Delft University of Technology

Two-block substitutions and morphic words

Dekking, Michel; Keane, Michael
DOI
10.1016/j.aam.2023.102536

Publication date
2023

Document Version

Final published version
Published in
Advances in Applied Mathematics

Citation (APA)

Dekking, M., \& Keane, M. (2023). Two-block substitutions and morphic words. Advances in Applied Mathematics, 148, Article 102536. https://doi.org/10.1016/j.aam.2023.102536

Important note

To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy

Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

Two-block substitutions and morphic words

Michel Dekking ${ }^{\text {a,b,* }}$, Michael Keane ${ }^{\text {c,d }}$
${ }^{\text {a }}$ CWI, Amsterdam, the Netherlands
b 3TU Applied Mathematics Institute and Delft University of Technology, Faculty EWI, P.O. Box 5031, 2600 GA Delft, the Netherlands
${ }^{\text {c }} 3 T U$ Applied Mathematics Institute and Delft University of Technology, Faculty EWI, the Netherlands
${ }^{\text {d }}$ Mathematical Institute, University of Leiden, Niels Bohrweg 1, 2333 CA Leiden, the Netherlands

A R T I C L E I N F O

Article history:

Received 12 March 2023
Received in revised form 30 March
2023
Accepted 4 April 2023
Available online xxxx

MSC:

68R15

Keywords:
Two-block substitutions
Kolakoski sequence
Morphic words
Base 3/2

A B S T R A C T

We consider in general two-block substitutions and their fixed points. We prove that some of them have a simple structure: their fixed points are morphic sequences. Others are intrinsically more complex, such as the Kolakoski sequence. We prove this for the Thue-Morse sequence in base $3 / 2$.
© 2023 Delft University of Technology. Published by Elsevier
Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

[^0]https://doi.org/10.1016/j.aam.2023.102536
0196-8858/© 2023 Delft University of Technology. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Let $A=\{0,1\}, A^{*}$ the monoid of all words over A, and let T^{*} be the submonoid of 0 -1-words of even length. A two-block substitution κ is a map

$$
\kappa:\{00,01,10,11\} \rightarrow A^{*} .
$$

A two-block substitution κ acts on T^{*} by defining for $w_{1} w_{2} \ldots w_{2 m-1} w_{2 m} \in T^{*}$

$$
\kappa\left(w_{1} w_{2} \ldots w_{2 m-1} w_{2 m}\right)=\kappa\left(w_{1} w_{2}\right) \ldots \kappa\left(w_{2 m-1} w_{2 m}\right) .
$$

In the case that $\kappa\left(T^{*}\right) \subseteq T^{*}$, we call $\kappa 2$-block stable. This property entails that the iterates κ^{n} are all well-defined for $n=1,2, \ldots$.

The most interesting example of a two-block substitution that is not 2-block stable is the Oldenburger-Kolakoski two-block substitution κ_{K} given by

$$
\kappa_{\mathrm{K}}(00)=10, \quad \kappa_{\mathrm{K}}(01)=100, \quad \kappa_{\mathrm{K}}(10)=110, \quad \kappa_{\mathrm{K}}(11)=1100 .
$$

The fact that κ_{K} is not 2-block stable, and so its iterates κ_{K}^{n} are not defined, makes it very hard to establish properties of the fixed point $x_{\mathrm{K}}=110010 \ldots$ (usually written as 221121...) of κ_{K}, see, e.g., [4].

In Section 2 we show that even if a two-block substitution κ_{K} is not 2-block stable, then still it can be well-behaved in the sense that its fixed points are pure morphic words.

In Section 3 we prove that the Thue-Morse word in base $3 / 2$ is not well-behaved: it cannot be generated as a coding of a fixed point of a morphism.

This is a remarkable contrast with the behaviour of the sum of digits function for two seemingly more complicated bases: the Fibonacci base, and the golden mean base -see the paper [6].

2. Two-block substitutions with conjugated morphisms

Let κ be a two-block substitution on T^{*}, and let σ be a morphism on A^{*} with $\sigma\left(T^{*}\right) \subseteq$ T^{*}. We say κ and σ commute if $\kappa \sigma(w)=\sigma \kappa(w)$ for all w from T^{*}.

In this case we say that σ is conjugated to κ.
Note that if $\kappa \sigma=\sigma \kappa$, then for all $n \geq 1$ one has $\kappa \sigma^{n}=\sigma^{n} \kappa$ on T^{*}.
Let $\sigma: A^{*} \rightarrow A^{*}$ be a morphism. Then σ induces a two-block substitution κ_{σ} by defining

$$
\kappa_{\sigma}(i j)=\sigma(i j) \quad \text { for } i, j \in A
$$

We mention the following property of κ_{σ}, which is easily proved by induction.
Proposition 1. Let $\sigma: A^{*} \rightarrow A^{*}$ be a morphism, let n be a positive integer, and suppose that κ_{σ} is two-block stable. Then $\kappa_{\sigma}^{n}=\kappa_{\sigma^{n}}$.

We call σ the trivial conjugated morphism of the two block substitution κ_{σ}.
Not all morphisms σ can occur as trivial conjugated morphisms, but many will be according to the following simple property.

Proposition 2. Any morphism σ on $\{0,1\}$ with the lengths of $\sigma(0)$ and $\sigma(1)$ both odd or both even is conjugated to the two-block substitution $\kappa=\kappa_{\sigma}$.

Example: for the Fibonacci morphism φ defined by $\varphi(0)=01, \varphi(1)=0$, one can take the third power φ^{3} to achieve this (cf. [13, A143667]).

In the remaining part of this section we discuss non-trivial conjugated morphisms.

Theorem 3. Let κ be a two-block substitution on T^{*} conjugated with a morphism σ on A^{*}. Suppose that there exist i, j from A such that $\kappa(i j)$ has prefix $i j$, and such that $i j$ is also prefix of a fixed point x of σ. Then also κ has fixed point x.

Proof. Letting $n \rightarrow \infty$ in $\kappa \sigma^{n}(i j)=\sigma^{n} \kappa(i j)=\sigma^{n}(i j \ldots)$ gives $\kappa(x)=x$.

The Pell word $w_{\mathrm{P}}=0010010001001 \ldots$ is the unique fixed point of the Pell morphism π given by

$$
\pi:\left\{\begin{array}{l}
0 \rightarrow 001 \\
1 \rightarrow 0
\end{array}\right.
$$

The following result proves a conjecture from R.J. Mathar in [13, A289001]. The difficulty here is that since the 2-block substitution in Theorem 4 has the property that $\kappa(0010)=0010010$ has odd length, the two-block substitution κ is not 2-block stable.

Theorem 4. Let κ be the two-block substitution ${ }^{1}$:

$$
\kappa:\left\{\begin{array}{l}
00 \rightarrow 0010 \\
01 \rightarrow 001 \\
10 \rightarrow 010
\end{array}\right.
$$

Then the unique fixed point of κ is the Pell word w_{P}.
Proof. We apply Theorem 3 with $i j=00$.
Note first that $\pi\left(T^{*}\right) \subseteq T^{*}$. Next, we have to establish that κ and π commute on T^{*}.
It suffices to check this for the three generators 00,01 and 10 from the four generators of T^{*} :

[^1]\[

$$
\begin{aligned}
& \kappa \pi(00)=\kappa(001001)=0010010001=\pi(0010)=\pi \kappa(00), \\
& \kappa \pi(01)=\kappa(0010)=0010010=\pi(001)=\pi \kappa(01) \\
& \kappa \pi(10)=\kappa(0001)=0010001=\pi(010)=\pi \kappa(10) .
\end{aligned}
$$
\]

3. Thue-Morse in base $3 / 2$

A natural number N is written in base $3 / 2$ if N has the form

$$
\begin{equation*}
N=\sum_{i \geq 0} d_{i}\left(\frac{3}{2}\right)^{i} \tag{1}
\end{equation*}
$$

with digits $d_{i}=0,1$ or 2 .
We write these expansions as

$$
\mathrm{SQ}(N)=d_{R}(N) \ldots d_{1}(N) d_{0}(N)=d_{R} \ldots d_{1} d_{0} .
$$

Let for $N \geq 0, s_{3 / 2}(N):=\sum_{i=0}^{i=R} d_{i}(N)$ be the sum of digits function of the base $3 / 2$ expansions. The Thue-Morse word in base $3 / 2$ is the word $\left(x_{3 / 2}(N)\right):=\left(s_{3 / 2}(N) \bmod 2\right)=$ $0100101011011010101 \ldots$

Theorem 5. ([5]) Let the two-block substitution κ_{TM} be defined by

$$
\kappa_{\mathrm{TM}}: \begin{cases}00 & \rightarrow 010 \\ 01 & \rightarrow 010 \\ 10 & \rightarrow 101 \\ 11 & \rightarrow 101\end{cases}
$$

Then the word $x_{3 / 2}$ is the fixed point of κ_{TM} starting with 0 .
The Thue-Morse word t is fixed point with prefix 0 of the Thue-Morse morphism τ : $0 \rightarrow 01,1 \rightarrow 10$. It satisfies the recurrence relations $t(2 N)=t(N), t(2 N+1)=1-t(N)$.

The fixed point $x_{3 / 2}$ satisfies very similar recurrence relations:

$$
x_{3 / 2}(3 N)=x_{3 / 2}(2 N), x_{3 / 2}(3 N+1)=1-x_{3 / 2}(2 N), x_{3 / 2}(3 N+2)=x_{3 / 2}(2 N)
$$

We call κ_{TM} the Thue-Morse two-block substitution.
We now discuss the Kolakoski word x_{K}. This word was introduced by Kolakoski (years after Oldenburger [12]) as a problem in [8]. The problem was to prove that x_{K} is not eventually periodic. Its solution in [9] is however incorrect (The claim that words w with minimal period N in $w w w \ldots$ map to words with period N_{1} satisfying $N<N_{1}<2 N$ by replacing run lengths by the runs themselves is false. For example, if the period word is $w=21221$, then $w w$ maps to the period word 2212211211211221 , or its binary
complement image.) A stronger result was proved by both Carpi [3] and Lepistö [10]: x_{K} does not contain any cubes. The fixed point $x_{3 / 2}$ of κ_{TM} has more repetitiveness. It contains for example the fourth power 01010101.

The Thue-Morse word is a purely morphic word, i.e., fixed point of a morphism. It is known that the Kolakoski word is not purely morphic ([4]). However it is still open whether the Kolakoski word is morphic, i.e., image under a coding (letter to letter map) of a fixed point of a morphism. The tool here is the subword complexity function $(p(N))$, which gives the number of words of length N occurring in an infinite word. A well known result tells us that when the subword complexity function increases too fast, faster than N^{2}, then a word can not be morphic. There is one example of a two-block substitution which yields a word that is not morphic given by Lepistö in the paper [11].

Theorem 6. ([11]) Let the two-block substitution κ_{L} be defined by

$$
\kappa_{\mathrm{L}}: \begin{cases}00 & \rightarrow 011 \\ 01 & \rightarrow 010 \\ 10 & \rightarrow 001 \\ 11 & \rightarrow 000\end{cases}
$$

Then the fixed point $010011000011 \ldots$ of κ_{L} has subword complexity function $p(N)$ satisfying $p(N)>C \cdot N^{t}$ for some $C>0$ and $t>2$.

We do not know how to prove this 'faster than quadratic' property for the base $3 / 2$ Thue-Morse word, but still we can use Lepistö's result to obtain the following.

Theorem 7. The base 3/2 Thue-Morse word $x_{3 / 2}$ is not a morphic word.
The proof of Theorem 7 will be based on what we call the base $3 / 2$ Toeplitz word.
Recall (see, e.g., [1, Lemma 3]) that the binary base Toeplitz word $z=01000 \ldots$ is directly derived from the binary Thue-Morse word $t=01101001 \ldots$ by putting $z(N)=$ $t(N)+t(N+1)+1 \bmod 2$. It appears that for the generalization to base $3 / 2$, there is a subtle move: $z(N)=t(N)+t(N+1)+1 \bmod 2$ is equivalent to $z(N)=t(2 N)+t(2 N+$ 2) $+1 \bmod 2$. We therefore define the base $3 / 2$ Toeplitz word x_{T} for $N \geq 0$ by

$$
\begin{equation*}
x_{\mathrm{T}}(N)=x_{3 / 2}(3 N)+x_{3 / 2}(3 N+3)+1 \quad \bmod 2 \tag{2}
\end{equation*}
$$

So $x_{\mathrm{T}}=101100111100 \ldots$.
With some effort one can find in the paper [7, Theorem 3.2] a completely different proof of our next result.

Theorem 8. The base 3/2 Toeplitz word x_{T} is the unique fixed point of the two-block substitution given by

$$
\kappa_{\mathrm{T}}: \begin{cases}00 & \rightarrow 111 \\ 01 & \rightarrow 110 \\ 10 & \rightarrow 101 \\ 11 & \rightarrow 100\end{cases}
$$

Proof. In this proof \equiv denotes equality modulo 2 . The goal is to show that x_{T} satisfies for $m \geq 0$ the recurrence relations in Equations (3), (4), (5). This implies directly that x_{T} is fixed point of the 2-3-block substitution $a, b \rightarrow 1, a+1, b+1$. Taking $a, b=0,1$ one then obtains κ_{T}.

$$
\begin{align*}
x_{\mathrm{T}}(3 m) & \equiv 1 \tag{3}\\
x_{\mathrm{T}}(3 m+1) & \equiv x_{\mathrm{T}}(2 m)+1 \tag{4}\\
x_{\mathrm{T}}(3 m+2) & \equiv x_{\mathrm{T}}(2 m+1)+1 \tag{5}
\end{align*}
$$

The proof of these equations is based on the properties of the 6-9-block substitution generated by κ_{TM} :

$$
\lambda_{\mathrm{TM}}: \begin{cases}010010 & \rightarrow 010010101 \\ 010101 & \rightarrow 010010010 \\ 101010 & \rightarrow 101101101 \\ 101101 & \rightarrow 101101010\end{cases}
$$

It is easy to see that $x_{3 / 2}$ is the fixed point of $\lambda_{\text {TM }}$ starting with 010010 . We first prove Equation (3). Consider $N=3 m$. Then $3 N=9 m$, and $3 N+3=9 m+3$. So by Equation (2) we have

$$
x_{\mathrm{T}}(3 m) \equiv x_{3 / 2}(9 m)+x_{3 / 2}(9 m+3)+1
$$

But $x_{3 / 2}(9 m)$ and $x_{3 / 2}(9 m+3)$ are the first and the fourth letter in an image block of length 9 of λ_{TM}, which are generated by the first and the third letter of the corresponding source block of $\lambda_{\text {TM }}$. For any source block these two letters are equal (simply because the source blocks occur at a position $0 \bmod 3$ in $x_{3 / 2}$).

The conclusion is that $x_{\mathrm{T}}(3 m)=x_{3 / 2}(9 m)+x_{3 / 2}(9 m+3)+1 \equiv 1$ for all m.
To prove Equation (4), consider $N=3 m+1$. Then $3 N=9 m+3$, and $3 N+3=9 m+6$.
So by Equation (2) we have

$$
x_{\mathrm{T}}(3 m+1) \equiv x_{3 / 2}(9 m+3)+x_{3 / 2}(9 m+6)+1
$$

But $x_{3 / 2}(9 m+3)$ and $x_{3 / 2}(9 m+6)$ are the fourth letter and the seventh letter in an image block of length 9 of λ_{TM}, which are generated by the third and the fifth letter of the corresponding source block of λ_{TM}. These are at positions $6 m+2$, respectively $6 m+4$. So

$$
x_{3 / 2}(9 m+3)=x_{3 / 2}(6 m+2), x_{3 / 2}(9 m+6)=x_{3 / 2}(6 m+4)
$$

On the other hand, by Equation (2) we have

$$
x_{\mathrm{T}}(2 m) \equiv x_{3 / 2}(6 m)+x_{3 / 2}(6 m+3)+1
$$

But $x_{3 / 2}(6 m)=x_{3 / 2}(6 m+2)$, because they are the first and the third letter in a block 010 or 101. Also, $x_{3 / 2}(6 m+3)+1 \equiv x_{3 / 2}(6 m+4)$, because $x_{3 / 2}(6 m+3)$, respectively $x_{3 / 2}(6 m+4)$ are the first and the second letter in a block 010 or 101.

The conclusion is that for all m

$$
\begin{aligned}
x_{\mathrm{T}}(3 m+1) & \equiv x_{3 / 2}(9 m+3)+x_{3 / 2}(9 m+6)+1 \equiv x_{3 / 2}(6 m)+x_{3 / 2}(6 m+3)+1+1 \\
& \equiv x_{\mathrm{T}}(2 m)+1
\end{aligned}
$$

To prove Equation (5), consider $N=3 m+2$. Then $3 N=9 m+6$, and $3 N+3=9 m+9$.
So by Equation (2) we have

$$
x_{\mathrm{T}}(3 m+2) \equiv x_{3 / 2}(9 m+6)+x_{3 / 2}(9 m+9)+1
$$

But $x_{3 / 2}(9 m+6)$ and $x_{3 / 2}(9 m+9)$ are the seventh letter and the first letter in an image block of length 9 of λ_{TM}, which are generated by the third and the first letter of the corresponding source block of λ_{TM}. These are at positions $6 m+4$, respectively $6 m+6$. So

$$
x_{3 / 2}(9 m+6)=x_{3 / 2}(6 m+4), x_{3 / 2}(9 m+9)=x_{3 / 2}(6 m+6)
$$

On the other hand, by Equation (2) we have

$$
x_{\mathrm{T}}(2 m+1) \equiv x_{3 / 2}(6 m+3)+x_{3 / 2}(6 m+6)+1
$$

But $x_{3 / 2}(6 m+3) \equiv x_{3 / 2}(6 m+4)+1$, because they are the first and the second letter in a block 010 or 101 . The conclusion is that for all m

$$
\begin{aligned}
x_{\mathrm{T}}(3 m+2) & \equiv x_{3 / 2}(9 m+6)+x_{3 / 2}(9 m+9)+1 \equiv x_{3 / 2}(6 m+3)+1+x_{3 / 2}(6 m+6)+1 \\
& \equiv x_{\mathrm{T}}(2 m+1)+1 .
\end{aligned}
$$

Proof of Theorem 7. The crucial observation is that the base $3 / 2$ Toeplitz two-block substitution κ_{T} is just the binary complement of the κ_{L} two-block substitution. In particular Theorem 6 also holds for the base $3 / 2$ Toeplitz word, and so x_{T} cannot be a morphic word.

Suppose that the base $3 / 2$ Thue-Morse word $\left(x_{3 / 2}(N)\right)$ is a morphic word. Then an application of [2, Theorem 7.9.1] yields that the word $\left(x_{3 / 2}(3 N)\right)$ is morphic. Next, [2, Theorem 7.6.4] gives that the direct product word $\left(\left[x_{3 / 2}(3 N), x_{3 / 2}(3(N+1))\right]\right)$ is morphic.

Finally, another application of [2, Theorem 7.9.1] yields that according to Equation (2) this direct product word maps to a morphic word $\left(x_{\mathrm{T}}(N)\right)$ under the morphism $[0,0] \mapsto 1,[0,1] \mapsto 0,[1,0] \mapsto 0,[1,1] \mapsto 1$. But this contradicts the fact that $\left(x_{\mathrm{T}}(N)\right)$ is not morphic. Hence the base $3 / 2$ Thue-Morse word is not a morphic word.

Acknowledgment

We are grateful to Jean-Paul Allouche for several useful comments.

References

[1] J.-P. Allouche, A. Arnold, J. Berstel, S. Brlek, W. Jockusch, S. Plouffe, B.E. Sagan, A relative of the Thue-Morse sequence, Discrete Math. 139 (1995) 455-461.
[2] J.-P. Allouche, J. Shallit, Automatic Sequences: Theory, Applications, Generalizations, Cambridge University Press, 2003.
[3] A. Carpi, Repetitions in the Kolakovski sequence, Bull. Eur. Assoc. Theor. Comput. Sci. 50 (1993) 194-196.
[4] F.M. Dekking, What is the long range order in the Kolakoski sequence?, in: R.V. Moody (Ed.), Proceedings of the NATO Advanced Study Institute, Waterloo, ON, August 21-September 1, 1995, Kluwer, Dordrecht, Netherlands, 2009, pp. 115-125.
[5] F.M. Dekking, The Thue-Morse sequence in base 3/2, J. Integer Seq. 26 (2023) 23.2.3.
[6] F.M. Dekking, The sum of digits functions of the Zeckendorf and the base phi expansions, Theor. Comput. Sci. 859 (2021) 70-79.
[7] T. Edgar, H. Olafson, J. Van Alstine, Some combinatorics of rational base representations, preprint, available at https://community.plu.edu/~edgartj/preprints/basepqarithmetic.pdf, 2014.
[8] W. Kolakoski, Self generating runs, Problem 304, Am. Math. Mon. 72 (1965) 674.
[9] W. Kolakoski, N. Ücoluk, Solution to self generating runs, Problem 304, Am. Math. Mon. 73 (1966) 681-682.
[10] A. Lepistö, Repetitions in Kolakoski sequence, in: Developments in Language Theory, 1994, pp. 130-143.
[11] A. Lepistö, On the power of periodic iteration of morphisms, in: ICALP 1993, in: Lect. Notes Comp. Sci, vol. 700, 1993, pp. 496-506.
[12] R. Oldenburger, Exponent trajectories in symbolic dynamics, Trans. Am. Math. Soc. 46 (3) (1939) 453-466.
[13] The On-Line Encyclopedia of Integer Sequences, founded by N.J.A Sloane, electronically available at https://oeis.org.

[^0]: * Corresponding author at: 3TU Applied Mathematics Institute and Delft University of Technology, Faculty EWI, P.O. Box 5031, 2600 GA Delft, the Netherlands.

 E-mail addresses: f.m.dekking@tudelft.nl, Michel.Dekking@cwi.nl (M. Dekking), m.s.keane@tudelft.nl (M. Keane).

[^1]: ${ }^{1}$ Here it is not necessary to define $\kappa(11)$, since 11 does not occur in images of words without 11 under κ.

