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Abstract: This research paper presents a systematic literature review on the use of remotely sensed
and/or global datasets in distributed hydrological modelling. The study aims to investigate the most
commonly used datasets in hydrological models and their performance across different geographical
scales of catchments, including the micro-scale (<10 km2), meso-scale (10 km2–1000 km2), and macro-
scale (>1000 km2). The analysis included a search for the relation between the use of these datasets
to different regions and the geographical scale at which they are most widely used. Additionally,
co-authorship analysis was performed on the articles to identify the collaboration patterns among
researchers. The study further categorized the analysis based on the type of datasets, including
rainfall, digital elevation model, land use, soil distribution, leaf area index, snow-covered area,
evapotranspiration, soil moisture and temperature. The research concluded by identifying knowledge
gaps in the use of each data type at different scales and highlighted the varying performance of
datasets across different locations. The findings underscore the importance of selecting the right
datasets, which has a significant impact on the accuracy of hydrological models. This study provides
valuable insights into the use of remote sensed and/or global datasets in hydrological modelling,
and the identified knowledge gaps can inform future research directions.

Keywords: distributed hydrological modelling; remote sensing; global datasets

1. Introduction

One of the important issues that the world is facing in the current era is climate
change [1], which will have adverse effects on the hydrological cycle of catchments [2].
These effects will not be the same across the world [3], hence their quantification and early
prediction effects are important for preparedness. In order to obtain those quantifications,
hydrological models are useful tools. The simulations of these models are used by water
managers to study the current state of hydrological processes in areas of focus. The
development of distributed hydrological models has the potential to provide large-scale
predictions [4,5], but these models need to be informed and assessed with distributed
observational data for the better representation of spatio-temporal processes [6]. However,
one of the main challenges faced by the modellers is the lack of data [7].

Commonly, the in situ data are considered to be the most accurate. However, these
ground observations are local and lack the ability to provide proper spatial coverage [8–10].
Further, the required huge amount of input data is often not readily and freely available.
Luckily, the advancement in remote sensing technologies during the last decade has enabled
mankind to gather huge datasets using satellite observations [11,12]. These observations are
providing insights about the vast variety of the parameters that are required for building up
a hydrological model [13]. The immense diversity of these datasets covers digital elevation
maps, land-use maps, soil distribution maps, rainfall, evapotranspiration, soil moisture, leaf
area index and others. Moreover, for several of the sources of these datasets, the inventories
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span back half a century or even more. These freely available datasets are attractive to
modellers, as these can fulfill data requirements.

In addition to the model structure, the performance accuracy of a hydrological model
is dependent upon the quality of input data. This makes the selection of the right data
important. However, the performance of Earth observation (EO) datasets cannot be treated
as uniform throughout the globe as it varies across different climatic zones [14]. Moreover,
no remote sensed datasets can be regarded as actual observations due to uncertainties
being common in them [15]. The quality of such data products needs demonstration [16]
and verification with ground observation before use in models [17,18]. With the increasing
computing power, adding new data into the inventories of these datasets is happening very
rapidly. Because of the abundance in variety and non-uniform performance, the selection
of datasets is difficult. Therefore, there is a need to investigate the research that has been
conducted in this specific field over the past few years.

Jiang and Wang (2019) [12] performed the overview of the role of satellite-based
remote sensing data products in hydrological modelling. However, their study is limited
to the exploration of the performance of datasets for flow simulations only. The other
model outputs, apart from discharge were not considered. Further, the remotely sensed
datasets such as digital elevation models, land-use maps, soil distribution maps and leaf
area indices, which are equally important in representing hydrological processes, were
not covered by the authors. Likewise, Sheffield et al. (2018) [19] reviewed the current
satellite missions and datasets that are being used by national agencies in the regions of
Latin American and the Caribbean for water resource management. However, the study
is region-specific and the focus is on water resource management instead of distributed
hydrological modelling. In both previously mentioned studies, the authors did not mention
the years when the publications covered by their review were issued, nor did they describe
their methodology for selecting the articles. Additionally, neither study investigated the
performance of remote sensed datasets at different geographical scales.

In this paper, we performed a systematic literature review. The aim of study was to
investigate the research articles which were published on this topic in six years (2016 to
2021) and which used one or more types of remotely sensed and/or global datasets to
establish the distributed hydrological model. More specifically, we aimed to answer the
following questions: Which datasets are most widely used by the researchers? At what
catchment scale are the remotely sensed datasets mostly used? Have researchers evaluated
the performance of these datasets for hydrological simulations? What are the knowledge
gaps in this respective field?

To answer the questions, we started the systematic literature review by sourcing 205
articles from Scopus and 208 articles from Web of Science. After that, the final analysis was
carried out on 120 articles. Then, we looked into different types of datasets that were used
in hydrological models for different catchment sizes. The terms ‘micro-scale’, ‘meso-scale’,
and ‘macro-scale’ were used to categorize the sizes of catchments (i.e., less than 10 km2 [20];
10 km2 to 1000 km2 [21]; and greater than 1000 km2 [22], respectively). We performed this
to detect the knowledge gaps at each scale concisely. Lastly, we concluded our analysis
results and identified the scale-wise knowledge gaps that can act as the way forward for
future work in the field.

After this introduction, the paper presents the methodology used for paper selec-
tion, which is followed by the results and discussion in Section 3. The paper ends with
the Conclusion in Section 4, followed by Appendix A which presents a list of papers
categorized.



Remote Sens. 2023, 15, 1642 3 of 43

2. Methodology

The review methodology is based on preferred reporting items for systematic reviews
and meta-analyses (PRISMA) criteria [23], consisting of three main steps. The first step
includes the identification of relevant articles and for that we used the keywords, such as
“hydrological modelling”, “remote sensing”, “global data”, etc. All keywords are shown
in Figure 1. The process of identification was started by consulting two websites. The
first was Scopus and the second was the Web of Science. Studies published between 2016
and 2021 were selected for inclusion in this review to capture the latest advancements and
trends in the use of remote sensed and/or global datasets for distributed hydrological
modelling and to make the search manageable and feasible. Initially, 413 articles were
sourced from the two websites that were mentioned earlier. The second step included
the screening of the articles. From the initially sourced 413 articles, some occurred twice
because of their presence in both databases, and some were not classified as articles, such as
conference papers, conference reviews and book chapters. This reduced the list of articles.
Five more articles were excluded as they were not retrievable from the source. After this
screening process, we ended up with 246 articles. In the third step, the abstracts of the article
were read in order to eliminate the articles with research focuses outside the scope of this
review, i.e., detailed distributed hydrological modelling, which included 126 articles. These
126 articles were excluded and the detailed analysis was finally conducted on 120 research
articles. The schematic representation of the whole methodological process of selecting the
papers for review can be seen in Figure 1.
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In the detailed analysis, firstly, the bibliographic analysis was performed to find the
link between the regions and/or scale with the use of remote sensed and/or global datasets.
Secondly, the shortlisted articles were categorized based on the type of datasets used by
the authors for the hydrological modelling. Thirdly, for each dataset type, we further
categorized the articles on the basis of catchment scale. Finally, we ascertained the progress
of scientific community, both in terms of dataset type and scale.

3. Results and Discussions

In the beginning, we classified the articles country-, region- and scale-wise. The
purpose was to analyze the locations around the world where the remote sensed and/or
global datasets were being used most. As shown in Figure 2, out of 120 full-text articles
reviewed, most studies have been found to be conducted in China, followed by the USA.
Conversely, continent-wise, most studies have been conducted in Asia, followed by Europe.
If we look at the number of studies conducted at different catchment sizes, then the majority
are being performed at the macro-scale.
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The main aim of this classification was to find a relationship between the performance
of remote sensing datasets and geographic locations, as well as the sizes of catchments.
However, after reviewing the literature, we were unable to establish any clear links. For
example, we did not find any evidence to suggest that the performance of remote sensing
data is consistently better in one region or country over another, such as Asia versus Europe
or China versus the rest of the world. However, if we consider the catchment size and
number of studies, a direct relationship can then be framed: these studies are more focused
on the macro-scale, followed by the meso-scale and micro-scale. Thus, the trend of using
remote sensed and/or global datasets in large catchments is more as compared to the use
in small ones.

Further, we performed the co-authorship analysis on the articles in order to identify
the collaboration patterns among the researchers. For this, VOSviewer software had been
used and the method was selected as a full counting method. The threshold of a minimum
of two articles by a researcher was chosen as there was no author who had authored three or
more articles among the shortlisted articles. Out of 594 authors, only 46 met the threshold.
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Based on the strength of co-authorship link, 20 clusters were drawn, which are graphically
presented in Figure 3.
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From Figure 3, it can be seen that there are only three clusters where the number of
authors is more than three. The largest clusters are cluster 1 (shown in red) and cluster 2
(shown in green), which have seven authors each. Cluster 3 (shown is blue) is the third
largest cluster, with five authors.

The research work of the authors of cluster 1 is focused on assimilation of soil moisture
in hydrological models. For cluster 2, the research work is more versatile, covering the
subjects of stream flow simulation with limited observed data, the evaluation of satellite-
based precipitation products, the merging of satellite-based precipitation products with in
situ data, the calibration of hydrological models with limited data and the evaluation of
snow melt contribution in catchment hydrological processes. Likewise, the research work
of the authors of cluster 3 is focused on flood simulation uncertainty and the uncertainty
quantification of satellite-based precipitation for stream flow simulation. However, Figure 3
also represents that there are many authors which have no strong collaborations with others
(represented in grey color).

In order to better analyze the contributions of the authors regarding the use of remotely
sensed datasets at different scales for the purpose of hydrological modelling, the following
discussions have been categorized based on the type of datasets.

3.1. Rainfall Datasets

One of the main components of the water cycle is the rainfall. Given its importance,
several efforts have been prompted regarding its estimation and the capture of spatio-
temporal variability on earth [24]. For planning and decision making in a variety of
disciplines, including hydrology, meteorology, climate, and agriculture, its correct observa-
tion is crucial [25]. In hydrological models, precipitation data constitute central input that
regulate the spatio-temporal variability of other hydrological fluxes [26].
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In recent years, many remote sensed satellite-based rainfall datasets with high spatio-
temporal coverage have been produced at a globe scale. These are available in near real
time at zero cost [17]. Further, such estimates of precipitation from space are spatially
uniform and encompass areas that are difficult to access [27]. However, satellite-based
datasets are vulnerable to both systematic and random errors due to various factors. For
instance, these datasets are indirectly derived from radiance, which can lead to issues with
sampling frequency and the algorithms used for estimation. Additionally, the accuracy of
these estimation methods may vary depending on factors such as latitude, altitude, and the
type of rainfall being measured [28,29]. Considering these factors, such data products need
to be evaluated with observed data.

Among the reviewed articles, there are six studies out of one hundred twenty in
which the size of study area is in the range of micro-scale catchment. Only in one study,
the authors analyzed the influence of rainfall variability on discharge simulation using
physically based distributed hydrological model for small semi urban French catchment.
For this study, Paz et al. (2019) [30] used rainfall data from two radars. Unfortunately, at
the micro-scale no author used the remote sensed satellite-based rainfall for hydrological
modelling. Likewise, there are thirty-two studies in the reviewed articles where the study
areas are in the range of meso-scale catchments. Surprisingly, no author used the remote
sensed rainfall dataset for setting up a hydrological model even at this scale.

On the macro-scale, the in situ rainfall data have been mostly used, a fact which
revealed that the data observed in situ are the first preference of the researchers. Many
authors mentioned using remote sensed rainfall data products as well. It is notable that if
only different types of remote sensed datasets are compared, then rainfall is among the most
used remote sensed dataset. In some of the studies, the authors used both satellite rainfall
data products and in situ gauge data in combination. Few authors used the gauge data for
the evaluation of satellite-based rainfall products. For instance, for the area of Biliu basin
China, Qi et al. (2016) [31] compared six rainfall products statistically with gauge station
data and also with respect to hydrological simulation. These products are Tropical Rainfall
Measuring Mission (TRMM) versions 3B42 and 3B42RT, Global Land Data Assimilation
System (GLDAS), Asian Precipitation-Highly Resolved Observational Data Integration
Towards Evaluation of water resources (APHRODITE), Precipitation Estimation from Re-
motely Sensed Information using Artificial Neural Networks (PERSIANN) and Global
Satellite Mapping of Precipitation (GSMaP) products. They developed two hydrological
models for the analysis. The first one was fully distributed, while the second one was a
semi-distributed hydrological model. The results showed that the APHRODITE rainfall
dataset outperformed the five other datasets in statistical comparison with gauge data and
also in stream flow simulation by both hydrological models. Likewise, Pakoksung and
Takagi (2016) [32] evaluated the performance of five rainfall data products (Global Precipi-
tation Measurement (GPM), GSMaP, TRMM 3B42V7, Climate Prediction Center Morphing
technique (CMORPH), and PERSIANN) as an input to rainfall–runoff–inundation (RRI)
hydrological model for simulating run-off in the Nan River basin, Thailand. CMORPH and
GPM was reported as the best performers based on the statistical comparison with gauge
rainfall data while GPM has performed best with respect to stream flow simulation by the
model.

As satellite-based rainfall datasets may have some systematic and random errors be-
cause of indirect estimation by remote sensing techniques, some researchers tried to correct
them based on the use of in situ data. For example, Khairul et al. (2018) [17] evaluated
four rainfall products statistically with gauge data. These datasets used were TRMM multi-
satellite precipitation analysis (TMPA), Climate Hazards Group InfraRed Precipitation
with Station data (CHIRPS), Multi-Source Weighted-Ensemble Precipitation (MSWEP) and
GSMaP. They found that all products were weak in apprehending the magnitude and
spatial distribution but good in capturing events. They used the merged product of these
datasets for hydrological modelling of the Meghna catchment in Bangladesh. However,
they did not compare the performance of the merged product with individual datasets
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in terms of their capability to simulate a hydrological model. Schmied et al. (2021) [33]
evaluated the performance of global hydrological model WaterGAP v2.2d based on total
water storage anomalies, streamflow and water use using observed data. To simulate the
model, they developed the homogenized series of precipitation data using the Water and
Global Change (WATCH) forcing data (1901–1978) and WATCH Forcing Data ERA-Interim
(WFDEI) (1979–2016). They further adjusted the data to the monthly precipitation sum
based on Global Precipitation Climatology Centre (GPCC) data. The authors discussed
the effects modifications in the model algorithm and calibration routine had on the results,
but did not make any explicit comments on the performance of the model based on the
selection of forcing data.

A total of 17 different rainfall products in combination with 6 different temperature
datasets are compared by Dembele et al. (2020) [14] as inputs to the meso-scale hydrologic
model (mHM) to simulate the hydrological process in the Volta River basin, Africa. The
model simulations have been evaluated based on four parameters. These parameters are
(1) in situ stream flow data, (2) Global Land Evaporation Amsterdam Model (GLEAM)
evaporation data, (3) European Space Agency (ESA) Climate Change Initiative (CCI) soil
moisture data and (4) Gravity Recovery and Climate Experiment (GRACE) terrestrial
water storage (TWS) data. Among the 17 utilized datasets, no single rainfall dataset
ranked first consistently with respect to evaluation parameters. Tropical Applications of
Meteorology using SATellite data (TAMSAT), African Rainfall Climatology (ARC), Modern-
Era Retrospective analysis for Research and Applications (MERRA-2) and MSWEP are best-
performing datasets for streamflow, TWS, soil moisture and actual evaporation simulations,
respectively. Lakew et al. (2020) [34] evaluated the performance of five rainfall data
products based on their capability to simulate daily flow in three catchments (Gilgel Abbay,
Kessie station and Abbay basin) of Ethiopia using the Coupled Routing and Excess STorage
(CREST) distributed hydrological model. The used datasets were CMORPH, TRMM TMPA
3B42v7, European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis
(ERA) Interim, GPCC and MSWEP. The results indicated that the MSWEP rainfall data
product performed better in flow simulation than the rest of them.

Similarly, Singh and Saravanan (2020) [35] evaluated four rainfall products for the
Wunna Riveris catchment in India and found that the Global Precipitation Climatology
Project (GPCP) rainfall data, TRMM and APHRODITE to be more suitable products for
the simulation of hydrological processes in India. Mao et al. (2019) [36] evaluated three
rainfall products, namely GLDAS, TRMM, China Meteorological Forcing Dataset (CMFD)
and MERRA-2. They assessed that, for runoff simulation, MERRA-2 performed better for
the Nujiang River basin, China.

Researchers have used a variety of rainfall datasets in their work. Apart from the
examples given above, we listed them in Table A1. Their frequent use advocates their
potential worth for hydrological modelling. However, if the aim is to determine one single
dataset that is performing well in all catchments, then it is difficult to clearly identify a
single product performing better from all perspectives. Datasets vary from catchment on
the basis of size and region and depend a lot on evaluation criteria. For instance, either
the evaluation criteria are a direct comparison of a dataset with in situ observation, or the
criterion is the capacity of a dataset to simulate the hydrological variables. These variables
can be runoff, soil moisture, terrestrial water storage, actual evapotranspiration or others.
Therefore, it is suggested to test and compare the hydrological simulation capability of
different rainfall datasets for the aimed study area rather than relying only on a single
dataset.
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3.2. Digital Elevations Models

Topography influences the generation of overland flow in the physical hydrological
models and is defined by the digital elevation models (DEMs). The river network, slope
and drainage area are some of the key characteristics of catchments. These morphological
attributes can be estimated by DEMs for representation in distributed hydrological mod-
els [37]. Thus, the accuracy of these parameters is directly associated with the precision of
DEMs. There are many procedures for the generation of DEMs, including photogrammetry,
light detection and ranging systems, satellite optical imagery, SAR interferometry and field
surveys. However, remote sensed technologies have the advantage of being relatively less
expensive, both in cost and time, at covering larger areas [37,38].

In the reviewed articles, for the micro-scale catchments the authors have only used the
national-level datasets for their research. For instance, Ichiba et al. (2018) [39] developed
the multi-hydro physically based distributed hydrological model of an urban catchment in
France in order to understand the effect of model scale on its hydrological performance.
They used the local DEM data from the National Institute of Geographic and Forest
Information to carry out the analysis. Likewise, Her and Heatwole (2016) [40] developed
the 2D fully distributed hydrological model based on the time–area method to provide an
alternative way to simulate hydrological processes. The modelling was performed on the
Owl Run catchment using the national elevation data from the United States Geological
Survey (USGS).

Similar trends have been observed at the meso-scale, with a greater focus on local
or national sources of datasets. Some authors have mentioned using DEM data from the
Shuttle Radar Topography Mission (SRTM) and Advanced Spaceborne Thermal Emission
and Reflection Radiometer Global Digital Elevation Model (ASTER GDEM) for model
development. However, they did not analyze the effect of selecting global DEM datasets on
their findings. For macro-scale catchments, the trend of using DEMs is the opposite, with
more researchers using global DEMs than local topographic datasets. Out of 79 articles,
52 studies used global DEMs, while only 12 utilized local or national-level topographic
datasets. Among the global DEMs, SRTM was the most commonly used product, appearing
in 28 articles, followed by the use of ASTER GDEM in 9 articles. Table A2 lists the different
DEMs used by researchers in the reviewed articles.

Out of the reviewed articles, only one study, that of Pakoksung and Takagi (2021) [37],
has compared the runoff and inundation area simulation performance of five satellite
products for a 2011 flood event in the Nan River basin, Thailand, through distributed
hydrological modelling. The datasets used were SRTM, ASTER GDEM, Global Multi-
resolution Terrain Elevation Data 2010 (GMTED 2010), Global 30 Arc-Second Elevation
(GTOPO-30) and Hydrological data and maps based on Shuttle Elevation Derivatives at
multiple Scales (HydroSHEDS). For the simulation of run-off, GMTED 2010 performed
comparatively better, while SRTM gave the highest accuracy for inundation area simulation.
Although GMTED 2010 has a coarser resolution (1000 m by 1000 m), it performed better
in run-off simulation as compared to other finer-resolution data products, whereas SRTM
performed better for inundation area imitation. Some researchers have utilized multiple
data products to cater to their utility needs. For instance, Ayala et al. (2020) [41] used local
55 m contour lines, SRTM, and TanDEM-X datasets to extract DEMs for the years 1955, 2000,
and 2013, respectively. They used the derived DEM for glacier change and runoff studies
in the Maipo River basin, Chile. Similarly, Siqueira et al. (2018) [42] used SRTM DEMs and
HydroSHEDS data for flow accumulation. However, in these studies, the authors did not
perform any performance evaluation.

The analysis showed that the use of global DEM datasets in the hydrological models
is a common practice among the researchers. It is the only dataset where the use of remote
sensed-derived global products has exceeded the use of local or national datasets. DEM is
one of the essential inputs to the models and the accuracy of many terrain features, such as
extents, slopes, elevations, is dependent on the accuracy of DEM. Despite its importance,
only one study among the reviewed article is focused on the hydrological evaluation of
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different global DEMs [37]. However, this study was limited to a macro-scale catchment
and there is a lack of such evaluations for micro- and meso-scale catchments. The selection
of a suitable source of DEM is an important step in the hydrological modelling procedure
and the dearth of literature in this respect is concerning.

3.3. Land-Use Land-Change Datasets

Land cover plays a vital role in hydrology as it defines the properties of land surface
in the models. In the physically based models, land cover represents the distribution of
vegetation over the area which is used to calculate the spatial and temporal distribution
of actual evapotranspiration (AET). In the overland component of models, the resistance
to flow is represented by Manning values, which are often linked with the land-use type.
Studies showed that the major portion of earth’s surface is altered due to human’s activi-
ties [43] and these changes are also represented in models through land-use land-change
(LULC) maps. In recent years, there has been a proliferation of global-scale LULC datasets
produced using remote sensing techniques. Despite the fact that these LULC datasets give
a typical reflection of the Earth’s surface, they still differ in certain ways, such as in the
methodology used to collect data and to construct land-use maps, the number and type of
sensors used for detections, their spatial resolution, and their classification definition [44].
Nevertheless, many countries have developed their local- or national-level LULC datasets
using classification techniques based on fine-resolution aerial or satellite images. Even
though these products may be regarded as the best datasets to be input into hydrological
models, their availability and quality cannot always be guaranteed [45].

Among the reviewed articles, researchers have primarily used local- or national-level
data products for all three catchment scales. At the meso-scale, the most frequent used
regional or global data product is the Coordination of Information on the Environment
(CORINE) land-cover map which has a spatial resolution of 100 m [46–48]. For studies
conducted in the USA, the National Land Cover Database (NLCD), produced by USGS and
with a spatial resolution of 30m, is the most commonly used dataset [49–51].

At the macro-scale, the most commonly used LULC dataset among the reviewed
articles is the Global Land-Cover Characteristics (GLCC) by USGS (in 8 articles), followed
by Globcover by ESA (in 7 articles), CORINE land-cover by Copernicus (in 5 articles) and
moderate-resolution imaging spectroradiometer (MODIS) Terra+Aqua land-cover products
(in 5 articles). The different LULC datasets used by researchers in the reviewed articles are
tabulated in Table A3.

The literature shows that new LULC datasets can be prepared for specific areas by
using techniques such as supervised, unsupervised and semi-supervised classification
algorithms. For instance, Wang and Chen (2019) [52] used the Landsat-8 satellite imagery
to develop the land-cover maps for the Shahe Creek in Guangzhou, China, using support
vector machine (SVM) algorithms, which are a type of supervised classification technique.
They identified the key hydrological processes for flood forecasting by setting up the
distributed hydrological model using the land-use map developed. Similarly, Gampe et al.
(2016) [53] derived the LULC map for the Gaza Strip from SPOT-5 satellite images, which
are made to be used in a water balance simulation model (WaSiM) to assess future drought
risk. However, they did not mention the technique used for the development of land-use
maps.

Similarly, at the macro-scale, Maza et al. (2020) [54] used (Linear Imaging Self-
Scanning-IV) LISS-IV satellite images for the development of two LULC maps for the
Kangsabati reservoir catchment India. The first had 8 vegetation classes, while the second
had 16 vegetation classes. The study showed that the variable infiltration capacity (VIC)
hydrological model, having a fine land-use dataset with 16 vegetation classes, had per-
formed better in low as well as in high flows. Sahoo et al. (2021) [55], Singh and Saravanan
(2020) [35] and Munzimi et al. (2019) [56] used Landsat satellite images data to derive the
LULC maps. Sharif et al. (2017) [57] and Alataway and El Alfy (2019) [58] used the satellite
imagery data from the Landsat satellite as well as from the SPOT-5 satellite images for the
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development of the LULC map. Likewise, Arthur et al. (2020) [59] used images data from
Landsat satellite and MODIS satellite to derive the LULC map. These authors mentioned
the development of land-cover maps using the satellite images, but they did not analyze the
accuracy of using the specific algorithm to compile them or how this affects hydrological
simulations.

Although global land-cover datasets are widely used, they may lack specific land-cover
classifications that are required for certain studies, such as glacier coverage, crop type, etc.
In light of this, some researchers have modified global land-cover maps by incorporating
additional data sources to achieve the necessary specificity for their particular study. For
instance, Mao et al. (2019) [36] modified the GLCC data with glacier coverage data from
the International Center for Integrated Mountain Development (ICIMOD) for Nujiang
River basin, China. Similarly, Soulis et al. (2020) [60] updated the CORINE land cover
with data from the Integrated Administration and Control System, Greece, (IACS) for the
agricultural part to be used in the distributed hydrological modelling of Greece. However,
no author evaluated the effect of LULC data source on the hydrological simulations. Only
Busari et al. (2021) [61] studied the effect of incorporating the multiple LULC maps into
hydrological modelling. They developed two physically based distributed hydrological
models using mHM modelling software for the Karasu Basin in Turkey. The first model
was based on a single dataset of LULC from Globcover, while the second model was based
on multiple LULC datasets sourced from CORINE for years 1990 and2000 and from the
MODIS land-cover product for years from 2001 to 2008. The research concluded that the
model with multiple LULC datasets (dynamic) had better performance in flow prediction
at outlet than the model having static information of the land use.

One of the crucial inputs in hydrological modelling is LULC data, and their usefulness
needs to be carefully assessed. The common goal of the development of global LULC
datasets is to develop a harmonized coverage for the whole globe that can be used for
studies related to environmental assessment and climate change. The key characteristic
of each initiative is that it is ensured that the same technique and classification rule is
applied for the whole area. These exclusive properties make these products perfect inputs
for hydrological modelling across different areas of the world. However, their taxonomy
and class definition differ, resulting in a different legend [45]. The typical way of mapping
LULC is through the use of field surveys. However, mapping at the catchment scale is
time consuming and expensive, and in many cases is not practical [52]. The applicability of
global datasets to simulate hydrological models must be analyzed in order to understand
their performance in comparison to that of fine-resolution LULC datasets. Further, it is
required to determine up to what standard these global datasets may be utilized as an
alternative or as the only source in the data-scarce regions. Moreover, the literature review
also depicts that there is a lack of such investigations.

3.4. Soil Distribution and Properties Datasets

Soil is one the dominant factors in regulating the hydrology of the catchment as it
controls the streamflow generation, defines the flow path and influences the water balance.
This makes the soil information an important input for physically based hydrological
models [62]. The limited availability of distributed soil information is common around the
globe. This may be because the traditional soil survey methods are time consuming and
expensive [63]. Moreover, the soil information is not often readily available in formats suit-
able for inclusion in models [64]. During recent years, many global-scale soil distribution
and properties datasets have been produced by many agencies with the aim to provide
harmonized soil information coverage throughout the earth’s surface. At the same time,
many countries have their own soil information and properties databases.

Among the reviewed articles, researchers have primarily used soil information data
from local or national databases for all three catchment scales. For instance, Ichiba et al.
(2018) [39] used the local soil data from the Bureau de Recherches Géologiques et Minières
database for setting up the multi-hydro physically based distributed hydrological model of
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an urban micro-scale catchment in France. Similarly, Her and Heatwole (2016) [40] used
the national soil data from soil survey geographic database (SSURGO) for the hydrological
modelling on Owl Run catchment, USA. It is important to mention that none of the reviewed
articles used any global soil information dataset for micro-scale catchments.

At the meso-scale, few researchers mentioned using the global soil information
datasets such as Digital Soil Map of the World (DSMW) by Food and Agriculture Organi-
zation (FAO) [65], Harmonized World Soil Database (HWSD) [66] and SoilGrids—global
gridded soil information—by ISRIC (International Soil Reference and Information Centre)
with a 1000m resolution [67]. In one study, Wang and Chen (2019) [52] noted that DSMW
by FAO is not a recent dataset. Thus, the authors updated it based on the land-cover data
and used it for hydrological model setup to identify the key hydrological process in the
highly developed Shahe Creek catchment, China. However, in these studies, none of the
authors evaluated the effect of soil-related datasets used at the meso-scale on hydrology.

At the macro-scale, the number of studies that have used the global soil datasets as
compared to one using local soil inventories for distributed hydrological modelling are
more. The most frequently used global products for soil distribution information are DSMW
by FAO (13 articles), followed by its updated version HWSD (11 articles), SoilGrids by ISRIC
(9 articles) and European Soil Database (ESDB) by European Soil Data Centre (ESDAC)
(3 articles). The different datasets used by authors in the reviewed articles are tabulated
in Table A4. In addition, some studies reported using two global products to extract the
desired soil information for developing distributed hydrological models. For instance,
SoilGrids by ISRIC plus The Global Lithological Map (GLiM) v1.0 data has been used by
Dembele et al. (2020a) [14] and Dembele et al. (2020b) [68] to develop hydrological models
for the Volta River basin, Africa. SoilGrids by ISRIC, in addition to Global Hydrologic Soil
Groups (HYSOGs250m) data for hydrologic soil groups identification, have been used by Al-
Areeq et al. (2021) [69] to develop two hydrological models for the Makkah region in Saudi
Arabia using Gridded Surface Subsurface Hydrologic Analysis (GSSHA) fully distributed
modelling tool and Hydrologic Engineering Center-Hydrologic Modelling System (HEC-
HMS), a semi-distributed hydrological modelling tool. Busari et al. (2021) [61] used ESDB
in combination with HWSD, while Dahri et al. (2021) [70] HWSD in combination with
High-Resolution Soil Maps of Global Hydraulic Properties (HiHydroSoil) by Future Water.
Ha et al. (2018) [71] developed a new soil map by combining SoilGrids by ISRIC and DSMW
by using unsupervised classification for the Red River Day basin, Vietnam. However, none
of these studies performed a performance evaluation of the merged products.

Global soil datasets are frequently regarded as an alternate source of soil property
information for large-scale hydrological modelling and for areas with limited local data [72].
We analyzed that, in the reviewed articles, few researchers used global soil products in
combination with local data to achieve the required spatial resolution or to cover the
intended study area. For example, Siqueira et al. (2018) [42] mentioned using the Brazilian
soil database in combination with DSMW to obtain soil properties at a 400 m spatial
resolution and used in region-scale hydrological modelling of South America using Modelo
hidrológico de Grandes Bacias (MGB), a large-scale hydrological model. Sharif et al.
(2017) [57] used local data plus DSMW for hydrological modelling of the Hafr-Al-Batin
region in Saudi Arabia. Huang et al. (2019) [18] used local data plus soil information
by ISRIC to develop a hydrological model of Norway. Yet, again, none of these studies
performed a performance evaluation of the merged products.

Global soil information datasets give the traditional reflection of earth’s soil charac-
teristics but they also vary in many aspects such as their mode of compilation, spatial
resolution, number of incorporated soil profiles, number of depth layers. Most of these
datasets are developed from soil surveys in one of two ways. The first way is the linkage
method in which the soil profiles and soil mapping units are linked to form polygon-shaped
soil type maps. The second method is digital soil mapping, in which machine learning
techniques are used to map the spatial distributed soil properties. However, global soil
datasets represent the average state of the last decades [72,73]. We analyzed that, on one
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hand, many researchers have used the global soil information datasets for setting up the
hydrological models but that, on the other hand, in the reviewed articles, no scholars
evaluated the hydrological performance of these soil datasets. In light of this, there is a
necessity to investigate the influence of these global datasets on hydrological simulations
in order to determine the extent to which these datasets can be trusted as the only sources
in data-scarce regions.

3.5. Leaf Area Index Datasets

Vegetation plays an important role in the hydrological process as it determines the
separation of rainfall into runoff and ET, tasks which it performs largely through 2 pro-
cesses. One is transpiration through the canopy and the other is loss by interception [74].
Transpiration mostly varies according to leaf area index (LAI). Changes in LAI not only
influence the ET but also the soil moisture. Consequently, other processes in the catchment
will be affected such as baseflow, recharge, saturation and infiltration [75]. Therefore, the
improper dynamic representation of LAI in the hydrological model may result in a poor
performance of the model [76].

At the meso-scale, some researchers in the reviewed articles used the LAI values from
the field surveys found in the literature. For instance, Sonnenborg et al. (2017) [77] use
the values of LAI from the literature related to phenology to set up a MIKE-SHE-SWET
model for the Skjern River and Lejre catchment Denmark with the aim to test the impact of
forest type and coverage on water resources. Gleason and Nolin (2016) [50] study effect of
forest fire on snow ablation and snow-cover duration using the SnowModel for Oregon
Cascades catchment in the USA. They modified the values of LAI in the model to postfire
conditions based on field values and were able to capture the snow water equivalent (SWE)
values. Gampe et al. (2016) [53] used the value of LAI from literature to set up the WaSiM
hydrological model for the Gaza Strip, Palestine, to assess future drought risk. For the
in situ measurement of LAI, the number of techniques are available such as destructive
sampling, allometry, optical observations [78] but the problem is that these techniques are
geographically limited as well as cost and time expensive.

In the past few years, many global LAI datasets have been produced with moderate
resolution. The estimation of LAI from remote sensing data is mostly derived from one of
these methods: passive optical sensors, the active light detection and ranging instruments,
and microwave sensors using empirical transfer and model inversion methods [79]. In the
reviewed articles, for meso-scale catchments, the authors had used the remote sensed LAI
for setting up the distributed hydrological model. However, they did not explicitly com-
ment on the hydrological performance quality of these datasets. For example, Cornelissen
et al. (2016) [22] developed a distributed hydrological model of Erkensruhr catchment in
Germany to study the parametrization of the hydrological model by transferring calibrated
parameters from a well-equipped head water catchment. They used the monthly mean
value of LAI, derived from the MODIS/Terra-8-day LAI (MOD15A) dataset at a spatial
resolution of 1 km, as an input for the model. Abiodun et al. (2018) [80] set up the SWAT
hydrological model for the Sixth Creek catchment in Australia to compare the MODIS
Actual ET with the simulated ET from the SWAT model and used the LAI value from the
default SWAT database.

The commonly used remote sensed LAI products at a macro-scale level were the
Global Inventory Modelling and Mapping Studies (GIMMS) LAI (mentioned in 3 articles),
MODIS/Terra+Aqua (MCD15A) LAI (mentioned in 3 articles), and MOD15A LAI (men-
tioned in 5 articles). Table A5 summarizes the different datasets utilized by the authors
in the reviewed articles. While the researchers incorporated global LAI datasets as inputs
into their hydrological model, their study’s primary focus was not on LAI, and they did
not assess the impact of using these specific data products on the model’s performance.
Out of the reviewed articles, only that of Rajib et al. (2018) [15] utilized the MCD15A LAI
product to evaluate the SWAT hydrological model of Pipestem Creek catchment located
in North Dakota, USA. Their findings revealed that calibrating the model with spatial ET
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enhanced the model’s performance in simulating both ET and LAI. In contrast, only one
study conducted by Jiang et al. (2020) [81] incorporated dynamic vegetation properties by
utilizing the advanced very high-resolution radiometer (AVHRR) LAI record from 1981 to
1994 in the VIC hydrological model for the Columbia River basin located in the USA. They
updated the model with the Global Land Surface Satellite (GLASS) / MODIS LAI for the
duration from 2004 to 2013. The results showed improvement in evapotranspiration and
run-off simulation.

The LAI is an important biophysical variable in process-based modelling. For the
assessment of this index, remote sensing has emerged as the major source, both at the
local and global levels [82]. These global LAI products have been used as input data in
the reviewed articles for the development of hydrological models and their inclusion in
the modelling setup has the potential to improve the model performance, as reported
by Jiang et al. (2020) [81]. Although researchers have used different LAI datasets from
various sources as inputs in their hydrological models, they have not specifically examined
how different LAI datasets affect model performance. Such analysis would be essential
in understanding variability in model results due to different LAI inputs, which can be
particularly important in areas where ground-based LAI measurements are not readily
available. It would also help to identify the most suitable LAI product for a given study
area and hydrological model, potentially improving the accuracy of model predictions.
Therefore, future research could focus on conducting a comparative analysis of different
LAI datasets and evaluating their impact on hydrological model simulations.

3.6. Snow-Covered Area (SCA) Datasets

Glaciers and seasonal snow packs are the sources of water for one sixth of the global
population [83]. Snowmelt makes a noteworthy contribution to hydrology as it influences
the vegetation growth and the consumption of water resources. In cold and mountainous
catchments, snowmelt is a major contributor of water supply, especially in the middle
and lower portions of these areas [84]. Snow cover is also an indicator of climate change,
as increase and decrease in this is temperature dependent [85]. Therefore, the accurate
assessment of snow-related parameters is of considerable importance in hydrology.

One of the traditional methods to measure snow parameters is through ground-based
monitoring of snow characteristics, along with other variables, at a meteorological station.
However, the availability of in situ readings is still very limited because of several reasons
including remote and far off areas, cost expensive and laborious [66].

In recent years, remote sensing technology has been considerably advanced and can be
used as a substitute for traditional methods to obtain snow-cover information at catchment
level. It can also provide near real-time monitoring of snow cover over large areas [86].
For instance, at the meso-scale, Gleason and Nolin (2016) [50] used MODIS snow-cover
product (MOD10A1) for the calculation of snow-cover frequency to study effect of pre-
and post-forest fire on snow ablation and snow-cover duration. Similarly, Teweldebrhan
et al. (2018) [87] used MODIS Aqua (MYD10A1) and MODIS Terra (MOD10A1) snow-cover
products for parameter uncertainty analysis in addition to the assessment of stream flow
data.

Another approach for the estimation of snow cover is through the hydrological model,
which is based on meteorological and geomorphological data. In the reviewed articles,
studies have been found in which the researchers have used hydrological models for snow
simulation and used the remote sensed snow-related datasets for the evaluation of model
simulated snow parameters. For example, at the meso-scale, Mimeau et al. (2019) [88]
used MODIS satellite images to derive a snow-cover map with spatial resolution of 250m
for the Pheriche sub-catchment of the Dudh Koshi basin in Nepal and used this snow-
cover map to evaluate the simulated snow-cover area using the glacio-hydrological model
(DHSVM-GDM), in addition to assessing outflows and glacier mass balances. Appel et al.
(2016) [66] derived binary information, conveying whether the snow is dry or wet from,
Sentinel-1 satellite images and used these data to validate the simulated snow information
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with the Processes of Radiation, Mass and Energy Transfer (PROMET) model for the Forêt
Montmorency catchment, Canada. Multitemporal snow extent maps derived from Landsat
satellite images, in addition to MODIS SCA products (MOD10A1 and MYD10A1), were
used by Hanzer et al. (2016) to validate AMUNDSEN model simulations.

Likewise, at the macro-scale, Luo et al. (2017) [89] used a MODIS (MOD10A2) data
product to compare with MIKE-SHE-modelled snow cover and found the model to be
performing adequately. Ren and Liu (2019) [90] developed a distributed hydrological
model for the Upper Yangtze River basin, China, using MODIS land surface temperature,
daily snow-cover data products (MOD10A1 and MYD10A1) and in situ data to calculate
snow depths, while special sensor microwave/imager (SSM/I) snow-cover data were used
to validate the model’s results. The Global Randolph Glacier Inventory (RGI), the Global
Land Ice Measurements from Space (GLIMS) geospatial glacier database and the Glacier
Monitoring of Switzerland (GLAMOS) database were utilized by Imhoff et al. (2020) [91]
for glacier coverage and initial storage assessment in order to be input into the hydrological
model. Liao and Zhuang (2017) [92] used cloud-free MODIS images for snow-cover data.
Li et al. (2019) [84] validated the snow distribution model results with integrated product
of MODIS Terra/Aqua and local data (Interactive Multi-sensor Snow and Ice Mapping
System) for catchment in the Tibetan Plateau region. Ayala et al. (2020) [41] used the
MODIS SCA product in addition to Snow Water Equivalent (SWE) data from the Chilean
version of the Catchment Attributes and Meteorology for Large-Sample Studies (CAMELS-
CL) database for calibration and validation of the Topographic Kinematic Approximation
and Integration (TOPKAPI)-ETH hydrological model for the Mapio River basin in Chile.
Overall, the performance of the model in flow simulation was improved, but the individual
effect of including the SCA product in the calibration process was not reported and/or
analyzed.

From the reviewed articles it can be observed that, although different snow-related
remote sensed datasets have been used by researchers, as tabulated in Table A6, no one
has compared these datasets with in situ measurements. Moreover, no study can be found
in which the remote sensed and/or global SCA or SWE products from different sources
have been compared with each other or with the modelled results. Further, no author
explored the potential of these products for assimilation into distributed hydrological
models. Remote sensing techniques have the potential to estimate the snow properties
well at different scales. However, there are several limitations as well. For example,
remote sensing snow data gathering started in the past decades so the length of available
data is limited and the observations may be influenced by cloud cover, leading to large
errors. Further, the misclassification of surface features due to spectral misperception is
possible [86]. Therefore, the evaluation of the global snow datasets is required to determine
their suitability for use in hydrological applications.

3.7. Evapotranspiration Datasets

Evapotranspiration (ET) and precipitation are among the main components of the
water balance in most of the hydrological systems [93]. ET often exceeds precipitation,
particularly in arid and semi-arid regions, and creates a sink for groundwater [94]. Thus,
the reliable assessment of ET is important for effective water management.

ET is traditionally measured through ground-based methods such as Bowen ratio-
energy balance, eddy covariance, large aperture scintillometers and lysimeters [95], but
these are often not well spatially distributed [8]. Further, different measurement methods
have different associated uncertainties and errors related to instrument installation [96,97].
The availability of remote sensed data has eased the spatial estimation of ET [80]. The
variables that are derived from remote sensing data, such as land surface temperature,
reflectance and vegetation indices, can be used to develop algorithms for ET estimation.
Moreover, the cost of finer-resolution ET products covering the wide range is significantly
lower than that of observing through ground-based monitoring stations [98].
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There are many hydrological and remote sensing-based surface energy balance models
currently in use for simulating ET datasets. These ET products have been used by many
researchers for water resource assessment studies, as shown in Table A7. In the reviewed
articles, the researchers have used the actual evapotranspiration (AET) datasets for four
different purposes, namely the (1) calibration, (2) validation, (3) assimilation and (4) evalu-
ation of the ET products, by comparing them with modelled results. Surprisingly, there
is no study related to micro-scale catchments in which an ET dataset has been used. At
the meso-scale, Gampe et al. (2016) [53] used satellite the Landsat TM Images dataset
to calculate actual evapotranspiration in order to validate simulated AET by WaSiM hy-
drological model for the Gaza Strip, Palestine, for drought studies. Interestingly, there
was only one AET product (MODIS MOD16A) that had been evaluated by undergoing a
comparison with model results in two studies. In the first study, Abiodun et al. (2018) [80]
performed the hydrological modelling using SWAT for Sixth Creek Catchment, Australia,
and evaluated the MODIS AET data product MOD16A with model simulated AET. The
authors reported good agreement between MODIS AET and SWAT ET on the catchment
scale but the poor agreement at the fine scale. Similarly, in the second study, Bugan et al.
(2020) [98] evaluated MOD16A with simulated AET by using the Jena Adaptable Modelling
System (JAMS) J2000 for the Sandspruit catchment, South Africa. In this study the authors
reported a good correlation at the catchment level and poor results at the hydrological
response unit (HRU) level.

At the macro-scale, researchers have primarily used AET datasets for the calibration
and validation of hydrological model simulations. For instance, Dembele et al. (2020) [68]
evaluated the potential of 12 satellite or reanalysis evaporation datasets in improving
model performance of mHM modelling tool through calibration for the Volta River basin,
West Africa. These datasets are MOD16A2, Operational Simplified Surface Energy Balance
(SSEBop), Atmosphere-Land Exchange Inverse (ALEXI), CSIRO MODIS Reflectance Scal-
ing EvapoTranspiration (CMRSET), Surface Energy Balance System (SEBS), Global Land
Evaporation Amsterdam Model (GLEAM) v3.2a, GLEAM v3.3a, GLEAM v3.2b, GLEAM
v3.3b, ERA-5, MERRA-2 and Japanese 55-year ReAnalysis (JRA-55). Further, they used ESA
CCI Soil Moisture (SM) v4.2 dataset along with terrestrial storage data from GRACE and
in situ streamflow data for evaluation of hydrological model simulations. All calibration
strategies outperform streamflow only calibration. MERRA-2, GLEAM v3.3a and SSEBop
gave the best performance as calibration datasets.

Nesru et al. (2020) [99], used MODIS (level 1-B) satellite data along with meteorological
data for calculation of AET by SEBS for the upper Omo–Gibe basin, Ethiopia. The authors
used this calculated AET along with stream flows for calibration of the hydrological model.
Further, they also used AET from SEBS in addition to stream flows for validation of model
results and reported that the inclusion of AET in calibration had improved the model
performance compared to the case where the model was calibrated only with stream flows.
Becker et al. (2019) [100] reported the use of AET derived by MODIS (level 1-B) satellite
data by Surface Energy Balance Algorithm (SEBAL) and modified it based on land use.
The modified data was used for calibration of the SWAT hydrological model for the Lower
Chenab Canal System, Pakistan. The mean Kling–Gupta Efficiency (KGE) of the HRUs
in simulating AET improved from 0.27 to 0.40 by using the modified SEBAL AET for
calibration in comparison to the model which was calibrated with unmodified SEBAL AET.
The authors recommended a detailed analysis of spatial variability of SEBAL AET for using
it for model calibration. Similarly, Pan et al. (2018) [101] used SEBAL to calculate the AET
based on MODIS satellite images data and used it for calibration of Distributed Hydrology
Soil Vegetation Model (DHSVM) of the Jinhua River Basin, China. The authors achieved the
reduction in equifinality by considering multiple variables in the calibration of the model.
Koppa et al. (2019) [102] used GLEAM AET data for calibration of hydrological model for
the Omo–Gibe River basin, Ethiopia. It improved the ET simulation sense of the model. Jin
and Jin (2020) [103] also used the GLEAM AET for calibration of the SWAT model for the
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Bayinhe River basin in northwest China. The authors reported the improved simulation of
stream flows and water balance.

Rajib et al. (2018) [15] included the MODIS ET data in the calibration of each sub-
catchment in the SWAT model by a spatially explicit approach and were not only able to
achieve improvements in simulated ET and flows but also obtained more realistic results
of vegetation growth. Similarly, the MODIS AET product has been used by Jiang et al.
(2020) [81] for spatially distributed model calibration of the VIC hydrological model of
the Columbia River basin, North America. They reported that 75 % of the sub-basins
showed the improved or comparable KGE values for streamflow simulations as compared
to the base-model. Kunnath-Poovakka et al. (2016) [104] used Advanced Microwave
Scanning Radiometer-Earth Observing System (AMSR-E) version 5.0 (25 km) soil moisture
data along with Evapotranspiration data from CMRSET for the calibration of the gridded
Australian Water Resource Assessment—Landscape (AWRA-L) hydrological model in
order to evaluate its efficiency in streamflow prediction. The authors analyzed fifteen
different objective functions to carry out the calibration and reported that most of the
objective functions performed satisfactory in the catchments with medium to high average
flows. This is the only found study among the reviewed articles in which the authors
also compared the CMRSET AET with the ground station AET for the dry Loddon River
catchment, Australia, and CMRSET underestimated on most of the days.

Herman et al. (2018) [105] explored two different techniques of model calibration
using local data of streamflow and spatially distributed AET dataset from SSEBop model
(1 km) and ALEXI model (4 km). They concluded that better simulation results can be
achieved by selection of the right calibration technique. So not only the inclusion of AET in
calibration can bring positive impact but also the selection of right calibration technique
is equally significant. Ha et al. (2018) [71] ensembled linearly four different ET models,
i.e., SEBS (5 km), CMRSET (5 km), SSEBop (1 km), and MOD16A (1 km). The ensembled
ET data in addition to LAI data were used for calibration of the SWAT model developed
for the Red River Day Basin, Vietnam. Overall, in these studies, the authors reported the
improved model simulated results by incorporating AET in calibration. Moreover, the issue
of equifinality can also be addressed by considering multivariate calibration.

Like multi-objective calibration, it is a better practice to evaluate the model perfor-
mance based on multiple variables instead of relying on a single output. Considering this,
few researchers used the remote sensed-based AET data products for evaluating the model
simulated AET in addition to other observed or remote sensed variables. For example,
Lazin et al. (2020) [106], in addition to discharge and Terrestrial Water Storage Change,
used the GLEAM AET data for validation of hydrological model simulations for Upper
Blue Nile catchment, Ethiopia. Imhoff et al. (2020) [91] used AET data from the Land
Surface Analysis Satellite Application Facility (LSA SAF), for validation of the hydrological
model of three sub-basins in Rhine basin along with discharge and snow water equivalent
data. AET, calculated through ETwatch software, has been used by Zhang et al. (2020) [107]
for the evaluation of DHSVM model results to compare the performance of two different
interpolation techniques of precipitation data. Likewise, Zhang et al. (2018) [108] and
Hedrick et al. (2020) [109] used the MODIS ET dataset for validation of hydrological model
performance. Although the researchers had used different AET datasets for evaluation of
their model’s performance, they did not comment on the liability or accuracy of these used
remote sensed-based AET products.

From the reviewed articles, only one study is about the use of AET product for assimi-
lation into hydrological model. In this study, Hartanto et al. (2017) [110] calculated AET
from MODIS / Terra satellite data using ITA-MyWater algorithm and used the calculated
AET for assimilation into the distributed hydrological model for the region of Rijnland, the
Netherlands. The results showed an increase in precision of simulated discharge.
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The use of remote sensed-based AET datasets by the researchers show their potential
to bring improvement in the simulation of the hydrological processes. However, for the
small catchments with highly varied land use, keeping the spatial heterogeneity of remotely
sensed datasets intact, remain one of the main challenges [100]. The performance of datasets
also varies across different climatic zones [14]. Moreover, none of remote sensed dataset can
be regarded as actual observations as uncertainties are common in them [15]. Among the
reviewed articles, only the MODIS AET product has been evaluated against the simulated
AET from hydrological models [80,98] and reported a poor performance at a fine scale.
Further, only in one study [104], the comparison of AET products with the ground-based
observations has been performed and even in that, remote sensed AET product is reported
to be under estimating. Therefore, the accuracy of these datasets relative to one another
and ground observations should be extensively explored to improve our understanding of
the ET estimation from different algorithms and sources.

3.8. Soil Mositure Datasets

In hydrology, soil moisture regulates the nonlinear separation of rainfall into infiltra-
tion and runoff. The knowledge of soil moisture in the catchment before any meteorological
event, is an imperative factor to be known, as for the same rainfall magnitude, different
soil moisture states may lead to different hydrographs [46]. Similarly, in many of the
hydrological models, the soil moisture steers the partition of water and energy fluxes. Thus,
the better representation of soil moisture in the models has a potential to enhance the
simulation accuracy of other key variables as well [111].

Like other meteorological variables, soil moisture is commonly measured by in situ
observations but these ground base observations give local readings. Further, considering
the spatio-temporal variability of soil moisture, these methods have limitations and lack
proper coverage [12,112]. On the other hand, the satellite based remote sensing technique
can provide large scale observations and the problem of poor spatial representation can be
resolved [46,113]. The microwave remote sensing, both active and passive, are among the
widely and commonly applied methods for estimations of soil moisture [114]. However,
these estimations cannot be blindly trusted as passive microwave products performed
more reliable over bare to sparsely vegetated areas [115] while active microwave products
gave better estimates over moderately vegetated areas [116]. The different datasets used by
researchers in the reviewed articles are tabulated in Table A8.

For the micro-scale catchment, no article found where the remote sensed soil moisture
data has been used for hydrological applications. At the meso-scale, remote sensed soil
moisture satellite products have been used by few researchers with the purpose of perform-
ing calibration, model evaluation and assimilation. For example, Rajib et al. (2016) [49] used
the gridded soil moisture dataset AMSR-E Aqua daily level-3, version 2, having a resolution
of 25 km in addition to streamflow data at the outlet for calibration of a SWAT model for
two catchments in the USA: Upper Wabash (macro-scale) and Cedar Creek (meso-scale).
In addition to AMSR-E soil moisture, the authors also used in situ soil moisture data for
calibration in the case of Cedar Creek. No major change in stream flow simulation has
been observed due to the application of soil moisture in calibration. Conversely, improved
soil moisture simulation by model was reported in the case of Cedar Creek, where KGE
improved from 0.13 to 0.35 when the calibration was performed with in situ soil moisture
data. In contrast, KGE remained almost the same upon performing the calibration using
AMSR-E Aqua daily soil moisture. However, any direct comparison of in situ soil moisture
with AMSR-E Aqua daily soil moisture was not reported. Khan et al. (2018) [117] used the
surface soil moisture data product ESA CCI SM for evaluating the performance of a model
built on an equivalent cross-section-based semi-distributed hydrologic modelling approach
for the McLaughlin catchment, Australia, to simulate the soil moisture. The authors did
not comment on the quality of soil moisture product used.
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Cenci et al. (2016) [46] tested the effect of soil moisture assimilation on discharge
prediction by using a Continuum distributed hydrological model of the Orba, Casentino,
and Magra catchments in Italy. Three soil moisture products from H-SAF were tested.
These products were SM-OBS-1, available at 25 km resolution, SM-OBS-2, available at 1 km
resolution data product and SM-DAS-2, available at 25 km root zone soil moisture data
product. The enhancement of discharge prediction has been assessed by using all three
products. However, SM-OBS-1, despite having coarse resolution, outperformed others
as assimilation data. The authors also concluded that the results of assimilation are also
strongly dependent on catchment characteristics. Similarly, Laiolo et al. (2016) [118] used
four soil moisture data products for testing the effect of soil moisture data assimilation
into a Continuum hydrological model for the study area, i.e., Orba, Italy. Three of the
used datasets (SM-OBS-1, SM-OBS-2, SM-DAS-2) were from H-SAF while the fourth, Soil
Moisture Content (SMC) Level 2, was obtained from the Soil Moisture and Ocean Salinity
(SMOS) mission of the ESA. The authors reported that the assimilation of SM-OBS-1 and
SM-DAS-2 data provided the greatest benefit in discharge prediction.

Likewise, in the reviewed article related to macro-scale catchments, it can be seen that
the remote sensed soil moisture datasets have mostly been used for calibration, evaluation
and assimilation in hydrological models. For instance, Dembele et al. (2020) [68] evaluated
the potential of 12 satellite or reanalysis evaporation datasets to improve performance
through model calibration and used ESA CCI SM (v4.2) soil moisture data product, along
with terrestrial storage data from GRACE and in situ streamflow data, for the evaluation of
hydrological model simulations. Similarly, Dembele et al. (2020) [14] tested the suitability of
17 rainfall and 6 temperature data products for hydrological modelling and evaluated model
response using GLEAM v3.2a AET, ESA CCI SM v4.2 soil moisture and GRACE terrestrial
water storage. Strohmeier et al. (2020) [119] used ET from GLEAM v 3.0 and soil moisture
data from ESA CCI SM v02.2 in calibration of SWAT and PCRaster Global Water Balance
(PCR-GLOBWB) model for surface a flow and drought management study in the Oum Er
Rbia basin, Morocco. The models showed the good simulation of surface flow, even without
the consideration of in situ data in calibration. Leroux et al. (2016) assimilated SMOS L3 soil
moisture product into the DHSVM distributed hydrological model and revealed that the
soil moisture assimilation can have positive impacts on hydrological variable estimations.
Abhishek and Kinouchi (2021) [120] used GRACE data, PCR-GLOBWB simulations, and
in situ groundwater data for the assessment of Terrestrial water storage, soil moisture
storage (SMS) and groundwater storage for the Godavari, Krishna and Mahanadi river
basins in India. Soil moisture was simulated by PCR-GLOBWB using the TRMM 3B43
rainfall data, which were corrected based on gauge data. The authors noted that, by using
these global datasets, it is possible to quantify the different components of water storage
for any catchment worldwide. However, the study did not comment on the performance
evaluation of the datasets used in the research.

Among the reviewed articles, only the study of van der Velde et al. (2021) [121]
validated the SMAP passive-only soil moisture products, using the in situ soil moisture
data and model simulations devised by the Dutch National Hydrological Model (LHM)
for the region of Twente, the Netherlands. The authors concluded that the single-channel
algorithm at vertical polarization (SCA-V) is a better algorithm compared to the single-
channel algorithm at horizontal polarization (SCA-V) and the dual-channel algorithm
(DCA). Moreover, the SMAP’s soil moisture values in the afternoons are closer to in situ
observed values as compared to morning values.

Overall, the use of soil moisture remote sensed products as calibration datasets or for
assimilation has been assessed by researchers in the reviewed articles, but any uniformity
in the results with respect to improvement in hydrological simulation is hard to ascertain.
These are dependent on a number of factors such as the type of datasets used, the catchment
characteristics, assessment criteria, modelling structure, techniques and algorithms used
for calibration and/or assimilation, and so on. Moreover, it is difficult to pick a single
better-performing dataset for any of the cases. Only in one study, that of van der Velde
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et al. (2021) [121], was the validation of validating the SMAP passive-only soil moisture
products against the in situ observation of soil moisture mentioned. The validation of these
data products in advance of use in calibration, validation or assimilation needs further
exploration to increase the confidence.

3.9. Temperature Datasets

Air temperature plays a crucial role in climate research, serving as a valuable proxy
for energy exchange between the land surface and the atmosphere [122]. Commonly, air
temperature is measured at a height of around 2 m above the land surface. It is considered
a critical parameter in glacio-hydrological studies, as it controls the rate of snow and ice
melting [123]. Similarly, the land surface temperature (LST) is the temperature of the Earth’s
top layer, known as the canopy skin, and provides an indication of its perceived hotness
or coldness [124]. Air temperature is closely related to LST. The difference in temperature
between the air and the surface is an important parameter for calculating the convective
heat loss from the earth surface to the air. The heat loss is used for the calculation of the
surface energy balance [125]. Additionally, the temperature difference between the earth
surface and the air is particularly relevant for estimating evapotranspiration [126].

Similar to the other datasets needed for hydrological modelling, obtaining measure-
ments of air temperature using in situ meteorological stations can be expensive as it involves
significant instrumentation and maintenance costs. This costliness often results in sparse
spatial continuity of data, especially in remote environments [127]. Due to the synoptic
spatial coverage, satellite LST has become a good alternative for assessing air temperature.
There are five commonly used methods for estimating air temperature from LST. These
methods include statistical approaches, the empirical solar zenith angle approach, the
energy balance approach, the temperature–vegetation index approach, and the neural
network approach [128]. Although satellite LST data can help researchers to overcome
many of the limitations and difficulties associated with in situ measurements, thermal
infrared remote sensing data requires correction for atmospheric and surface emissivity,
which can introduce significant uncertainties. In addition, due to the spatial heterogeneity
of the land surface, the satellite instrument footprint may encompass various canopy types
and soils, which can exhibit large variations in emissivity and LST over both space and
time. Consequently, satellite measurements tend to represent a complex weighted mean
temperature within each pixel, which can make retrieving and interpreting LST data a
challenging task [129].

The articles reviewed showed that no studies have utilized remote sensed LST or air
temperature datasets at the micro-scale. Furthermore, at the meso-scale, there was one
study that used LST datasets for assimilation in hydrological models. In this study, Laiolo
et al. (2016) [118] incorporated four soil moisture data products and one LST product
to evaluate the impact of data assimilation on the Continuum hydrological model in the
Orba, Italy. The LST product used was the Satellite Application Facility on Land Surface
Analysis (SAFLSA) from the European Organisation for the Exploitation of Meteorological
Satellites (EUMETSAT). The effect of assimilation was analyzed by considering the model’s
discharge simulation performance at the outlet. The authors reported that the assimilation
of soil moisture datasets was more effective compared to that of LST dataset. Although
the assimilation of LST resulted in an improvement in the Nash–Sutcliffe efficiency (NSE)
from 0.63 to 0.64, the improvement was not as significant as that achieved through soil
moisture assimilation. In addition, the authors emphasized that careful pre-processing
of the LST data is required for several reasons. These include the importance of precise
geometric registration between model and satellite pixels, the possibility of shadowing
due to mountainous terrain, and variations in the satellite viewing angle across different
pixels resulting from the sensor scanning geometry. However, due to the lack of ground
data, the authors were unable to evaluate the accuracy of the remote sensed LST using local
observed data.
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At the macro-scale, air temperature has been used as forcing datasets in hydrological
models. For instance, Dembele et al. (2020) [14] used 6 different temperature reanalysis
datasets in combination with 17 different rainfall products as forcing data for the mHM
modelling tool to simulate hydrological processes in the Volta River basin in Africa. The
temperature datasets used are JRA-55, EWEMBI, WFDEI, MERRA-2, PGF and ERA5.
They evaluated a total of 102 combinations of rainfall–temperature data based on four
parameters: (1) in situ stream flow data, (2) GLEAM evaporation data, (3) ESA CCI soil
moisture data, and (4) GRACE TWS data. They ranked different temperature datasets
in combination with rainfall datasets using multiple criteria. For instance, during the
evaluation period, the MERRA-2 temperature dataset was ranked first based on the mean
KGE of stream flow simulations, while the WFDEI dataset was ranked first based on the
mean NSE of stream flow simulations. The authors reached the conclusion that there was
no single temperature dataset that consistently outperformed others in reproducing the
spatio-temporal variability of all hydrological processes.

In another study, Gupta and Tarboton (2016) [130] developed a downscaling approach
and utilized MERRA temperature data to test their approach. To evaluate their method,
they compared MERRA temperature data with temperature data from 173 snowpack
telemetry (SNOTEL) sites operated by the U.S. Department of Agriculture in Utah, Nevada,
Idaho, and California. The results showed that the NSE of the downscaled daily mean
temperature increased from 0.83 to 0.84, while the NSE for daily maximum temperature
increased from 0.23 to 0.86. Notably, the NSE value of 0.83 for mean temperature on direct
comparison with SNOTEL’s site data suggests a good performance for the MERRA data,
whereas the NSE values for maximum temperature were not as high.

Two studies were found where the authors performed biased correction of the temper-
ature datasets before using them for modelling purposes. Beck et al. (2020) [131] explored
the parameter regionalization approach by using streamflow data from 4,229 catchments,
and they tested the approach by implementing it on a global scale using a distributed
version of the HBV hydrological model. The authors used temperature data from both
the ERA-Interim and JRA-55 datasets, which were bias-corrected and averaged before
being incorporated into the model. However, the effects of bias correction on the model
performance were not reported by the authors. Dahri et al. (2021) [70] utilized temperature
data from the ERA5 reanalysis dataset, which had been recommended by a previous study
for Indus catchment. Prior to using the data as forcing data for the VIC hydrological
model, the authors conducted a bias correction. The authors also noted that existing global-
and regional-scale gridded datasets are inadequate for capturing accurate meteorological
variables in complex and orographically influenced high-mountain terrains.

In some of the reviewed studies, authors used temperature datasets as inputs for their
models. However, they did not comment on the performance of these datasets and only
used them for their intended purposes. For instance, Singh and Saravanan (2020) [35]
used temperature data from Climate Prediction Centre (CPC) of the National Oceanic and
Atmospheric Administration (NOAA) for the Wunna Riveris catchment in India. Rajib et al.
(2018) [15] used temperature data from Daily Surface Weather Data for North America
(Daymet) for a catchment in North Dakota, USA. Busari et al. (2021) [61] used temperature
data from the European gridded dataset of daily observations version 20 (E-OBS 20.0e)
and also from MODIS for the Karasu catchment in Turkey. Lazin et al. (2020) [106] used
temperature data from ERA-Interim for the Upper Blue Nile catchment. Ha et al. (2018) [71]
and Mao et al. (2019) [36] used air temperature datasets from GLDAS for Vietnam and
the Nujiang river catchment in China, respectively. However, the lack of comment on the
performance of the temperature datasets used in these studies makes it difficult to assess
the accuracy and reliability of these datasets. It is important to evaluate the performance of
the input temperature datasets to ensure the validity of the hydrological model simulations.



Remote Sens. 2023, 15, 1642 21 of 43

In the reviewed articles related to macro-scale uses, LST datasets have been found only
in three studies. In two of them, LST was used as an input to energy and water balance
based hydrological model, while in one study it was used for model calibration. The
hydrological Flash flood Event-based Spatially distributed rainfall–runoff Transformation
Energy–Water Balance model (FEST-EWB) had been used by Corbari et al. (2020) [132] to
explore the feasibility of combining remotely sensed LST data with the model for better
simulation of ET and soil moisture. The model was built for the Capitanata Irrigation
Consortium, Italy. The satellite images from Landsat-7 Enhanced Thematic Mapper Plus
(ETM+) and Landsat-8 Thermal InfraRed Sensor (TIRS) were used for the calculation of
LST. The remote sensed LST was evaluated with ground station LST values. The values
of correlation coefficient were 0.88 and 0.92 for ETM+ and TIRS, respectively. This was
the only study found in the reviewed articles in which remote sensed LST was evaluated
with ground observation prior to application for model calibration. Ren and Liu (2019) [90]
utilized temperature data from ground stations and the MODIS LST in the cold regions
hydrological model (CRHM) to estimate snow depths in the Upper Yangtze catchment,
China. The authors also employed MODIS data to determine the precipitation separation
(critical) temperature. However, the authors did not perform an evaluation of the quality
of the LST dataset used in the study. Corbari et al. (2019) [133] utilized the MODIS LST
product in addition to lake altimetry, water extent, and ground discharges to calibrate
the FEST-EWB hydrological model of Yangtze River catchment, China. The incorporation
of LST into the calibration process significantly enhanced the model’s performance in
simulating representative equilibrium temperature (RET), leading to a reduction in RMSE
from 9.4 ◦C to 3.1 ◦C. The different temperature datasets used by the authors in the reviewed
articles are tabulated in Table A9.

Overall, the reviewed literature shows limited use of air temperature and LST datasets
compared to other datasets (e.g., precipitation, DEM). Except for glacio-hydrological mod-
els, air temperature is typically included in the calculation of potential/reference ET, which
is often used as input for hydrological models. Additionally, the performance of tempera-
ture datasets is not uniform and depends on various factors such as geographical location,
evaluation criteria, and modelling structure, as pointed out by Dembele et al. (2020) [14].
Although many different temperature datasets have been used by researchers, only the air
temperature dataset from MERRA has been evaluated in comparison to local observation,
which was performed by Gupta and Tarboton (2016) [130]. Most studies that have used
air temperature datasets did not explicitly comment on their performance evaluation. LST
datasets have been used in only four studies, and only Corbari et al. (2020) [132] eval-
uated the developed LST from Landsat-7 and Landsat-8 data with reference to ground
observations. The accuracy of the data is crucial for hydrologic applications as it can
significantly affect the reliability of any conclusions drawn from the analysis. Therefore,
further exploration is necessary to assess the accuracy of air temperature and LST datasets
for hydrological simulations.

4. Conclusions

This paper presents a systematic literature review. This was performed on the one-
hundred twenty shortlisted articles with the aim to gauge progress in and identify knowl-
edge gaps regarding the use of remote sensed and/or global datasets for distributed hydro-
logical models. The analysis was categorized on the types of datasets and the catchment
scale on which these had been used. The identified catchment scale-wise knowledge gaps
are presented in Table 1. These identified future research prospects can help hydrologists
and modellers to steer their efforts towards potentially needed research areas.
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Table 1. Identified scale-wise knowledge gaps.

Dataset Type Knowledge Gaps Catchment Scale

Rainfall Evaluation of rainfall datasets for hydrological simulation at
micro-scale and meso-scale. Micro- and meso-scale

Comparison of rainfall data products accuracy relative to one
another and ground observations at meso- and micro-scale. Micro- and meso-scale

Comparison of different rainfall products’ computational
algorithms and their effects on product capability for hydrological
simulation.

Micro-, meso- and macro-scale

DEM Evaluation of global DEMs for hydrological simulations at
micro-scale and meso-scale catchment. Micro- and meso-scale

Quantification of hydrological model uncertainties from different
DEM sources. Micro-, meso- and macro-scale

Effect of DEM sources on surface-subsurface interactions in
distributed physical hydrological models. Micro-, meso- and macro-scale

Effect of upscaling or downscaling of global DEMs on distributed
hydrological model simulations. Micro-, meso- and macro-scale

LULC Response of model simulated water balance to different LULC data
sources. Micro-, meso- and macro-scale

Effect of LULC sources on surface water–groundwater interactions
in distributed hydrological models. Micro-, meso- and macro-scale

Use of dynamics LULC maps in hydrological in comparison to
static input of LULC data. Micro- and meso-scale

Effect of different classification algorithms use for developing
LULC maps on hydrological simulations. Micro- and meso-scale

How the number of land-use classes effect the hydrological
simulation. Micro- meso- and macro-scale

Scale wise identification of optimal number of land-use classes for
reasonable performance of hydrological models. Micro-, meso- and macro-scale

Evaluation of different global LULC datasets for hydrological
simulations. Micro-, meso- and macro-scale

Test the model performance by including long-term land
use-induced changes in hydrology. Micro-, meso- and macro-scale

Soil distribution
and properties

Evaluate the impact of different levels of soil information on model
performance. Micro-, meso- and macro-scale

To evaluate which datasets, support better hydrological
performance. Micro-, meso- and macro-scale

Exploring the effect of temporal variation in soil properties on the
hydrological simulations. Micro-, meso- and macro-scale

Leaf area index The role of LAI dynamics in model calibration. Micro-, meso- and macro-scale
Effect of LAI source on hydrological model simulation. Micro-, meso- and macro-scale
Evaluation of Global LAI datasets for hydrological simulations. Micro-, meso- and macro-scale
Updating the vegetation state of hydrological model by
assimilation of near real-time LAI data. Micro-, meso- and macro-scale

Snow-covered area Potential use of considering SCA in data assimilation. Micro-, meso- and macro-scale
Direct comparison of remote sensed SCA datasets with in situ data. Micro-, meso- and macro-scale
Comparison of different SCA datasets with modelled SCA results. Micro-, meso- and macro-scale
Comparison of SCA datasets used for calibration or for
assimilation. Micro-, meso- and macro-scale

Evapotranspiration The accuracy of AET datasets relative to one another and ground
observations. Micro-, meso- and macro-scale

The effect of spatial heterogeneity in AET data product on
catchment hydrological simulations. Micro-, meso- and macro-scale

Comparison of hydrological performance of AET as calibration
data or as assimilation data? Micro-, meso- and macro-scale

Effect of AET assimilation or calibration on the issue of equifinality
in hydrological models. Micro-, meso- and macro-scale
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Table 1. Cont.

Dataset Type Knowledge Gaps Catchment Scale

Soil moisture Performance evaluation of soil moisture datasets for calibration
and as data assimilation for micro-scale catchments. Micro-scale

Role of soil moisture data in calibration to resolve the problem
of equifinality. Micro-, meso- and macro-scale

Evaluation of soil moisture product by comparing with model
simulated soil moisture or with ground-based observations. Micro-, meso- and macro-scale

Role of soil moisture datasets calibration in resolving the issue
of equifinality. Micro-, meso- and macro-scale

Soil moisture as calibration dataset vs. as assimilation dataset
for better hydrological model performance. Micro-, meso- and macro-scale

Temperature Performance evaluation of LST datasets for calibration and as
data assimilation. Micro-scale

Performance evaluation of air temperature datasets for
hydrological simulations. Micro- and meso-scale

Comparison of temperature data products accuracy relative to
one another and ground observations. Micro- and meso-scale

Effect of bias correction on hydrological prediction accuracy of
model. Micro-, meso- and macro-scale

Role of LST data in calibration to resolve the problem of
equifinality. Micro-, meso- and macro-scale

Evaluation of LST products by comparing with ground-based
observations. Micro-, meso- and macro-scale

LST as calibration dataset vs. as assimilation dataset for better
hydrological model performance. Micro-, meso- and macro-scale

The identified knowledge gaps are based on a detailed review of the considered
articles. The authors acknowledge that some articles were skipped due to the keyword
selection or due to a poorly written abstract which caused the elimination of the article
from the review.

Overall, we concluded that the use of remote sensed datasets is more focused on the
macro- or large-scale catchments. Rainfall datasets are among the most used remote sensed
datasets, while DEMs are the only global datasets which exceeded the local datasets in use
for hydrological modelling. LST is the least used dataset. The performance of different
remote sensed datasets is dependent upon many factors such as size of catchment, region
of catchment, performance evaluation criteria and so on. It is difficult to determine a single
consistently better performing dataset. The selection of datasets has a major influence on
a model’s simulations. Therefore, the evaluation of a selected dataset for a specific study
area is an important step.

It is advisable to carry out investigations focused on exploring the effectiveness of
different remote sensed datasets for the setting up, calibration, evaluation and data assimi-
lation of distributed hydrological models at various scales, keeping in view the knowledge
gaps highlighted in Table 1. Furthermore, it has been noticed that there is a lack of available
literature as well as current research on the evaluating of remote sensed and/or global
datasets in the case of distributed hydrological modelling, especially at the micro-scale and
meso-scale catchment levels. This knowledge gap highlights the need for future research to
explore and evaluate the effectiveness of different remote sensed datasets in hydrological
modelling at various scales, with a particular focus on micro- and meso-scale catchments.
This information could lead to the identification of more appropriate datasets for hydrolog-
ical modelling, ultimately improving the accuracy of model simulations and contributing
to better water resource management.
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Appendix A

Table A1. Precipitation datasets used in reviewed articles.

Product Source Spatial
Extent

Spatial
Resolution

Temporal
Extent

Temporal
Resolution Articles

Tropical
Rainfall

Measuring
Mission
(TRMM)

Multi-satellite
Precipitation

Analysis
(TMAP)

S, G 50◦N–50◦S,
180◦W–180◦E 0.25◦ 1998–NP 3-hourly,

daily

Macro-scale: Islam et al.,
(2018) [134]; Khairul et al.,

(2018) [17]; Singh & Saravanan
(2020) [35]; Lakew et al.,

(2020) [34]; Dembele et al.,
(2020) [14]; Mao et al.,

(2019) [36]; Pakoksung &
Takagi (2016) [32]; Zhang et al.,

(2020) [107]; Munzimi et al.,
(2019) [56]; Luo et al.,
(2017) [89]; Liu et al.,
(2017) [135]; Qi et al.,

(2016) [31]; Ha et al., (2018) [71];
Sun et al., (2018) [136];

Abhishek and Kinouchi
(2021) [120]

Multi-Source
Weighted-
Ensemble

Precipitation
(MSWEP)

S, G, R Global 0.1◦ 1979–NP 3-hourly,
daily

Macro-scale: Dembele et al.„
(2020) [14]; Khairul et al.,
(2018) [17]; Lakew et al.,

(2020) [34]; Strohmeier et al.,
(2020) [119]; Beck et al.,

(2020) [131]; Lakew (2020) [137];
Lazin et al., (2020) [106];

Siqueira et al., (2018) [42]

Tropical
Rainfall

Measuring
Mission

(TRMM) Near
real time data

products
(3B42RT or

3B41RT)

S 50◦N–50◦S,
180◦W–180◦E 0.25◦ 1998—

NRT
3-hourly,

daily

Macro-scale: Dembele et al.,
(2020) [14]; Leroux et al.,

(2016) [138]; Shi et al.,
(2020) [139]; Koppa et al.,

(2019) [102]; Qi et al.,
(2016) [31]; Sun et al.,

(2018) [136]
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Table A1. Cont.

Product Source Spatial
Extent

Spatial
Resolution

Temporal
Extent

Temporal
Resolution Articles

Climate
Prediction

Center
Morphing
technique

(CMORPH)

S, G 60◦N–60◦S,
180◦W–180◦E 8 km, 0.25◦ 1998—

NRT
3-hourly,

daily

Macro-scale: Dembele et al.,
(2020) [14]; Lakew et al.,
(2020) [34]; Pakoksung &

Takagi (2016) [32]; Leroux et al.,
(2016) [138]; Shi et al.,
(2020) [139]; Sun et al.,

(2018) [136]

Climate
Hazards Group

InfraRed
Precipitation
with Station

data (CHIRPS)

S, G, R 50◦N–50◦S,
180◦W–180◦E 0.05◦ 1981—

NRT Daily

Macro-scale: Dembele et al.,
(2020) [14]; Dembele et al.,

(2020) [68]; Pang et al.,
(2020) [140]; Khairul et al.,

(2018) [17]; Ha et al., (2018) [71]

Global Satellite
Mapping of
Precipitation

(GSMaP)
Versions 1:

Moving Vector
with Kalman

(MVK)
Standard V6

2: Gauge
adjusted

R, G 60◦N–60◦S,
180◦W–180◦E 0.1◦

1:
2001–2013
2: 2000—

NRT

Daily

Macro-scale: Dembele et al.,
(2020) [14]; Khairul et al.,
(2018) [17]; Pakoksung &

Takagi (2016) [32]; Sugiura et al.,
(2016) [141]; Qi et al., (2016) [31]

Integrated
Multi-satellitE
Retrievals for

Global
Precipitation
Measurement

(GPM)
(IMERG)

S, G 60◦N–60◦S,
180◦W–180◦E 0.10◦ 2015—

NRT 3-hourly

Macro-scale: Al-Areeq et al.,
(2021) [69]; Sharif et al.,
(2017) [57]; Zhang et al.,
(2020) [107]; Lazin et al.,

(2020) [106]

Asian
Precipitation-

Highly
Resolved

Observational
Data

Integration
Towards

Evaluation of
water resources
(APHRODITE)

S, G, R 55◦N–15◦S,
60◦E–150◦E 25 km/0.25◦ 1951—

NRT Daily
Macro-scale: Islam et al.,

(2018) [134]; Singh & Saravanan
(2020) [35]; Qi et al., (2016) [31]

The National
Center for

Environmental
Prediction

(NCEP) Climate
Forecast System

Reanalysis
(CFSR)

Soil & Water
Assessment
Tool (SWAT)

Database

R Global 0.3125◦ 1979–2014 Daily,
monthly

Macro-scale: Alemayehu et al.,
(2018) [142]; Singh & Saravanan

(2020) [35]; Sahoo et al.,
(2021) [55]
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Table A1. Cont.

Product Source Spatial
Extent

Spatial
Resolution

Temporal
Extent

Temporal
Resolution Articles

Modern-Era
Retrospective
analysis for

Research and
Applications-2

(MERRA-2)

S, G, R Global 0.625◦ × 0.5◦ 1980–NP Hourly

Macro-scale: Dembele et al.,
(2020) [14]; Mao et al.,

(2019) [36]; Gupta and Tarboton
et al., (2016) [130]

Precipitation
Estimation

from Remotely
Sensed

Information
using Artificial

Neural
Networks

(PERSIANN)

S, G 60◦N–60◦S,
180◦W–180◦E 0.25◦ 2000—to

NRT 3-hourly
Macro-scale: Pakoksung &

Takagi (2016) [32]; Leroux et al.,
(2016) [138]; Qi et al., (2016) [31]

Global
Precipitation
Climatology

Project (GPCP)

S, G Global 2.5◦, 1.0◦
1979—
NRT,

1996—2015

Daily,
monthly

Macro-scale: Islam et al.,
(2018) [134]; Singh & Saravanan

(2020) [35]

European
Centre for

Medium-Range
Weather
Forecasts
(ECMWF)

Re-Analysis
(ERA) Interim

R, G Global 0.25◦ 1979–2019 3-hourly,
daily

Macro-scale: Lakew et al.,
(2020) [34]; Hostache et al.,

(2020) [111]

ERA-5 R Global 0.25◦ 1979–NP Hourly
Macro-scale: Dembele et al.,

(2020) [14]; Dahri et al.,
(2021) [70]

Global Land
Data

Assimilation
System

(GLDAS)

S, G 90◦N–60◦S,
180◦W–180◦E 0.25◦ 2000–2015 3-hourly Macro-scale: Mao et al.,

(2019) [36]; Qi et al., (2016) [31]

African Rainfall
Estimation
algorithm

Version 2 (RFE
V2) by National

Oceanic and
Atmospheric

Administration
(NOAA)

S, G
Africa

40◦N–40◦S,
20◦W–55◦E

0.1◦ 2001–NP Daily
Macro-scale: Dembele et al.,

(2020) [14]; Gupta and
Tarboton, (2016) [130]

Global
Precipitation
Climatology

Centre (GPCC)

G Global
2.5◦,

1.0◦,0.5◦ &
0.25◦

1891–2016 Daily
Macro-scale: Lakew et al.,
(2020) [34]; Schmied et al.,

(2021) [33]
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Table A1. Cont.

Product Source Spatial
Extent

Spatial
Resolution

Temporal
Extent

Temporal
Resolution Articles

European
gridded dataset

of daily
observations

version 20
(E-OBS 20.0)

G 25◦N–71.5◦N,
25◦W–45◦E 0.25◦ 1950–2019 Daily Macro-scale: Busari et al.,

(2021) [61]

Global
Precipitation
Measurement

(GPM)

S Global 0.10◦ 2014–NRT Half hourly Macro-scale: Pakoksung &
Takagi (2016) [32]

PERSIANN-
Cloud

Classification
System (CCS)

S 60◦N–60◦S,
180◦W–180◦E 0.04◦ 2003–NP Hourly Macro-scale: Li et al.,

(2019) [84]

PERSIANN-
Climate Data
Record (CDR)

S, G 60◦N–60◦S,
180◦W–180◦E 0.25◦ 1983–2016 6-hourly Macro-scale: Dembele et al.,

(2020) [14]

Tropical
Applications of

Meteorology
using SATellite
data (TAMSAT)

v3.0

S, G
Africa

38◦N–36◦S,
19◦W–52◦E

0.0375◦ 1983–NP Daily Macro-scale: Dembele et al.,
(2020) [14]

African Rainfall
Climatology

(ARC) v2
S, G

Africa
40◦N–40◦S,
20◦W–55◦E

0.1◦ 1983–NP Daily Macro-scale: Dembele et al.,
(2020) [14]

The Water and
Global Change

(WATCH)
Forcing Data

R, G Global 0.5◦ 1901–2001 Daily Macro-scale: Schmied et al.,
(2021)

Watch Forcing
Data

ERA-Interim
(WFDEI)

—Corrected
using Climatic
Research Unit

(CRU) data

R, G Global 0.5◦ 1979–2018 3-hourly
Macro-scale: Dembele et al.,
(2020) [14]; Schmied et al.,

(2021)

WFDEI
corrected using
GPCC dataset

R, G Global 0.5◦ 1979–2016 3-hourly Macro-scale: Dembele et al.,
(2020) [14]

Princeton
university

Global
meteorological
Forcing (PGF)

v3

R, G Global 0.25◦ 1948–2012 3-hourly
Macro-scale: Dembele et al.,

(2020) [14]; Aloysius & Saiers
(2017) [143]
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Table A1. Cont.

Product Source Spatial
Extent

Spatial
Resolution

Temporal
Extent

Temporal
Resolution Articles

Earth20bserve,
WFDEI and
ERA-Interim
merged and

bias-corrected
(EWEMBI) v1.1

R, G Global 0.5◦ 1976–2013 Daily Macro-scale: Dembele et al.,
(2020) [14];

Japanese
55-year

ReAnalysis
(JRA-55)

R Global 1.25◦ 1959–NP 3-houly Macro-scale: Dembele et al.,
(2020) [14];

G: gauge; S: satellite; R: reanalysis; NP: near present; NRT: near real time.

Table A2. Digital Elevation Model datasets used in reviewed articles.

Product Source Resolution Extent Year of
Release Articles

Spatial
Information

Shuttle Radar
Topographic

Mission (SRTM)

S 90 m 60◦N–60◦S 2003

Micro-scale: None
Meso-scale: Macalaldad et al., (2021) [65];

Bugan et al., (2020) [98]; Chen et al.,
(2016) [67]; Saravanan (2016) [144]

Macro-scale: Islam et al., (2018) [134];
Sahoo et al., (2021) [55]; Meng et al.,

(2018) [145]; Pang et al., (2020) [140]; Busari
et al., (2021) [61]; Mao et al., (2019) [36];

Pakoksung & Takagi (2016) [32];
Pakoksung & Takagi (2021) [37]; Soulis

et al., (2020) [60]; Watson et al., (2020) [146];
Abdollahi et al., (2017) [147]; Maza el al.

(2020) [54]; Yang et al., (2020) [44]; Arthur
et al., (2020) [59]; Koo et al., (2020) [148];

Becker et al., (2019) [100]; Pan et al.,
(2019) [101]; Imhoff et al., (2020) [91];

Siqueira et al., (2018) [42]; Tao & Barros
(2019) [149]; Ayala et al., (2020) [41];

Abeysingha et al., (2016) [150]; Hiep et al.,
(2018) [151]; Li et al., (2019) [152]; Munzimi

et al., (2019) [56]; Ha et al., (2018) [71];
Alemayehu et al., (2018) [142]; Zhu et al.,

(2017) [153]; Schmied et al., (2021)

Advanced Space
Borne Thermal
Emission and

Reflection
Radiometer-

Global Digital
Elevation Model
(ASTER GDEM)

S 30 m 83◦N–83◦S 2009

Micro-scale: None
Meso-scale: Mendez-Barroso et al.,

(2016) [154]; Mimeau et al., (2019) [88];
Gara et al., (2020) [155]; Jaiswal et al.,

(2020) [156]
Macro-scale: Alataway et al., (2019) [58];

Atif et al., (2019) [157]; Cazares-Rodriguez
et al., (2017) [158]; Jin & Jin (2020) [103];

Pakoksung & Takagi (2021) [37]; Shi et al.,
(2020) [139]; Singh & Saravanan (2020) [35];

Zhang et al., (2021) [159]; Zhang et al.,
(2020) [107].
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Table A2. Cont.

Product Source Resolution Extent Year of
Release Articles

Global
Multi-resolution
Terrain Elevation

Data 2010
(GMTED 2010)

S, G 225 m 60◦N–60◦S 2010
Macro-scale: Pakoksung & Takagi

(2021) [37]; Dembele et al., (2020) [14];
Dembele et al., (2020) [68].

Hydrological data
and maps based on
Shuttle Elevation

Derivatives at
multiple Scales
(HydroSHEDS)

S 500 m 60◦N–60◦S 2009

Macro-scale: Jiang et al., (2020) [81];
Khairul et al., (2018) [17]; Lazin et al.,

(2020) [106]; Pakoksung & Takagi
(2021) [37]; Siqueira et al., (2018) [42];

Schmied et al., (2021)

Global 30
Arc-Second

Elevation (GTOPO
30)

S, G 1000 m 90◦N–90◦S 1993

Macro-scale: Corbari et al., (2019) [133];
Koppa et al., (2019) [102]; Lakew
(2020) [137]; Pakoksung & Takagi

(2021) [37]

Multi-Error-
Removed

Improved-Terrain
(MERIT) DEM

S 90 m 90◦N–60◦S 2017 Macro-scale: Pakoksung & Takagi
(2021) [37]

TerraSAR-X
add-on for Digital

Elevation
Measurement
(TanDEM-X)

S 12 m, 30 m,
90 m 90◦N–90◦S 2016 Macro-scale: Pakoksung & Takagi

(2021) [37]

G: ground based; S: satellite.

Table A3. Land-Use/Land-Change (LULC) datasets used in reviewed articles.

Product Source Spatial
Resolution Extent

Temporal
Extent &

Resolution
Articles

Globcover by
European Space
Agency (ESA)

S 300 m Global N/A

Meso-scale: Appel et al., (2019) [66]
Macro-scale: Dembele et al.,
(2020) [14]; Dembele et al.,

(2020) [68]; Islam et al., (2018) [134];
Busari et al., (2021) [61]; Siqueria

et al., (2018) [42]; Cobari et al.,
(2019) [133]; Ha et al., (2018) [71]

Global Land-Cover
Characteristics

(GLCC) by United
States Geological
Survey (USGS)

S 1000 m Global N/A

Meso-scale: Macalalad et al.,
(2021) [65]; Chen et al., (2016) [67]
Macro-scale: Mao et al., (2019) [36];

Pakoksung & Takagi (2016) [32];
Pakoksung & Takagi (2021) [37];

Koo et al., (2020) [148]; Hiep et al.,
(2018) [151]; Li et al., (2019) [84];

Koppa et al., (2019) [102]; Qi et al.,
(2016) [31].
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Table A3. Cont.

Product Source Spatial
Resolution Extent

Temporal
Extent &

Resolution
Articles

MODIS (Moderate
Resolution

Imaging Spectrora-
diometer) / Terra +
Aqua Land Cover

Type

S 500 m Global Yearly, 2001–2019

Meso-scale: Abiodun et al.,
(2018) [80]

Macro-scale: Busari et al.,
(2021) [61]; Dahri et al., (2021) [70];

Lazin et al., (2020) [106]; Tao &
Barros (2019) [149];

Cazeres-Rodriguez et al.,
(2017) [158]

Coordination of
Information on the

Environment
(CORINE) land

cover

S 100 m Europe 1990, 2000, 2012,
2018

Meso-scale: Hebe et al., (2017) [47],
Hollering et al., (2017) [48], Cenci

et al., (2016) [46]
Macro-scale: Busari et al.,

(2021) [61]; Chalkidis et al.,
(2016) [160]; Soulis et al., (2020) [60];

Huang et al., (2019) [18]; Imhoff
et al., (2020) [91]

Land-cover
classification

gridded maps by
Climate Data Store
(CDS) Copernicus

S 300 m Global Yearly, 1992–NP
Meso-scale: Teweldebrhan et al.,

(2018) [87]
Macro-scale: None

Global Land Cover
2000 by Joint

Research Centre
(JRC)

S 1000 m Global 2000 Macro-scale: Aloysius & Saiers
(2017) [143]

G: gauge; S: satellite; R: reanalysis; NP: near present.

Table A4. Soil distribution and properties datasets used in reviewed articles.

Product Source Spatial
Resolution Extent Articles

FAO Digital Soil Map
of the World (DSMW) G 1000 m Global

Meso-scale: Macalalad et al., (2021) [65];
Wang and Chen (2019) [52]

Macro-scale: Ha et la. (2018) [71]; Islam
et al., (2018) [134]; Arthur et al., (2020) [59];

Sun et al., (2018) [136]; Koo et al.,
(2020) [148]; Qi et al., (2016) [31]; Atif et al.,
(2019) [157]; Liu et al., (2017) [135]; Munzimi
et al., (2019) [56]; Singh & Saravanan et al.,
(2020) [35]; Mao et al., (2019) [36]; Sharif

et al., (2017) [57]; Siqueira et al., (2018) [42]

Harmonized World Soil
Database (HWSD) G 1000 m Global

Meso-scale: Appel et al., (2019) [66]
Macro-scale: Sugiura et al., (2016) [141];

Pang et al., (2020) [140]; Hiep et al.,
(2018) [151]; Aloysius & Saiers (2017) [143];

Yang et al., (2020) [161]; Watson et al.,
(2020) [146]; Dahri et al., (2021) [70]; Corbari

et al., (2019) [133]; Maza et al., (2020) [54];
Abdollahi et al., (2017) [147]; Alemayehu
et al., (2018) [142]; Busari et al., (2021) [61]
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Table A4. Cont.

Product Source Spatial
Resolution Extent Articles

European Soil Database
(ESDB) by European

Soil Data Centre
(ESDAC)

G 1000 m Europe Macro-scale: Busari et al., (2021) [61]; Soulis
et al., (2020) [60]; Hartanto et al., (2017) [110]

SoilGrids— global
gridded soil

information by ISRIC
(International Soil

Reference and
Information Centre)

S, G 250 m, 1000 m Global

Meso-scale: Chen et al., (2016) [67]
Macro-scale: Beck et al., (2020) [131];
Al-Areeq et al., (2021) [69]; Li et al.,

(2019) [84]; Cazares-Rodrigues et al.,
(2017) [158]; Dembele et al., (2020) [14];
Dembele et al., (2020) [68]; Huang et al.,
(2019) [18]; Imhoff et al., (2020) [91]; Ha

et al., (2018) [71]

Global Hydrologic Soil
Groups

(HYSOGs250m)

S, G, digital soil
mapping 250 m Global Macro-scale: Al-Areeq et al., (2021) [69]

High Resolution Soil
Maps of Global

Hydraulic Properties
(HiHydroSoil) by

Furture Water

G, digital soil
mapping 250 m Global Macro-scale: Dahri et al., (2021) [70]

The Global Lithological
Map (GLiM) v1.0 S, G 0.5◦ Global Macro-scale: Dembele et al., (2020) [14];

Dembele et al., (2020) [68]

G: ground-based data sources; S: satellite.

Table A5. Leaf area index (LAI) products used in reviewed articles.

Product Source Spatial
Resolution

Spatial
Extent

Temporal
Resolution

Temporal
Extent Articles

Global
Inventory

Modelling and
Mapping
Studies

(GIMMS LAI)

S 1/12◦ (8 km) Global 15 days 1981–2016
Dembele et al., (2020) [14];
Dembele et al., (2020) [68];

Yang et al., (2020) [161].

MODIS/Terra +
Aqua Leaf Area

Index
(MCD15A)

S 500 m Global 4 days 2002–NP

Rajib et al., (2018) [15];
Imhoff et al., (2020) [91]; Tao
& Barros et al., (2019) [149];

Dahri et al., (2021) [70]

MODIS/Terra
Leaf Area Index

(MOD15A)
S 500 m, 1000 m Global 8 days 2000–NP

Meso-scale: Cornelissen
et al., (2016) [22]

Macro-scale: Meng et al.,
(2018) [145]; Ren & Liu

(2019) [90]; Ha et al.,
(2018) [71]; Mao et al.,

(2019) [36]; Corbari et al.,
(2019) [133]
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Table A5. Cont.

Product Source Spatial
Resolution

Spatial
Extent

Temporal
Resolution

Temporal
Extent Articles

Global
Inventory

Modelling and
Mapping
Studies

(GLASS) LAI

S 500 m, 0.05◦ Global 8 days 1981–2018 Jiang et al., (2020) [81]; Lazin
et al., (2020) [106]

Advanced Very
High-

Resolution
Radiometer

(AVHRR) LAI

S 0.25◦ Global Monthly 1981–1994 Jiang et al., (2020) [81]

S: satellite; NP: near present.

Table A6. Snow-Covered Area (SCA) products used in reviewed articles.

Product Source Spatial
Resolution

Spatial
Extent

Temporal
Resolution

Temporal
Extent Articles

MODIS Terra
(MOD10A)
snow cover

S 500 m Global Daily, 8 days 2000–NP

Meso-scale: Gleason and
Nolin (2016) [50];

Teweldebrhan et al.,
(2018) [87]; Hanzer et al.,

(2016) [162]
Macro-scale: Luo et al.,
(2017) [89]; Ren and Liu
(2019) [90]; Ayala et al.,

(2020) [41]

MODIS Aqua
(MYD10A)
snow cover

S 500 m Global Daily, 8 days 2002–NP

Meso-scale: Teweldebrhan
et al., (2018) [87]; Hanzer

et al., (2016) [162]
Macro-scale: Ren and Liu

(2019) [90]

MODIS satellite
images S 250 m Global 1–2 days

Meso-scale: Mimeau et al.,
(2019) [88]; Hanzer et al.,

(2016) [162]
Macro-scale: Liao and

Zhuang (2017) [92]

Sentinel
satellite images S 5 m, 10 m,

20 m Global 5 days Meso-scale: Appel et al.,
(2019) [66]

Landsat
satellite images S 30 m Global 16 days Meso-scale: Hanzer et al.,

(2016) [162]

Global Land Ice
Measurements

from Space
(GLIMS)

geospatial
glacier database

S N/A Global N/A 1850–NP Macro-scale: Imhoff et al.,
(2020) [91]

S: satellite; NP: near present.
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Table A7. Evapotranspiration (ET) products used in reviewed articles.

Product/Model Source Spatial
Resolution

Spatial
Extent

Temporal
Resolution

Temporal
Extent Articles

MODIS Terra
(MOD16A)

Evapotranspi-
ration

S 500 m Global 8 days 2001–NP

Meso-scale: Abiodun et al.,
(2018) [80]; Bugan et al.,

(2020) [98];
Macro-scale: Dembele et al.,

(2020) [68]; Rajib et al.,
(2018) [15]; Jiang et al.,
(2020) [81]; Ha et al.,

(2018) [71]; Zhang et al.,
(2018) [108]; Hedrick et al.,

(2020) [109]

Operational
Simplified

Surface Energy
Balance

(SSEBop)

S 1 km Global Daily 2000–NP

Macro-scale: Dembele et al.,
(2020) [68]; Herman et al.,

(2018) [105]; Ha et al.,
(2018) [71]

Atmosphere-
Land Exchange

Inverse
(ALEXI)

S 0.05◦ 70◦N–60◦N,
25◦W–45◦E Monthly 2003–2015

Macro-scale: Dembele et al.,
(2020) [14]; Herman et al.,

(2018) [105]

CSIRO MODIS
Reflectance

Scaling Evapo-
Transpiration

(CMRSET)

S 0.05◦ Global Daily,
monthly 2001–2013

Macro-scale: Dembele et al.,
(2020) [14];

Kunnath-Poovakka et al.,
(2016) [104]; Ha et al.,

(2018) [71]

Surface Energy
Balance System

(SEBS)
S 0.05◦ 40◦N–40◦S,

180◦W–180◦E Monthly 2001–2012

Macro-scale: Dembele et al.,
(2020) [14]; Nesru et al.,

(2020) [99]; Ha et al.,
(2018) [71]

Global Land
Evaporation
Amsterdam

Model
(GLEAM):

(i) v3a
(ii) v3b

S 0.25◦
i) Global ii)

50◦ N–50◦ S,
180◦W–180◦E

Daily (i) 1980–2021
(ii) 2003–2021

Macro-scale: Dembele et al.,
(2020) [68]; Koppa et al.,
(2019) [102]; Jin and Jin
(2020) [103]; Lazin et al.,

(2020) [106]

European
Centre for

Medium-range
Weather
Forecasts

ReAnalysis 5
(ERA-5)

R 0.25◦ Global Hourly 1979–NP Macro-scale: Dembele et al.,
(2020) [14]

Modern-Era
Retrospective
Analysis for

Research and
Applications 2

(MERRA-2)

S, R, G 0.5◦ × 0.625◦ Global Hourly 1980–NP Macro-scale: Dembele et al.,
(2020) [14]

Japanese
55-year

ReAnalysis
(JRA-55)

R 1.25◦ Global 3-hourly 1959–NP Macro-scale: Dembele et al.,
(2020) [14]
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Table A7. Cont.

Product/Model Source Spatial
Resolution

Spatial
Extent

Temporal
Resolution

Temporal
Extent Articles

MODIS Level
1B S 1 km Global 1–2 days

Macro-scale: Becker et al.,
(2019) [100]; Nesru et al.,

(2020) [99]; Pan et al.,
(2018) [101]; Hartanto et al.,

(2017) [110]

Landsat
Thematic

Mapper (TM)
satellite images

S
30 m, 120 m
for thermal

band
Global 16 days Meso-scale: Gampe et al.,

(2016) [53]

Land Surface
Analysis
Satellite

Application
Facility (LSA

SAF)

S 9 km 81◦N–81◦S,
79◦W–79◦E Daily 2011–NP Macro-scale: Imhoff et al.,

(2020) [91]

G: gauge; S: satellite; R: reanalysis; NP: near present.

Table A8. Soil moisture products used in reviewed articles.

Product/Model Source Spatial
Resolution

Spatial
Extent

Temporal
Resolution

Temporal
Extent Articles

Advanced
Microwave
Scanning

Radiometer-
EOS (AMSR-E)
version 5.0 soil

moisture

S 25 km Global Daily 2002–2011

Meso-scale: Rajib et al.,
(2016) [49];

Macro-scale:
Kunnath-Poovakka et al.,

(2016) [104]

European Space
Agency Climate

Change
Initiative soil

Moisture (ESA
CCI SM)

S 25 km Global Daily 1978–2021

Meso-scale: Khan et al.,
(2018) [117];

Macro-scale: Dembele et al.„
(2020) [14]; Dembele et al.,

(2020) [68]; Strohmeier et al.,
(2020) [119]

Satellite
Application
Facility on
Support to

Operational
Hydrology and

Water
Management

(H-SAF)
(i) SM-OBS-1,
(ii) SM-OBS-2,
(iii) SM-DAS-2

(H14)

S
(i) 25 km
(ii) 1 km

(iii) 25 km

(i)
25◦N–75◦N,
25◦W–45◦E

(ii) Same
(iii) Global

(i) 36 h
(ii) 36 h

(iii) Daily

(i) N/A
(ii) N/A

(iii) 2012–NP

Meso-scale: Khan et al.,
(2018) [117]; Laiolo et al.,

(2016) [118]
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Table A8. Cont.

Product/Model Source Spatial
Resolution

Spatial
Extent

Temporal
Resolution

Temporal
Extent Articles

Soil Moisture
and Ocean

Salinity (SMOS)
mission of ESA

(i) Level 2
(ii) Level 3

S (i) 35–50 km
(ii) 25 km Global (i) 1–3 days

(ii) Daily
(i) 2011–NP

(ii) 2011–2015

Meso-scale: Laiolo et al.,
(2016) [118]

Macro-scale: Leroux et al.,
(2016) [138]

Soil Moisture
Active Passive
(SMAP) by the

National
Aeronautics
and Space

Administration
(NASA)

S 9 km, 36 km
85.004◦N–
85.004◦S,

180◦W–180◦E
Daily 2015–NP Macro-scale: van der Velde

et al., (2021) [121]

S: satellite; NP: near present.

Table A9. Temperature products used in reviewed articles.

Product Source Spatial
Extent

Spatial
Resolution

Temporal
Extent

Temporal
Resolution Articles

European
Centre for

Medium-Range
Weather
Forecasts
(ECMWF)

Re-Analysis
(ERA) Interim

R, G Global 0.25◦ 1979–2019 3-hourly,
daily

Macro-scale: Hostache et al.,
(2020) [111]; Beck et al.,
(2020) [131]; Lazin et al.,

(2020) [106]

Watch Forcing
Data

ERA-Interim
(WFDEI) 2 m
temperature

R, G Global 0.5◦ 1979–2016 Daily

Macro-scale: Strohmeier
et al., (2020) [119]; Dembele
et al., (2020) [14]; Abhishek
and Kinouchi (2021) [120]

Japanese
55-year

ReAnalysis
(JRA-55)

R Global 1.25◦ 1959–NP 3-houly
Macro-scale: Dembele et al.,

(2020) [14]; Beck et al.,
(2020) [131]

Modern-Era
Retrospective
analysis for

Research and
Applications-2

(MERRA-2)

S, R, G Global 0.625◦ ×
0.5◦ 1980–NP Hourly

Macro-scale: Gupta and
Tarboton (2016) [130];

Dembele et al., (2020) [14]

European
Centre for

Medium-Range
Weather
Forecasts
(ECMWF)

Re-Analysis
(ERA)-5

R Global 0.25◦ 1979–NP Hourly
Macro-scale: Dahri et al.,

(2021) [70]; Dembele et al.,
(2020) [14]
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Table A9. Cont.

Product Source Spatial
Extent

Spatial
Resolution

Temporal
Extent

Temporal
Resolution Articles

Earth20bserve,
WFDEI and
ERA-Interim
merged and

bias-corrected
(EWEMBI) v1.1

R, G Global 0.5◦ 1976–2013 Daily Macro-scale: Dembele et al.,
(2020) [14]

Princeton
university

Global
meteorological
Forcing (PGF)

v3

R, G Global 0.25◦ 1948–2012 3-hourly Macro-scale: Dembele et al.,
(2020) [14]

Climate
Prediction

centre (CPC)
the National
Oceanic and
Atmospheric

Administration
(NOAA)

S, G

89.5◦N–
89.5◦S,

179.75◦W–
179.75◦E

0.5◦ 1979–NP Daily Macro-scale: Singh and
Saravanan (2020) [35]

Daymet: Daily
Surface

Weather Data
for North for

North America

S, G

82.91◦N–
14.07◦S,

52.06◦W–
178.13◦E

1 km 1950–2021 Daily Macro-scale: Rajib et al.,
(2018) [15]

LST from
Landsat-7
Enhanced
Thematic

Mapper Plus
(ETM+)

S N/A 30 m N/A 16 days Macro-scale: Corbari et al.,
(2020) [132]

LST from
Landsat-8
Thermal

InfraRed Sensor
(TIRS)

S N/A 100 m N/A 16 days Macro-scale: Corbari et al.,
(2020) [132]

Moderate
Resolution

Imaging Spec-
troradiometer
(MODIS) LST

daily L3 global
1 km sin grid

v004

S Global 1 km 2000–NP Daily
Macro-scale: Corbari et al.,
(2020) [132]; Busari et al.,

(2021) [61]
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Table A9. Cont.

Product Source Spatial
Extent

Spatial
Resolution

Temporal
Extent

Temporal
Resolution Articles

Satellite
Application
Facility on

Land Surface
Analysis

(SAFLSA) is a
facility of the

European
Organisation

for the
Exploitation of
Meteorological

Satellites
(EUMETSAT)

S
75◦N to 75◦S,

70.5◦

W–70.5◦E
3 km 2005–NP 15 min Meso-scale: Laiolo et al.,

(2016) [118]

European
gridded dataset

of daily
observations

version 20
(E-OBS 20.0)

G 25◦N–71.5◦N,
25◦W–45◦E 0.25◦ 1950–2019 Daily Macro-scale: Busari et al.,

(2021) [61]

Global Land
Data

Assimilation
System

(GLDAS)

S, G 90◦N–60◦S,
180◦W–180◦E 0.25◦ 2000–2015 3-hourly

Macro-scale: Ha et al.,
(2018) [71]; Mao et al.,

(2019) [36]

G: gauge; S: satellite; R: reanalysis; NP: near present.
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