

Delft University of Technology

An Incremental Inverse Reinforcement Learning Approach for Motion Planning with
Separated Path and Velocity Preferences

Avaei, S.; van der Spaa, L.F.; Peternel, L.; Kober, J.

DOI
10.3390/robotics12020061
Publication date
2023
Document Version
Final published version
Published in
Robotics

Citation (APA)
Avaei, S., van der Spaa, L. F., Peternel, L., & Kober, J. (2023). An Incremental Inverse Reinforcement
Learning Approach for Motion Planning with Separated Path and Velocity Preferences. Robotics, 12(2),
Article 61. https://doi.org/10.3390/robotics12020061

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.3390/robotics12020061
https://doi.org/10.3390/robotics12020061

Citation: Avaei, A.; van der Spaa, L.;

Peternel, L.; Kober, J. An Incremental

Inverse Reinforcement Learning

Approach for Motion Planning with

Separated Path and Velocity

Preferences. Robotics 2023, 12, 61.

https://doi.org/10.3390/

robotics12020061

Academic Editor: Dan Zhang

Received: 7 March 2023

Revised: 1 April 2023

Accepted: 14 April 2023

Published: 20 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

robotics

Article

An Incremental Inverse Reinforcement Learning Approach for
Motion Planning with Separated Path and Velocity Preferences
Armin Avaei 1,†, Linda van der Spaa 1,2,*,† , Luka Peternel 1 and Jens Kober 1

1 Cognitive Robotics, Delft University of Technology, 2628 CD Delft, The Netherlands;
arminavaei@gmail.com (A.A.); l.peternel@tudelft.nl (L.P.); j.kober@tudelft.nl (J.K.)

2 Honda Research Institute Europe, 63073 Offenbach am Main, Germany
* Correspondence: l.f.vanderspaa@tudelft.nl
† These authors contributed equally to this work.

Abstract: Humans often demonstrate diverse behaviors due to their personal preferences, for instance,
related to their individual execution style or personal margin for safety. In this paper, we consider
the problem of integrating both path and velocity preferences into trajectory planning for robotic
manipulators. We first learn reward functions that represent the user path and velocity preferences
from kinesthetic demonstration. We then optimize the trajectory in two steps, first the path and then
the velocity, to produce trajectories that adhere to both task requirements and user preferences. We
design a set of parameterized features that capture the fundamental preferences in a pick-and-place
type of object transportation task, both in the shape and timing of the motion. We demonstrate
that our method is capable of generalizing such preferences to new scenarios. We implement our
algorithm on a Franka Emika 7-DoF robot arm and validate the functionality and flexibility of our
approach in a user study. The results show that non-expert users are able to teach the robot their
preferences with just a few iterations of feedback.

Keywords: learning from demonstration; human preferences; incremental inverse reinforcement
learning; coactive learning; physical human–robot interaction

1. Introduction

Autonomy is increasingly being discussed regarding cooperation. A gentler breed
of robots, “cobots”, have started to appear in factories, workshops and construction sites,
working together with humans. A challenge in the deployment of such robots is producing
desirable trajectories for object carrying tasks. A desirable trajectory not only meets the
task constraints (e.g., collision-free movement from start to goal), but also adheres to user
preferences. Such preferences may vary between users, environments and tasks. It is infea-
sible to manually encode them without exact knowledge of how, with whom and where the
robot is being deployed [1]. Manual programming is even more detrimental in cooperative
environments, where robots are required to be easily and rapidly reprogrammed. In this
context, learning preferences directly from humans emerges as an attractive solution.

We address the challenge of learning personalized human preferences, starting from a
robot plan that may not match the execution style or safety standards of a specific human
user (e.g., robot carries the object closer to the obstacle than the user prefers). Figure 1
illustrates how a user may demonstrate a trajectory encoding multiple implicit preferences
to correct the original robot plan.

One way to adhere to human preferences is by means of variable impedance control [2,3].
Although such strategies can ensure safe and responsive adaptation, they suffer from being
purely reactive (i.e., they do not remember the corrections). The robot should not only
conform to a new trajectory, but it has to update its internal model in order to understand the
improvements in the corrected trajectory [4–6]. Thus, ideally, we should encode knowledge

Robotics 2023, 12, 61. https://doi.org/10.3390/robotics12020061 https://www.mdpi.com/journal/robotics

https://doi.org/10.3390/robotics12020061
https://doi.org/10.3390/robotics12020061
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/robotics
https://www.mdpi.com
https://orcid.org/0000-0002-6062-3141
https://orcid.org/0000-0002-8696-3689
https://orcid.org/0000-0001-7257-5434
https://doi.org/10.3390/robotics12020061
https://www.mdpi.com/journal/robotics
https://www.mdpi.com/article/10.3390/robotics12020061?type=check_update&version=2

Robotics 2023, 12, 61 2 of 22

of humans’ desired trajectories as a set of parameters that are incrementally updated based
on the corrected trajectory.

Figure 1. Leveraging demonstrations as means of understanding the human’s preferences in an
object carrying task: The robot originally plans the blue trajectory without knowledge of human
preferences. The user demonstrates the orange trajectory which in this instance contains the following
preferences: “stay close to the table surface”, “maintain a larger distance from the obstacle” and “pass
on the far side of the obstacle”. We develop a method for learning and generalizing such preferences
to new scenarios (i.e., new start, goal or obstacle positions).

To this end, the Learning from Demonstration (LfD) approach enables robots to
encode human-demonstrated trajectories. LfD frameworks have the advantage of enabling
non-experts to naturally teach trajectories to robots. A widespread trajectory learning
method in LfD is Dynamic Movement Primitives (DMPs) [7]. In addition to encoding
trajectories, DMPs are able to adapt the learned path by updating an interactive term in
the model [8,9]. Additionally, they can adapt the velocity of the motion by estimating the
frequency and the phase of a periodic task [3] or learning a speed scaling factor [10]. As a
result, DMPs can capture human path and velocity preferences on a trajectory level. Losey
and O’Malley [5] demonstrated that such velocity preferences can also be learned online
from interactive feedback, although with some effort. However, these methods lack any
knowledge about the task context or why the trajectory was adjusted in the first place.
Hence, such an approach fails to generalize user preferences to new scenarios due to the
lack of a higher-level understanding of human actions.

A better approach is to pair parameters with features that capture contextual informa-
tion (e.g., distance to obstacle) and utilizes this information to find an optimal solution in
new scenarios. Such generalizations can be achieved by learning a model of what makes a
trajectory desirable. Modeling assumptions can be made to form a conditional probability
distribution over trajectories and contextual information, e.g., as demonstrated by Ewerton
et al. [11]. Although this has been proven effective in simple reaching tasks, whether such
models can directly capture complex human preferences in a contextually rich environment
remains an open question. However, Inverse Reinforcement Learning (IRL) approaches
have already proven to be capable of this [12].

Unlike traditional IRL methods requiring expert demonstrations [13,14], more re-
cently derived algorithms allow preference learning from user comparisons of sub-optimal

Robotics 2023, 12, 61 3 of 22

trajectories [12]. Potentially, a much wider range of human behavior can be interpreted
as feedback for preference learning in general [15]. In this paper, however, we focus on
reward learning for robot trajectories. A model-free approach can be used to learn complex
non-linear reward functions [16], but such an approach requires many queries to learn from,
which is time-intensive. Therefore, we keep a simple linear reward structure. To shape
this reward, we identified four fundamental preference features of the pick-and-place type
of object transportation tasks in the literature: height from table/ground [1,4,6], distance
to obstacle [1,17], obstacle side [18,19] and velocity [3,10]. These features are relatively
scenario-unspecific, and are therefore suitable for generalization in object transportation
tasks of the kind we consider in this paper: pick-and-place tasks in the presence of obstacles.
To the best of our knowledge, there is no method to account for all these features together
in a unified framework.

Given such a set of features, coactive learning [20] can be used to learn a reward
function. In coactive learning, the learner and the teacher both play an active role in the
learning process; the learner proposes one or multiple solutions and learns from the relative
feedback provided by the teacher in response. Coactive learning has an upper boundary
on regret, leaving room for noisy and imperfect user feedback. Furthermore, it is an online
algorithm, i.e., the system can learn incrementally from sequential feedback. An adapted
version of coactive learning was applied by Jain et al. [1] to learn trajectory preferences
in object carrying tasks. To this end, users iteratively ranked trajectories proposed by the
system. Although selected based on the learned reward, the trajectories were generated
using randomized sampling, which increases the number of feedback iterations necessary
for convergence. Methods by Bajcsy et al. [4] and Losey et al. [6] adapt the robot trajectory
to the user’s preferences based on force feedback and optimize the remaining trajectory
with online correction in a specific scenario. However, these methods cannot capture
velocity preferences on top of path preferences.

To address this gap in the state-of-the-art methods, we propose a novel framework
for optimizing trajectories in object transportation tasks that meet the user’s path and
velocity preferences, where we first optimize the path and then the velocity on the path.
The objective function for the optimization comprises a human preference reward function
and a robot objective function that ensures the safety and efficiency of the trajectories.
This explicit separation of the agents’ objectives allows for negotiation, where the robot is
recognized as an intelligent agent which may give valuable input of its own.

The approach takes a full demonstrated trajectory as the feedback for the learning
model, comparing it to the robot’s previous plan at each iteration. A minimum acceleration
trajectory model significantly reduces the size of the task space, hence increasing the opti-
mization efficiency. To capture the preferences, we design a set of features that correspond
to the four preferences, covering both the motion shape and timing, which we identified
from the literature to be fundamental for the considered pick-and-place tasks.

Unlike Bajcsy et al. [4] and Losey et al. [6], we request iterative feedback and employ
an optimization scheme that samples from the global trajectory space. Although this is less
efficient in terms of human effort for teaching preferences in a specific scenario (i.e., the
user has to provide at least one full task demonstration), it allows us to additionally capture
velocity preferences on top of the path preferences. Furthermore, our method enables the
separation of velocity and path preferences both during the learning and in the trajectory
optimization stage. With our combination of a trajectory optimization scheme and carefully
selected preference features, we can generalize to new contexts without needing (many)
additional corrective demonstrations. In contrast to work by Jain et al. [1], we learn from
a few informative feedback demonstrations and give special attention to the trajectory
sampling by employing model-based trajectory optimization. This facilitates fast learning
and generalization of preferences to entirely new contexts.

We evaluate the proposed method in a user study on a 7-DoF Franka Emika robot
arm. In the key previous user studies of learning human preferences [4,6,21], the exper-
imenter instructed the human participants what preference to demonstrate to the robot.

Robotics 2023, 12, 61 4 of 22

In contrast, in our user study, we let the participants freely select their own preferences
while demonstrating the task execution to the robot. Additionally, our study examines
whether the users can actually distinguish the learned trajectory capturing their preference
from the trajectories capturing only part of their preference. In a supplementary study,
we qualitatively compare our method to two relevant methods from the literature. We
discuss the structural differences between the methods and show by simulation how these
differences affect the learning of preferences from human (corrective) demonstrations.

In summary, this paper’s main contribution is a methodology that is able to capture
velocity preferences on top of path preferences by separating the velocity optimization from
the path optimization. Learning the path and velocity separately provides users with the
option to avoid the challenge of providing a temporally consistent demonstration at each
iteration. This offers users the flexibility to demonstrate their path and velocity preferences
either simultaneously or in separate demonstrations. Secondly, the learned preferences are
transferred to new scenarios by exploiting a trajectory model. Importantly, we perform
a user study to validate whether the proposed method can learn and generalize freely
chosen preferences, in contrast to the many user studies in the literature which prescribe
user preferences. Additionally, we perform a supplementary study to compare the pros
and cons of the proposed approach with two common methods from the literature.

The rest of the paper is organized as follows: In Section 2, we explain the algorithm
and methodology in detail. The user study is described in Section 3 and the experimental
results are also shown and discussed. A supplementary study is presented and discussed
in Section 4. Finally, we present our conclusions and a view on future work in Section 5.

2. Method

The problem is defined in the following manner: given a context C describing start,
goal and obstacle positions, the robot has to determine the trajectory ξ = [sss1, sss2, . . . , sssN] ∈
Ξ (set of state sequences) that conforms to the human preferences and meets the task
goals. The states are defined as sssk = [xxxk; ẋxxk] (position and velocity), with k indicating
trajectory samples.

In our setting, the true reward functions are known by the user but not directly
observable by the robot. Hence, the problem can be seen as a Partially Observable Markov
Decision Process (POMDP) [4]. Our reward functions have parameters that are part of
the hidden state, and the trajectories provided by the user are observations about these
parameters. Solving such problems, where the control space is very complex and highly
dimensional, is challenging. Therefore, we simplify the problem through approximation of
the policy by separating planning and control and treating it as an optimization problem.
Furthermore, we make the problem tractable by reducing our state space to one of viable
smooth trajectories.

The resulting framework, depicted in Figure 2, first learns the appropriate reward
functions, then plans a trajectory maximizing the rewards via optimization. Once the
trajectory is defined, we use impedance control to track it in a safe manner. Notably, we
separate the problem of path and velocity planning in the learning and optimization steps.
Updating the path and velocity weights separately provides users with the option to avoid
the challenge of providing a temporally consistent demonstration at each iteration. As a
result, users have the flexibility to demonstrate their path and velocity preferences either
simultaneously or in separate demonstrations.

Robotics 2023, 12, 61 5 of 22

Collect feedback

from human

Figure 2. The human user provides demonstrations, which are used to learn a distribution over
reward function via coactive learning. We use the learned rewards to optimize the robot’s trajectory
according to human preferences. The resulting trajectory is executed using an impedance controller.
We repeat this process, querying the human for preferred trajectories until convergence. The human
can then be taken out of the loop.

2.1. Learning Human Reward Functions from Demonstration

We follow previous IRL work [1,13] in assuming that the reward functions are a linear
combination of features φ with weights θ. Accordingly, we define path and velocity reward
functions RP and RV as

RP(xxx; C, θHP) = θT
HPΦP(xxx; C), (1)

RV(¯̇x, x̄xx; C, θHV) = θT
HVΦV(¯̇x, x̄xx; C), (2)

where θHP and θHV denote the unknown weights that, respectively, capture the human
path and velocity preferences. In the case of the velocity reward, we divide the trajectory
into equal segments (i.e., a range of samples) indicated by r. Then, x̄xxr and ¯̇xr are the average
of the position vectors and the velocity norms in a segment. ΦP and ΦV are the total path
and velocity feature counts along the trajectory:

ΦP(xxx; C) =
N

∑
k=1

φP(xxxk; C), ΦV(¯̇x, x̄xx; C) =
M

∑
r=1

φV(¯̇xr, x̄xxr; C). (3)

Note that the velocity features are a function of both the segment’s velocity and
position, allowing us to capture position-dependent velocity preferences.

To have comparable rewards, all trajectories are re-sampled to contain a fixed number
of N states. The velocity inherently affects the number of samples within a trajectory, which
is why we divide the trajectory into M segments and consider the average velocity within
each segment (M<N). Features are directly computed from the robot state and context of
the task. We describe them in the next subsection.

During kinesthetic demonstration, the robot is in gravity compensation mode. That
gives the human full control over the demonstrated trajectories, which we assume to
correlate exponentially to the human’s internal reward:

P(ξH |C, θHP, θHV) ∝ eθT
HPΦP(ξH ;C)+θT

HV ΦV(ξH ;C), (4)

which, for brevity, we can write as P(ξH |C, θH) ∝ eθT
HΦ(ξH ;C).

Assuming that the human behavior is approximately optimal with respect to the true
reward (i.e., their preferences), we use a variant of coactive learning introduced by Bajcsy
et al. [4] to learn the weights θHP, θHV . However, we can only compute ΦP, ΦV (3) over
full trajectories. Therefore, instead of updating the weights based on an estimate of the
human’s intended trajectory from physical interaction, we use a full kinesthetic trajectory

Robotics 2023, 12, 61 6 of 22

demonstration by the human after each task execution to update the sum of the features
over the trajectory (3). This results in the following incremental update rule:

θi+1
H = θi

H + α
(

Φ
(

ξi
H ; C

)
−Φ

(
ξi

R; C
))

, (5)

at iteration i, with learning rate α ∈ (0, 1]. Intuitively, the update rule is a gradient that
shifts the weights in the direction of the human’s observed feature count. It should be
noted that we update the path preferences only using the position part of the state, and the
velocity preferences are updated depending on where in space the velocities were observed.

2.2. Features and Rewards

We define the objective function for trajectory optimization as a combination of human
rewards and robot objectives. The human rewards consist of features that capture human
preferences (1)–(2), whereas the robot objectives define a basic behavior for the robot.
Moreover, the robot objectives counterbalance the effect of the human rewards in the
optimization, while we learn the weights in the human rewards (Section 2.1). The weights
in the robot objectives are hand-tuned. In this section, we first describe the features
associated with the human rewards, and then the robot objectives.

The human preferences are captured via the four features listed in Sections 2.2.1–2.2.4
(see Figure 1 for an example of the listed path preferences). We chose these features as
they characterize dominant behaviors in manipulation applications that depend on user
preferences. Additionally, the features cover the different dimensions of the workspace (in
space and time), creating a complete definition of motion behavior. The robot’s objectives
are composed of the rewards listed in Sections 2.2.5–2.2.7.

2.2.1. Height from the Table

The preferred height from the table, in the range of “low” to “high” is captured by the
sigmoid function φh = 1

1+e−λ(h+p) , with h indicating the vertical distance from the table, p
indicating the center of the function (an arbitrary “medium” height above the table) and
λ indicating the parameter defining the shape of the function. The choice of a sigmoid
function is to hinder the effect of this preference when close to upper and lower boundaries
during the weight update (e.g., a demonstration at 75 cm above the table should not impact
the weight update very differently from a demonstration at 70 cm). The decreasing slope at
the boundaries additionally allows other objectives to have a higher impact on the trajectory
in such regions during optimization.

2.2.2. Distance to the Obstacle

We encode the user’s preferred distance to the obstacle, in the range of “close” to
“far”, using the exponential feature φd = e−βd2

, where d is the Euclidean distance to the
center of the obstacle and β is the shape parameter. This exponential function gradually
drops to 0 at a certain distance from the obstacle. This distance is a threshold outside
which the local behavior of the optimization is no longer affected by the distance to the
obstacle. Importantly, if a negative weight is learned associated with this feature, the
trajectory is still attracted towards the obstacle even if the initial trajectory lies outside of
this threshold. This is because our optimization strategy globally explores different regions
of the workspace, and in this case it would detect that there is a reward associated with
being closer to the obstacle.

2.2.3. Obstacle Side

We define this feature in the range of “close” (the side of the obstacle closer to the robot)
to “far” (the side of the obstacle far from the robot) via the tangent hyperbolic function
φs =

2
1+eγS − 1. Here, S is the lateral distance between a trajectory sample and the vertical

plane at the center of the obstacle and γ is a shape parameter. This symmetric function is
designed to have a large span in order to be active in all regions of the workspace. However,

Robotics 2023, 12, 61 7 of 22

as the gradient of this function decreases at larger lateral distances, so does the influence of
this function on the local trajectory optimization.

2.2.4. Velocity

To encapsulate the user’s velocity preferences, we adopt a different approach using a
discretized linear combination of uniformly distributed Radial Basis Functions (RBFs) in
the range [ẋmin, ẋmax]. For each segment r, we map the average velocity norm ¯̇xr onto these
RBFs, given by:

ψj(¯̇xr) = e−(ε ¯̇xr−cj)
2
, (6)

where the shape variable ε defines the width and cj defines the center of the jth RBF, with
j = 1, 2, . . . , n (we use n = 9).

Inspired by Fahad et al. [22], we discretize the above feature to two bins, based on the
distance dr of each segment center to the obstacle. Hence, we have two cumulative feature
vectors: ΦV1 for dr ∈ [0, dc) and ΦV2 for dr ∈ [dc, ∞). This allows us to approximate the
speed of motion separately in areas considered to be “close” to or “far” from the obstacle
based on the distance threshold dc (obtained from demonstration data). This way, we
capture velocity preferences relative to the obstacle position. Similarly, features can be
defined relative to other context parameters to capture velocity preferences that depend on
other parameterized positions.

However, the issue might arise that the two trajectories do not have the same number
of segments in each distance bin. In such a case, we employ feature imputation using the
mean of the available values.

The following subsections describe the rewards that make up the robot’s objectives.

2.2.5. Path Efficiency Reward

We calculate the total length of a trajectory, which we use as a negative reward.
Penalizing the trajectory length is essential in counterbalancing the human preference
features in the optimization process. Essentially, it pulls the trajectories towards the straight
line path from start to goal and rewards, keeping them short.

2.2.6. Collision Avoidance Reward

We use the obstacle cost as formulated by Zucker et al. [23], which increases expo-
nentially once the distance to the obstacle drops below a threshold. The negative cost is
our reward.

2.2.7. Robot Velocity Reward

This reward achieves a low and safe velocity in the absence of human velocity prefer-
ences and is defined based on (6). In IRL, it is beneficial to learn how people balance other
features against a default reward [24].

2.3. Motion Planning via Trajectory Optimization

We discuss the problem of motion planning in two parts. First, we address the opti-
mization of the path of the trajectory in the workspace. We then address the optimization
of the velocity along this path, defining the timing of the motion.

Solving the path optimization problem over the Cartesian task space would be complex
and inefficient. Instead, we employ a trajectory planning algorithm [25] that interpolates
between waypoints with piecewise clothoid curves. This algorithm minimizes the ac-
celeration, which results in a smooth and realistic motion. We exploit this algorithm to
significantly reduce the search space for the path optimization and sample trajectories using
a vector of waypoint coordinates p and its corresponding time vector tP, ξ = f (p, tP).

We consider three waypoints p = [ps; pm; pg], corresponding to the start position, an
arbitrary position within the path and the goal position, respectively. We further simplify
the problem by fixing the time vector to tP = tg[0; D(pm)

D(pg)
; 1]T , where D(·) indicates the

Robotics 2023, 12, 61 8 of 22

Euclidean distance of a waypoint to ps and tg is the time, we assume all trajectories take to
finish, just for the path optimization (the shape of the paths is not affected by tg in the time
ranges of our manipulations; therefore, we assume the path to be independent of velocity).
An uneven distribution of waypoints would bias the reward value. Setting up the time
vector in this manner ensures a constant velocity throughout the trajectory, which results in
an even distribution of samples over the path. Trajectories can then be sampled only as a
function of waypoint positions ξ = f (p).

We then solve for the optimal waypoint vector p∗ using the following non-linear
program formulation:

p∗ = arg max
p

(
RP(p; C, θHP) + θT

RPΦRP(p; C)
)

,

subject to: h(p) = 0, plow ≤ p ≤ pupp.
(7)

Here, the objective function consists of the human path reward RP and the robot’s
path objective, which is a linear combination of predetermined weights θRP and the afore-
mentioned path reward functions ΦRP. The equality constraint ensures the start and goal
positions are met. As a result, we are effectively searching for the waypoint pm that max-
imizes the objective function. The upper and lower boundaries plow and pupp limit the
trajectory to stay within the robot’s workspace. Once p∗ is found, we construct the full
trajectory using ξ∗P = f (p∗, tP). Figure 3 shows an example of the convergence of the
optimizer towards a path that adheres to “low height”, “close side” and “close to obstacle”
preferences.

Figure 3. An example of convergence towards the optimal path. The optimizer places pm in different
locations in the workspace to generate different paths. The paths explored by the optimizer are
indicated in gray. The orange path indicates the output of the path optimizer, resulting from placing
the middle waypoint at the location indicated by the blue circle.

Having the optimal path ξ∗P, we divide the trajectory into M segments (as described
in Section 2.1). Next, we store the positions of the waypoints at the end of the segments
in p∗V = [p1, p2, . . . , pM]. This vector is fixed to maintain the shape of the trajectory. The
corresponding timestamps, stored in t = [t1, t2, . . . , tM], are the variables we optimize.
Thus, trajectories sampled by the optimizer are only a function of the time vector ξ = f (t).

Robotics 2023, 12, 61 9 of 22

By optimizing t, we optimize the average velocity of each segment. The optimal time
vector is

t∗ = arg max
t

(
RV(t; C, θHV) + θRVφRV(t; C)

)
,

subject to: g(t) ≤ 0, t ≤ tupp,
(8)

where the objective function is composed of RV and the robot’s velocity objective φRV , which
provides a reward for carrying objects at ẋrobot with a fixed weight θRV . The inequality
constraint g(t) bounds the velocity over each segment to ẋmin and ẋmax, not allowing the
timestamps to get too close or far from each other. The upper boundary on t acts as a limit
on the total duration of motion.

Finally, the trajectory that adheres to both the path and velocity preferences is con-
structed using ξR = f (p∗V , t∗). The full method is summarized in Algorithm 1.

Algorithm 1: Learning human preferences from kinesthetic demonstration

1 Record ξ0
H = {xxxk, tk}N

k=1, obtain context C
2 ẋxxk ← d

dt xxxk, compute ¯̇xr and x̄xxr

3 Initialize θ0
H , θR, ξ0

R
4 Set i = 0
5 while executing task do
6 if Received Human Feedback then
7 θi+1

H = θi
H + α

(
Φ
(

ξi
H ; C

)
−Φ

(
ξi

R; C
))

8 p∗ ← Optimize(θi+1
HP , θRP, C)

9 t∗ ← Optimize(p∗, θi+1
HV , θRV , C)

10 ξR = f (p∗, t∗)
11 τ ← Impedance(ξR)
12 i = i + 1

3. Method Validation with User Study

To validate our framework, we conducted two user experiments on a Franka Emika
7-DoF robot arm. Thereby, we demonstrated a proof-of-concept of our approach in a
real-world scenario with non-expert users. In both experiments, we use a set of three
pick-and-place tasks in an agricultural setting, as shown in Figure 4. The primary goal
of each task was moving the tomatoes from the initial position to the goal without any
collisions with the obstacle. The experiments were approved by the Human Research Ethics
Committee at Delft University of Technology on 6 September 2021.

We recruited 14 participants (4 women and 10 men) between 23 and 36 years old
(mean = 26.8, SD = 3.6), 6 of whom had prior experience with robotic manipulators, but
none of whom had any exposure to our framework.

Each user first took approximately 10 min to get familiar with physically manipulating
the robot in the workspace. In this period, we also instructed users about the goal of
the task and the preferences the robot could capture. Users then proceeded with the
two experiments. To subjectively assess whether the framework can capture a range of
different behaviors, in the first experiment, we let the users freely choose their path and
velocity preferences. Once users were more familiar with the framework, in the second
experiment, we assessed how effectively they could teach a set of pre-defined preferences
to the robot. The overview of the user study is provided in Figure 5. We discuss each
experiment in the following subsections. A video of the experiments can be found here:
https://youtu.be/hhL5-Lpzj4M, accessed on 13 April 2023.

https://youtu.be/hhL5-Lpzj4M

Robotics 2023, 12, 61 10 of 22

Figure 4. From left to right: Scenarios 1–3. The orange and red star, respectively, indicate the start and
goal positions. The obstacle to be avoided is the bag of tomatoes. Scenario 1 and 2 shared the same
starting positions, and Scenario 2 and 3 shared the same obstacle positions. Notice the difference in
height of the goal position in Scenario 1 compared to Scenarios 2 and 3.

Figure 5. The experimental protocol. Users started with workspace familiarization, then went
through the first experiment assessing the performance of the framework in understanding their
preferences. Finally, in the last experiment, they provided ground truth demonstrations and evaluated
the demonstrated trajectories in adhering to the set of predefined preferences. The numbers indicate
the number of demonstrations given, either by the human (training/correction/ground truth) or the
robot (experiment). The order in which the dummy trajectories were shown to the users was different
in every scenario. The symbol “Q” indicates when participants were provided with questionnaires.

3.1. User-Defined Preferences

In the first experiment, we investigated how our framework performs when users
openly chose their set of preferences. We were specifically interested in assessing how well
the robot plans motions in new task instances with a context it has not seen before (i.e.,
generalization of preferences to new scenarios). We also evaluated the user experience in
terms of acceptability and effort required from the user’s perspective. Accordingly, we
tested the following hypotheses:

Hypothsis 1 (H1). The proposed framework can capture and generalize user preferences to new
task instances.

Hypothsis 2 (H2). Users feel a low level of interaction effort.

Robotics 2023, 12, 61 11 of 22

3.1.1. Procedure and Measures

Users first performed a demonstration in Scenario 1 (Figure 4) for path preferences
with the robot in gravity compensation mode. Notably, we did not limit users to a discrete
set of preferences. For instance, instead of asking users to pass on either the close or far
side of the obstacle, we asked them to intuitively demonstrate how far to either side of the
obstacle they would prefer to pass. They could, for example, decide to pass right above
the obstacle, which would correspond to a “stay to the middle of the obstacle” for the
“obstacle side” path preference. We then collected a second separate demonstration for the
velocity preferences. During velocity demonstrations, the robot was only compliant along
a straight line path covering the full range of distances to the obstacle. This allowed the
users to demonstrate their preferred speed without having to care about the path. The
velocity optimization step can take up to 3 min; therefore, we simplified the method for
learning and planning velocity preferences to find the velocity cj with the highest feature
count in this part of the study. Users were instructed to provide corrections via additional
kinesthetic demonstrations (max 10 min per scenario) until they were satisfied with the
resulting trajectory. However, the users were informed that the trajectory speed was only
trained once and would not be updated further.

After observing each trajectory, the users filled out a subjective questionnaire for
qualitative evaluation, rating the following statements on a 7-point Likert scale:

1. The robot accomplished the task well.
2. The robot understood my path preferences.
3. The robot understood my motion preferences.

To evaluate the effort, we counted the number of times a user provided feedback, and
let the participants fill out the NASA Task Load Index (TLX) at the end of this experiment.
The independent variables of this experiment are the contexts which are varied for each
scenario for assessing workload. Although we do not compare results with a baseline here,
NASA-TLX is still appropriate since it can capture absolute results [26].

3.1.2. Results

Users demonstrated a multitude of path preferences, including “keep a low distance
to the obstacle” and “stay at a medium height above the table”. Similarly, for velocity
preferences, while the majority opted for a constant “medium” speed, both the preferences
of going “slower when close to the obstacle” and “faster when close to the obstacle” were
demonstrated at least once.

Figure 6A shows that the average amount of feedback given to the system after the first
task dropped, with the majority of the users satisfied with the results of generalization after
the initial demonstration (we counted the training step in Task 1 as feedback). This result
is also reflected in Figure 6B, showing that the users scored the first trajectory produced
in every scenario consistently high for all three statements, supporting the claim that the
framework can generalize both path and velocity preferences to new task instances. This
provides strong evidence in favor of both H1 and H2.

The NASA-TLX results in Figure 7 show that the users experienced low mental and
physical workload. Although kinesthetic teaching is normally associated with high effort,
our framework’s effort scores remain mostly on the lower side of the scale. One participant
was particularly strict on a height preference the algorithm failed to capture, resulting in
three iterations of feedback in Scenario 1. Overall, the results in Figure 7 support H2.

Robotics 2023, 12, 61 12 of 22

Figure 6. Results of the first experiment. (A) Average amount of feedback provided to the system for
each task. The dot represents the mean score, the error bars represent the standard deviation, and the
crosses indicate individual data points. (B) Results of the Likert questionnaire for the first resulting
trajectory in every task (i.e., prior to any additional demonstrations). The error bars correspond to
standard deviation.

2

4

6

8

10

12

14

16

18

20

Figure 7. Results of the NASA-TLX questionnaire after the first experiment.

3.2. Pre-Defined Preferences

To objectively evaluate the accuracy and the user’s ability to discern preferences, we
conducted an experiment where users are asked to adhere to the following path preferences
(we did not consider velocity preferences in this experiment):

• Pass on the side of the obstacle that is closer to the robot.
• Stay far from the obstacle.
• Keep a high elevation from the table.

Exactly how to express these preferences and how to trade off between them if neces-
sary was left to the users. We tested the following hypotheses:

Hypothsis 3 (H3). The method remains consistently accurate in all scenarios.

Hypothsis 4 (H4). Users can clearly distinguish that the output of the framework follows the
specified preferences.

3.2.1. Procedure and Measures

We collected four demonstrations per scenario. For half of the participants, we trained
the model on the mean of the four demonstrations from the first scenario, and for the other
half, we used the mean of data from the third scenario. This was to establish that our
method can be generalized, even when changing the set used as the training data.

Robotics 2023, 12, 61 13 of 22

After that, the users were shown three trajectories per scenario: the output of our
framework and two dummy trajectories (Figure 8). The dummy trajectories were designed
to adhere to two out of three path preferences. This allowed us to observe if users could
distinguish our method’s results compared to sub-optimal trajectories.

As an objective measure of the accuracy of our method, we computed, per scenario, the
total Euclidean distance of samples within each trajectory with respect to the mean of the
demonstrations (using N = 80). Furthermore, we compared the total feature counts along
each trajectory and measured the error with respect to the ground truth in the feature space.

Subjectively, users rated a 7-point Likert scale per trajectory: “the robot adhered to the
demonstrated preferences”.

Figure 8. Scenario 2 results (second experiment) for a single user. The dummy trajectories, in light
and dark blue, are designed not to meet the “height from table” and “obstacle side” preferences,
respectively. The green dashed and solid lines are the mean of human ground truth demonstrations
and the robot trajectory, respectively. The black sphere represents the obstacle. The framework was
trained on data from Scenario 3 and had no access to the ground truth shown.

3.2.2. Results

Figure 8 shows a generalization of the results of our method under the aforementioned
path preferences. The robot attempted to capture and optimize each user’s personal
interpretation of the preferences (e.g., one user’s definition of “high” is different from
another). We show the combined results of all users in Table 1, listing the trajectories’
mean, min and max Euclidean distance to the ground truth, normalized relative to the
start-to-goal distance in each scenario (respectively 1.08, 0.74 and 0.88 m). The optimized
trajectories have the smallest error, but the results only partially support H3, as the errors
in Scenarios 2 and 3 are slightly larger than in Scenario 1. This scenario has the longest
distance from start to goal, for which the framework seems to perform better.

Table 1. Average distance error of trajectory samples with respect to the ground truth, normalized
with respect to the distance from the start to the goal in meters: mean [min, max].

Scenario 1 Scenario 2 Scenario 3

Optimized 0.14 [0.09, 0.18] 0.20 [0.12, 0.27] 0.17 [0.13, 0.24]
Dummy 1 0.24 [0.13, 0.34] 0.26 [0.16, 0.38] 0.30 [0.21, 0.41]
Dummy 2 0.27 [0.18, 0.33] 0.39 [0.28, 0.47] 0.23 [0.18, 0.28]

Robotics 2023, 12, 61 14 of 22

Figure 9 shows the errors of the trajectories in feature space. In all scenarios, our
optimization result occupies the smallest area. However, in Scenarios 2 and 3, the optimized
trajectories occupy a slightly larger area than in Scenario 1, showing the same trend of
performance loss in scenarios with a shorter length. Furthermore, in Scenarios 2 and
3, dummy trajectories occasionally perform slightly better for one of the preferences.
Nevertheless, we see in Figure 10 that users clearly score the output of our framework
higher, which strongly supports H4. This indicates that users prefer all preferences to
be satisfied simultaneously. The best performing dummy (S3-D2), with the smallest area
in Figure 9 and lowest values in Table 1, correlates to a high rating in Figure 10. This
also supports H4, suggesting that non-expert users intuitively recognize such preferences
in trajectories.

Figure 9. Total feature count errors of each path preference (all participants) with respect to the
ground truth (i.e., smaller values for each axis are favored).

Figure 10. Result of Likert questionnaire for experiment 2. Crosses indicate individual ratings, while
the dots and error bars, respectively, represent the mean and standard deviation. Users clearly
recognize and highly rate the output of the framework in terms of adhering to path preferences.

3.3. Discussion

As the state-of-the-art methods do not have the same functionalities (e.g., path–velocity
separation) as the proposed method, we conducted a user study only on the proposed
method itself. To account for that, we employed absolute types of metrics (i.e., Likert and
NASA-TLX), which can be interpreted independently, rather than tied to a specific external
baseline. For example, the Likert scale is tied to an agreement with the given statements
and the natural point on the agreement scale serves as a general baseline. The advantage of
this is that the results are not tied to a specific relative baseline. If methods that enable the

Robotics 2023, 12, 61 15 of 22

same functionalities are developed in the future, the same Likert scale/questionnaire can
be employed to compare the subjective results independently of a specific baseline.

An advantage of the proposed method is that it learns fast. During the first part of the
user study, participants spent on average 16.5 s interacting with the robot before expressing
satisfaction with the results. This is partially due to having access to kinesthetic demon-
strations. This method of demonstration has been criticized as challenging in applications
involving high DoF manipulators [1,27]. However, the separation of learning and control
in our framework means that users do not have to provide the correct configuration of
the arm in their demonstrations. This feature made it significantly easier for the users to
provide demonstrations, which is reflected in the reported low mental and physical loads
(Figure 7).

The separation of path and velocity planning has additional benefits. Formulating the
optimization as a multi-objective problem with both position and velocity features results
in undesirable interactions of objectives. For instance, when velocity features reward high
speeds, the trajectory converges to a longer path. Conversely, path features with high
rewards in specific regions of space result in slow motion in those regions to increase the
density of samples and consequently the overall reward. On the other hand, the separated
trajectory optimization has the limitation that it cannot account for dynamical quantities
such as joint velocity and acceleration, and the efficiency of movements in the robot’s joint
space cannot be considered.

A challenge with our definition of robot and user objectives is that the trajectory
optimization outcome does not always align with task requirements. For instance, a strong
“stay close to the object” preference can result in a minimum cost for a trajectory that is
briefly in a collision. Tuning the collision weight can only partially solve this issue, as at a
certain point, this cost can interfere with the path preferences.

Our user study results showed that non-expert users can intuitively use our method
to quickly teach a wide range of preferences to the robot. Although the generalization
results of different task instances show that we do not always reproduce trajectories with
the exact desired shapes in the workspace (see Figure 8), the subjective performance
evaluation shows that users still deem these trajectories highly suitable in terms of task
accomplishment and the preferences achieved. State-of-the-art LfD methods are very
capable of producing accurate and complex dynamic movements [28]. However, in tasks
where there are multiple ways of achieving the same goal, we prefer to trade off motion
accuracy for achieving planning propensities on a higher level.

Unfortunately, our approach inherits the limitations of IRL approaches that require
specifying reward features by hand. Both features and robot rewards depend on several
parameters which require tuning. The problem becomes especially difficult as our features
simultaneously govern the behavior of reward learning and trajectory optimization. For
instance, high gradients in the feature function lead to erratic behavior of the optimizer,
leading to poor solutions and convergence to local optima. Yet, for certain features, a
sufficiently high gradient is required to facilitate the learning of preference weights that are
large enough to counterbalance each other. As a result, we had to resort to further tuning
of parameters, such as the learning rate in (5). An interesting direction for future work
would be to test whether and how well these issues can be alleviated by feature learning
from additional demonstrations, as was demonstrated by Bobu et al. [29]. Furthermore, an
approach similar to that in [30] could be employed to learn the relative weighting among
features and add additional features through nonlinear functions using neural networks.

In feature engineering or learning, the definition of the context determines how ex-
pressive the features are. We considered a limited set of vectors as the context in this work
(i.e., obstacle position and start and goal positions). It is possible to include additional
information, such as object properties (e.g., sharp, fragile or liquid) [1], human position [4,6]
and the number of objects. The more rich the context, the more preferences the model
can capture in complex environments. However, training diversity can become an issue
with contextually rich features, as the model would require more demonstrations to cover

Robotics 2023, 12, 61 16 of 22

a wider range of situations. This will increase the training time. An evaluation of the
trade-off between improved generalization and higher training time is left for future work.

4. Supplementary Comparison Study

The purpose of this supplementary study is to highlight different aspects and proper-
ties of our method in comparison to two common methods from the literature: Dynamic
Movement Primitives (DMPs) [31] modified with potential fields for obstacle avoidance [9],
and the method used by Bajcsy et al. [4] (referred to as PHI). Since these methods are
different conceptually and by design (i.e., optimized for different properties), a quantitative
comparison is not meaningful. Thus, we examined their aspects in a practical transportation
task qualitatively. These aspects are adherence to preferences, robot objectives, trajectory
feasibility and online learning. In the following subsections, we first discuss the different
aspects in more detail, before showing the effects in the transportation task and discussing
the pros and cons of the different methods.

4.1. Conceptual Differences per Aspect
4.1.1. Adherence to Preferences

The methods capture preferences in a different way. Even though we added obstacle
awareness to the DMPs we compared to, they lack an explicit notion of preferences. A forc-
ing function was learned to match the shape and velocity distribution of the demonstration,
but without any parameterization over features that may capture behavior relative to the
context. The potential fields for obstacle avoidance add a basic level of context awareness,
but a predefined one.

Both our method and PHI learn an explicit preference model that is structured as a
linear combination of context-parameterized features. Similar to our model, PHI considers
the “height from the table” and “distance to the obstacle”. We additionally consider the “obstacle
side”, such that our features cover the different dimensions in space and allow us to capture
the preferences in every direction. PHI instead considers other features, such as “distance to
human” and “efficiency”.

Our features are counterbalanced by explicit robot objectives (Section 4.1.2). In PHI, it
is possible to replace the features with the features we use, including the ones for the robot
which will not be updated during learning. This way, we can test the effects of the change
in features and the change in method.

4.1.2. Robot Objectives

In contrast to PHI, we chose to explicitly separate objectives such as “path efficiency”
and “collision avoidance”, from the preferences we tried to capture. Instead, we let the robot
have a reward function of its own. The same effect can be achieved in PHI by fixing the
weights of selected features.

The effects of the trade-off between the learned human rewards and the given robot
objectives visible in the iterative updates can be viewed as a negotiation between the
preferences of two independent agents. We believe that this separation and negotiation
will be beneficial, especially as tasks become more complex and the artificial agent has
knowledge complementary to the human. The benefits may be less visible in the simple
task considered in this paper.

As DMPs do not explicitly model an objective function to be optimized, this attribute
does not apply.

4.1.3. Trajectory Feasibility

Our method does not automatically check if the planned trajectory is feasible to execute
by the robot. A motion feasibility objective can be added to the robot objective function to
take this into account in the path optimization.

Rather than weighing the learned preferences against robot objectives, PHI ensures
motion feasibility by optimizing the trajectory in the robot configuration space. This re-

Robotics 2023, 12, 61 17 of 22

quires an additional simulation step, incorporating the kinematic model of the robot during
trajectory optimization. However, no corrections then need to be applied in hindsight to
ensure trajectory feasibility.

4.1.4. Online Learning

Our method requires a full trajectory to learn from, whereas PHI updates the internal
model at each time step. This potentially makes our method less efficient. On the other hand,
it allows us to capture velocity preferences in addition to path preferences. Furthermore,
because we separate the demonstration from the execution, we obtain a more “clean”
observation of the preferences, as we do not have to deduce from the interaction forces
what the human demonstration would have looked like without the robot interference.
This is likely to benefit generalization. In the case of large user corrections, it may even
reduce the user’s effort to demonstrate their preferences without the robot interfering.
Velocity preferences have been found to be especially cumbersome to correct in an online
manner [5].

When it comes to online updates, DMPs are the fastest because there is no complex
underlying model that needs to be updated. However, the trade-off of having a much
simpler model is that it lacks the ability to capture preferences in a way that might generalize
to changes in the scenario.

All three methods update their model to reduce the error with respect to the latest
observation from demonstration. A learning rate trades off learning and overfitting on the
corrective demonstration. DMP updates correct behavior on the trajectory level, whereas
PHI and our method update at a higher level, where the observed trajectories are considered
a consequence of a human reward model. Nevertheless, future observations that appear
contradictory to earlier ones will cause (partial) unlearning of the earlier updates. This
results in erroneous behavior learned from imperfect corrections to be corrected, but may
in some cases also lead to undesired unlearning.

4.2. Comparison

We will now present a qualitative comparison between the three methods, PHI with
two different feature sets: _φorig, _φour. Our aim is to show the effects of the conceptual
differences discussed in Section 4.1. To make the comparison as fair as possible, we let
all the models learn from the same demonstration data. All methods have access to and
consider the obstacle position for planning.

We modified PHI to bypass the estimation of the human-desired trajectory from forces,
as we have direct access to the desired trajectory from demonstration. We computed the
“human correction” every time step from the mismatch between the planned trajectory
and the demonstration. The trajectory optimization in PHI requires a robot model for the
optimization. As our trajectory optimization does not take robot dynamics into account,
we used a fully actuated point mass for the trajectory optimization. In order to achieve
comparable smooth optimal paths, we interpolated the trajectory with a spline instead of
linearly as was done originally. For both sets of features, the feature weight ranges and
update rates were hand-tuned to achieve as close a trajectory match in the initial scenario
as we could manage. This initial scenario is illustrated in Figure 11.

We consider a situation where the user has a preference for “passing on the close side
of the obstacle” due to the existence of a wall on the other side that the robot is not aware of.
Furthermore, we want to “remain close to the obstacle” and to “slow down when passing
close to the obstacle”. We use a single kinesthetic demonstration containing these three
preferences as the input to all methods. For PHI_φorig, we obtained the correct choice of
obstacle side in Figure 11 by assuming a person standing on the other side of the obstacle
and making use of their “human feature”, learning not to come too close to the human.

Figure 11 shows the demonstration we used for training, as well as the trajectories
obtained from the three methods. As the results are generated for the same context as
in the demonstration, these results reflect the performance prior to any generalization of

Robotics 2023, 12, 61 18 of 22

preferences. As PHI updates its internal model at every time step, we observed partial
unlearning of some features towards the end of the trajectory. This is particularly visible
for the “obstacle distance” in PHI_φorig. In Figure 11, we show an additional trajectory
PHI_φorig,τ=0.45, which was generated by PHI with the original features and the weights
learned at 45% of the trajectory. We see that PHI_φorig,τ=0.45 is considerably closer to the
demonstrated trajectory. The demonstrated trajectory has many waypoints close together
and quite close to the obstacle, as it slows down when passing it. PHI, on the other hand,
has equally spaced waypoints. As a result, towards the end of the trajectory, a considerable
batch of PHI waypoints is further away from the obstacle by default. When the weights
continue to update on the difference, we obtain the trajectory PHI_φorig, which lies closer
to the obstacle. With our features, in PHI_φour, the effect is less pronounced as the features
trade off differently, yet the learned path is still different from our trajectory, as PHI uses a
different trajectory optimization method.

Figure 11. Training scenario with the human demonstrated trajectory (green diamonds) and the
learned reproductions: ours is represented by dark blue circles; PHI_φorig is represented by red plus
signs, with the intermediate learning result represented by dots; PHI_φours is represented by purple
crosses; and DMP is represented by yellow squares. By placing the markers at equal time intervals,
we display the velocity of the trajectories (i.e., the closer the markers, the slower the motion). As PHI
does not support differences in velocity, all red and purple markers are spaced equally along the
trajectory. The black, cyan, blue and green circles, respectively, represent the obstacle, robot, goal
(bottom) and start (top) positions. For this study, we set dc = 22.5 cm (indicated by the dashed circle).
We consider points within this region as “close” to the obstacle.

Especially considering PHI_φour, all three methods perform reasonably well in terms
of adhering to the aforementioned path preferences, with a slight variation in how close
the robot passes by the obstacle. As discussed in Section 4.1, PHI is not able to capture any
velocity preferences. Notably, DMP performs well in this aspect, as it is able to replicate the
demonstrated behavior in terms of both path and velocity.

Next, we modified the scenario nine times in three different ways, changing the goal,
start and obstacle positions. We compared how each method was able to generalize the

Robotics 2023, 12, 61 19 of 22

initial observation to the different contexts. Figure 12 displays the trajectories produced by
the three methods in the nine new scenarios, where PHI again has two different feature sets.

We observe that the trajectory by our method (shown in dark blue) passes on the left
side of the obstacle close to the robot in every case, and the velocity preference of slowing
down when passing close to the obstacle is only achieved by our framework.

Figure 12. We demonstrate the generalization of our method by modifying the goal (top), start
(middle) and obstacle (bottom) positions. The yellow, blue and red and purple trajectories correspond,
respectively, to the output of the DMPs, our framework and the two versions of PHI. The thickness of
the line indicates the inverse of normalized velocity (i.e., the thicker the line, the slower the trajectory).

4.3. Discussion

A comparison with DMP illustrates how a lack of a deeper level of knowledge about
why a trajectory was demonstrated in a specific manner leads to failure in generalization to
new contexts. These results emphasize the need for consideration of human models, such
as our reward in (1)–(2) in LfD methods. PHI, with its model, performs considerably better.
However, we observe that the internal trajectory optimization reacts differently to the
different sets of features, resulting in slight differences in generalized trajectories. The main
point, regardless of the applied features, remains that PHI is not able to capture velocity
preferences. Table 2 summarizes the strengths and weaknesses of the three methods with
respect to the aforementioned aspects.

Robotics 2023, 12, 61 20 of 22

Table 2. Qualitative evaluation of the different aspects of the three methods: DMPs, PHI and ours.
The marker “o” indicates a value between “ −” and “+”.

Adherence to Preferences a Robot Objectives b Trajectory Feasibility c Online Learning d

DMPs − − − +
PHI o o + o
Ours + + o −

a Based on Figure 12, “−” indicates adherence to only a few or inconsistent adherence to many preferences and
“+” indicates adherence to most preferences in most of the cases. b Based on the model structure, “−” indicates no
robot objectives can be added and “+” indicates when arbitrary robot objectives can be added. c “−” indicates no
guarantees for trajectory feasibility, and “+” indicates trajectory feasibility can be guaranteed at all times. d “−”
indicates the inability to learn in real-time and “+” indicates the ability to learn and re-plan while the task is
being executed.

PHI optimizes the trajectory in the joint space, which can be executed quickly since
inverse kinematics is only required at waypoints. It ensures the planned trajectories are
feasible for the robot, which can be interpreted as implicit robot objectives being satisfied.
On the other hand, our method optimizes the trajectory in the task space; thus, additional
inverse kinematics computations are necessary together with an explicit description of
corresponding robot objectives. The use of inverse kinematics can also be problematic
when there are redundant DoFs or when there are potential self-collisions. Nevertheless,
planning in the task space is closer to where the human preferences typically are (i.e., more
intuitive) and can handle obstacle avoidance in a manner that is more predictable for a
non-expert human.

It should be noted that our framework does take up to two minutes of optimization
(total for path and velocity), whereas the DMPs trajectory is produced instantly. However,
there is no guarantee that the DMP will encode and generalize the desired preferences.

5. Conclusions and Future Work

We presented a novel approach for learning and executing human preferences in
robot object carrying tasks. Our user study showed fast convergence of the algorithm
and a proof-of-concept study was detailed for generalizing path and velocity preferences.
The efficiency and accuracy of our approach were validated in a real-world scenario.
Our supplementary study compared the performance of our framework to two common
methods from the literature, providing additional insights into the benefits and drawbacks
caused by the structural differences between the methods. Both in the user study and in
the supplementary study, a single informative feedback sufficed (in all cases except one) to
capture the human preferences. In the user study, this was tested without prescribing a
preference to the users. Our framework was in most cases successful in generalizing these
preferences to previously unseen scenarios. Our results support that our model contributes
to personalized planning of object carrying tasks with low interaction effort.

Future user studies comparing our method (with just path preferences) to PHI [4,6]
could lead to useful insights into people’s preferences on iterative versus online learning.
Further research could consider a combination of our method and PHI that would benefit
from the advantages of both, namely achieving generalization both in-task and over new
task instances through learning from online interactions. Following this, the trajectory
model we used to make the problem tractable is quite simplistic and does not describe
human motion behavior very well. Future research can aim to replace this model with a
library of motion primitives generated from demonstrations to better capture the shape of
the trajectories. More accurate trajectory models can enable the extension of the framework
to settings where the human and robot come into contact with each other through a
shared object (physical human–robot collaboration). Furthermore, whether more complex
non-linear formulations of the reward function using Gaussian Processes [32] or Neural
Networks [16], and/or learning them from user input [29,30], can effectively capture
context-aware preferences without the need for rigorous feature engineering should be

Robotics 2023, 12, 61 21 of 22

studied. We believe the presented framework is especially effective in collaborative settings,
where knowledge of the preferences of a partner is essential in the execution of the task.

Author Contributions: A.A., L.v.d.S., L.P. and J.K. developed the concept and methods. The program-
ming was mainly performed by A.A., while L.v.d.S. modified PHI for the supplementary comparison
study. A.A. and L.v.d.S. contributed to the experiments and data analysis and wrote the first draft
of the paper. L.v.d.S., L.P. and J.K. revised the paper. All authors read and approved the submitted
version. All authors have read and agreed to the published version of the manuscript.

Funding: This work was partially supported by the European Research Council Starting Grant TERI
“Teaching Robots Interactively” (project reference 804907) and the European Space Agency through
the project “Rhizome: Off-Earth Manufacturing and Construction”. This study received funding
from the Honda Research Institute Europe.

Institutional Review Board Statement: The study was conducted in accordance with the Declaration
of Helsinki, and approved by the Human Research Ethics Committee at Delft University of Technology
on 6 September 2021.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: The datasets generated for the performed user and supplementary
study are available on request. Please contact the corresponding author.

Acknowledgments: The authors thank Andreea Bobu for her feedback on the paper.

Conflicts of Interest: The authors declare no conflicts of interest. The funders had no role in the
design of the study; in the collection, analyses, or interpretation of data; in the writing of the
manuscript; or in the decision to publish the results.

Abbreviations
The following abbreviations are used in this manuscript:

DoF Degree of Freedom
LfD Learning from Demonstration
DMP Dynamic Movement Primitive
IRL Inverse Reinforcement Learning
POMDP Partially Observable Markov Decision Process
NASA National Aeronautics and Space Administration
TLX Task Load Index
PHI Physical Human Interaction as in Bajcsy et al. [4]
MDPI Multidisciplinary Digital Publishing Institute

References
1. Jain, A.; Sharma, S.; Joachims, T.; Saxena, A. Learning preferences for manipulation tasks from online coactive feedback. Int. J.

Robot. Res. 2015, 34, 1296–1313. [CrossRef]
2. Duchaine, V.; Gosselin, C.M. General model of human–robot cooperation using a novel velocity based variable impedance

control. In Proceedings of the Second Joint EuroHaptics Conference and Symp. on Haptic Interfaces for Virtual Environment and
Teleoperator Systems , Tsukuba, Japan, 22–24 March 2007 .

3. Peternel, L.; Petrič, T.; Oztop, E.; Babič, J. Teaching robots to cooperate with humans in dynamic manipulation tasks based on
multi-modal human-in-the-loop approach. Auton. Robot. 2014, 36, 123–136. [CrossRef]

4. Bajcsy, A.; Losey, D.P.; O’Malley, M.K.; Dragan, A.D. Learning robot objectives from physical human interaction. In Proceedings
of the Conference on Robot Learning, Mountain View, CA, USA, 13–15 November 2017.

5. Losey, D.P.; O’Malley, M.K. Learning the correct robot trajectory in real-time from physical human interactions. ACM Trans.
Hum.-Robot Interact. 2019, 9, 1–19. [CrossRef]

6. Losey, D.P.; Bajcsy, A.; O’Malley, M.K.; Dragan, A.D. Physical interaction as communication: Learning robot objectives online
from human corrections. Int. J. Robot. Res. 2022, 41, 20–44. [CrossRef]

7. Ijspeert, A.J.; Nakanishi, J.; Schaal, S. Movement imitation with nonlinear dynamical systems in humanoid robots. In Proceedings
of the IEEE International Conference on Robotics and Automation, Washington, DC, USA, 11–15 May 2002.

8. Kulvicius, T.; Biehl, M.; Aein, M.J.; Tamosiunaite, M.; Wörgötter, F. Interaction learning for dynamic movement primitives used
in cooperative robotic tasks. Robot. Auton. Syst. 2013, 61, 1450–1459. [CrossRef]

http://doi.org/10.1177/0278364915581193
http://dx.doi.org/10.1007/s10514-013-9361-0
http://dx.doi.org/10.1145/3354139
http://dx.doi.org/10.1177/02783649211050958
http://dx.doi.org/10.1016/j.robot.2013.07.009

Robotics 2023, 12, 61 22 of 22

9. Gams, A.; Petrič, T.; Do, M.; Nemec, B.; Morimoto, J.; Asfour, T.; Ude, A. Adaptation and coaching of periodic motion primitives
through physical and visual interaction. Robot. Auton. Syst. 2016, 75, 340–351. [CrossRef]

10. Nemec, B.; Likar, N.; Gams, A.; Ude, A. Human robot cooperation with compliance adaptation along the motion trajectory. Auton.
Robot. 2018, 42, 1023–1035. [CrossRef]

11. Ewerton, M.; Maeda, G.; Kollegger, G.; Wiemeyer, J.; Peters, J. Incremental imitation learning of context-dependent motor skills.
In Proceedings of the 2016 IEEE-RAS 16th International Conference on Humanoid Robots (Humanoids), Cancun, Mexico, 15–17
November 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 351–358.

12. Wirth, C.; Akrour, R.; Neumann, G.; Fürnkranz, J. A survey of preference-based reinforcement learning methods. J. Mach. Learn.
Res. 2017, 18, 1–46.

13. Ratliff, N.D.; Bagnell, J.A.; Zinkevich, M.A. Maximum margin planning. In Proceedings of the 23rd International Conference on
Machine Learning, Pittsburgh, PA, USA, 25–29 June 2006.

14. Ziebart, B.D.; Maas, A.L.; Bagnell, J.A.; Dey, A.K. Maximum entropy inverse reinforcement learning. In Proceedings of the AAAI,
Chicago, IL, USA, 13–17 July 2008.

15. Jeon, H.J.; Milli, S.; Dragan, A. Reward-rational (implicit) choice: A unifying formalism for reward learning. Adv. Neural Inf.
Process. Syst. 2020, 33, 4415–4426.

16. Ibarz, B.; Leike, J.; Pohlen, T.; Irving, G.; Legg, S.; Amodei, D. Reward Learning from Human Preferences and Demonstrations in
Atari. arXiv 2018, arXiv:1811.06521.

17. Bıyık, E.; Losey, D.P.; Palan, M.; Landolfi, N.C.; Shevchuk, G.; Sadigh, D. Learning reward functions from diverse sources of
human feedback: Optimally integrating demonstrations and preferences. Int. J. Robot. Res. 2022, 41, 45–67. [CrossRef]

18. Kirby, R.; Simmons, R.; Forlizzi, J. Companion: A constraint-optimizing method for person-acceptable navigation. In Proceedings
of the 18th IEEE International Symp. on Robot and Human Interactive Communication, Toyama, Japan, 27 September–2
October 2009.

19. Kretzschmar, H.; Spies, M.; Sprunk, C.; Burgard, W. Socially compliant mobile robot navigation via inverse reinforcement
learning. Int. J. Robot. Res. 2016, 35, 1289–1307. [CrossRef]

20. Shivaswamy, P.; Joachims, T. Coactive learning. J. Artif. Intell. Res. 2015, 53, 1–40. [CrossRef]
21. Palan, M.; Landolfi, N.C.; Shevchuk, G.; Sadigh, D. Learning reward functions by integrating human demonstrations and

preferences. arXiv 2019, arXiv:1906.08928.
22. Fahad, M.; Chen, Z.; Guo, Y. Learning how pedestrians navigate: A deep inverse reinforcement learning approach. In Proceedings

of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Madrid, Spain, 1–5 October 2018.
23. Zucker, M.; Ratliff, N.; Dragan, A.D.; Pivtoraiko, M.; Klingensmith, M.; Dellin, C.M.; Bagnell, J.A.; Srinivasa, S.S. CHOMP:

Covariant Hamiltonian Optimization for Motion Planning. Int. J. Robot. Res. 2013, 32, 1164–1193. [CrossRef]
24. Vasquez, D.; Okal, B.; Arras, K.O. Inverse reinforcement learning algorithms and features for robot navigation in crowds: an

experimental comparison. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Chicago,
IL, USA, 14–18 September 2014.

25. MathWorks. Waypoint Trajectory Generator, 2018. Available online: https://www.mathworks.com/help/fusion/ref/
waypointtrajectory-system-object.html (accessed on 3 August 2021).

26. Hart, S.G.; Staveland, L.E. Development of NASA-TLX (Task Load Index): Results of empirical and theoretical research. In
Advances in Psychology; Elsevier: Amsterdam, The Netherlands, 1988; Volume 52, pp. 139–183.

27. Akgun, B.; Cakmak, M.; Jiang, K.; Thomaz, A.L. Keyframe-based learning from demonstration. Int. J. Soc. Robot. 2012, 4, 343–355.
[CrossRef]

28. Mülling, K.; Kober, J.; Kroemer, O.; Peters, J. Learning to select and generalize striking movements in robot table tennis. Int. J.
Robot. Res. 2013, 32, 263–279. [CrossRef]

29. Bobu, A.; Wiggert, M.; Tomlin, C.; Dragan, A.D. Inducing structure in reward learning by learning features. Int. J. Robot. Res.
2022, 41, 497–518 . [CrossRef]

30. Katz, S.M.; Maleki, A.; Bıyık, E.; Kochenderfer, M.J. Preference-based learning of reward function features. arXiv 2021,
arXiv:2103.02727.

31. Calinon, S.; Lee, D. Learning Control. In Humanoid Robotics: A Reference; Vadakkepat, P., Goswami, A., Eds.; Springer:
Berlin/Heidelberg, Germany, 2019; pp. 1–52. [CrossRef]

32. Bıyık, E.; Huynh, N.; Kochenderfer, M.J.; Sadigh, D. Active Preference-based Gaussian Process Regression for Reward Learning.
arXiv 2020, arXiv:2005.02575.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.robot.2015.09.011
http://dx.doi.org/10.1007/s10514-017-9676-3
http://dx.doi.org/10.1177/02783649211041652
http://dx.doi.org/10.1177/0278364915619772
http://dx.doi.org/10.1613/jair.4539
http://dx.doi.org/10.1177/0278364913488805
https://www.mathworks.com/help/fusion/ref/waypointtrajectory-system-object.html
https://www.mathworks.com/help/fusion/ref/waypointtrajectory-system-object.html
http://dx.doi.org/10.1007/s12369-012-0160-0
http://dx.doi.org/10.1177/0278364912472380
http://dx.doi.org/10.1177/02783649221078031
http://dx.doi.org/10.1007/978-94-007-7194-9_68-1

	Introduction
	Method
	Learning Human Reward Functions from Demonstration
	Features and Rewards
	Height from the Table
	Distance to the Obstacle
	Obstacle Side
	Velocity
	Path Efficiency Reward
	Collision Avoidance Reward
	Robot Velocity Reward

	Motion Planning via Trajectory Optimization

	Method Validation with User Study
	User-Defined Preferences
	Procedure and Measures
	Results

	Pre-Defined Preferences
	Procedure and Measures
	Results

	Discussion

	Supplementary Comparison Study
	Conceptual Differences per Aspect
	Adherence to Preferences
	Robot Objectives
	Trajectory Feasibility
	Online Learning

	Comparison
	Discussion

	Conclusions and Future Work
	References

