and varying λf 1. This comparison outlines
once more that the instability evolution differs from the modal LST solution in the element
vicinity, however, the experimentally computed amplitude trend follows a modal growth
downstream of x/c = 0.164. Hence, the A0 amplitude for the dominant (i.e. most unstable)
CFI mode can be estimated at x/c = 0.164 also for these cases, resulting in A0 = 0.010ū∞
and 0.011ū∞ for the SBW and SCW forcing respectively. These values are slightly lower
than those found for the critical forcing at comparable Rek, reflecting the variation of the
forcing geometry (i.e. the diameter and λf 1 ratio, Radeztsky et al. 1999). Nonetheless, the
mild A0 differences observed suggest that the transient growth process is mostly unaffected
by the BL stability characteristics (Kurz & Kloker 2014).

Additionally, figure 13 compares the experimental energy trend associated with the
forced wavelength λf 1 with the transient growth model function of (3.1). This analysis
is presented for both SBW and SPW configurations at various Rek. The modelled energy
corresponding to the baseline case Rek = 192 and λf 1 = λ1 is also reported (black dotted
line). It is apparent that the primary stationary mode undergoes transient decay in all
measured cases, as confirmed by the match between the experimental energy trend and the
energy model function. This indicates that within the considered critical amplitude range,
the transient decay experienced by the primary stationary mode occurs independently
from the chosen forcing wavelength and can be satisfactorily modelled by using (3.1)
and inverting the sign of the a coefficient. This provides a reliable approximation of the
modal CFI onset amplitude and location as discussed for the critical forcing case (§ 3.2).
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Figure 12. The Aint and Neff estimations for the experimental FFT λf 1 mode (symbols) for cases λf 1 = λ3/2
and λ2/3 at Rek = 192 and for the LST solution λ1 mode (solid lines). Here, A0 shown by filled coloured
markers.
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Figure 13. The Eλf 1 (ū) trends (symbols, 1 out of 5 shown) and minimum values (red circle), and transient
growth modelling functions (full lines, White et al. 2005) at various Rek for (a) λf 1 = λ3/2 and (b) λf 1 = λ2/3.
Energy modelling function for Rek = 192, λf 1 = λ1 (black dotted line).

Furthermore, the forced mode (i.e. primary stationary mode) energy evolution obtained in
the critical wavelength forcing case appears to undergo steeper decay and faster growth
than for the non-critical cases considered. This agrees well with the idea that the λf 1 mode
energy growth in this 3-D boundary layer scenario is driven by the inherently unstable
nature of the forced mode.

For each of the considered forcing wavelengths, the energy distribution among the
individual FFT modes is robust to Rek modifications. This is evident in figure 14, reporting
the evolution of the total disturbance energy and the modal energy scaled by Re2

k for the
various forcing wavelengths considered. The scaled total energy collapses on a single
curve for the super-critical and critical forcing (black dash-dot line), while it follows a
mildly different growth process in the near-wake region for the SBW forcing case. The λf 1

mode chordwise evolution scales well with Re2
k , confirming the dominant mode initial

decay and downstream exponential growth are common traits to all of the considered
forcing configurations. Given the dependence of the modal energy distribution on λf 1
and d, the scaling of the higher harmonics collapses on a different curve for each forcing
wavelength considered.

The presented analysis indicates that, independently of the chosen λf 1, the evolution of
the primary stationary mode and its harmonics in the near-wake region is strongly affected
by the presence of transient growth mechanisms, driving the near-wake relaxation through
two different scenarios. On the one hand, the primary stationary mode appears to follow a
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Figure 14. Variation E(ū) for (a) total disturbance field, (b) FFT λf 1, (c) λf 2 and (d) λf 3 modes at varying
Rek and λf 1. Energy is scaled by Re2

k ; element location (grey shaded region).

transient decay process, recovering from an initial algebraic decay into exponential energy
growth. This is in agreement with the inherent instability of the primary stationary mode,
which according to LST grows modally along the wing chord. On the other hand, a sub-set
of the higher harmonic modes undergoes a more traditional transient growth process in the
near-wake region. The external forcing geometry, mostly represented by the combination
of the λf and d, significantly affects the modal energy distribution within the FFT spectra,
thus selecting the set of harmonics and the strength of the transient growth process.

4. Super-critical near-element flow

The analysis of the near-element stationary flow indicates that transient growth is a
fundamental mechanism for the near-wake flow evolution. Nevertheless, none of the cases
considered in the previous sections features forcing amplitudes leading to bypass transition
(i.e. BL transition in the element vicinity). Therefore, the last part of the presented work
is dedicated to the investigation of forcing configurations associated with super-critical
behaviour, i.e. flow tripping, outlining the corresponding near-element flow topology and
the role of the near-wake stationary transient disturbances in the transitional process. With
reference to figure 1, configurations featuring Rek > 200 are considered under Rek and λf 1
modifications.

The critical DRE wavelength array (i.e. λf 1 = λf 1) at Rek = 330 is initially considered
as the representative forcing case. The corresponding time-averaged disturbance velocity
field (ūd) is reported in figure 15(a–c), while figure 15(d–f ) show the temporal fluctuation
standard deviation contours (u′). The ūd contours of figure 15(a) indicate that the
near-wake flow is dominated by the alternation of high- and low-speed streaks spatially
organized as described for the previously considered critical cases (i.e. figure 2). However,
for the current super-critical amplitude forcing the high-speed streaks developing on
the wake’s flanks rapidly merge, substituting the low-speed wake at x/c � 0.158 (i.e.
�5d downstream of the element, solid vertical black line in figure 15a). This behaviour
closely resembles the near-wake flow development of isolated DRE with super-critical
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Figure 15. (a–c) Values of ūd and (d–f ) u′ for forcing case λf 1, Rek = 330 in (a,d) the xz plane at y/δ̄∗ = 0.55;
(b,e) in the yz plane at x1 = 0.154c (vertical dashed line in a), and (c, f ) at x2 = 0.174c (vertical dash-dot line).
Vertical full line in (a) at x/c = 0.158.

amplitude in 2-D and 3-D BL cases (Kendall 1981; Klebanoff et al. 1992; Kurz & Kloker
2016; Zoppini et al. 2022a). Additionally, the inboard and outboard high-speed streaks
forming in the near-wake flow region can be identified within the merged high-speed wake.
As observed for the critical amplitude elements, the inboard high-speed streak undergoes
a stronger growth process while evolving downstream if compared with its outboard
counterpart.

The identified merging of high-speed streaks is usually associated with the onset of
turbulent flow in spatial correspondence to the element’s wake (Kendall 1981; Klebanoff
et al. 1992). This is confirmed by the increased velocity fluctuation level shown by the
u′ contours in figure 15(d). Specifically, the super-critical near wake (x/c < 0.155) is
characterized by the development of a high-fluctuation region spatially overlapping to the
low-speed streak (figure 15(d,e), Klebanoff et al. 1992; Loiseau et al. 2014). However,
further downstream at the region of high-speed streak merging (x/c � 0.158), the intensity
of the velocity fluctuation increases and its spatial distribution begins to spread along the
spanwise and wall-normal directions, eventually occupying the whole element’s wake.
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Figure 16. Value of AAnd and amplitude limit for laminar streak breakdown (-. line) for forcing (a) at
λf 1 = λ1 varying Rek; (b) at Rek = 330 and varying λf 1. Element location (grey shaded region).

Accordingly, each individual DRE wake appears to initiate a turbulent wedge (Klebanoff
et al. 1992) at the merging location of x/c � 0.158.

The u′ contours provide additional information regarding the wedge formation and
development. Specifically, the spanwise spreading of the wedge can be associated with
the formation of a cascade of low- and high-speed streaks on the sides of the high-speed
wake (Berger & White 2020). An inboard low-speed streak (dash-dot line in figure 15a)
is initiated in the immediate vicinity of the element and grows along the inboard side of
the high-speed wake. More downstream, a high-speed streak becomes evident at x/c �
0.16 on the wake inboard side (dashed line in figure 15a), merging shortly downstream
with the element’s high-speed wake. A similar mechanism drives the spanwise wedge
opening towards the outboard direction as shown by the high-speed streak development at
x/c � 0.165 and its downstream merging with the high-speed wake region (dot-dot line in
figure 15a). The development of the identified high-speed structures leads to a localized
increase in the level of the velocity fluctuation, driving the spanwise expansion of the
high-fluctuation region as shown by figure 15(d). However, the role of this wedge-opening
mechanism in the current configuration is limited by the flow periodicity. Specifically,
the DRE inter-spacing leads to the merging of the individual turbulent wedges already
towards the downstream end of the acquired domain (i.e. x/c � 0.174). While the extent
of the PTV domain is not sufficiently long to confirm this, the newly formed turbulent BL
is expected to be largely homogeneous in the spanwise direction shortly downstream.

The estimation of the relative streak amplitude AAnd clearly shows that the amplitude
limit for the laminar breakdown is reached in the element vicinity (figure 16). While
evolving downstream, the AAnd values corresponding to the Rek = 330 forcing case are
still higher than 0.2ū∞, differently than the Rek = 192 case previously investigated and
in agreement with the observed breakdown of the streak structures and turbulence onset.
Figure 16(a) indicates that comparable behaviour is achieved for the Rek = 262 forcing
(obtained by reducing Rec to 1.85 × 106), while the lower Rek case (corresponding to
Rec = 1.35 × 106) features AAnd behaves critically, leading to the development of modal
CFI as discussed in § 3. Despite the higher DRE amplitude considered (i.e. k4), this
behaviour agrees well with the Rek < 200 threshold pertaining to critical amplitude
forcing configurations. Figure 16(b) instead shows that a modification of λf 1 has an almost
negligible effect on the AAnd amplitude trends for Rek = 330.

The observed stationary flow topology is reflected by the analysis of the Q-criterion
iso-surfaces reported in figure 17. Comparably to figure 4, the strong spanwise and
wall-normal shear layers dominating the near-wake flow development are identified in
figure 17(a) by a negative Q iso-surface (i.e. Q = −0.08, blue). The coherent structures
organization is instead presented by means of a positive Q-criterion iso-surface (i.e.
Q = 0.01, red). In this super-critical scenario, three coherent flow structures are identified
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Figure 17. (a) The Q-criterion iso-surfaces Q = 0.01 (red) and Q = −0.08 (blue) for Rek = 330 case.
Streamwise vorticity contours and Q-criterion iso-lines in (b) yRzR plane at x/c = 0.157 and (c) xRzR plane
at y/δ∗ = 0.55. Full blue lines Q > 0 levels (5 between 0.01, 0.1), full black line Q = 0.01 level, grey dash-dot
lines Q < 0 levels (5 between −0.008, −0.01).

developing in correspondence to the low-speed element’s wake and its high-shear sides.
The two structures developing at the element’s inboard side and in correspondence with
its low-speed wake are initiated in the element vicinity, while the outboard structure
originates shortly downstream of x/c � 0.155 (i.e. shortly downstream of the super-critical
DRE near-wake region). The former two structures correlate well with the development of
the co-crossflow HSV and IV legs wrapping around and developing aft of each DRE (Kurz
& Kloker 2016), comparably to what was observed for the critical DRE amplitude case of
figure 4. On the other hand, the identified outboard structure possibly relates to the merging
of the high-speed streaks, as it can contribute to the observed increase in the overall
flow unsteadiness. The three structures grow and persist up to the downstream domain
end, possibly merging further downstream with assistance from the breakdown-enhanced
mixing. Towards confirming the observed flow features, iso-lines of the Q-criterion in the
yRzR and xRzR plane are reported in figure 17(b,c) in combination with the streamwise
vorticity contours. The ωx contours indicate that the three coherent structures are all
co-rotating. Additionally, the spatial organization of the Q > 0 isolines confirms that the
inboard and wake structures form already in the element near wake, while the outboard
structure appears further downstream.

The spatial FFT performed for the super-critical near-wake flow region compares well
with the previously considered lower Rek cases (i.e. Rek = 90, 100, 153, 192), despite
overall higher spectral amplitude levels (figure 18). For all the three λf 1 considered the
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x2,〈ū〉z
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forced wavelength strongly conditions the dominant flow periodicity, however, the λf 1
harmonics always retain high energy content in the near-wake region (figure 18a–c).
Additionally, dominant near-wake disturbances only affect the BL in the wall vicinity as
confirmed by the peak of the corresponding FFT shape functions, located approximately
at the same wall-normal location as the element’s top (figure 18d–f ). Interestingly, the
amplitude peak location is almost unaltered at the downstream chord location considered
(x2). This suggests that the dominant BL disturbances develop in the form of velocity
streaks even downstream of the near-wake region, without evolving into modal CFI. This
effect is comparable to the flow field incurred by isolated super-critical DRE in 2-D and
3-D BLs (Klebanoff et al. 1992; Loiseau et al. 2014; Zoppini et al. 2022a).

To investigate the presence of transient growth mechanisms in the near-wake flow
region, the evolution of the individual FFT modes is considered. The critical amplitude
forcing configurations (§ 3) proved that the FFT modes undergoing stronger transient
growth are mostly sensitive to the ratio between the forcing wavelength and the diameter
of the DRE. As such, the total disturbance amplitude evolution and the integral amplitude
of the individual FFT modes are reported in figure 19 for the three λf 1 considered at
Rek = 330. The observed amplitude evolution is indicative of the presence of stationary
transient disturbances in the near wake. However, for the three considered λf 1, the primary
stationary mode rapidly recovers to amplitude values comparable to the total disturbance
amplitude (i.e. at x/c � 0.158), growing further downstream. The mild decay observed in
both the total amplitude and the primary stationary mode amplitude towards the end of
the domain, reflects the breakdown of the laminar structures developing in the BL and the
onset of turbulence (Bippes 1999).

The energy distribution within individual FFT modes and their contribution to the
transient process are consistent with the previously discussed cases for the λf 1 = λ3/2
forcing (figure 19a). Redistribution of the modal energy towards mode λf 2 is instead
observed for the λf 1 = λ1 and λf 1 = λ2/3 forcing (figure 19b,c). This suggests that more
amplified transient disturbances develop in the considered super-critical forcing scenario,
driven by the λf 2 mode evolution as well. Nonetheless, the growth of the stationary
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disturbances as described by the reported amplitude trends only gives a partial insight
into the instabilities responsible for the observed laminar breakdown. More specifically, as
indicated by the high and widespread unsteady fluctuation level, the unsteady disturbances
developing in the element’s wake appear to play a fundamental role in driving the
turbulence onset (Klebanoff et al. 1992). In fact, figure 19 indicates that the rapid growth
of the dominant mode occurs in the proximity of x/c � 0.158, namely the chord location
corresponding to the initiation of the inboard high-speed streak driving the spanwise
spreading of the high-fluctuation region. For this super-critical amplitude scenario, the role
of the primary stationary mode transient decay (and of the wake relaxation) appears to be
reduced, as the onset of modal CFI is bypassed by the breakdown of the laminar structures.
On the contrary, the transient growth of the harmonic modes and the geometrical
characteristics of the forcing element, i.e. the diameter and amplitude of the DRE, appear
to play a more relevant role. Due to the increased forcing amplitude, the near-wake flow
evolution is accompanied by an overall increase of unsteady fluctuation level, indicative
of the growth of unsteady wake instabilities. The combination of higher shears and
harmonics transient growth in the near-wake region rapidly drives the velocity streaks
growth to super-critical levels according to the model proposed by Andersson et al. (2001),
preventing the relaxation of the near wake to a state stable to unsteady fluctuations (White
et al. 2005). Hence, in the super-critical flow scenario the receptivity process leads to the
laminar breakdown of the near-wake structures and the onset of turbulence through bypass
transition, as commonly identified in previous works (e.g. Andersson et al. 1999; Reshotko
2001). The time-averaged nature of the conducted measurements does not allow access
to unsteady disturbance frequency information. Nonetheless, the stationary near-wake
flow field of the super-critical DRE appears to be comparable to that of super-critical
isolated roughness elements. This is largely expected as the locality of the near wake and
developing unsteady mechanisms allows for decoupling each element in a DRE array from
its neighbours in the corresponding flow region. Hence, the available past studies on the
unsteady near wake of isolated elements can provide preliminary insights on the nature

960 A11-31

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

14
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.141


G. Zoppini, T. Michelis, D. Ragni and M. Kotsonis

10–6

10–5

10–4

10–6

10–5

10–4

(a) (b)

(c) (d)

10–6

10–5

10–4

10–6

10–5

10–4

0.150

1
0

3
E λ

f2
/R

e k2

1
0

3
E λ

f3
/R

e k2
1
0

2
E λ

f1
/R

e k2

1
0

2
∗ E

(ū
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Figure 20. Variation of E(ū) for (a) total disturbance fields, (b) FFT λf 1, (c) λf 2 and (d) λf 3 modes for
varying Rek and λf 1. Energy is scaled by Re2

k ; Element location (grey shaded region).

of the unsteady instabilities dominating the super-critical DRE near wake (e.g. Ergin &
White 2006; Loiseau et al. 2014; Kuester & White 2016; Zoppini et al. 2022a).

The scalability of the stationary disturbance energy with Re2
k is reported in figure 20

for the considered super-critical configuration, in comparison with the reference critical
forcing case (i.e. λf 1 = λ1, Rek = 192). The total disturbance energy shows a larger
decay in the element vicinity for the Rek = 330 cases. This can be attributed to the
stronger recirculation region developing aft of the DRE, which is in turn related to the
increased element height (k4 for these cases). Nonetheless, the disturbance energy rapidly
grows, reaching or overtaking the Rek = 192 values already at x/c = 0.158. For all of the
presented cases, the evolution of the modal energy associated with the forced wavelength
rapidly decays in the element near wake. However, for the super-critical amplitude cases
the minimum energy is reached at more upstream chord locations (i.e. at x/c � 0.155) with
respect to the critical amplitude case. Additionally, the disturbance energy associated with
mode λf 2 in the Rek = 330 cases shows a substantially different trend when compared
with the critical amplitude case, as it undergoes a rapid growth in the element vicinity
decaying further downstream. However, the scalability of the energy trends with Re2

k is
strongly reduced in the super-critical case, especially for the higher harmonics evolution.
The lack of trend self-similarity in these super-critical cases is a further indication that
the transient growth process is affected by the high unsteadiness and the bypass transition
mechanism initiated in the element wake.

Therefore, the receptivity process in critical and super-critical amplitude forcing cases is
substantially different. Specifically, in the super-critical case the modal energy evolution
shows that the primary stationary mode describes a rapid transient decay, while higher
harmonics undergo a transient growth process. Given the increased forcing amplitude, the
roughness elements induce a stronger recirculation region and shears that initiate enhanced
unsteady disturbances. As such, the combination of the stationary harmonics transient
growth, the excessive streak amplitude achieved in the near-wake region, and the enhanced
flow unsteadiness are sufficient conditions to initiate the laminar breakdown of the streak
structures in the near-wake region. This in turn induces the onset of turbulence, bypassing
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External forcing

(i.e. DRE)

Sub-critical

(Rek < 15)

Critical

(20 < Rek < 190)

Super-critical

(Rek > 200)

• λf 1  Transient decay
(wake relaxation)

• λf 3 – λf6 Transient growth

Possible nonlinear

interactions

Non-modal onset condition

for modal CFI

Effect of geometry 

(d, λf ) on modal

energy distribution 

•   λf 3 – λf6 Transient growth

•   Effect of geometry (d, k) on 

near-wake unsteadiness and shears

Super-critical streak amplitude and 

laminar breakdown

Bypass transition
Modal onset condition

for modal CFI

•   k-dependent receptivity 

•   Initial modal CFI amplitude

     depends on k, Rek
 and/or k2

•   Investigated in literature

     (e.g. Schrader et al. 2009, 

             Hunt & Saric 2011, 

             Kurian et al. 2011, 

             Tempelmann et al. 2012,

             Kurz & Kloker 2014)

DRE amplitude

(i.e. Rek)

Figure 21. Conceptual sketch of 3-D BL receptivity to external DRE forcing, depending on the external forcing
amplitude (i.e. Rek). Primary stationary disturbance indicated as λf 1, higher harmonics indicated as λi = λf 1/i.
Main receptivity mechanism for each forcing amplitude range in bold characters.

the development of modal CFI. This behaviour strongly differs from the previously
discussed critical amplitude forcing, where the primary stationary mode transient decay is
fundamental for the conditioning and onset of the modal instabilities.

5. Conclusion

The near-element flow topology of critical and super-critical DRE in a swept wing
BL is detailed, revealing the presence of transient growth in the DRE near wake and
characterizing its role in the onset of modal CFI. The 3-D velocity fields in the vicinity of
a DRE array are acquired by high-magnification tomographic PTV for a set of Rek and λf 1
configurations. The proposed investigation represents a first effort towards experimentally
validating the transient growth model in swept wing BL flows. Furthermore, it results
in the production of a conceptual sketch that can be considered as an expansion of
the transitional paths model proposed by Morkovin et al. (1994), detailing the 3-D BL
receptivity to DRE (figure 21).

For the sake of completeness, the conceptual model includes receptivity to sub-critical
(not investigated in the present work), critical, and super-critical DRE amplitudes.
The investigation of sub-critical configurations is outside the scope of the present
work, however, these have been widely characterized in previous studies (e.g. Schrader
et al. 2009; Hunt & Saric 2011; Tempelmann et al. 2012b; Kurz & Kloker 2014).
These works outlined that sub-critical roughness configurations are well modelled by
k-dependent receptivity relationships, which directly correlate the initial CFI amplitude
to the roughness height (k/δ∗) or geometrical parameters depending on it (i.e. Rek).
This is summarized by the leftmost branch of the proposed scheme. In the following
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discussion, the main findings of the present work on critical and super-critical receptivity
are summarized.

The critical near-wake stationary flow topology is characterized by the alternation of
low- and high-speed streaks, which are the loci of high-fluctuation regions. As evolving
downstream, the amplitude of the streaks reduces, with a single high-speed streak
persisting in the flow field and accompanied by the development of a low-speed region
on its sides. These structures modulate the BL, resulting in the formation of localized
spanwise and wall-normal shears. Spanwise spatial spectral analysis suggests that transient
mechanisms dominate the near-wake flow evolution, affecting both the primary stationary
mode and its higher harmonics (i.e. smaller wavelengths). Specifically, transient growth
affects the chordwise evolution of FFT modes λf 3 − λf 6, comparably to what is observed
by White et al. (2005) in 2-D BLs. Additionally, in this 3-D BL scenario the primary
stationary mode (λf 1) evolves following a transient decay process, which can be correlated
to the wake relaxation concept proposed by Ergin & White (2006). The dominant mode
evolution is well modelled by an initial algebraic decay followed by an exponential growth
driven by the inherently unstable nature of the λf 1 mode, which essentially evolves into
a modal stationary CFI. The identified transient decay and growth processes are robust
to Rek modifications and the corresponding energy evolution is self-similar when scaled
by Re2

k . Nonetheless, they appear to be sensitive to the DRE spacing λf 1 and diameter d.
Specifically, the combination of λf 1 and d conditions the disturbance energy distribution
within the FFT spectra. The wavelengths undergoing the most significant transient growth
appear to always be included in the 0.7d–1.3d range. This suggests a correlation between
the element geometry, the spatial arrangement of the developing HSV and the observed
transient growth in agreement with previous investigations (e.g. Radeztsky et al. 1999).
Notwithstanding this, all the considered cases show transient decay affecting the λf 1 mode.

The identified transient process comprises weak stationary transient disturbances, which
allow for the rapid relaxation of the base flow and the development of modal CFI
further downstream. Nonetheless, the transient decay of the λf 1 mode is fundamental
to establishing the onset conditions and downstream evolution of the modal instabilities.
More specifically, the CFI onset amplitude estimation (A0) can be related to the Aint,λf 1
value achieved immediately aft of the near-wake flow region (i.e. the flow region affected
by the transient decay mechanism). In this region, the integral amplitude and effective
N-factor pertaining to the λf 1 CFI mode evolution are well approximated by LST results
confirming that the instabilities follow an exponential (thus modal) growth process
further downstream. The discussed receptivity scenario for critical DRE amplitudes is
summarized by the central branch in figure 21.

To conclude, the near-element flow evolution of a super-critical amplitude DRE is
investigated. The near-wake stationary flow topology is dominated by the alternation
of high- and low-speed streaks, with the former merging shortly downstream of the
element location, substituting the low-speed wake. This results in a stronger and more
spread high-fluctuation region, which propagates into a turbulent wedge while evolving
downstream. The formation of high- and low-speed streaks cascade on the wake’s
sides drives the spanwise opening of the turbulent region (Berger & White 2020). The
spectral analysis once more highlights the relevant contribution of the stationary transient
disturbances to the near-wake development. In the super-critical scenario, steeper decay
and growth rates characterize the disturbances’ evolution, thus reducing the chordwise
extent of the transient process. In this flow scenario, the transient growth process occurs
in conjunction with enhanced shears and excessive amplitude of the velocity streaks
developing in the near-wake region. Thus, the breakdown of the laminar structures is
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initiated shortly downstream of the element, leading to increased flow unsteadiness and
the onset of turbulence through bypass transition comparably to what has been previously
observed in 2-D BLs (Andersson et al. 1999; Reshotko 2001). Accordingly, the role of the
transient decay of the λf 1 mode becomes secondary in the super-critical scenario, as the
onset and evolution of modal CFI is bypassed by the breakdown of the laminar structures.
This is in agreement with the reduced scalability offered by Re2

k in the super-critical
case. The receptivity mechanism identified for super-critical amplitude forcing cases is
summarized by the rightmost branch of figure 21, completing the first conceptual map for
3-D BL receptivity to DRE.
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