
 
 

Delft University of Technology

Magnomechanical backaction corrections due to coupling to higher-order Walker modes
and Kerr nonlinearities

Bittencourt, V. A.S.V.; Potts, C. A.; Huang, Y.; Davis, J. P.; Viola Kusminskiy, S.

DOI
10.1103/PhysRevB.107.144411
Publication date
2023
Document Version
Final published version
Published in
Physical Review B

Citation (APA)
Bittencourt, V. A. S. V., Potts, C. A., Huang, Y., Davis, J. P., & Viola Kusminskiy, S. (2023).
Magnomechanical backaction corrections due to coupling to higher-order Walker modes and Kerr
nonlinearities. Physical Review B, 107(14), Article 144411. https://doi.org/10.1103/PhysRevB.107.144411

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1103/PhysRevB.107.144411
https://doi.org/10.1103/PhysRevB.107.144411


PHYSICAL REVIEW B 107, 144411 (2023)

Magnomechanical backaction corrections due to coupling to higher-order Walker
modes and Kerr nonlinearities

V. A. S. V. Bittencourt ,1,2,* C. A. Potts ,3,4 Y. Huang,4 J. P. Davis ,4 and S. Viola Kusminskiy 5,2,†

1ISIS (UMR 7006), Université de Strasbourg, 67000 Strasbourg, France
2Max Planck Institute for the Science of Light, Staudtstraße 2, PLZ 91058 Erlangen, Germany

3Kavli Institute of NanoScience, Delft University of Technology, P.O. Box 5046, 2600 GA Delft, Netherlands
4Department of Physics, University of Alberta, Edmonton, Alberta, Canada T6G 2E9

5Institute for Theoretical Solid State Physics, RWTH Aachen University, 52074 Aachen, Germany

(Received 30 January 2023; revised 16 March 2023; accepted 20 March 2023; published 10 April 2023)

The radiation pressurelike coupling between magnons and phonons in magnets can modify the phonon
frequency (magnomechanical spring effect) and decay rate (magnomechanical decay) via dynamical backaction.
Such effects have been recently observed by coupling the uniform magnon mode of a magnetic sphere (the
Kittel mode) to a microwave cavity. In particular, the ability to evade backaction effects was demonstrated [C. A.
Potts et al., Phys. Rev. B 107, L140405 (2023)], a requisite for applications such as magnomechanical-based
thermometry. However, deviations were observed from the predicted magnomechanical decay rate within the
standard theoretical model. In this work, we account for these deviations by considering corrections due to
(i) magnetic Kerr nonlinearities and (ii) the coupling of phonons to additional magnon modes. Provided that
such additional modes couple weakly to the driven cavity, our model yields a correction proportional to the
average Kittel magnon mode occupation. We focus our results on magnetic spheres, where we show that the
magnetostatic Walker modes couple to the relevant mechanical modes as efficiently as the Kittel mode. Our
model yields excellent agreement with the experimental data.

DOI: 10.1103/PhysRevB.107.144411

I. INTRODUCTION

The dipolar interaction between the magnetization and
microwaves confined in a cavity can yield strong coupling
between magnons (quanta of spin waves) and microwave
photons. After the first theoretical predictions of the strong
magnon-microwave coupling [1], cavity magnonic systems
consisting of a magnetic element loaded in a microwave cavity
were realized in different architectures [2–8]. The unique tun-
ability of magnons combined with the ability to drive and read
out the microwave cavity makes such systems a promising
platform for several applications [9–13], such as the gener-
ation of squeezed and entangled states [14,15], the indirect
coupling to qubits to detect and manipulate magnons [16–20],
and sensing of magnetic fields [21–24].

Magnons can also couple to other degrees of freedom,
opening the opportunity of probing and manipulating these
via their coupling to the hybridized magnon-microwave po-
laritons [13]. In particular, magnetoelastic effects [25–28]
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couple the magnetization and the mechanical vibrations of a
magnetic material, yielding an interaction between magnons
and phonons [29]. Such magnomechanical coupling can be
either resonant or parametric [30]. The resonant coupling is
relevant for specific geometries where certain magnon modes
are resonant with the elastic vibrations of the medium, for ex-
ample, for magnetic spheres with radii ranging from ∼10 nm
to ∼10 µm [30] and in magnetic films [31–33]. The second
type of coupling, parametric coupling, is relevant for geome-
tries in which the magnon frequency is far detuned from
the phonon, such as for micrometer-sized magnetic spheres
[29,34]. The interaction Hamiltonian resembles the radiation
pressure coupling between phonons and photons commonly
found in optomechanical systems [35]. When magnons are
driven, the magnomechanical interaction is enhanced and the
driven-dissipative dynamics of the coupled system result in
dynamical backaction on the vibrational modes. Specifically,
the phonon frequency and decay rate are modified, referred to
as the magnomechanical spring effect and magnomechanical
decay, respectively [29,34,36].

Dynamical backaction is the basis of several proposed
applications of magnomechanical systems, from state prepa-
ration and generation of entangled states [15,37–40], to effects
that are closely related to the optomechanical counterpart,
such as magnomechanical sideband cooling and amplification
of phonons [41,42], albeit operating in the microwave regime.
Moreover, cavity magnomechanical systems provide a unique
tunability of dynamical backaction due to the hybridization
between magnons and microwaves, which can be used to
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fulfill a triple resonance condition by tuning an external bias
magnetic field. Dynamical backaction was first probed in
magnomechanics in a system consisting of a magnetic sphere
of yttrium iron garnet (YIG) loaded into a three-dimensional
microwave cavity [29]. More recent experiments have demon-
strated the full array of dynamical backaction effects in these
systems [34] and demonstrated the capability of avoiding the
induced magnomechanical decay [43]. Dynamical backaction
evasion can enable the application of cavity magnomechanics
in thermometry [36], where, similar to proposals and experi-
ments in optomechanical systems [44,45], the phonon mode
should be neither cooled nor heated by the drive.

Experiments and proposals for cavity magnomechanical
systems have so far focused on the coupling to a single
magnon mode, the uniform precession of the magnetization
called the Kittel mode. Nevertheless, a magnetic sphere sup-
ports a whole set of magnon modes called Walker modes
[46,47] which can also couple to a given vibration mode, in
principle even stronger than the Kittel mode. Weak inhomo-
geneities in the microwave field can drive such higher-order
magnon modes, modifying the backaction effects. Further-
more, magnon nonlinearities due to crystalline anisotropy
[48,49] can also affect dynamical backaction. Nonlinearities
appear as self- and cross-Kerr terms in the magnomechanical
Hamiltonian, inducing static frequency shift of the modes
which have been reported in Refs. [50,51]. Additionally, the
magnon Kerr nonlinearity can yield a bistable behavior of the
magnons [52,53] and mechanics [51], and induce quantum
phase transitions [54], among other phenomena. Nevertheless,
no description of how such nonlinearities affect dynamical
backaction beyond the static frequency shift has been re-
ported. For instance, in optomechanical systems, effects of the
cavity Kerr nonlinearity in an electromechanical system under
sideband cooling have been recently observed [55].

In this work, we extend the theory of dynamical backaction
in cavity magnomechanical systems to include Kerr nonlin-
earities and the coupling of a phonon mode to several magnon
modes. We consider the framework depicted in Fig. 1, where
a microwave cavity mode couples strongly to a magnon mode
and weakly to a set of additional magnon modes. Those in turn
exhibit nonlinearities and interact via a radiation pressurelike
coupling to a single phonon mode. We derive the phonon
self-energy, describing the frequency shift and the magnome-
chanical decay rate, generalizing previous results [34,36]. The
overall effect of the coupling to the additional magnon modes
is a correction proportional to the average number of Kittel
magnons. We evaluate our model for the case of a magnetic
sphere, computing numerically the coupling rates between the
(magnetic) Walker modes and the mechanical mode probed in
Ref. [43]. At low driving powers our model introduces cor-
rections that agree well with the measured data in Ref. [43],
explaining the observed shift in the magnomechanical decay
rate. At higher driving powers, there are further deviations
which are not captured by our model. These are, however, only
relevant for driving frequencies detuned from the backaction
evasion point.

This paper is organized as follows. In Sec. II we present a
brief review of the description of dynamical backaction in cav-
ity magnomechanics for the cases described in the literature,
e.g., Refs. [29,34]. In Sec. III we include Kerr nonlinearities

(a)

(b)

Drive

FIG. 1. (a) Schematic representation of the cavity magnome-
chanical system. A magnetic element is loaded in a microwave
cavity. The magnon modes couple resonantly with a mode from
the cavity and parametrically with the mechanical vibrations of the
magnet. (b) Schematics of the model describing the cavity magnome-
chanical system with several magnon modes coupled to the same
phonon mode [see Hamiltonian (7)]. Our model assumes that only
one of the magnon modes, denoted by m̂, couples strongly to the
cavity mode. The red arrow indicates the microwave drive.

and the coupling to weakly driven additional magnon modes,
and the phonon self-energy. Since those corrections depend
on how strongly the additional magnon modes couple to the
phonon mode, we specialize further our model to a mag-
netic sphere geometry as probed in Ref. [43]. In Sec. IV,
we briefly review the derivation of the magnomechanical
coupling following the literature [30], and we use the model
to numerically evaluate the coupling between Walker modes
with frequencies in a small range around the Kittel mode fre-
quency and a relevant mechanical mode of a magnetic sphere.
In Sec. V, we compare our model to the experimental results
presented in Ref. [43] and show that our generalized theory
quantitatively accounts for the observed magnomechanical
decay for a large range of parameters. Finally, in Sec. VI we
present our conclusions.

II. PHONON SELF-ENERGY AND DYNAMICAL
BACKACTION EVASION

The dynamics of a cavity magnomechanical system con-
sisting of a microwave mode (â with frequency ωa) and a
magnon mode (m̂ with frequency ωm) coupled parametrically
to a phonon mode (b̂ with frequency �b) is described by the

144411-2



MAGNOMECHANICAL BACKACTION CORRECTIONS DUE TO … PHYSICAL REVIEW B 107, 144411 (2023)

Hamiltonian [29]

Ĥ
h̄

= ωaâ†â + ωmm̂†m̂ + �bb̂†b̂

+ gam(âm̂† + â†m̂) + g0
mbm̂†m̂(b̂† + b̂)

+ i
√

κeεd(âeiωdt − â†e−iωdt ). (1)

The magnon-microwave coupling rate gam is due to a mag-
netic dipole interaction between the ferromagnetic resonance
of the material and the microwave cavity. The parametric
magnon-phonon coupling, with the single magnon coupling
rate g0

mb, is due to magnetoelastic effects. The last term in
Eq. (1) describes the coherent drive of the microwave cavity
at a frequency ωd with an amplitude εd = √

P/h̄ωd, where P
is the drive power and κe is the decay rate of the cavity to the
external drive port.

In the weak magnomechanical coupling limit, both the
phonon frequency �b and the decay rate �b are modified by
the coupling to the driven magnons. The respective shifts are
given by

δ�b = −Re[�[�b]],

�mag = 2Im[�[�b]], (2)

where �[ω] is the phonon self-energy, obtained by analyzing
the linearized dynamics of the system [34,36], and reads

�[ω] = i|gmb|2(	[ω] − 	∗[−ω]). (3)

From now on we refer to δ�b as the magnomechanical fre-
quency shift and to �mag as the magnomechanical decay rate.
Here, gmb = g0

mb〈m̂〉 is the enhanced magnomechanical cou-
pling rate, with |〈m̂〉|2 the steady-state magnon population.
The function 	[ω] is a modified Kittel mode susceptibility
given by

	−1[ω] = χ−1
m [ω] + g2

amχa[ω], (4)

which depends on the magnon susceptibility χm[ω] =
[−i(�m + ω) + γm/2], and the microwave susceptibility
χa[ω] = [−i(�a + ω) + κ/2]. The detuning between the mi-
crowave (magnon) mode and the drive is �a(m) = ωd − ωa(m).
γm is the magnon decay rate and κ the total microwave decay.

The value and the sign of the magnomechanical decay
rate depend on the drive frequency, which can tune scattering
processes that upconvert or downconvert excitations in the
system. Depending on the drive, it is possible to make one of
such processes more efficient than the other, yielding a pos-
itive (cooling) or negative (amplification) magnomechanical
decay rate, in a situation akin to what is found in standard
optomechanical systems [35,56,57]. Different from optome-
chanics, in cavity magnomechanical systems magnons and
microwaves hybridize, yielding the unique situation where
the different scattering processes that contribute to dynami-
cal backaction are associated with mechanical sidebands of
hybridized modes [29,43]. The hybrid magnon-microwave
modes have frequencies ω± that are separated by

ω+ − ω− =
√

4g2
am + (ωa − ωm )2. (5)

We will refer to the mode with frequency ω+ as the upper
hybrid mode, and the mode with frequency ω− as the lower

hybrid mode. When the microwave drive is set at a frequency
between ω+ and ω−, the scattering from the blue sideband of
the lower hybrid mode can be balanced by the scattering to the
red sideband of the upper hybrid mode, yielding dynamical
backaction evasion: the magnomechanical decay rate van-
ishes. Consequently, the drive at which dynamical backaction
evasion happens can be obtained from the condition

�mag = 0. (6)

In a system satisfying the two-phonon triple resonance
condition ω+ − ω− = 2�b, and for resonant magnons and
microwaves, such drive frequency is exactly at (ω+ + ω−)/2
[43]. The ability to tune a magnomechanical system in the
dynamical backaction evasion regime was recently demon-
strated in Ref. [43], and is a requirement for implementing
a magnomechanical-based primary thermometer [36].

Equation (3) only takes into account the interaction of a
phonon mode with a single magnon mode. However, mul-
tiple magnetostatic modes can couple to a given phonon
mode [30], modifying the magnomechanical decay rate. The
different scattering processes to and from the additional mag-
nomechanical sidebands can thus change the frequency at
which dynamical backaction is evaded. For instance, in the
experimental data shown in Ref. [43], the measured mag-
nomechanical decay rate exhibits a shift with respect to the
theoretical prediction obtained from the Hamiltonian given in
Eq. (1). This shift was taken into account by adding to the
magnomechanical decay rate a phenomenological correction
proportional to |〈m̂〉|2, which depends on the average number
of magnons driven by the microwave tone. Such correction
can be attributed to the coupling to additional magnon modes,
which are weakly driven by their coupling to the microwave
cavity, and to magnon nonlinearities.

While nonlinearities in magnetic spheres are generally
weak, the microwave drive combined with the strong magnon-
microwave coupling can make nonlinear effects prominent.
This is the case provided that the power of the drive is strong
enough to induce an average number of magnons above a
certain threshold [58], with implications for magnetoelas-
tic effects [59]. Even for drive powers below the nonlinear
threshold, magnon nonlinearities can affect the hybrid system
dynamics. For instance, in a cavity-magnonic system, the
Kittel mode self-Kerr nonlinearity was shown to yield con-
siderable cavity and magnon frequency shifts under moderate
driving powers [50]. Experimentally, a phonon frequency
shift, as well as mechanical bistability, was reported recently
[51], which points to the importance of considering such non-
linearities in the description of dynamical backaction effects.

In what follows, we include in the description of dynamical
backaction both the coupling to additional magnon modes as
well as magnon nonlinearities.

III. INCLUSION OF KERR NONLINEARITY
AND COUPLING TO ADDITIONAL MAGNON MODES

IN THE PHONON SELF-ENERGY

To derive the correction term to the self-energy, we con-
sider adding to the Hamiltonian in Eq. (1) self- and cross-Kerr
nonlinearities, and coupling to N additional magnon modes,
each with annihilation operators {m̂ j} and frequencies ω j ( j =
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1, . . . , N). The total Hamiltonian is thus

Ĥ
h̄

=ωaâ†â + ωmm̂†m̂ + �bb̂†b̂ +
N∑

j=1

ω j m̂
†
j m̂ j

+ gam(âm̂† + â†m̂) +
N∑

j=1

gamj (âm̂†
j + â†m̂ j )

+ g0
mbm̂†m̂(b̂† + b̂) +

N∑
j=1

m̂†
j m̂ j

[
g0

mjbb̂ + (
g0

mjb

)∗
b̂†

]

+ Km(m̂†m̂)2 + Kcrm̂
†m̂b̂†b̂ +

N∑
j=1

K ( j)
cr,mm̂†m̂m̂†

j m̂ j

+ i
√

κeεd(âeiωd − â†e−iωd ). (7)

From now on, we will refer to the magnon mode m̂ as the
Kittel mode, since this is typically the magnon mode that has
the strongest coupling to the cavity, while we refer to the
magnon modes m̂ j as additional magnon modes. We specify
such additional magnon modes for the case of a magnetic
sphere in Sec. IV. We furthermore assume a rotating wave ap-
proximation for the magnon-microwave coupling, as is done
to obtain Eq. (1), which eliminates any term of the form m̂( j)â
and m̂†

( j)â
†. The rotating wave approximation is also assumed

for the magnomechanical coupling, as explained in Sec. IV.
Compared with the Hamiltonian in Eq. (1), the above

equation includes the following terms: the additional magnon
modes; the coupling between these and (i) the microwave
mode, each with a coupling rate gamj , and (ii) the
phonon mode, each with a coupling rate g0

mjb; the self-Kerr
term for the Kittel mode; the cross-Kerr term between the
Kittel and the phonon modes [60]; and the cross-Kerr term
between the Kittel mode and the other magnon modes. For
a sphere, the values of those nonlinear terms depend on the
relative orientation between the crystallographic axis [100] of
YIG and the bias field [48,50,61], which was not perfectly
aligned in the experiment [43] that we use as the case of study.
The values for Km, Kcr, and K ( j)

cr,m that we consider here are
effectively smaller than their values in the perfectly aligned
case, which we indicate as, e.g., K0

m. Provided that the ex-
ternal bias field is aligned with the aforementioned magnetic
anisotropy axis of the YIG sphere, the Kittel mode self-Kerr
nonlinear coefficient is given by K0

m = 13h̄Kanγ
2/(16M2

s V ),
where Kan = −610 J/m2 at room temperature and V is the
sphere volume [49]. For the experiment in Ref. [43] this cor-
responds to K0

m/2π = −5.15 nHz. The magnon-phonon and
magnon-magnon cross-Kerr nonlinear coefficients depend on
the overlap between these modes and the Kittel mode. In
general, the magnon-magnon cross-Kerr coefficient is around
the same order of magnitude as K0

m [60], while the magnon-
phonon cross-Kerr coefficient is ∼ − 5 pHz [51]. Figure 1
shows a schematic of the model, including the different cou-
pling terms.

The values of the magnomechanical couplings depend on
the geometry of the magnet, which defines the magnon and
phonon mode profiles. In the system under study, the coupling
between the Kittel mode and a relevant mechanical mode of
a sphere, discussed in Sec. IV, is g0

mb/2π = 4.56 mHz. In

Sec. IV we discuss in detail the values of g0
mjb for a magnetic

sphere. It is important to point out that, due to better mode
overlap, in principle, g0

mjb can be comparable to or larger than

g0
mb for some modes. The coupling between magnons and

microwaves depends on the microwave field at the magnet
position. For homogeneous fields, only the coupling to the
Kittel mode does not vanish. Nevertheless, small inhomo-
geneities could yield a small microwave-magnon coupling
gamj which would, in turn, drive weakly such magnon modes.
For different cavity geometry, such couplings can be strong
[7,8,62,63], a framework which we do not consider here.

In correspondence with the experiment [43], we assume
that the additional magnon modes are weakly driven via their
coupling to the cavity mode, such that we expect a small
steady-state amplitude for those modes. Thus we can safely
disregard any self- and cross-Kerr nonlinearity of the form
m̂†

k m̂km̂†
j m̂ j . The Heisenberg-Langevin equations describing

the dynamics of the coupled modes in the rotating frame with
the drive frequency are

˙̂a =
(

i�a − κ

2

)
â − igamm̂ − i

N∑
j=1

gamj m̂ j

− √
κiξ̂I (t ) − √

κeεd,

˙̂m =
(

i�m − γ

2

)
m̂ − igamâ − ig0

mbm̂(b̂† + b̂)

− iKmm̂(1 + 2m̂†m̂) − iKcrm̂b̂†b̂

− i
N∑

j=1

K ( j)
cr,mm̂m̂†

j m̂ j + √
γm ξ̂m(t ),

˙̂mj =
(

i�mj − γ j

2

)
m̂ j − igamj â − im̂ j

(
g0

mjbb̂ + g0,∗
mjb

b̂†
)

− iK ( j)
cr,mm̂ jm̂

†m̂ + √
γ j ξ̂mj (t ),

ḃ = −
(

i�b − �b

2

)
b̂ − ig0

mbm̂†m̂ − iKcrb̂m̂†m̂

− i
N∑

j=1

g0
mjbm̂†

j m̂ j +
√

�bξ̂b(t ). (8)

In the above equations, κ = κi + κe denotes the total mi-
crowave cavity decay rate, which is composed of the intrinsic
cavity decay κi and the decay into the external port, κe. The ad-
ditional magnon mode decay rates are indicated by γmj which,
for magnetostatic modes of a sphere, have the same value of
the Kittel mode decay [64]. The magnon decay γm included
in our formalism corresponds to the Gilbert damping term
included in the Landau-Lifshitz equation to describe magnetic
damping. All parameters appearing in Eq. (8) are summarized
in Table I, with the values that will be used throughout this
paper. The noise terms denoted by ξ̂η(t ) (η = i, e, m, mj, b)
describe thermal (white) noises with correlations

〈ξ̂η(t )ξ̂ †
η′ (t ′)〉 = (nTh,η + 1)δηη′δ(t − t ′),

〈ξ̂ †
η (t )ξ̂η′ (t ′)〉 = nTh,ηδηη′δ(t − t ′), (9)

with nTh,η = [exp(h̄ωη/kBT ) − 1]−1 the number of thermal
excitations of mode η at a temperature T .
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TABLE I. Parameters of the magnomechanical system appearing in Eq. (8). The values correspond to the experiment in Ref. [43]. The
magnon self-Kerr term value corresponds to the case where the bias magnetic field is aligned with the magnetic anisotropy axis.

Parameter Symbol Value

Microwave mode frequency ωa 2π × 7.11 GHz
Kittel mode frequency ωm 2π × 7.09 GHz
Additional magnon modes frequencies ωmj see Sec. III A
Phonon mode frequency �b 2π × 12.45 MHz
Drive frequency ωd 2π × [7.096, 7.099] GHz
Microwave intrinsic decay rate κi 2π × 2.91 MHz
Microwave external decay rate κe 2π × 3.17 MHz
Kittel mode decay rate γm 2π × 2.55 MHz
Additional magnon modes decay rate γmj 2π × 2.55 MHz
Phonon intrinsic decay rate �b 2π × 3.74 kHz
Kittel mode - microwave coupling rate gam 2π × 9.19 MHz
Additional magnon modes - microwave coupling rate gamj see Sec. V
Magnomechanical coupling to the Kittel mode g0

mb 2π × 4.56 mHz
Magnomechanical couplings to the jth additional magnon mode g0

mjb
see Sec. IV

Kittel mode self-Kerr nonlinearity K0
m −2π × 5.15 nHz

Magnon cross-Kerr nonlinearity K ( j)
cr,m −2π × 5.15 nHz

Magnon-phonon cross-Kerr nonlinearity Kcr −2π × 5.4 pHz

The steady state in a mean-field approximation is obtained
by taking the expectation values of the operators in Eqs. (8)
and ignoring any quantum correlations, i.e., 〈m̂b̂〉 ≈ 〈m̂〉〈b̂〉.
Since we are assuming that the magnon modes {m̂ j} are
weakly coupled to the microwaves, gamj gamk 	 gamj gam, we
discard any other indirect coupling between the additional
magnon modes via the cavity. These approximations yield

〈b̂〉 = ig0
mb|〈m̂〉|2

Fb − iKcr|〈m̂〉|2 +
i
∑N

j=1 g0
mjb|〈m̂ j〉|2

Fb − iKcr|〈m̂〉|2 ,

〈m̂ j〉 = igamj

√
κeεd

FmjFa + g2
amj

− iK ( j)
cr,m|〈m̂〉|2

− gamj gam〈m̂〉
FmjFa + g2

amj
− iK ( j)

cr,m|〈m̂〉|2 , (10)

where we have defined

Fb = −i�b − �b

2
,

Fmj(m) = i�mj(m) − γmj(m)

2
,

Fa = i�a − γa

2
. (11)

For 〈m̂ j〉, we have also discarded the term ∝ g0
mjb. The steady

state of the Kittel mode reads

A〈m̂〉 = igam
√

κeεdB, (12)

where

A = FmFa + g2
am − iKm(1 + 2|〈m̂〉|2)

− 2iFag0
mbRe[〈b̂〉] + g2

amB − iKcr|〈b̂〉|2,

B = 1 −
N∑

j=1

g2
amj

FmjFa + g2
amj

− iK ( j)
cr,m|〈m̂〉|2 . (13)

Equation (12) is solved numerically. Depending on the drive
power and the detuning, the equation can have two bistable
solutions. We will focus our analysis on a detuning range lying
in between the hybridized Kittel magnon-microwave modes.
In the considered range the magnomechanical decay rate of
Eq. (2) changes its sign, and in such a region, the nonlinear
equation for 〈m̂〉 has only one solution. Furthermore, we can
discard the terms proportional to K ( j)

cr,m, Kcr, and g0
mb to obtain

the solutions of Eq. (12).

A. Linearized dynamics

We can now consider the fluctuations around the steady-
state values. We write ô = δô + 〈ô〉, and discard any terms
involving more than two fluctuations. The quadratic Hamil-
tonian describing the dynamics of the fluctuations is given by

ĤLin

h̄
= −�aδâ†δâ + �̃bδb̂†δb̂ − �̃mδm̂†δm̂

−
N∑

j=1

�̃mjδm̂†
jδm̂ j + ĤInt

h̄
, (14)

with the coupling terms included in ĤInt given by

ĤInt

h̄
= gamδâ†δm̂ + GRδm̂†δb̂ + GBδm̂†δb̂†

+ gms(δm̂†)2 +
∑
j=1

gamjδâ†δm̂ j

+
N∑

j=1

(GR,jδm̂†
jδb̂ + GB,jδm̂ jδb̂)

+
N∑

j=1

(gR,jδm̂†δm̂ j + gB,jδm̂†δm̂†
j )

+ H.c. (15)
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TABLE II. Enhanced couplings appearing in the linearized
Hamiltonian in Eq. (15).

gmb g0
mb〈m̂〉

GR gmb + Kcr〈m̂〉〈b̂〉∗

GB gmb + Kcr〈m̂〉〈b̂〉
GR,j g0

mjb
〈m̂ j〉

GB,j g0
mjb

〈m̂ j〉∗

gms Km〈m̂〉2

gR,j K ( j)
cr,m〈m̂〉〈m̂ j〉∗

gB,j K ( j)
cr,m〈m̂〉〈m̂ j〉

The interacting terms appearing in the Hamiltonian of
Eq. (7) induce frequency shifts for the fluctuations, which are
given by

�̃m(mj ) = ωd − ω̃m(mj ),

ω̃m = ωm + 2g0
mbRe[〈b̂〉] + 4Km|〈m̂〉|2 + Kcr|〈b̂〉|2

+
N∑

j=1

K ( j)
cr,m|〈m̂ j〉|2,

ω̃mj = ωmj + 2Re
[
g0

mjb〈b̂〉
] + K ( j)

cr,m|〈m̂〉|2,
�̃b = �b + Kcr|〈m̂〉|2. (16)

The coupling rates between the fluctuations are enhanced and
modified with respect to the bare ones. Their expressions are
shown in Table II.

B. Calculation of the phonon self-energy

The phonon self-energy is obtained by solving the lin-
ear Heisenberg-Langevin equations describing the coupled
dynamics of the fluctuations for the phonon operator. To com-
pute the effects of backaction in the response of the phonon
mode to noise, we consider the Fourier-transformed operators
defined by

ô(t ) =
∫

dωe−iωt ô[ω], (17)

where ô = δâ(†), δm̂(†), δm̂(†)
j , δb̂(†). We skip the algebraic

steps, but outline the main differences with respect to the
results in Refs. [34,36]. After writing the cavity operator in
terms of the magnon operators, we obtain the following equa-
tion for the additional magnon modes:

	 j[ω]−1δm̂ j[ω] = −i(g∗
R,j − igamj gamχa[ω])δm̂[ω]

− igB,jδm̂†[ω] − iGR,jδb̂[ω] − iG∗
B,jδb̂†[ω]

+ gamjχa[ω]
∑
k �= j

gamk δm̂k[ω] + ˆ̃ξmj [ω],

(18)

where ˆ̃ξmj represents the noise term modified by the interac-
tion with the cavity, and we have defined the effective magnon
susceptibility in correspondence with the previous case in
Eq. (4),

	 j[ω]−1 = χ−1
mj

[ω] + g2
amj

χa[ω]. (19)

We notice that the first term on the right-hand side of Eq. (18)
includes the indirect coupling between the jth magnon mode
and the Kittel mode via the cavity. A similar term related to
the coupling between the additional magnon modes appears
in the last line of Eq. (18), and since gamj 	 gam, we discard
these contributions.

After using Eq. (18) to eliminate the additional magnon
modes in favor of the Kittel mode and the phonon fluctuations,
we obtain the following set of coupled equations:

	−1
m [ω]δm̂[ω] = ηm[ω]m̂[ω]−i�m[ω]m̂†[ω]

− iGm,R[ω]δb̂[ω]

− iGm,B[ω]δb̂†[ω] + ˆ̃ξm[ω],⎡
⎣χ−1

b [ω] − i
N∑

j=1

σ j[ω]

⎤
⎦δb̂[ω] = −iG̃∗

b,R[−ω]δm̂[ω]

− iG̃b,B[ω]δm̂†[ω] + ˆ̃ξb[ω]

+ i

⎛
⎝ N∑

j=1

λ j[ω]

⎞
⎠δb̂†[ω].

(20)

We have included all the noise terms in ˆ̃ξm,b[ω]; all other
functions appearing in the equations below are defined in the
following. The coupling to the additional magnon modes has
the following effects: the introduction of a self-energy term
on the phonon mode, the modification of the coupling between
the Kittel mode and the phonon mode, and a modification
of the Kittel mode susceptibility and squeezing. We briefly
comment on each of these effects.

At this intermediate step, the phonon susceptibility is mod-
ified by the self-energy term

N∑
j=1

σ j[ω] = i
N∑

j=1

|g0
mjb〈m̂ j〉|2(	 j[ω] − 	∗

j [ω]), (21)

which is defined in analogy with the self-energy term derived
in Refs. [34,36] and given in Eq. (3). Such a term represents
the direct dynamical backaction of the coupling between the
phonon mode and the additional magnon modes.

The additional magnon modes modify the couplings be-
tween the Kittel mode and the phonon mode. In fact, the
effective coupling constants appearing in Eqs. (20), whose
explicit forms are given in Appendix A, include two types of
modifications. The first is an indirect coupling between the
additional magnon modes and the Kittel mode via the cavity.
The second is a term proportional to gB(R),j, which in turn
(see Table II) is due to the magnon cross-Kerr nonlinearity,
m̂†

j m̂ jm̂†m̂ in the Hamiltonian of Eq. (7). The relevance of
these corrections for a given drive frequency is determined
by the susceptibilities of the additional magnon modes.

The Kittel mode squeezing term �m[ω] reads

�m[ω] = 2gms − gam(χa[ω] + χ∗
a [−ω])

∑
j

gB,jgamj	 j[ω],

(22)
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where the first term is due to the self-Kerr nonlinearity, while
the second term is a combination of the magnon cross-Kerr
nonlinearity with the indirect coupling between the magnon
modes via the microwave cavity. The Kittel mode susceptibil-
ity is also modified by the term ηm[ω], which is given by

ηm[ω] = g2
amχ2

a [ω]
∑

j

g2
amj

	 j[ω]

+ 2igamχa[ω]
∑

j

Re[gR,j]gamj	 j[ω]

−
∑

j

(|gR,j|2	 j[ω] − |gB,j|2	∗
j [−ω]). (23)

The three terms in Eq. (23) describe the effects of a two-mode
squeezing between the Kittel mode and each of the additional
magnon modes. The first term is related to the indirect cou-
pling of the modes via the microwave cavity while the last
term is the direct two-mode squeezing induced by the magnon
cross-Kerr nonlinearity. The second term is a combination of
both effects.

From Eqs. (20), we eliminate the Kittel mode operator and
obtain an equation for the phonon mode operator,[

χ−1
b [ω] − i�Tot[ω]

]
δb̂[ω] = i�b[ω]δb̂†[ω] + ϒ̂b[ω], (24)

where ϒ̂b[ω] includes all the noise terms driving the phonon
fluctuations, �b[ω] describes phonon squeezing, and �Tot[ω]
is the total self-energy. We focus only on the self-energy term,
which is given by

�Tot[ω] = �m[ω] +
N∑

j=1

σ j[ω], (25)

where the contribution of Kittel mode to the self-energy is
given by

�m[ω] = i(G̃∗
b,R[−ω]G̃m,R[ω]	̃m[ω]

− G̃b,B[ω]G̃∗
m,B[−ω]	̃∗

m[−ω]). (26)

The modified magnomechanical couplings G̃m,R(B)[ω] are
given in Appendix A. The Kittel mode susceptibility

	̃−1
m [ω] = 	−1

m [ω] − ηm[ω] − �m[ω]�∗
m[−ω]

	∗,−1
m [−ω] − η∗

m[−ω]
, (27)

which includes both the Kittel magnon squeezing in �m[ω]
and the effects of two-mode squeezing interactions with the
additional magnon modes in ηm[ω].

C. Magnomechanical decay rate corrections

We turn our attention now to the effects on the magnome-
chanical decay rate, in connection with the observed shift
reported in Ref. [43]. The total change in the phonon linewidth
is given by

�mag[ω] = 2Im[�Tot[ω]] = 2Im[�m[ω]] +
N∑

j=1

� j[ω],

� j[ω] = 2Im[σ j[ω]]. (28)

The contributions of self- and cross-Kerr nonlinear terms
are included in the above self-energy. The corresponding

frequency shift is different than the static one, observed in
Ref. [51], which has already been included in the modified
phonon frequency �̃b defined in Eqs. (16). The self-Kerr non-
linearity changes the behavior of the magnomechanical decay
rate with the detuning. This is due to three main factors: the
modification of the steady-state number of magnons |〈m̂〉|2,
the induced static magnon frequency shift, given in Eq. (16),
and the generation of squeezing in the magnon fluctuations.
This has a consequence for both dynamical backaction eva-
sion, as we will show, and for backaction cooling. The latter
has been recently reported in a system where a mechanical
oscillator is parametrically coupled to a nonlinear cavity [55].
The magnomechanical frequency shift is given by

δ�b[ω] = −Re[�Tot[ω]], (29)

which has a decomposition similar to the one shown in
Eq. (28).

The relevance of the different corrections due to the ad-
ditional magnon modes depends on their frequencies with
respect to the drive and their coupling rates to the cavity.
Recalling that Gj = g0

mjb〈m̂ j〉, we use the steady state from
Eq. (10). For the experimental parameters in consideration,
given in Table I, due to the strong coupling between the Kittel
mode and the cavity,

√
κeεd 	 gamRe[〈m̂〉] and the steady

state of the weakly driven Walker modes can be approximately
written as

|〈m̂ j〉|2 =
g2

amj
g2

am|〈m̂〉|2∣∣FmjFa + g2
amj

− iK ( j)
cr,m|〈m̂〉|2∣∣2 . (30)

Within these approximations, the contribution of such Walker
modes to the magnomechanical linewidth is given by

� j[ω] = 2g2
am|〈m̂〉|2

|g0
mjb|2g2

amj∣∣FmjFa + g2
amj

− iK ( j)
cr,m|〈m̂〉|2∣∣2

× Re(	j[ω] − 	∗
j [ω]), (31)

which for small K ( j)
cr,m gives a contribution to the magnome-

chanical decay rate which is proportional to |〈m̂〉|2. The
contribution to the magnomechanical decay rate also depends
on the detuning between the drive and the magnon frequency.

While � j[ω] quantifies the direct effect of the coupling
between the phonon mode and the additional magnon modes,
there are also indirect effects due to the coupling between
the additional magnon modes and the Kittel mode via the
microwave cavity. Those are included in the term 2Im[�m[ω]]
via the modified coupling rates G̃m(b),R(B)[ω] and the modified
Kittel mode susceptibility 	̃m[ω]. In general, the corrections
included in those terms are proportional to |gms|2, to |GR(B), j |2,
or to |gR(B), j |2. Following the same procedure outlined above,
it is possible to show that those are all proportional to
the steady-state Kittel mode occupation. Their frequency-
dependent coefficients have a more complicated form due to
the explicit dependence of the modified couplings and suscep-
tibilities on frequency. We can describe all the corrections by
the expression

�mag[ω] = �0
mag[ω] + α[ω]|〈m̂〉|2, (32)
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where �0
mag[ω] is given in Eq. (3), without including addi-

tional magnon modes and nonlinearities. Such a correction
was used phenomenologically in Ref. [43] to explain the ob-
served discrepancies of the experimental results with �0

mag[ω].

IV. PARAMETRIC MAGNOMECHANICAL COUPLING
FOR A MAGNETIC SPHERE

In the previous section, we obtained the modifications
of the phonon self-energy due to the coupling between the
phonon mode and additional magnon modes. Such contribu-
tions depend on the relative strength of the magnomechanical
coupling to the additional magnon modes with respect to the
coupling to the Walker mode, which in turn depends on the ge-
ometry of the magnet. Before specifying the latter, we briefly
review the main points of the derivation of the magnome-
chanical coupling Hamiltonian, done in detail in the literature
[29,30,65,66], starting from the magnetoelastic energy [25,26]

EME = B1

M2
S

∫
d3r

(
M2

x εxx + M2
y εyy + M2

z εzz
)

+ 2B2

MS

∫
d3r (MxMyεxy + MyMzεyz + MxMzεxz ),

(33)

where Mx,y,z are the magnetization components, MS is the
saturation magnetization, and

εi j = (∂iu j + ∂ jui )/2 (34)

is the linear strain tensor with u(r, t ) the displacement.
The magnetoelastic coefficients B1 and B2 are material- and
temperature-dependent constants. For YIG at room temper-
ature, MS = 140 kA/m [49], B1 = 3.48 × 105 J/m3, and
B1 = 6.4 × 105 J/m3 [29]. The magnomechanical Hamilto-
nian is then obtained by quantizing the magnetization and
displacement fields. The procedure yields both resonant and
parametric interactions. The first is relevant for nanometer-
sized magnets [30], while the second is relevant when the
magnon mode is not resonant with the phonon mode, which
is typically the case for larger magnets. Details are shown in
Appendix B.

Here, we focus on the parametric phonon-magnon cou-
pling, which is given by the Hamiltonian

Ĥmb/h̄ =
∑

{ j �=k},α

[
g0

mkmjbα
m̂†

k m̂ j b̂α + g̃0
mkmjbα

m̂†
k m̂ j b̂

†
α

]

+
∑
j,α

g0
mjbα

m̂†
j m̂ j b̂α + H.c., (35)

where { j �= k} indicates that the sum is over all j’s not
equal to k and without repeating combinations. In the above
equation we have separated the coupling terms between one
magnon mode and one phonon mode and the terms involv-
ing two different magnon modes and a phonon mode. The
explicit forms of the couplings are given in Ref. [30] and in
Appendix B in Eq. (B8). They depend on overlap integrals in-
volving the magnon mode functions as well as the derivatives
of the displacement field.

Focusing now on the coupling to a specific phonon mode,
the magnomechanical Hamiltonian is given by

Ĥmb

h̄
= ωmm̂†m̂ +

∑
j

ω j m̂
†
j m̂ j + �bb̂†b̂ + Ĥmb,I

h̄
, (36)

where the coupling terms are

Ĥmb,I

h̄
= g0

mbm̂†m̂b̂ +
∑

j

g0
mjbm̂†

j m̂ j b̂ + m̂†
∑

j

g0
mmjbm̂ j b̂

+
∑
j �=k

g0
mkmjbm̂†

k m̂ j b̂ + H.c. (37)

In the above equations, we have separated the terms of the
Kittel mode, which from now on we do not label, while the
other Walker modes are labeled by the index j. As shown in
Appendix D, we can absorb the phase of the coupling to the
Kittel mode in the phonon field, such that g0

mb is real after such
a transformation.

Magnomechanical coupling rates for a sphere

The magnomechanical coupling rates depend on the spe-
cific geometry of the sample and the direction of the applied
magnetic field, which defines the mode functions and their
overlap. We evaluate now the coupling for a YIG sphere,
corresponding to the experimental configuration of Ref. [43].

A sphere supports magnetostatic modes called Walker
modes [46,47,67], which have frequencies that can be tuned
by the value of the external bias field. The Walker modes
are labeled by three indices {lmν}, with l � 1 and |m| � l .
For m > 0, there are (l − |m|)/2 (rounded down) modes la-
beled with the third index ν, while for m < 0, there are 1 +
(l − |m|)/2 (rounded down) modes. For the phonon modes,
considering an unpinned sphere under stress-free boundary
conditions, there are two families of mechanical modes: tor-
sional (T) and spherical (S). Each phonon mode is labeled by
three indices {νlm}, where l and m are polar and azimuthal
indices while ν is a radial index. In correspondence with the
experiment [43], we consider in the following the spherical
mode S122, shown in Fig. 2. Further details on the magnon
and spherical phonon modes of a magnetic sphere are given
in Appendix C. Even though the magnon and phonon mode
functions are given in terms of well-known special functions,
the coupling constant [see Eq. (B8)] involves a nontrivial com-
bination of derivatives of those. Furthermore, the derivation of
the Walker modes involves a transformation to a nonorthogo-
nal coordinate system, which is not easily invertible. While
this is not a problem when computing the coupling to the
Kittel mode, which is uniform, the exact expressions for
coupling rates are not elucidating. Differently from other para-
metrically coupled systems, it is hard to infer, for example,
selection rules. We, therefore, compute the overlap integrals
numerically and evaluate how the couplings g0

mjb compare

with the coupling to the Kittel mode, g0
mb. It is also important

to notice that the magnomechanical couplings depend on both
the intensity of the bias magnetic field and its direction. In
fact, the coupling to the Kittel mode can even vanish for
specific relative orientation of the magnetic field [29]. We
consider the case of a fixed bias field at a direction that
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FIG. 2. Profile of the S122 mode of a sphere. (a) The bias field
H0 is parallel to the ez direction, and we consider a sphere made of
YIG with a radius R = 125 µm. [(b)–(d)] Mode profile | f (r)| for the
spherical mode S122 in the (b) yz, (c) xz, and (d) zy planes.

maximizes the coupling between the Kittel and the S122

modes, as depicted in Fig. 2.
Figure 3 shows the frequencies ωmj of the Walker modes,

the ratios |g0
mjb|/|g0

mb| between the magnomechanical cou-
pling rate to the Walker mode (lmν) and to the Kittel mode,

FIG. 3. (a) Frequency of the Walker modes ωmjb in units of the
Kittel mode frequency ωmb. The labels by each point indicate the
radial magnon mode label ν. (b) Absolute value of the magnome-
chanical coupling between the Walker modes and the S122 mode
in units of the coupling to the Kittel mode g(0)

mb. (c) Phase of the
magnomechanical coupling with respect to the phase of the Kittel
mode magnomechanical coupling φmjb − φmb in radians. Results for
a sphere of radius R = 125 µm. The dashed line is the reference value
(for the Kittel mode) for each quantity.

and φj − φ, the relative phase between g0
mjb and g0

mb. Results
are shown for l up to 4 and for Walker modes lying in
a frequency range close to the Kittel mode. Due to better
mode overlap, some higher-order Walker modes, for exam-
ple, the (200), couple strongly with the phonon mode in
comparison with the coupling to the Kittel mode. In the
theoretical analysis of Sec. II, we have not included in the
magnomechanical Hamiltonian in Eq. (7) the last two terms of
Eq. (D1). Those describe scattering processes between differ-
ent magnon modes via the phonon mode. For the considered
case, |g0

mmjb|, |g0
mkmjb| 	 |g0

mb|, |g0
mjb|, and those processes can

be safely discarded. Nevertheless, it is possible that for
some relative orientation between the magnon modes and the
phonon mode, set by the external bias field, those processes
can have a stronger coupling rate.

V. EVALUATION OF THE MODEL FOR THE PHONON
SELF-ENERGY ON DYNAMICAL BACKACTION EVASION

The self-energy obtained in Eq. (28) includes contribu-
tions due to the Kerr nonlinearity and to the couplings to
higher-order Walker modes. We focus our analysis now on the
effect of such contributions to the magnomechanical decay for
detunings in the vicinity of the backaction evasion point.

In correspondence with the experiment [43], we consider
that the microwave drive frequency is varied between ωd,− and
ωd,+ inside the frequency range {ω−, ω+} between the hybrid
mode frequencies, given by Eq. (5). The Walker modes con-
tributing appreciably to the phonon self-energy lie between
(ωd,− − �b) and (ωd,+ + �b). Since the system is in the
resolved sideband regime, any modes outside this frequency
range would not allow efficient scattering of phonons, and
thus can be neglected. The first condition corresponds to the
lower drive frequency corresponding to the blue sideband of a
magnon mode, while the second corresponds to driving the red
sideband of a magnon mode. For the parameters summarized
in Table I, only the mode (4,3,0) is in this frequency range.
In fact, the (4,3,0) mode is degenerate with the Kittel mode.
The frequency configuration is shown in Figs. 4(a) and 4(b),
and the mode profile of the Walker mode (4,3,0) is shown in
Figs. 4(c) and 4(d).

To address the effects of nonlinearities and coupling to the
higher-order Walker mode, we define the dimensionless pa-
rameters ηc = gamj/gam and ηK = Km/K0

m. The first parameter
quantifies the strength of the coupling between the Walker
modes and the cavity compared to the coupling between the
Kittel mode and the cavity. The second parameter quanti-
fies the strength of the self-Kerr nonlinearity compared to
the value shown in Table I, K0

m = −2π × 5.15 nHz. We call
here ηK the dimensionless Kittel magnon self-Kerr nonlin-
earity. This parameter depends on the alignment between the
anisotropy axis of the magnet with the external magnetic field,
which has not been taken into account in Ref. [43].

Figure 5(a) shows the magnomechanical decay for ηc = 0
(the additional Walker mode is not driven by the microwaves)
and for several values of ηK , and Fig. 5(b) the magnomechan-
ical decay for several values of ηc at a fixed ηK = 0.2. The
self-Kerr nonlinearity of the Kittel mode changes the slope of
the magnomechanical decay as a function of the detuning. For
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FIG. 4. Frequency configuration of the magnomechanical system
in consideration. (a) The microwave cavity frequency ωa is higher
than the Kittel mode frequency, which is degenerate with the (4,3,0)
Walker mode. The red frequency range corresponds to the microwave
drive considered here. (b) Due to strong coupling, the Kittel mode
and the microwave mode hybridize, forming the two modes ω±.
(c) Real part and (d) imaginary part of the transverse magnetization
of the Walker mode (4,3,0). The profiles were evaluated at z/R =
cos π/4, and for better visualization, the vectors were normalized to
max[

√
Re[δmx]2 + Re[δmy]2].

a fixed Kerr nonlinearity, the additional magnon mode shifts
down the magnomechanical decay; that is, the weakly driven
Walker mode adds energy to the vibrational mode, yielding a
negative contribution to the decay rate.

The magnomechanical frequency shift is also modified by
the Kittel mode nonlinearity and by the coupling to the addi-
tional magnon mode. This is depicted in Fig. 6, which shows
the magnomechanical frequency shift δ� = −Re[�Tot[�b]]
for several values of the self-Kerr nonlinearity [Fig. 6(a)] and
several values of the coupling to the additional magnon mode
[Fig. 6(b)]. Whereas the Kerr nonlinearity induced a tilt in
the slope of the magnomechanical decay rate, its effect on the
magnomechanical frequency shift consists of an extra nega-
tive shift. We also notice that the magnomechanical frequency
shift does not vanish for a drive at the frequency where the
magnomechanical decay vanishes. This is the case because
for the parameters considered, the Kittel mode frequency does
not match the microwave frequency. For perfectly matching
Kittel mode and microwave frequencies, and in the absence of
additional magnon modes, both the magnomechanical decay
and the magnomechanical frequency shift vanish at the same
drive frequency [36].

In Fig. 5 one notices that the drive frequency at which the
magnomechanical decay vanishes changes with both ηK and
ηc. For applications where evading backaction is important,
it is necessary that such modifications are taken into account.

FIG. 5. Magnomechanical decay rate �mag[�b] including the
contribution of the Walker mode (4,3,0) as a function of the detuning
from the upper hybrid mode for (a) ηc = 0 (without microwave
coupling to the additional Walker mode) and for several values of
ηK (dimensionless Kittel magnon self-Kerr nonlinearity) and (b) for
ηK = 0.25 and for several values of ηc. The dashed line is the
prediction from the self-energy (3) derived in Ref. [36]. The mag-
nomechanical coupling to the (4,3,0) Walker mode corresponds to
that shown in Fig. 3. The driving power is 15 mW. Parameters in
correspondence with the experiment [43], given in Table I.

We show in Fig. 7 the drive frequency for backaction evasion
(with respect to the upper hybrid mode frequency) as a func-
tion of the drive power for several values of the Kittel self-Kerr
nonlinearity [Fig. 7(a)] and several values of the coupling to
the additional magnon mode at a fixed ηK [Fig. 7(b)]. For
the case without nonlinearities and without coupling to the
additional magnon mode, the backaction evasion frequency
has a weak dependency on power (not perceptible in the plot).
When the corrections are included, a stronger linear depen-
dency of the backaction drive frequency with the power is
induced. For the parameters in consideration, the difference
can be of the order of ∼0.1 MHz at moderate powers of
10 mW.

In order to quantify the agreement between our model and
the measured data in Ref. [43], we study the difference be-
tween the theoretical magnomechanical decay �mag[�b] rate
and the experimental data �exp. In Fig. 8, we show the absolute
difference |�mag[�b] − �exp| between theory and experiment
as a function of the drive power at the device for different
drive frequencies. We should notice that in Ref. [43], there
is a power loss of ∼2.38 dBm between the generator and
the device that has already been taken into account for this
plot. Our proposed model agrees well with the experimental
data, besides the difference at higher powers and drives farther
from the upper hybrid mode, as it is evident in Fig. 8(a).
In the worst case, the model proposed here improves the
discrepancy between data and theory from ∼120 Hz (dashed
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FIG. 6. Magnomechanical frequency shift δ�b including the
contribution of the Walker mode (4,3,0) as a function of the detuning
from the upper hybrid mode for (a) ηc = 0 (without microwave
coupling to the additional Walker mode) and for several values of ηK

(dimensionless magnon self-Kerr nonlinearity) and (b) for ηK = 0.25
and for several values of ηc. The dashed line is the prediction from
the self-energy Eq. (3) derived in Ref. [36]. The magnomechanical
coupling to the (4,3,0) Walker mode corresponds to that shown in
Fig. 3. The driving power is 15 mW. Parameters in correspondence
with the experiment [43], given in Table I.

red curve in Fig. 8), to a difference of ∼50 Hz (solid red curve
in Fig. 8). We also notice a significant overlap at low drive
powers and for all the depicted detunings due to measurement
errors. Otherwise, we notice good agreement between theory
and experiment for drive powers up to ∼14 mW. At such
powers, the coherent number of magnons generated by the

FIG. 7. Detuning between drive frequency and the upper hybrid
mode for backaction evasion as a function of power for (a) no
coupling to additional magnon modes and for several values of the
dimensionless Kittel self-Kerr nonlinearity ηK , and (b) several values
of the coupling between the (4,3,0) Walker mode and the microwave
cavity at a fixed ηK = 0.25. The dashed line corresponds to the pre-
diction from the self-energy Eq. (3) derived in Ref. [36]. Parameters
in correspondence with the experiment [43], given in Table I.

FIG. 8. Absolute difference between the theory for the mag-
nomechanical decay and the experimental data as a function of power
at the device for a drive detuned from the upper hybrid mode by
(a) (−13.4, −37.7) MHz, (b) (−12.1, 12.0) MHz, and (c) −11 MHz.
The dashed curves correspond to the prediction of the previous
theory using Eq. (4), while the solid lines correspond to the theory
developed in this paper. The shaded region corresponds to the exper-
imental errors of the data obtained in Ref. [43]. Theory predictions
use parameters in correspondence with the experiment [43], given in
Table I.

microwave drive |〈m̂〉|2 [see Eq. (12)] is between ≈6.0 × 1013

at a detuning from the upper hybrid mode �+ = −11 MHz
and ≈7.4 × 1013 at �+ = −14 MHz. We should notice that
for the parameters considered here, the system is not in a
bistable regime. In Figs. 9(a)–9(c) we show the magnome-
chanical decay as a function of the drive frequency detuning
from the upper hybrid mode. The powers indicated in those
figures are at the device and already take into account the 2.38
dBm losses between the generator and the device. As in the
discussion above, we consider the coupling only to the (4,3,0)
Walker mode, and we choose ηK = 0.25 and ηc = 0.3, which
yields a good agreement between theory and data. In the plots
of Figs. 9(d)–9(f), we show the difference |�mag[�b] − �exp|.
While the correction due to the coupling to the (4,3,0) Walker
mode improves the agreement between theory and data with
respect to the previous theory framework [34], we notice,
as shown in Fig. 8, that at higher drive powers, there is a
further discrepancy with the experiment for drives away from
the dynamical backaction evasion points. We also notice that
the errors of the data shown in Fig. 9(a) do overlap with
both the present theory and the one used in Ref. [34], as it
is also shown in Fig. 8.
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FIG. 9. Comparison between the magnomechanical decay rate �mag[�b] predicted by Eq. (3) (dashed gray line), by Eq. (28) (blue line),
and the experimental data measured in Ref. [43] (magenta points). In these plots we have used ηc = 0.3 and ηK = 0.25, which yields a
good agreement between our model and the experimental data, especially close to the point of dynamical backaction evasion. [(a)–(c)]
Magnomechanical decay rate as a function for the detuning; [(d)–(f)] absolute difference between the theory and the experiment as a function
of the detuning (we have omitted the error bars in these plots for a better visualization). Theory curves with parameters in correspondence with
the experiment [43], given in Table I, and the driving powers indicated are at the device.

We attribute the discrepancy at higher powers to other non-
linear phenomena that were not considered here. Specifically,
the scattering of magnon modes into the spin-wave continuum
via three- and four-magnon processes are known to generate
an instability of the spin waves, the Suhl instabilities [68–70].
Above a certain threshold drive power, the amplitude of the
spin waves increases at the expense of a reduction in the
amplitude of the magnon modes. This phenomenon scales
with the drive power and is more prominent for drive frequen-
cies close to the Kittel mode frequency. A power-dependent
reduction in the average number of Kittel magnons would
imply a power-dependent reduction of the magnomechanical
decay rate, which, according to the requirements for the onset
of the Suhl instabilities, would occur more prominently for
drives at frequencies closer to the Kittel mode. Such effect
is compatible with the behavior exhibited by the data, for
example, in Fig. 9, where a reduction in the magnomechanical
decay happens for drive frequencies that are relatively close
to the Kittel mode frequency (see the schematic in Fig. 4). In
Ref. [14], it was shown that the nonlinear behavior could oc-
cur for spheres of 100 µm diameter at driving powers ∼1 mW.
Larger spheres, such as the ones considered here, would re-
quire a stronger driving power, but the drive frequency and
powers at which the discrepancy is noticeable are compatible
with the requirements for the onset of Suhl instabilities. A
formal evaluation of such effects goes beyond the scope of
this work and will be treated elsewhere.

VI. CONCLUSIONS

Dynamical backaction effects in magnomechanical sys-
tems are a consequence of the radiation pressurelike coupling
between magnons and phonons [29,34], which can be ex-
ploited for applications ranging from generating entangled
states to noise-based thermometry [36]. In this paper, we have
extended the description of dynamical backaction in cavity
magnomechanics by including in the system’s dynamics self-
and cross-Kerr nonlinearities, and the coupling between the
phonon mode and additional magnon modes. While nonlin-
earities are intrinsic to magnetic systems due to, e.g., magnetic
anisotropy [49], magnon modes other than the uniform Kittel
mode are always present and can couple to phonons as ef-
ficient as (if not more than) the Kittel mode. A nonuniform
microwave field can weakly drive such modes, which modi-
fies the backaction-induced decay rate and frequency shift of
the phonon mode. Our framework considers a single phonon
mode, an assumption that can be readily generalized.

We have obtained the phonon self-energy, including the
aforementioned interactions, and showed that, provided that
the additional magnon modes couple only weakly to the mi-
crowave mode, the overall correction to the magnomechanical
decay rate is proportional to the average number of Kittel
magnons. We have then focused our results on the case of
a magnetic sphere, in connection with the experiment per-
formed in Ref. [43]. Our model explains the observed shift
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in the magnomechanical decay rate close to the dynami-
cal backaction evasion drive frequency. In this context, we
have also evaluated the effects of the different corrections.
Specifically, we showed that the drive at which the dynamical
backaction decay is zero depends linearly on power. This is
a consequence of the corrections being proportional to the
steady-state number of Kittel magnons, which scales linearly
with the drive power.

A small discrepancy with the experimental data is still
present at higher drive powers and for detunings far from
the upper hybrid mode. We attribute this difference to non-
linear processes, such as scattering into spin waves generating
Suhl instabilities [14,68–70]. Furthermore, even higher-order
Walker modes can lie in a frequency range close to the
microwave drive and, at higher powers, can modify the mag-
nomechanical decay. Preliminary calculations including five
more Walker modes have shown an incremental improvement
of our model. We should also point out that the experimental
setup in Ref. [43] has particularities not included here. For in-
stance, the magnetic sphere is glued on a dielectric post, which
modifies the photon, phonon, and magnon mode profiles. This
in turn can change the magnomechanical coupling constants
as well as the frequency of the Walker modes. A precise
evaluation of such effects requires a more refined numerical
analysis, for example, using finite difference software and
micromagnetic simulations, which goes beyond the scope of
our analysis.

While nonlinear effects in cavity magnomechanical sys-
tems have been previously computed for the nonlinear
dynamics of magnons [14,51], the evaluation of such effects
on the response of the mechanical degree of freedom to noise,
as computed by the self-energy, is a step forward in the
characterization of these systems as platforms for quantum
technologies. Our analysis was restricted to evaluate the ef-
fects of all the corrections included in the model of Sec. III
in the framework of dynamical backaction evasion set by
the experiment of Ref. [43]. Nevertheless, the model derived
in Sec. III shows that several phenomena play a role in the
modification of dynamical backaction, for example, magnon

squeezing and two-mode squeezing. It would be interesting to
investigate scenarios in which those terms can be harnessed to
reduce noise for quantum metrology. Furthermore, the inclu-
sion of the additional magnon modes opens new possibilities
for cavity magnomechanical systems, such as the manipula-
tion of the mechanics by driving different sidebands of the
different magnon modes in a Floquet-like setup [71]. In this
case, it would be interesting to go beyond the approximation
used here, where only the Kittel mode couples strongly to the
microwave cavity. In fact, several experiments have shown
fingerprints of a strong coupling between Walker modes of
a sphere and microwaves [7,50,63]. As we have numerically
shown, Walker modes other than the Kittel mode can couple
better to the phonons, which can be harnessed to applica-
tions, such as nonreciprocal transport between phonons and
microwaves [72].
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APPENDIX A: FORMULAS OMITTED IN THE MAIN TEXT

In the following we present the formulas that were omitted
in the main text.

The modified coupling rates appearing in Eq. (20) are
given by

G̃b,R[ω] = GR − gamχ∗
a [−ω]

∑
j

gamj GR,j	
∗
j [−ω] − i

∑
j

(GB,jgb,j	 j[ω] − GR,jgR,j	
∗
j [−ω]),

G̃b,B[ω] = GB − gamχ∗
a [−ω]

∑
j

gamj G
∗
B,j	

∗
j [−ω] − i

∑
j

(G∗
R,jgb,j	 j[ω] − G∗

B,jgR,j	
∗
j [−ω]),

Gm,R[ω] = GR − gamχa[ω]
∑

j

gamj GR,j	 j[ω] − i
∑

j

(gR,jGR,j	 j[ω] − gB,jGB,j	
∗
j [−ω]),

Gm,B[ω] = GB − gamχa[ω]
∑

j

gamj G
∗
B,j	 j[ω] − i

∑
j

(gR,jG
∗
B,j	 j[ω] − gB,jG

∗
R,j	

∗
j [−ω]). (A1)

The second terms in Eqs. (A1) represent the effect of the
indirect coupling between the additional magnon modes and
the Kittel mode via the cavity. The third terms are propor-
tional to gB(R),j, which in turn (see Table II) are due to the

magnon cross-Kerr nonlinearity, m̂†
j m̂ jm̂†m̂ in the Hamilto-

nian of Eq. (7).
The modified magnomechanical couplings appearing in the

final formula for the phonon self-energy in Eq. (26) are given
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by

G̃m,R[ω] = Gm,R[ω] + i
�m[ω]G∗

m,B[−ω]

	∗,−1
m [−ω] − η∗

m[−ω]
,

G̃m,B[ω] = Gm,B[ω] + i
�m[ω]G∗

m,R[−ω]

	∗,−1
m [−ω] − η∗

m[−ω]
. (A2)

We see that the effective coupling rates Gm,R(B)[ω] [cf.
Eq. (A1)], which include only contributions due to the indirect
coupling between the Kittel mode and the additional magnon
modes, are further modified by the Kittel mode squeezing
term �m[ω].

APPENDIX B: MAGNOMECHANICAL COUPLING

We first quantize the magnetization. We consider that the
magnetization displays small fluctuations around a uniform
saturation value MS [49] (such assumption can be gener-
alized to nonuniform magnetic ground states [73]). In this
framework Mz/MS � Mx,y/MS . The x and y components of
the magnetization can then be written as a superposition of
modes, each labeled with a general index j, such that the
quantized magnetization field is given by [74]

M̂x,y(r, t ) =
∑

j

M j[δmx,y; j (r)m̂ j + δm∗
x,y; j (r)m̂†

j ], (B1)

where {m̂ j} is a set of bosonic operators satisfying [m̂ j, m̂†
j ] =

1. The quantization procedure is valid in the so-called
spin-wave limit for magnetic excitations. The mode func-
tions δm j (r) are obtained by solving the Landau-Lifshitz
equation for the magnetization fluctuations [49], plus the
appropriate boundary conditions. The quantities M j are the
zero-point fluctuations of the mode j given by

M j =
√

h̄|γ |MS

2Vj
, (B2)

where the mode volume is given by [74]

Vj = 2Im

[∫
d3r δmy; j (r)δm∗

x; j (r)

]
. (B3)

Such mode decomposition ensures that the magnetic en-
ergy density yields the Hamiltonian for a set of uncou-
pled harmonic oscillators of the form Ĥm = ∑

j h̄ω j m̂
†
j m̂ j ,

with frequencies ω j obtained from the imposed boundary
conditions.

The elastic vibrations are quantized in terms of phonon
modes [75]. The displacement field is given by the superposi-
tion of modes

û =
∑

α

Xα[ f α (r)b̂α + f ∗
α (r)b̂†

α]. (B4)

The mode functions f α (r) are dimensionless, and given as the
solution of the elastic boundary problem [76]. The zero-point
fluctuations are given by

Xα =
√

h̄

2ρ�αNα

, (B5)

where

Nα =
∫

d3r | f α (r)|2 (B6)

is the mode normalization. Such a mode decomposition
yields, for the noninteracting phonons, the Hamiltonian Ĥb =∑

α �α b̂†
α b̂α .

Substituting Eqs. (B1) and (B4) in the magnetoelastic
energy given by Eq. (33), we obtain an interaction Hamilto-
nian describing the coupling between magnons and phonons.
Such a Hamiltonian includes the following terms: (i) linear
magnon-phonon coupling ∝ g(L)

mj bα
m̂†

j b̂α + H.c., relevant only
for resonant magnon and phonon modes, for example, for
small magnetic particles [30] and for magnetic films [31–33];
(ii) spontaneous parametric conversion terms ∝ m̂ jm̂kb̂†

α

and ∝ m̂†
j m̂

†
k b̂α , relevant when the phonon mode frequency

matches the sum of the frequency of the magnon modes j and
k, where such an interaction describes the creation of a pair
of magnons via the annihilation of a phonon; and (iii) para-
metric phonon-magnon coupling ∝ g0

mjmkbα
m̂†

j m̂k b̂ + H.c. The

off-resonant terms m̂ jm̂kb̂α and m̂†
j m̂

†
k b̂†

α can be eliminated via
a rotating wave approximation.

Our focus is on the parametric interaction (iii), for which
the Hamiltonian is given by Eq. (35):

Ĥmb/h̄ =
∑

{ j �=k},α

[
g0

mkmjbα
m̂†

k m̂ j b̂α + g̃0
mkmjbα

m̂†
k m̂ j b̂

†
α

]

+
∑
j,α

g0
mjbα

m̂†
j m̂ j b̂α + H.c., (B7)

where the coupling rates are given by

g0
mjbα

Nmjbα

= B1

∫
d3r [|δmx; j (r)|2(∂x fx;α (r) − ∂z fz;α (r)) + |δmy; j (r)|2(∂x fx;α (r) − ∂z fz;α (r))]

+ B2

∫
d3r Re[δmx; j (r)δm∗

y; j (r)](∂y fx;α (r) + ∂x fy;α (r)),

g0
mkmjbα

Nmkmjbα

= B1

∫
d3r [δm∗

x;k (r)δmx; j (r)(∂x fx;α (r) − ∂z fz;α (r)) + δm∗
y;k (r)δmy; j (r)(∂y fy;α (r) − ∂z fz;α (r))]

+ B2

2

∫
d3r [δm∗

y;k (r)δmx; j (r) + δm∗
x;k (r)δmy; j (r)](∂y fx;α (r) + ∂x fy;α (r)), (B8)
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where we have defined

Nmkmjbα
= 2

XαMkM j

h̄M2
S

, (B9)

and Nmjbα
= Nmjmjbα

. The coupling g̃0
mkmjbα

is obtained from

g0
mkmjbα

with the substitution ∂xi f j;α (r) → ∂xi f ∗
j;α (r).

APPENDIX C: MAGNETOSTATIC AND MECHANICAL
MODES OF A SPHERE

A sphere supports magnetostatic modes called Walker
modes [46,47,67], which have frequencies that can be tuned
by the value of the external bias field. To describe such modes,
it is convenient to introduce the following characteristic
frequencies:

ωM = |γ |μ0MS,

ω0 = |γ |μ0

(
H0 − MS

3

)
, (C1)

where |γ |/2π = 28 GHz/T is the gyromagnetic ratio, μ0

is vacuum permeability, and H0 is the applied bias mag-
netic field. The Walker modes are conveniently given in a
nonorthogonal coordinate system {ξ, η, φ} defined by the
transformation [46]

x = R
√

−χP[ω]
√

1 − ξ 2 sin η cos φ,

y = R
√

−χP[ω]
√

1 − ξ 2 sin η sin φ,

z = R

√
χP[ω]

1 + χP
ξ cos η, (C2)

where

χP[ω] = ωMω0

ω2
0 − ω2

. (C3)

At the the sphere’s surface η → θ and

ξ [ω] → ξ0[ω] =
√

1 + χP[ω]

χP[ω]
. (C4)

The frequencies of Walker modes are given by the nonlinear
equation [46,47]

ξ0[ω]
∂ξ Pm

l (ξ [ω])

Pm
l (ξ [ω])

|ξ=ξ0 − mκP[ω] + n + 1 = 0, (C5)

where

κP[ω] = − ωMω

ω2
0 − ω2

, (C6)

and Pm
l are the associated Legendre polynomials. The Walker

modes are labeled by three indices, {lmν}, with l � 1 and
|m| � l . For m > 0, Eq. (C5) has (l − |m|)/2 roots, while
for m < 0 it has 1 + (l − |m|)/2 solutions (both rounded
down). The mode functions of the Walker modes are
given by[

δmx;lmν

δmy;lmν

]
= −

[
χP[ωlmν] iκP[ωlmν]

−iκP[ωlmν] χP[ωlmν]

][
∂xψlmν

∂yψlmν

]
,

(C7)

where the magnetostatic potential inside the sphere is

ψlmν (r) = Pm
l (ξ )Y m

l (η, φ). (C8)

For the phonon modes, we consider an unpinned sphere
and stress-free boundary conditions [76]. There are two fami-
lies of mechanical modes of a homogeneous sphere: torsional
(T) and spherical (S) modes. Torsional modes are purely
shear modes, while spherical modes involve both shear and
compression. Both families of modes are labeled by three
indices {νlm}, where l and m are polar and azimuthal indices
−l � m � l while ν is a radial index. We focus here on S
modes, whose frequencies are given by [76]

T (a)
λν T (b)

λν − T (c)
λν T (d )

λν = 0, (C9)

where

T (a)
λν =

[
λ(λ − 1) − β̃2[ω]R2

2

]
jλ(α̃[ω]R)

+ 2α̃[ω]R jλ+1(α̃[ω]R),

T (b)
λν =

[
λ2 − 1 − β̃2[ω]R2

2

]
jλ(β̃[ω]R)

+ β̃[ω]R jλ+1(β̃[ω]R),

T (c)
λν = λ(λ + 1)[(λ − 1) jλ(β̃[ω]R) − β̃[ω]R jλ+1(β̃[ω]R)],

T (d )
λν = (λ − 1) jλ(α̃[ω]R) − α̃[ω]R jλ+1(α̃[ω]R). (C10)

The parameters α̃[ω] = ω/cL and β̃[ω] = ω/cT are given in
terms of the longitudinal (L) and transverse (T) sound veloc-
ities cL,T . jλ(x) denotes the spherical Bessel function. Since
Eq. (C9) does not depend on m, for given {νl} there are 2l + 1
degenerate modes. The mode functions for an S mode read, in
spherical coordinates {er, eθ , eφ},

f νλm = eiφm

⎡
⎢⎣

Gνλ(r)Pm
l (cos θ )

Fνλ(r)∂θPm
l (cos θ )

im
sin θ

Fνλ(r)Pm
l (cos θ )

⎤
⎥⎦, (C11)

where

Gνλ(r) = R

r

[
λ jλ(α̃[ω]r) − α̃[ω]r jλ+1(α̃[ω]r)

− T (d )
λν

T (b)
λν

λ(λ + 1) jλ(β̃[ω]r)

]
,

Fνλ(r) = R

r

[
jλ(α̃[ω]r) + T (d )

λν

T (b)
λν

β̃[ω]r jλ+1(β̃[ω]r)

− T (d )
λν

T (b)
λν

(λ + 1) jλ(β̃[ω]r)

]
. (C12)

The experiment in Ref. [43] has probed the coupling to
the S122 mode, which is our case of study throughout the
main text.

APPENDIX D: PHASES OF THE MAGNOMECHANICAL
COUPLINGS

The magnomechanical coupling rates appearing in Eq. (37)
are complex numbers, but we can absorb the phase of one
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of such coupling rate into the phonon field. Specifically, we
chose to absorb the phase of the Kittel mode magnome-

chanical coupling. We write g0
mb = |g0

mb|eiφmb , and define ˆ̃b =
b̂eiφmb , such that

Ĥmb̃

h̄
= ωmm̂†m̂ +

∑
j

ω j m̂
†
j m̂ + �b

ˆ̃b† ˆ̃b + g0
mb̃m̂†m̂( ˆ̃b + ˆ̃b†) +

∑
j

[
g0

mjb̃
m̂†

j m̂ j
ˆ̃b + H.c.

] + m̂†
∑

j

[
g0

mmjb̃
m̂ j

ˆ̃b + H.c.
]

+
∑
j �=k

[
g0

mkmjb̃
m̂†

k m̂ j
ˆ̃b + H.c.

]
, (D1)

where g0
mb̃

= |g0
mb|, g0

mjb̃
= g0

mjbe−iφmb , and g0
mmjb̃

=
g0

mmjbe−iφmb . Such a transformation corresponds to
taking the phase of the coupling between the phonon
mode and the Kittel mode as a reference for the other

couplings. From now on, we take ˆ̃b → b̂. This gauge
transformation of the phonon field does not change the
Kerr nonlinear terms, which are quadratic in the phonon
field.
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