
 
 

Delft University of Technology

Efficient Inverse Modeling Framework for Energy Transition Applications Using Operator-
Based Linearization and Adjoint Gradients

Tian, Xiaoming; Voskov, Denis

DOI
10.2118/212169-MS
Publication date
2023
Document Version
Final published version
Published in
SPE Reservoir Simulation Conference 2023 Proceedings Papers

Citation (APA)
Tian, X., & Voskov, D. (2023). Efficient Inverse Modeling Framework for Energy Transition Applications
Using Operator-Based Linearization and Adjoint Gradients. In SPE Reservoir Simulation Conference 2023
Proceedings Papers Article SPE-212169-MS (Society of Petroleum Engineers - SPE Reservoir Simulation
Conference, RSC 2023). Society of Petroleum Engineers. https://doi.org/10.2118/212169-MS
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.2118/212169-MS
https://doi.org/10.2118/212169-MS


Green Open Access added to TU Delft Institutional Repository 

'You share, we take care!' - Taverne project  
 

https://www.openaccess.nl/en/you-share-we-take-care 

Otherwise as indicated in the copyright section: the publisher 
is the copyright holder of this work and the author uses the 
Dutch legislation to make this work public. 

 
 



SPE-212169-MS

Efficient Inverse Modeling Framework for Energy Transition Applications
Using Operator-Based Linearization and Adjoint Gradients

Xiaoming Tian, TU Delft, Denis Voskov, and TU Delft, Stanford University

Copyright 2023, Society of Petroleum Engineers DOI 10.2118/212169-MS

This paper was prepared for presentation at the SPE Reservoir Simulation Conference held in Galveston, Texas, USA, 28–30 March 2023.

This paper was selected for presentation by an SPE program committee following review of information contained in an abstract submitted by the author(s). Contents
of the paper have not been reviewed by the Society of Petroleum Engineers and are subject to correction by the author(s). The material does not necessarily reflect
any position of the Society of Petroleum Engineers, its officers, or members. Electronic reproduction, distribution, or storage of any part of this paper without the written
consent of the Society of Petroleum Engineers is prohibited. Permission to reproduce in print is restricted to an abstract of not more than 300 words; illustrations may
not be copied. The abstract must contain conspicuous acknowledgment of SPE copyright.

Abstract
In this paper, we present an efficient inverse modeling framework for energy transition applications. The
key feature of this framework is a combination of adjoint gradients and Operator-based Linearization (OBL)
technique to achieve high efficiency in inverse modeling based on forward simulations. This framework
allows conducting the history matching of practical industrial applications using the gradient descent method
with considerable model control variables in a reasonable time. Generally, the inverse modeling of industrial
applications involves large amounts of gradient calculations in algorithms based on gradient descent. In
this study, we analytically compute the gradient using the adjoint gradient method as an alternative to
the widely used numerical gradient method where many time-consuming forward simulation runs are
needed. In the adjoint gradient approach, the objective function is linearly combined with the governing
equation by introducing a Lagrange multiplier. That allows for finding the analytical gradient in a backward
manner. The developed adjoint gradient method takes full advantage of the OBL efficiency and flexibility
when assembling the Jacobian and some relevant derivatives. We demonstrate the applications of the
proposed inverse modeling framework to different energy transition applications, including petroleum
production, extraction of geothermal energy, and CO2 storage. We demonstrate various treatments of
objective function definitions, well controls, and measurement errors for these industrial applications. For
petroleum production, the proposed framework is tested on the multiphase multi-component flow problem,
which is illustrated by an example of data-driven Discrete Well Affinity model. For this application, only
production data is considered. The geothermal problem involves an additional energy balance equation
and various property calculations for water and steam. In this application, together with the production
data, additional electromagnetic monitoring is used in the history matching process. The results show that
electromagnetic monitoring significantly improves the inversion process. We conclude the description of
our framework with an application relevant to CO2 sequestration process. The CO2 storage modeling is
complicated due to the complex physical phenomena to be considered. In this application, tracer data
are used as an additional observation, which allows considering uncertainties in the dynamics of CO2.
In this study, the adjoint gradient method is specially designed and customized for OBL infrastructure
of the Delft Advanced Research Terra Simulator (DARTS). This allows us to design the general-purpose
inversion module with efficient gradient computation, while most existing simulation platforms lack this
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2 SPE-212169-MS

capability. Based on the multiphysics simulation engine in DARTS, the various observation information
can be combined in the proposed framework. This allows us to solve the general-purpose inverse modeling
problems for most energy transition applications.

Introduction
With the increasing amounts of carbon emission and atmospheric pollution due to the burning of fossil
fuels, more and more governments and institutes started to initiate and conduct various energy transition
policies. Those policies include (but are not limited to): improving energy efficiency and promoting energy
conservation; using the low carbon fuels; developing renewable energy; afforestation and reforestation;
and CO2 capture and storage (Leung et al., 2014). Amongst these approaches and policies, there are some
techniques that are related to underground fluid flows, for example, geothermal energy, CO2 storage, natural
gas, hydrogen storage, etc.

Numerical simulation is a powerful tool to help engineers and industries to analyze the evaluate the
feasibility of those underground energy transition projects. However, the complexity of the geological model
and the calculation of physical properties cause difficulties in solving linearized systems. The upscaling
method mainly focuses on reducing the complexity of the geological model to achieve better performance by
utilizing a coarse grid to replicate the high-fidelity model response (Durlofsky, 2005). Multi-scale method
(Hou and Wu, 1997; Jenny et al., 2003) and streamline simulation (Datta-Gupta and Datta-Gupta, 2007)
share the similar idea of reducing the degrees of freedom of the reservoir model to compute the model
response without losing much accuracy.

An alternative approach is to reduce the computational cost of the calculation of physical properties,
for example, the flash calculation. The Compositional Space Parametrization (CSP) for compositional
simulation was proposed to improve the nonlinear convergence and therefore reduce the cost in iterations
(Zaydullin et al., 2012, 2013). Later, Voskov (2017a) proposed Operator-Based Linearization (OBL)
approach to "pre-process" the calculation of the physical properties and their associated derivatives. This
approach reduces large amount of calculations of physical properties in the course of Jacobian assembly.
Instead, it only calculates the properties at certain fixed supporting points. For those physical properties
lying in the area formed by the supporting points, they are efficiently interpolated from the values at the
supporting points. This approach was further improved by introducing the adaptive parameterization of
the physical parameter space (Khait and Voskov, 2018a). This OBL approach was incorporated into the
reservoir simulation framework Delft Advanced Research Terra Simulator (DARTS).

With the development of various advanced open-source reservoir simulation frameworks, many of them
are applied to simulate the physical process of energy transition projects. Lie et al. (2015) utilized the
framework of MATLAB Reservoir Simulation Toolbox (MRST) to simulate the CO2 storage process and
proposed a simulation workflow for the large-scale CO2 storage project. Voskov et al. (2017) modeled
various CO2 sequestration mechanisms based on fully compositional multi-scale simulation using a
combination of reservoir simulator (ADGPRS) and chemical solver (GFLASH). Similar developments have
been performed in DuMux with a focus on early timescale chemical reactions relevant to CO2 sequestration
Ahusborde et al. (2021). Lyu et al. (2021) investigated foam-assisted CO2 storage in saline aquifers using
the reservoir simulation framework Delft Advanced Research Terra Simulator (DARTS). Khait and Voskov
(2018c) and Wang et al. (2020) utilized DARTS for the application of geothermal reservoir simulation. Kong
et al. (2017) simulated and conducted the optimization of the well placement of the geothermal doublets
system based on the simulator OpenGeoSys.

All of the aforementioned examples are about the utilization of forward simulation of energy transition
applications assuming certain model parameters. However, it is crucial to inverse and calibrate the model
before conducting the numerical simulation in order to match the historical data from the field. Guo et al.
(2018) proposed a data-driven history matching named Interwell Numerical Simulation Model with Front-
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Tracking (INSIM-FT). However, the model used in the INSIM-FT method is highly simplified into several
reservoir nodes and well nodes. Although more nodes can be introduced, this increases the computational
cost for the evaluation of gradient in the history matching iterations. Tian et al. (2021) introduced a data-
driven Discrete Well Affinity (DiWA) model. Instead of using a highly simplified reservoir model, a coarse
model that contains the basic geological information (e.g. the contour, thickness, etc.) is taken as the basis to
train the model. At the same time, the adjoint method is implemented in the DiWA framework to increase the
efficiency of the gradient evaluation. The DiWA method was later extended to the stochastic DiWA method
(Tian and Voskov, 2022). To quantify the uncertainty of the model, the method of Randomized Maximum
Likelihood and Maximum A-Posteriori were also introduced in the inverse modeling of reservoir simulation
(Stordal and Nævdal, 2017; Bukshtynov et al., 2015; Vo and Durlofsky, 2014; Evensen et al., 2022).

This study will focus on inverse modeling for energy transition applications. First, the governing
equations of the energy transition applications are demonstrated and the OBL method is implemented
to linearize the governing equation system. The inverse modeling framework is then explained based on
the introduction of the objective function and the adjoint method. With the proposed inverse modeling
framework, we conducted the history matching to a real hydrocarbon production reservoir, a geothermal
reservoir, and an experimental CCS project to test the performance of this framework. Various types of
misfits are considered in the objective function, including well rates, BHP, well temperature, and time-lapse
reservoir data. The results show that the computational time of training of both geothermal and CCS tracer
test model can be finished within hours, even though the number of control variables is more than 70000
in each model. The model responses have a good match with the observations of well rates and time-lapse
data. The permeability result also shows that the optimizer is able to capture the characteristics of the fluid
flow pattern, especially in the region of plumes where the fluid dynamics are very pronounced.

Forward simulation
The energy transition simulation problem involves solving the energy and mass governing equations. In this
section, the governing equation coupling both energy and mass terms are described. Their discretization
and linearization based on the operator forms are introduced and discussed.

Governing equations
The energy and mass conservation equations describe a flow dynamic system bounded in the domain with
volume Ω and surface Γ. The conservation equation can be written as:

(1)

where Mc is the accumulation term for the cth component (c = 1,…, nc, index of the mass components [e.g.,
water, CO2] and c = nc + 1, index of the energy quantity); Fc is the flux term of the cth component; n is
the unit normal direction pointing outward to the domain boundary; Qc is the source/sink term of the cth

component. The detailed explanations of Mc, Fc, and Qc can be found in Wapperom et al. (2022).
To solve this mass and energy conservation equation numerically, it needs to be discretized spatially and

temporally. Based on the finite volume method using two-point flux approximation, the discretized form of
Equation (1) for the ith reservoir gridblock can be written as:

(2)

Equation (2) shows the residual form of discretized Equation (1). Vi is the volume of the ith gridblock. ωi

is the state variables at the current time step. ωi(k − 1) is the state variables at previous time step. Δt is the time
step. al is the contact area of the interface l between neighboring grids.
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4 SPE-212169-MS

The operator-based linearization (OBL) approach (Voskov, 2017b) is employed in DARTS to linearize the
governing equation of Equation (1). The main idea of OBL is discretizing the physical space to improve the
efficiency of various physical property calculations. This approach was proposed and validated for complex
multi-phase flow problems coupled with the thermal process. With the OBL method, the governing equation
is written in form of state-dependent operators. The values and derivatives of the operators can be evaluated
and interpolated based on supporting points under the different resolutions of physical parameter space. A
more advanced adaptive parameterization technique for OBL calculation was further proposed to largely
reduce the computational time of parameterization in high-dimension physical parameter space (Khait and
Voskov, 2018b). Compared with the conventional Jacobian assembly procedure in numerical simulation,
the OBL method makes the Jacobian assembly procedure more flexible and efficient for highly complex
physical problems. More details about the OBL can be found in Voskov (2017b), Khait and Voskov (2017),
and (Khait and Voskov, 2018b).

Well treatment
The well controls and constraints are inner boundary conditions of the governing equations. In DARTS, a
connection-based multi-segment well model is used to simulate the flow in the wellbore (Khait and Voskov,
2019). Multiple well blocks representing the perforations are connected to the reservoir girdblocks. Those
well blocks (i.e. well body) are then connected to a ghost well block (i.e. well head). This ghost well block
is actually the placeholder where the well controls and constraints are added.

For bottom hole pressure (BHP), a target pressure value is defined at the ghost well block:

(3)

The volumetric rate control is implemented through the volumetric rate operator :

(4)

where

(5)

Qtarget is the target volumetric flow rate at separator conditions [m3/day];  and  are the saturation and
total fluid density respectively at separator conditions; Ts is the well segment transmissibility between well
head and well body; βcj (ω) is the mass flux operator:

(6)

xcj is molar fraction of c component in j phase. ρj, krj, and μj are the density, relative permeability, and
viscosity of phase j, respectively. In the thermal model, the BHP and volumetric rate control can be coupled
with the thermal well control. Specifically, the temperature well control in DARTS is written as:

(7)

where Ttarget is the target temperature of injected fluid, χ(ω) is dependent on the thermodynamic state ω.

Inverse modeling
Instead of conducting inverse modeling with the conventional numerical gradient-based method, the adjoint
method is applied in this study to increase the gradient calculation efficiency. In this section, we will
introduce the general form of the adjoint method.
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SPE-212169-MS 5

The derivations shown in this section will mostly follow the notation of Jansen (2011) and Volkov and
Voskov (2016). The main idea of the adjoint method is that the original objective function J is linearly
combined with the governing equations g (i.e. Equation (2)) to construct an augmented objective function :

(8)

A transposed form of Lagrange multiplier λT is introduced in the augmented objective function. J is the
original objective function. u is the control variable of the inverse modeling problem. In this study, the
transmissibility and well index are taken as the control variables in the inverse modeling problem. The
extrema of Equation (8) are located either at the boundary of the feasibility region or at stationary points.
Here we will not discuss about the case that the extrema are located at the feasibility region boundary,
because this is a relatively simple situation. For the case of stationary points, all first-order derivatives with
respect to all variables λ, ω, and u should be equal to zero. This leads to the following equations:

(9)

(10)

(11)

The Equation (9), Equation (10), and Equation (11) shows the first-order derivatives of the augmented
objective function  with respect to λ, ω and u, respectively.

Apparently, Equation (11) is our main focus to be solved. Because  is the gradient with respect to the
control variables u. In the inverse modeling, the optimizer will use the gradient  to search for the optimum
in the control variable space. To compute , apart from the computation of the derivatives gu(ω, u) and Ju(ω,
u), the Lagrange multiplier λT needs to be solved from Equation (10). As for the Equation (9), it is actually
the residual form of governing equation (i.e. Equation (2)) and already satisfied in forward simulation.

In the numerical simulation, the governing equations are discretized both spatially and temporally. To
implement the adjoint method, Equation (9), Equation (10), and Equation (11) should also be reformed into
discretized formulation correspondingly. Denote the discretized governing equation at kth time step as:

(12)

where ω(k−1) represents the state variables at previous time step. The discretized objective equation J reads:

(13)

where K is the total number of the simulation time steps, Lk is the misfit between the model response and
the observation data at the given simulation time step k. The misfit term Lk is defined as:

(14)

where δt(τobs) is Dirac measure function and is given as:

(15)

where t is the time point at the endpoint of a given simulation time interval, τobs is a set of the observation
time points, which means it is a subset of the simulation time points. As for the expressions of f1, f2, f3, and
f4, their expressions are:
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6 SPE-212169-MS

(16)

where f1, f2, and f3 are the terms representing the misfit between the model response and the observation
data monitored at the wells. They are well phase flow rate, well bottom hole pressure (BHP), and well
temperature, respectively. The term f4 designates the misfit between the model response of the reservoir
block time-lapse data and the effective reservoir block time-lapse observations interpreted from the
geophysical data, for example, the electromagnetic (EM) data or seismic data (Bukshtynov et al., 2015).
Here, nw, np, and nblock are the number of wells, phases, and reservoir blocks, respectively. qw,j is the model
response of the rate of well w and phases j. pw is the BHP of the well w. Tw is the temperature of well w. Θm is
the effective time-lapse data of reservoir block m. The superscript * denotes the corresponding observation
data of the terms in Equation (16). The notation C with the corresponding subscripts and superscripts defines
the inverse of the diagonal covariance matrices of measurement errors.

Now, with the discretized gk and Lk prepared, the discretized form of Equation (10) can be written as:

(17)

(18)

The discretized form of Equation (11) reads:

(19)

Equation (19) will be utilized in the gradient-based algorithm in history matching.

Energy transition applications
In this section, we will provide three examples of energy transition applications including optimal
hydrocarbon production, geothermal energy and CO2 storage project. These three models utilize different
types of mesh to represent the geological structures of interest. All examples include the history matching
to different types of dynamic data.

The application of Discrete Well Affinity (DiWA) model
Here we present an application of the data-driven DiWA model to provide a forecast for a real hydrocarbon
production reservoir. Data-driven proxy models based on physics are getting quite popular since they often
are based on consistent physical concepts which help to provide an accurate model response after appropriate
training procedures. DiWA model proves its efficiency in the production forecast for synthetic problems
Tian et al. (2021); Tian and Voskov (2022). In this example, we show how useful DiWA model can be for
the production forecast and data diagnostic for the real reservoir.

The DiWA model is based on the approximate representation of the reservoir in question using a coarse
unstructured grid which approximates the affinity of wells. In this model, three types of parameters are

D
ow

nloaded from
 http://onepetro.org/spersc/proceedings-pdf/23R

SC
/3-23R

SC
/D

031S012R
005/3092128/spe-212169-m

s.pdf/1 by Bibliotheek TU
 D

elft user on 20 April 2023



SPE-212169-MS 7

usually used as the control variables for data assimilation: transmissibility, well indices, and rock-fluid
interaction parameters. The prior distribution of the control variables is sampled from the standard statistics
of the reservoir based on the measured data such as the interpretation of logs, cores, and analog models.
Based on sampled parameters, the initial filtering is applied using the misfit between the true production
data and the DiWA model response. Filtered models generate a prior ensemble for the following history-
matching procedure.

Based on the prior ensemble, we perform a history matching using Maximum Likelihood Estimation
(MLE) with numerical derivatives for rock-fluid interaction control variables and adjoint gradients for
transmissibilities and well indices. The results of the raw DiWA model application are used then for data
diagnostic. In Figure 1, we show one problematic well with an obvious deviation from historic observations.
You can notice a lower water production in the initial production and an extreme water rate peak in the
depletion period. Further investigation showed that this well was completed in two pay zones which have
never been reflected in the proxy model. Later, the work-over operation on this well leads to a significant
water peak which has no relation to the reservoir dynamic but creates a significant mismatch in the model
training.

Figure 1—The diagnostic and the associated correction of problematic well using DiWA model. Figure (a) and (b)
are the history matching results of this well before and after the correction of the water rate peak, respectively

After several adjustments to the conceptual DiWA model based on the data diagnostic study, we applied
a second attempt for the history matching using the same MLE approach. In the second attempt of history
matching, we are going to include both the depletion and waterflooding periods. After applying consistent
adjustments like filtering, re-scaling by different weights, and revising boundary conditions in the course
of data quality diagnostics, the final results are shown in Figure 2.
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8 SPE-212169-MS

Figure 2—The final history matching results of the total oil and water rates of both depletion and flooding periods

The application of geothermal project
The geothermal reservoir simulation involves the process of thermal transfer in the porous media. Heat
transfer mainly includes two physical processes: heat conduction and heat convection. The geothermal
doublet well is widely used for geothermal energy extraction. Typically, the geothermal water is produced
from the producer and the same amount of water is re-injected into the reservoir through the injector. Since
the doublet geothermal system is dominated by heat convection, the transmissibility will be taken as the
main control variable in this study in the inverse modeling.

The Egg model is a three-dimensional channelized reservoir model with a structured mesh grid. It is an
open-access model ensemble containing 100 permeability realizations (Jansen et al., 2014). The dimensions
of the Egg model are 60 × 60 × 7 blocks with the block size of 30m × 30m × 12m. The permeability in
the x direction is the same as that in y direction. They are imported from the dataset of the Egg model
ensemble. The permeability in z direction is 0.1 times the permeability in x direction. The porosity of
the reservoir is 0.2. The initial reservoir pressure and temperature are 200bar and 348.15K, respectively.
The volumetric heat capacity of rock is 2200kJ/m3/K. The thermal conductivity of rock is 181.44kJ/m/
day/K. The direction of the doublet is almost perpendicular to the fluvial channels in the Egg model
in order to prolong the production time before the cold breakthrough, see Figure 3. In this figure, the
realization "PERM1_ECL.INC" is taken as an example to show the channelizedpattern in the Egg model.
This realization will be utilized to generate the synthetic observations for history matching problem.
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SPE-212169-MS 9

Figure 3—The permeability distribution of the realization "PERM1_ECL.INC". Multiple fluvial channels are
distributed in this realization. The blue and red bars represent the location of the injector and producer, respectively

In this model, all seven layers are perforated for both the injector and producer. To "match" the
production history and the time-lapse temperature data at the reservoir, 71174 control variables are iterated
and updated simultaneously in the history matching procedure. These control variables include 71160
transmissibility for each block interface and 14 well indexes for each perforation of two wells. The "true"
model "PERM1_ECL.INC" runs for 40 years in total. The data from the first 30 years are the observations
for history matching. The data of the rest 10 years are utilized to check the performance of the forecast of
the proposed inverse modeling framework.

Figure 4 shows the results of the temperature of production well. It can be seen that most trained
realizations (the blue curves) fit the observations (the red curve) very well in the training period (the
green area). In the forecasting period (the white area), the trained realizations have a wider range of well
temperature profiles. Considering that most of the realizations have an absolute error smaller than 2 degrees
in the forecasting period, this result is acceptable for the geothermal history matching problem.

Figure 4—The history matching results of the temperature of the production well. The
red curve is the observation data. The gray and blue curves are the results before and
after history matching, respectively. The training period is located in the green area.

The realization "PERM61_ECL.INC" is taken as an example to demonstrate the results of the reservoir
temperature and the permeability distribution. Figure 5 and Figure 6 are the results of the 4th layer of
the realizations. As it can be seen from Figure 5, the reservoir temperature after the history matching
is very similar to the EM data observation. This is because the optimizer has the tendency to block the
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10 SPE-212169-MS

fluvial channels of the initial guess, and then re-construct the true permeability field, see the "permeability
difference" in Figure 6. The "permeability difference" also reflects the accuracy of the adjoint gradient, as
it is able to capture the characteristics of the permeability field and re-construct such intricate patterns of
fluvial channels.

Figure 5—The reservoir temperature of the 4th layer of the realization "PERM61-ECL.INC". The left figure shows the EM
observation data of the "true" model. The middle and right figures are the results before and after history matching.

Figure 6—The permeability distribution of the 4th layer of the Egg model. The left figure shows
the "true" permeability distribution of the realization "PERM1_ECL.INC" in the logarithmic scale.

The middle figure is the initial guess (i.e. the realization "PERM61_ECL.INC"). The right figure
demonstrates the difference of the permeability of "PERM61_ECL.INC" before and after history matching.

The computational time of training each realization is around 8 hours executing on the machine with
the processor of 2x Intel XEON E5-6248R 24C 3.0GHz. Note that the adjoint gradient evaluation of
71174 control variables takes less than 400 seconds, while the computational time of a single forward
simulation is around 15 seconds. Compared with the conventional numerical gradient evaluation, the adjoint
gradient evaluation proposed in this framework is much more efficient especially when the dimension of
the model is very large. For training the whole ensemble of realizations (i.e. 99 realizations except for
"PERM1_ECL.INC"), we parallelly trained all realizations on DelftBlue cluster (Delft Blue, 2022) with
multiple nodes and cores with the same processors mentioned above.

The application of CO2 storage project
It is challenging work to simulate CO2 storage numerically because of the complexity of the model physics.
In this section, we will develop a numerical model of CO2 storage FluidFlower project and conduct the
history matching to the experimental tracer test of this project. The experimental time-lapse observations
of the tracer will be fitted in the course of the history matching iterations.
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SPE-212169-MS 11

An experimental rig was built to mimic the geological layering and the CO2 injection and storage process.
Nine types of sand are filled into the rig to form multiple layers and three faults. Two injection wells are
placed at the bottom left and the middle of the rig, see the red circle in Figure 7. The tracer was injected
through the injection well at the rate of 2250 ml/h for 30 minutes and then 0 ml/h for 30 minutes. By
repeating this procedure (including three time steps) three times, we get the experimental images of tracer
plumes shown in Figure 8.

Figure 7—The sketch of the experimental rig geometry following FluidFlower benchmark description

Figure 8—The experimental images of tracer plumes and the associated
binary maps. The red region is equal to 1, while the blue region is set to 0

The first row of Figure 8 shows the experimental images of the plume after each stage of tracer injection.
The figures in the second row are the associated binary map of the images in the first row. These binary
maps will be used as the observations in history matching. However, it is not easy to directly minimize the
misfit between the model response and the binary data, as the magnitude and the unit of the model response
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12 SPE-212169-MS

are very different from the binary data. Therefore, a hinge loss function is introduced to modify the misfit
defined in f4 of Equation (16). The updated objective function reads:

(20)

where H(u) is the hinge loss function. If the given cell is located at the red region in Figure 8, the hinge
loss function is defined as:

(21)

Note that in this experimental CO2 storage project, the inverse of the covariance of the measurement error
 is not included, as the measurement error is not reported in the experiment description. The threshold

is set as 7 × 10−5 in this study. Similarly, when the given cell is located at the blue region in Figure 8, the
hinge loss function is defined as:

(22)

To consider the uncertainty of the manually filled sand in the experimental rig, the spatial lognormal
variations of the permeability are added to the tuned permeability from Table 1. The porosity and the
anisotropy of the facies are also included in this table. An example of the tuned permeability field with
spatial lognormal variations is shown in Figure 9. The standard deviation of the lognormal variation is set
to 0.02. The added variations are spatially correlated using Kriging interpolation and conform to Gaussian
variogram model. As it can be seen from the left figure in Figure 9, the layers of the final permeability field
contain the spatial variation information from the right figure.

Figure 9—An example of the permeability field with spatial lognormal variation
(left) and the corresponding standard normal distribution dataset (right)

Table 1—The tuned petrophysical properties of the facies

Facies Porosity[-] Permeability[D] Anisotropy[x, y, z]

ESF 0.43 34.6 [1, 1,0.316]

C 0.44 302 [1,1,1]

D 0.44 1016 [1,1,1]

E 0.45 549 [1,1,1]

F 0.45 1976 [1,1,1]

G 0.44 1743 [1,1,1]

Fault1 0.44 2554 [1,1,1]

Fault3 0.44 739 [1,1,1]

W 0.44 10 000 [1,1,1]
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The generated permeability fields are then taken as the references (i.e. the priors) to train the model to
reduce the misfit (i.e. the likelihood) between the model response and observations of binary maps. The
history matching results are shown in Figure 10. The tracer plumes of the trained models have a good match
with the observations.

Figure 10—The observations of binary maps and two examples of the history matching results based on
the observations. The figures demonstrate the model response of the trained model at the last time step

The computational time of a single evaluation of adjoint gradient for 72262 control variables is around
200 seconds, while the forward simulation takes around 70 seconds. The computation is also executed on
the DelftBlue cluster (Delft Blue, 2022) mentioned before. The total computational time of history matching
takes around 4 hours.

The associated changes of the permeability after history matching are shown in Figure 11. The plots
shown in this figure are calculated by using the permeability after history matching minus the reference
permeability (i.e. the prior permeability). There are some zones where the permeability is drastically
changed to fit the tracer plumes. Interestingly, these zones are also the regions where the tracer plumes
are located. This indicates that the optimizer is able to capture the characteristics of the fluid flow pattern,
especially in the regions of plumes where the fluid dynamics are very pronounced.

Figure 11—Two examples of the changes of the permeability distribution
after the history matching based on the tracer concentration observations

Conclusion
An inverse modeling framework is developed in this study for the applications of the energy transition.
This framework is very efficient because of the implementation of the adjoint gradient based on OBL
technique. The proposed framework is weakly sensitive to the degrees of freedom of the control variables
compared with the conventional numerical gradient method, as the computational time of the adjoint
gradient evaluation is comparable to the computational cost of a single forward simulation.

This framework is also designed to allow flexible and various treatments of objective function definitions,
for example, well rates, well temperature, BHP, time-lapse reservoir data, and other reservoir data of
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14 SPE-212169-MS

interest. The applications of different types of objective function definitions are demonstrated by using three
different energy transition examples. A data-driven DiWA model was tested on this framework. For this
application, only production data is considered in the objective function. The data diagnostics and multiple
attempts of history matching were conducted to achieve good history matching and production forecasting
results. In the example of geothermal development, an additional energy balance equation is considered in
the governing equations. Accordingly, the time-lapse electromagnetic monitoring data of the geothermal
reservoir are added to the objective function to train the model. The results show that electromagnetic
monitoring significantly improves the inversion process, as the fluvial channel can be re-constructed to some
extent after history matching. The total training time of the geothermal problem with over 70000 control
variables is around 8 hours. Similar conclusions can be drawn from the CO2 storage project in this study. The
optimizer is able to capture the characteristics of the fluid flow pattern, especially in the region of plumes
where the fluid dynamics are very pronounced. The training time for this project takes around 4 hours. With
the feature of adjoint gradient and various types of objective function definitions, this framework allows us
to solve the general-purpose inverse modeling problems for most energy transition applications.
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