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a b s t r a c t 

Background and objective: This paper focuses on nutritional recommendation systems (RS), i.e. AI-powered 

automatic systems providing users with suggestions about what to eat to pursue their weight/body shape 

goals. A trade-off among (potentially) conflictual requirements must be taken into account when design- 

ing these kinds of systems, there including: ( i ) adherence to experts’ prescriptions, ( ii ) adherence to users’ 

tastes and preferences, ( iii ) explainability of the whole recommendation process. Accordingly, in this pa- 

per we propose a novel approach to the engineering of nutritional RS, combining machine learning and 

symbolic knowledge extraction to profile users—hence harmonising the aforementioned requirements. 

Methods Our contribution focuses on the data processing workflow. Stemming from neural networks (NN) 

trained to predict user preferences, we use CART Breiman et al.(1984) to extract symbolic rules in Pro- 

log Körner et al.(2022) form, and we combine them with expert prescriptions brought in similar form. 

We can then query the resulting symbolic knowledge base via logic solvers, to draw explainable recom- 

mendations. 

Results Experiments are performed involving a publicly available dataset of 45,723 recipes, plus 12 syn- 

thetic datasets about as many imaginary users, and 6 experts’ prescriptions. Fully-connected 4-layered NN 

are trained on those datasets, reaching ∼ 86% test-set accuracy, on average. Extracted rules, in turn, have 

∼ 80% fidelity w.r.t. those NN. The resulting recommendation system has a test-set precision of ∼ 74% . 

The symbolic approach makes it possible to devise how the system draws recommendations. 

Conclusions Thanks to our approach, intelligent agents may learn users’ preferences from data, convert 

them into symbolic form, and extend them with experts’ goal-directed prescriptions. The resulting rec- 

ommendations are then simultaneously acceptable for the end user and adequate under a nutritional 

perspective, while the whole process of recommendation generation is made explainable. 

© 2023 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

Recommendation systems (RS) are being exploited extensively 

n the nutrition domain to help users reach their body shape, 

eight, or health goals [3–5] . Roughly speaking, nutritional RS are 

ntelligent computational agents aimed at providing users with 

uggestions about what to eat, possibly leveraging on ( i ) users’ 

ata, e.g. age, weight, height, health conditions, etc.; ( ii ) recipes 
∗ Corresponding author. 

E-mail addresses: matteo.magnini@unibo.it (M. Magnini), 

iovanni.ciatto@unibo.it (G. Ciatto), furkan.canturk@ozu.edu.tr (F. Cantürk), 

eyhan.aydogan@ozyegin.edu.tr (R. Aydo ̆gan), andrea.omicini@unibo.it (A. Omicini) . 

i

t

o

i

–

ttps://doi.org/10.1016/j.cmpb.2023.107536 

169-2607/© 2023 The Authors. Published by Elsevier B.V. This is an open access article u
ata, e.g. categorization and composition of meals, both in terms 

f ingredients, and the nutrients therein contained; or ( iii ) experts’ 

ackground, synthesising the rationale by which recommendations 

hould help users in reaching their goals. 

Notably, user information is commonly either explicitly pro- 

ided by the users or automatically inferred by the agent while 

nteracting with them; recipes data are widely available on the 

eb; while experts’ background can be available to the system 

n the form of prescriptions . Generally speaking, experts’ prescrip- 

ions should express the criterion by which meals should be rec- 

mmended to the users, as a function of which nutrients the meal 

s composed by, and what the physiological parameters of the user 

other than their goals – are. Such a criterion should then be en- 
nder the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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oded in algorithmic form and exploited to regulate the behaviour 

f the recommending agent—by driving its recommendations. For 

ny given user and goal, a prescription may indicate which (sorts 

f) meals the user should eat, possibly when, and in what quanti- 

ies. 

However, given that human nutrition is deeply entangled with 

ultural, ethical, and subjective concerns, there are two more fac- 

ors RS should keep into account to be effective, namely: ( i ) users’ 

astes and preferences concerning food (cf. Kuo et al. [6] ), as well 

s ( ii ) explainability of the recommendation process (cf. Loh et al. 

7] ). Both aspects are not technically required to generate healthy 

ood recommendations, but they increase the chances that the sys- 

em recommendations are actually followed by the users—hence, 

hey help increasing the overall effectiveness of the system. 

So, summarising, several requirements must be taken into ac- 

ount when realising effective nutritional RS, there including ( i ) 

orrectness, i.e. adherence to experts’ prescriptions, ( ii ) acceptabil- 

ty, i.e. adherence to users’ tastes and preferences, and ( iii ) explain- 

bility of the whole recommendation process. Food RS may func- 

ion in disparate ways (see Calvaresi et al. [8] ); however, in general, 

hey follow a data-driven approach to the construction of recom- 

endations. Data may come from both users and experts, and it is 

ommonly processed via machine learning (ML), behind the scenes 

f the system development phase. This implies the final system’s 

ehaviour will reflect the information carried by data. 

Depending on how the relative (mis-)proportions among users 

nd experts data, several tensions may arise among the aforemen- 

ioned requirements. In fact, if data prioritises experts’ prescrip- 

ions over users’ preferences, agents may output recommendations 

hich are less likely to be seriously taken into account by the 

sers. Vice versa, there is no guarantee recommendations will re- 

ain coherent w.r.t. experts’ prescriptions—hence useful in the first 

lace. Furthermore, the reliance on sub-symbolic, data-driven solu- 

ions may bring both precision and flexibility to the recommender 

gent, despite hindering its capability of explaining how any given 

ecommendation was formed [7] . 

Accordingly, to mitigate tensions among the acceptability, cor- 

ectness, and explainability requirements, in this study, we pro- 

ose a novel approach to the engineering of agent-oriented nutri- 

ional RS. Our approach relies on a twofold assumption. On the one 

ide, users’ preferences can easily be mined from data, while hand- 

rafting them would likely introduce biases and diverge from real- 

ty. On the other side, experts’ prescriptions are commonly hand- 

rafted in schematic form (e.g. tables/schedules with meal pat- 

erns), and they would be hard to learn from data—as ML may not 

e able to capture humans’ experience. Under these assumptions, 

e try to answer the following research question: can we combine 

uch kinds of information to let agents devise recommendations 

hich are simultaneously correct (i.e. consistent with experts’ pre- 

criptions), acceptable (i.e. consistent with users’ preferences), and, 

bove all, explainable (i.e. for which a motivation can be devised)? 

To answer this question, we design a nutritional RS architecture 

here ordinary ML processing is combined with symbolic knowl- 

dge extraction [9,10] (SKE), with the purpose of bringing users’ 

references learnt from data in symbolic form. There, SKE is a cor- 

us of techniques aimed at extracting intelligible information out 

f (otherwise opaque) trained ML predictors. Extracted user’s pref- 

rences are then combined with experts’ prescriptions – which we 

ssume are already in symbolic form – to enable the generation of 

orrect, acceptable, and explainable recommendations. Finally, we 

eport experiments to validate the effectiveness of our approach. 

Accordingly, the remainder of this paper is organised as follows. 

n Section 2 , we provide an overview of the state of the art of

 i ) nutritional RS, ( ii ) machine learning, ( iii ) symbolic knowledge

xtraction, and ( iv ) logic knowledge representation/manipulation. 

here, we recall the main theoretical notions we rely upon in the 
2 
est of the paper. In Section 3 , we discuss the modelling and the 

esign of our nutritional RS architecture. This is where we present 

he main contribution of this paper. Next, in Section 4 we describe 

he design of our experiments aimed at assessing the aforemen- 

ioned architecture, and we report their results—which are then 

iscussed in Section 5 Finally, Section 6 concludes the paper. 

. Background 

In this section, we provide the necessary background on nu- 

ritional recommendation systems ( Section 2.1 ), knowledge extrac- 

ion ( Section 2.2 ) and logic programming ( Section 2.3 ). 

.1. Nutritional recommendation systems 

Eating habits play a crucial role in the well-being of all age 

anges that calls attention to develop nutritional RS [3,11,12] . These 

ystems emerge to meet a spectrum of user needs [13] such as 

iet programs [14] , chronic disease management [15] , critically ill 

eople treatment [16] , allergies [17] , life-style choices (e.g. sporty, 

egetarian, organic, and halal), and physical activity levels [18] . 

ach preference domain is represented either by inputting expert 

nowledge (e.g. daily nutrition intake limits, based on the user’s 

hysical activity level) or inputting users’ feedback based on re- 

iews on recipes [19] into the system. 

In addition to representing user profiles in the system, modal- 

ty of recommendation items such as food, recipe, and meal is the 

econd aspect of knowledge representation in nutritional RS. Many 

ngredients are combined to achieve a single recipe which dramati- 

ally increases the complexity of nutritional recommender systems. 

lso, many food attributes like cuisine, category, cooking style and 

ime, and nutrition levels are other factors in users’ preferences. 

Classical approaches to nutritional recommendation learn users’ 

references based on their past activities on the system like rat- 

ngs, clicks, reviews, and browsing history [20] . Those systems de- 

ive a user profile from such data sources through content-based 

21,22] and/or collaborative filtering [23] , then recommend foods / 

ecipes that match the user profile most or are consumed more 

requently by other similar user profiles. Recent studies refer to 

dvanced machine learning techniques to personalise nutritional 

S, such as question answering over knowledge bases [22,24] , 

ecipe retrieval from visual records of available ingredients [19] , 

nd learning recipe representations from multi-modal data (e.g., 

ser reviews, recipe text, and photographs) [25] . 

Although users can find recipes that are suitable for their taste 

n the Internet, most of the recipes on food websites are poor 

n terms of health [26] . Therefore, recent food recommendation 

tudies are dedicated to promoting healthy eating to users along- 

ide considering their food preferences [13,19,27] . Exposing a pre- 

efined healthiness indicator attached to recommendations is a 

rimary way of promoting healthy foods [26,28] whereas visual 

ttractiveness of food visuals can be more effective to motivate 

sers to embrace healthier choices [29,30] . One alternative ap- 

roach to enhance user acceptance of recommendations presented 

y a system is providing explanations on how/why the system rec- 

mmends a specific item to the user [31] . Users trust more trans- 

arent systems that can present reasoning behind decisions rather 

han relying on black-box automated decision processes [32] . By 

he motivation of building explainable intelligent systems, recent 

tudies [33,34] propose explainable approaches to food recommen- 

ation systems. Padhiar et al. [33] present an explanation ontology 

odelling to provide reasonings behind food and diet recommen- 

ations for some sort of user questions. To achieve recommenda- 

ions that are both acceptable and healthy, Yera et al. [34] evaluate 

ifferent recommendation explanation approaches with and with- 

ut incorporating nutritional information into the recipes. Further- 
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( 1  

1 the ‘ → ’ symbol in Eq. (1) should be read as ‘if’ 
2 the ‘ ∧ ’ symbol in Eq. (1) is should be read as ‘and’ 
ore, in Calvaresi et al. [35] , explainable nutritional systems are 

nvisioned, leveraging on a multi-agent architecture to reach both 

ersonalisation and explainability. Also, our study positions in this 

merging research field, which aims to enable the explainability of 

utritional recommendation systems. 

.2. Machine learning and knowledge extraction 

Artificial intelligence (AI) has been a key enabler of recommen- 

ation systems since their very beginning [36] . While decades ago 

t was common to rely on symbolic, rule-based techniques for de- 

eloping expert systems – i.e. recommendation systems encapsu- 

ating the knowledge of domain experts in the form of machine- 

nterpretable rules (cf. Fraser and Turney [16] ) –, nowadays more 

nd more recommendation systems are relying on machine learn- 

ng (ML) [37] . This implies a data-driven approach to the engineer- 

ng of recommendation systems, where both experts knowledge 

nd users’ information, as well as the whole process of recom- 

endation production – are (semi-)automatically learnt from data 

ather than manually encoded by human beings. 

Learning from data is automated via ML predictors, often im- 

lying numeric processing of data—which in turn enables the de- 

ection of fuzzy patterns or statistically-relevant regularities in 

he data, which predictors can learn to recognise. This is funda- 

ental to support the automatic acquisition of otherwise hard- 

o-formalise behaviours for computational agents, in the form of 

rained predictors. The whole process involves a number of steps, 

roadly grouped in training and inference. During the training 

hase, data from various sources is selected, pre-processed, pos- 

ibly combined, and finally fed into the ML predictors of choice 

38] —e.g., neural networks, decision trees, support vector ma- 

hines, or linear models. Predictor-specific training algorithms are 

hen exploited to let the predictor identify key patterns in the data, 

ence learning them. Along the process, the internal structure of 

he predictor is tuned to adhere to the data. For this reason, we say 

he predictor is acquiring knowledge in sub-symbolic form Calegari 

t al. [39] . Since then, the predictor will be able to reproduce the 

earnt patterns in novel scenarios, by drawing inferences on unseen 

ata. This is called the inference phase, in jargon. 

Trained predictors in inference phase are commonly exploited 

ehind the scenes of computational agents as the inference mecha- 

ism enabling many sorts of behaviours. For instance, if the agent’s 

oal is to draw recommendations, trained predictors may be ex- 

loited to construct such recommendations. However, the flexibil- 

ty of state-of-the-art sub-symbolic predictors – such as neural net- 

orks – comes at the price of poorly- interpretable solutions. This 

mplies the expert human user may hardly understand/predict the 

ehaviour of a trained predictor by observing its structure. The 

verall result is an obscure/unpredictable behaviour of the agent(s). 

n health-related scenarios – such as nutrition –, the lack of inter- 

retability may be a no-go. This is because it makes it hard for do- 

ain experts to guarantee that predictions (and therefore recom- 

endations) are always adequate, under a health-care perspective. 

urthermore, sub-symbolic predictors can hardly be updated with 

ovel knowledge, without restarting their training from scratch—an 

ption which is rarely viable after they reach the inference phase. 

Among the possible ways to address such issues, in this pa- 

er we focus on symbolic knowledge extraction (SKE) from sub- 

ymbolic predictors [9] . There, the keyword “symbolic” refers to 

he way knowledge is represented. In particular, we consider as 

ymbolic any language that is intelligible and interpretable for both 

uman beings and computational agents. Along this line, SKE is 

he process of distilling the knowledge a sub-symbolic predictor 

as grasped from data into symbolic form. This can be exploited to 

licit the criterion by which a predictor is drawing predictions, in 

uch a way that a domain expert can validate – and, possibly, alter 
3 
it. More generally, SKE enables the inspection of the sub-symbolic 

redictors it is applied to, making it possible for the human de- 

igner to figure out how they will behave—and possibly, intervene 

10] . 

More precisely, the main idea behind SKE is to enable the con- 

truction of a symbolic surrogate model mimicking the behaviour 

f a given predictor. There, symbols may consist of intelligible 

nowledge, such as rule lists or tree—which agent-based technolo- 

ies may directly manipulate and exploit. In fact, agent-based tech- 

ologies are very well suited to interoperate with symbolic ones 

40] . In particular, symbolic rules may then be exploited ( i ) to ei-

her derive predictions directly – i.e. without the predictor –, ( ii ) to 

etter understand the behaviour of the original predictor – hence 

eriving post-hoc explanations [41] –, or ( iii ) to attain easily ed- 

table replacements for sub-symbolic predictors—while retaining 

he capability of learning from data. 

Despite symbolic rules could also be mined from data directly 

e.g. Tseng et al. [42] ), extracting them from trained predictors 

ay be preferable for several reasons. First, sub-symbolic predic- 

ors are commonly more flexible – and, potentially, predictive –

hen it comes to mine information from data. Also, mining rules 

irectly from data, requires data to be available in the first place—

hich not always the case, especially in the health-care domain 

here data may be sensitive. Therefore, extracting knowledge from 

rained sub-symbolic predictors is a way to maximise predictive 

erformance, while reducing dependency from data. 

Notably, SKE has already been applied, to the healthcare do- 

ain – e.g., to make early breast cancer prognosis predictions 

43] and to help the diagnosis and discrimination among hepato- 

iliary disorders [44] or other diseases and dysfunctions [45] –, as 

ell as to credit-risk evaluation [46–48] , credit card screening [49] , 

ntrusion detection systems [50] , and keyword extraction [51] . 

.3. Logic formulæ and logic programming 

Logic formulæ are symbolic ways of representing knowledge. 

hey enable agents to draw inferences – possibly, automatically –, 

ia logic reasoning, with the purpose of deriving novel and use- 

ul knowledge from prior one. The ‘possibly automatically’ part 

s essential here. In fact, logic formulæ can be produced, under- 

tood, and manipulated by both human and computational agents. 

or example, logic formulæ may express under which conditions a 

iven meal is “good” (under some notion of goodness). 

Many possible formalisms may be exploited in practice to ex- 

ress logic formalism—including, but not limited to, first order 

ogic (FOL) [52] , description logic, or propositional logic. Differ- 

nces in logic formalisms mostly lay in how they deal with the 

xpressivity–tractability trade-off [53,54] . Intuitively, the easier it is 

o express knowledge in any given formalism, the harder it will be 

o algorithmically treat the formilæ expressed via that formalism. 

ice versa, more tractable formalisms, will have lower expressive 

apabilities, hence making it harder to express knowledge. 

In this paper, we focus on Horn logic—that is, a particular sub- 

et of FOL coming with a fairly good expressivity–tractability trade- 

ff. In Horn logic, knowledge is expressed via one or more logic 

lauses , i.e. rules of the form 

p(X 1 , . . . , X n ) ← p 1 ( ̄X 

′ ) ∧ . . . ∧ p m 

( ̄X 

′′ ) (1)

here p(X 1 , . . . , X n ) is a property involving n entities – represented 

y as many variables X 1 , . . . , X n –, which can either be true or false.

n particular, the property may be true for those particular enti- 

ies if 1 all the m properties in the right-hand side of the formula 

namely, p ( X 
′ 
) , . . . , p m 

( X 
′ ′ 
) ) are true as well for those entities 2 .
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here, the symbols X̄ ′ , X̄ ′′ , . . . are used to denote subsets of the 

ariables X 1 , . . . , X n . 

The left-hand side of a Horn clause is called ‘head’ and the 

ight-hand side is called ‘body’. So, basically, the rule as a whole 

s stating under which conditions (i.e. the properties in the body) 

ts head is true. If the body is empty – i.e. if m ≡ 0 –, then the

ead is considered to be true—hence the whole rule is called fact . 

Of course, in practice, one corpus of knowledge may consist of 

ore than one rule. For instance, properties p 1 , . . . , p m 

may in turn

e defined by other rules. Furthermore, variables may either be as- 

igned with values – i.e. constants referring to entities from the 

eal world (e.g. numbers, strings, etc.) –, or not—hence represent- 

ng placeholders from unknown entities. In what follows, we de- 

ote constants in monospace , variables via Capital words, and prop- 

rties names via lowe rcase words. 

It is worth recalling that sets of Horn clauses can be 

ead/manipulated not only by human beings, but also by compu- 

ational agents. Among the many relevant kinds of admissible ma- 

ipulations which we may delegate to algorithms there is logic res- 

lution [55,56] . Thanks to resolution, a computational agent may 

lgorithmically figure out whether a given property is satisfied by a 

et of clauses or not. This is the essence of logic programming [57] ,

 branch of computer science studying the theory behind logic 

olvers [58] —i.e. software systems in charge of performing resolu- 

ion, such as, for instance, Prolog [2] . 

In theory, if a particular property φ can be proven as deducible 

rom a set of Horn clauses K, then we write K |	 φ, otherwise 

e write K � φ. In practice, such a simple notation involves the 

nvocation of some logic solver software, which must load K, be 

ueried with φ, and compute (and return) in which circumstances 

he property φ is true. 

. Methods: engineering nutritional recommendation systems 

We design a general architecture for a nutritional recommen- 

ation system, aimed at drawing personalised dietary recommen- 

ations for users willing to pursue specific dietary goals. Figure 1 

ummarises the main components of our architecture, as well as 

ow data is expected to flow through them. Notably, the archi- 

ecture achieves personalisation of recommendations by searching 

or recipes laying at the intersection among users preferences and 

xperts prescriptions. In the remainder of this section, we discuss 

ow such searching process operates, and what assumption it re- 

ies upon. 

As depicted in the figure, our architecture assumes the recom- 

ending agents may rely upon three disjoint information sources 

hile construction recommendations, namely: ( i ) the user, ( ii ) the 

utrition expert, and ( iii ) the database of recipies. In particular, 

sers are considered as the primary providers of their own pref- 

rences. Conversely, experts are in charge of reifying each user’s 

ietary goal into general prescriptions. Prescriptions are schematic 

uggestions about what patterns of recipes the user could or should 

at to pursue that goal. Finally, the database is necessary to let 

he agent propose admissible recipes to the users, other than mak- 

ng the agent aware of which ingredients and nutrients recipes are 

omposed of. 

In the following paragraphs, we delve into the details of how 

ur architecture requires preferences, prescriptions, and recipes to 

e represented and manipulated. Next, we focus on the notion 

f recommendation, and on the algorithmic process leading to its 

roduction. 

Recipes 

Our architecture distinguishes among three relevant data types, 

amely: recipes, ingredients, and nutrients. Recipes are composed 

f ingredients, which, in turn, may contain several nutrients. All 

uch data types are named , meaning that actual recipes, as well 
4

s ingredients and nutrients, are identified by their name. In other 

ords, our architecture does not require tracking how meals are 

ctually prepared, but only what ingredients they are composed 

f, and in which quantity. By tracking the nominal composition of 

ngredients in terms of nutrients, we let the agent compute the 

verall nutritional values corresponding to any given recipe. 

Along this line, the recipes’ database is the architectural com- 

onent in charge of storing information about recipes, and their 

ngredients and nutrients. It must support several sorts of queries, 

ncluding, but not limited to: 

• selecting recipes by the ingredients/nutrients they are com- 

posed of, 

• selecting recipes having (at least, at max, about) some amounts 

of ingredients/nutrients, 

• selecting the ingredients/nutrients corresponding to a given 

recipe, 

• cluster recipes having similar amounts of nutrients. 

Notably, queries of these sorts are required by the other com- 

onents of the recommender agent, described below. 

Users’ preferences 

Our architecture assumes the user’s tastes are not explicitly rep- 

esented, but rather sub-symbolically encoded into a ML predic- 

or. In other words, the recommender agent has a sub-symbolic 

omponent, which is capable to learn users’ tastes adaptively, from 

ata. This component assumes data describing the recipes the user 

ikes (or dislikes) are available in appreciable amounts. 

Along this line, we let the pair 〈 r, p〉 denote a particular prefer-

nce from the user. There, r ∈ R is a recipe from the set of admis-

ible recipes ( R ), and p ∈ R is an appreciation score, where pos-

tive values represent appreciation, negative values represent dis- 

ike, and 0 represent neutrality. In particular, the appreciation score 

ncapsulates the user’s opinion w.r.t. the recipe. It may synthesise 

heir taste, as well as other factors (e.g., allergies, religious/ethical 

eliefs). 

Data representing the user’s preferences is assumed to be col- 

ected by the agent while interacting with the user, as part of its 

rdinary operation—possibly, via smart or wearable devices. In par- 

icular, data is exploited by the agent as the training set for its 

ub-symbolic component aimed in charge of learning the user’s 

astes. Of course, in doing so, the learning algorithm may also ac- 

ess the ingredients- and nutrients-related information stored into 

he recipes’ database. One key aspect of the sub-symbolic approach 

s that learning should be continual [59,60] , in order to keep it ad- 

erent w.r.t. the user’s preferences—which may evolve over time. 

Under such assumptions, the users’ preferences are modelled as 

 function 

ppreciation : R → R (2) 

imed at predicting the appreciation the user’s appreciation score 

or any given recipe. In practice, this function is implemented via a 

L predictor aimed at generalising the user’s data acquired by the 

ecommender agent. 

Dietary prescriptions 

Dietary prescriptions are structured representations of what a 

iven user should eat, and when , in order (for the user) to achieve

 particular goal . They are commonly produced by nutrition ex- 

erts upon request, and structured around the particular physi- 

logical features of the user, other than the expert’s background 

nowledge and experience. For any given prescription, the ‘what’ 

art consists of particular ingredients or nutrients the user should 

ssume on a per-meal basis, along with the corresponding quanti- 

ies. Conversely, the ‘when’ part indicates the moment of the day 

he meal should be consumed (e.g., breakfast, lunch, dinner, etc.). 

inally, the goal is the long-term effect the expert is expecting to 

roduce onto the body of the user, under the assumption that the 
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Fig. 1. Anatomy of a nutritional RS under a data-flow perspective. The user interacts – via some smart/wearable device – with a sub-symbolic AI predictor, continuously 

trained to predict whether the user likes a given recipe or not. A knowledge base is then extracted from the predictor, representing the user’s preferences in a human- 

interpretable logic form. Dietary prescriptions – provided by human experts – are transformed into the same logic form. Conversely, databases providing information about 

recipies – there including ingredients and their nutrients – are assumed to be remotely available via the Internet. Finally, the recommending agent exploits a logic engine, 

combining all such information into recommendations which are simultaneously correct (w.r.t. experts prescriptions), acceptable (w.r.t. users’ preferences), and explainable. 
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ietary prescriptions are followed accordingly. The goal should re- 

ect user’s request, but it does not need to be explicitly repre- 

ented in the prescription. 

Dietary prescriptions usually come in a quasi-natural language 

orm or in tabular form. In the latter case, each cell represents a 

articular moment of the week, and the meal therein suggested 

y the expert. When this is the case, the expert’s suggestion may 

imply indicate the most adequate nutrients/ingredients and their 

orresponding quantities. It is then the user’s responsibility to con- 

truct a recipe matching their own tastes—unless, of course, a nu- 

ritional RS is in place. 

For the sake of simplicity, yet without loss of generality, we 

ocus on the single cell of a dietary prescription table. In other 

ords, we focus on the single prescription concerning any given 

oment t of the week. There, we assume the prescription consists 

f one or more logic formulæ expressing what properties the user’s 

eal should have to be coherent with the dietary goal. 

In the following subsection, we provide details about what logic 

ormulæ are, and how they can express dietary prescriptions. 

.1. The role of logic formulæ

Our architecture leverages upon Horn clauses to represent 

sers’ preferences and experts’ prescriptions. In fact, as we show in 

he remainder of this section, Horn logic lets us simply and clearly 
5 
xpress dietary prescriptions, while retaining acceptable computa- 

ional tractability features. 

Such formulæ may be written by human beings and exploited 

y some nutritional RS to suggest actual recipes to eat, or, vice 

ersa, they may be generated by some algorithm, and understood 

y human beings as computer-generated prescriptions. 

More precisely, experts prescriptions at time t consist of a set 

f Horn clauses defining the should _ eat/ 1 predicate. Such predicate 

ntensively describes what recipes the user should eat at time t , by 

escribing admissible (or forbidden) ingredients / nutrients. This is 

erformed via two more predicates – namely, has/ 2 and has _ no / 2 

, which assert what ingredients / nutrients the suggested recipe 

hould or should not be composed by. Groups of ingredients / nu- 

rients may be defined as well, via unary predicates defined by ad- 

oc clauses—e.g. p v egetab le / 1 . 

So, for instance, we may express a particular dietary prescrip- 

ion for Monday at lunch via the following rule: 

hould _ eat (R ) ← has (R, rice ) 
∧ has (R, chicken ) 
∧ has _ no (R, salt ) 
∧ has (R, X ) ∧ v egetable (X ) 

(3) 

tating that the user should eat any meal whose recipe R includes 

oth rice and chicken , but no salt , other than any ingredient X

hich is a vegetable. Of course, to make the set of clauses self- 

ontained, we should also provide rules stating what it means for 
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 recipe R to have (resp. have no) ingredient X—hence giving se- 

antics to the property has (R, X ) (resp. has _ no (R, X ) ). Similarly, 

e should also provide rules stating what it means for an ingre- 

ient X to be a p v egetab le —hence giving semantics to the property 

p v egetab le (X ) . For the sake of brevity, we do not report such defi-

itions here. 

As probably obvious, encoding recipes into clausal form could 

e done in other ways, too: for instance, one may include a pred- 

cate p quant it y (X, Q ) stating that ingredient X is present in quan- 

ity Q . However, this would not change our core contribution, so 

or the sake of simplicity we do not discuss the many alternative 

yntactic choices available here. 

Users’ preferences can be represented in clausal form as well. In 

hat case, they consist of sets of Horn clauses defining the likes / 1 

redicate. Similarly to prescriptions, such definitions may exploit 

he predicates has / 2 and has _ no / 2 too, as well as any other custom

redicate defining groups of ingredients / nutrients. 

As an example, consider the following clause set: 

likes (R ) ← has (R, rice ) 
∧ has (R, chicken ) 
∧ has _ no (R, broccoli ) 
∧ has (R, peas ) 

v egetable ( peas ) ← 

v egetable ( broccoli ) ← 

has ( paella , rice ) ← 

as ( paella , chicken ) ← 

has ( paella , peas ) ← 

as ( paella , seafood ) ← 

(4) 

t is stating that ( i ) the user likes recipes having rice , chicken , and

eas – such as the recipe for paella –, but no broccoli , ( ii ) that 

oth peas and broccoli are vegetables, and ( iii ) the composition 

f paella —which also includes seafood . 

When both prescriptions and preferences are in clausal form, 

he intersection among them can be computed via logic resolution. 

his simply requires the query 3 

ikes (R ) ∧ should _ eat(R ) (5) 

o be proved – via logic resolution – against the clause set attained 

y merging the clausal forms of both prescriptions and preferences. 

n this way, a logic solver may compute one or more admissible 

ssignments for R – i.e. recipes the user should and would like to 

at –, or discover that none exists. 

So, for instance, the query in Eq. (5) may be tested against the 

lause set attained by merging Eqs. (3) and (4) . In this way, any

ogic solver may conclude that R = paella . We denote such situa- 

ion by: 

3) ∪ (4) |	 likes ( paella ) ∧ should _ eat( paella ) 

.2. The role of symbolic knowledge extraction 

Our architecture requires that both users’ preferences and ex- 

erts’ prescriptions are available as sets of Horn clauses. Under 

uch assumption, it can construct recommendations via logic reso- 

ution. 

As far as prescriptions are concerned, we assume that experts 

an produce them in clausal form, directly —or, at least, in forms 

hich can be automatically converted into sets of Horn clauses. 

his assumption is easily met by the current practice of providing 

rescriptions as timetable of suggested recipes. 
3 To be read as “is there any recipe R which is simultaneously among the recipes 

he user likes and should eat?”

t

6 
Conversely, as far as preferences are concerned, the clausal form 

equirement is clearly conflicting with Eq. (2) , where users’ prefer- 

nces are modelled as trained sub-symbolic predictors. The sub- 

ymbolic representation is adequate, as it enables learning users’ 

references from data, and adapting to their change over time. 

owever, such form prevents the direct exploitation of logic res- 

lution as the means to construct recommendation. 

Accordingly, to fill the gap, we choose to bring users’ prefer- 

nces in clausal form, algorithmically. To serve this purpose, our 

rchitecture leverages upon a SKE step, which is in charge of ex- 

racting symbolic knowledge – in clausal form – out of the sub- 

ymbolic predictor, which has been trained to predict users pref- 

rences. Again, we do not impose any particular SKE algorithm –

eaning that implementers are free to choose the extraction algo- 

ithm which is most adequate for their needs –, but we do require 

he extraction step and we require it to output Horn clauses. 

. Results: evaluation of the approach 

To validate our architecture, we here report a number of exper- 

ments designed to exemplify and assess a nutritional RS matching 

ur architecture. The source code and the instructions to reproduce 

ur experiments is available at https://github.com/pikalab-unibo/ 

ccao- cmpb- experiments- 2022 . 

More precisely, in our experiments: ( i ) we generate synthetic 

atasets for a single user’s food preferences, ( ii ) we create and 

rain a ML predictor – namely, a neural network – to predict 

hether a recipe will be liked by the user or not, ( iii ) we apply

 SKE algorithm to generate logic rules that describes the inter- 

al decision-making behaviour of the predictor, therefore the user’s 

references, and, finally, ( iv ) we assess the system capability to rec- 

mmend recipes that are both compliant to the user’s preferences 

nd to nutritional prescriptions. In doing so, we leverage on sev- 

ral datasets, some of which are publicly available from the Web, 

hile others are synthesised as part our experiments. 

Details of how we perform data selection and synthesis, and 

bout our experiments are provided in the following subsections. 

.1. Datasets 

We use a public dataset of recipes, 4 and 12 synthetic datasets 

f preferences, for as many synthetic users. 

The recipes’ dataset consists of four files: 

• 01_Recipe_Details contains all recipes (recipe id, title, 

source and cuisine); 

• 02_Ingredients contains all basic ingredients (aliased 

name, synonyms, entity id, category); 

• 03_Compound_Ingredients contains compound ingredi- 

ents (name, synonyms, entity id, constituent ingredients, cat- 

egory); 

• 04_Recipe-Ingredients_Aliases contains the ingredi- 

ents for each recipe (recipe id, original ingredient name, aliased 

ingredient name, entity id). 

There are 929 unique basic ingredients and 103 compound in- 

redients (i.e., ingredients made of multiple basic ingredients or 

ngredients that can be used instead of a subset of basic ingredi- 

nts), 1032 in total. Each ingredient belongs to one of the 21 pos- 

ible categories (e.g., additive, bakery, beverage, etc.). Recipes that 

ave at least one ingredient are 45,749, the ones without any in- 

redient are ignored (23). 

The other datasets that we use in the experiments are syn- 

hetic. They represent the preferences of 12 (imaginary) users on 
4 Available at https://cosylab.iiitd.edu.in/culinarydb 

https://github.com/pikalab-unibo/mccao-cmpb-experiments-2022
https://cosylab.iiitd.edu.in/culinarydb
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Table 1 

Datasets statistics for each users on test sets. The second column shows the like 

class ratio. Third and fourth columns describe the accuracy and precision score of 

trained neural networks. Fifth and sixth columns describe the accuracy and pre- 

cision score of the extracted rules. The last column shows the fidelity of the ex- 

tracted rules w.r.t. the NN. 

users liked ratio net acc. net prec. r. acc. r. prec. r. fid. 

user 1 0.336 0.9233 0.8855 0.864 0.8228 0.873 

user 2 0.2842 0.9714 0.9564 0.794 0.7688 0.7972 

user 3 0.3941 0.8503 0.8221 0.7726 0.7136 0.7955 

user 4 0.4502 0.8364 0.8165 0.7562 0.7145 0.7813 

user 5 0.3022 0.9621 0.9478 0.8381 0.8301 0.842 

user 6 0.2719 0.9722 0.9514 0.7997 0.7109 0.8034 

user 7 0.3504 0.8916 0.8369 0.7782 0.7311 0.7901 

user 8 0.449 0.7782 0.7594 0.6868 0.674 0.7283 

user 9 0.393 0.8085 0.7783 0.7493 0.7524 0.803 

user 10 0.4734 0.7381 0.7582 0.6862 0.7452 0.7616 

user 11 0.4359 0.7708 0.7863 0.7098 0.7426 0.7804 

user 12 0.4353 0.7772 0.7979 0.7047 0.7467 0.7814 

average 0.3813 0.8567 0.8414 0.7616 0.7461 0.7948 

t

b

i

d

s

n

g

u

p  

n

i

r

w

i

s

r

a  

d

v

4

n

h

t

l

r

o

r

b

w

o

i

t

c  

t

t  

t

t

p

t

t

d

4

b

i

r

¬

T

o

u

C  

a

t

i

d

p

fi

e  

c

a

g

m

i

i

t  

D

b

d

p  

T

g

t

t

a

h

c

i

b

i

o

t

c

g

p

a

o

t

s

r

d

i

s

t

he 45,749 recipes above. In particular, the i th dataset includes a 

inary label for each recipe – namely, like and dislike – express- 

ng the preference of user i for that recipe. Despite the synthetic 

atasets are engineered to mimic real human beings, no real per- 

onal data is exploited in the process. Hence, the data come with 

o ethics- or privacy-related concern. 

Synthetic datasets are created in two steps. In the first step, we 

enerate unconditional preferences denoting whether or not the 

ser likes each ingredient (e.g., milk) based on predefined users’ 

rofiles. A user profile is a set of ranges of values for a certain

umber of ingredients and/or categories (e.g., vegetable, meat): for 

nstance, an ingredient could have a value between 0 and 10. Each 

ange is used to generate the corresponding value of likelihood 

ith uniform distribution. Associated range for a given category 

s applied to each ingredient belonging to that category. In the 

econd step, we generate a label regarding the likability of each 

ecipe—i.e., whether the user likes or dislike the recipe. The gener- 

tion of the label is based on the values of likelihood of the ingre-

ients of the recipe. Details about the synthesis process are pro- 

ided in Appendix A.1 for the sake of reproducibility. 

.2. Learning users’ preferences via sub-symbolic predictors 

To learn users’ preferences, we rely upon fully-connected neural 

etworks with 1 input layer, 2 hidden layers, and 1 output layers—

aving 1032, 16, 8, and 1 neurons, respectively. The activation func- 

ion of all neurons from the input and hidden layers is the rectified 

inear unit (ReLU), while the activation function of the output neu- 

on is a sigmoid. The network takes a recipe as input – a tensor 

f 1032 numbers, one for each ingredient – and it outputs a value 

epresenting whether the recipe will be liked or not by the user. 

It is worth recalling that one particular neural network should 

e trained for each user. In our case, we train 12 different net- 

orks, as we have 12 users/datasets. Each network is trained upon 

ne user-specific dataset using half records (22,874), the remain- 

ng are used for the test set (22,875). This test set is also used 

o evaluate the following steps of the workflow. The training pro- 

ess lasts for 20 epochs with a batch size of 32. At the end of the

raining, networks are able to reach an average accuracy on the 

est set of 85.6%. All results are reported in Table 1 . We report also

he precision of the NN. Precision is computed as the number of 

rue positives over the total amount of positive predictions (true 

ositives plus false positives). This measure is key for systems like 

his one, where it is more important to identify true positives (ac- 

ually liked recipes) having few or none negatives (recommended 

isliked recipes). 
7 
.3. Extracting users’ preferences via SKE 

Once we have a ML predictor trained to predict if a recipe will 

e liked or not by a user, we can extract symbolic knowledge from 

t representing the user’s food preferences. Examples of extracted 

ules for a user are: 

likes (R ) ← has _ no (R, egg ) 
∧ has _ no (R, pepper ) 
∧ has _ no (R, lime ) 
∧ has _ no (R, milk ) 
∧ has (R, almond ) 

 likes (R ) ← has (R, egg ) 
∧ has _ no (R, pepper ) 
∧ has (R, parsley ) 

he first rule says that the user likes dishes with almond but with- 

ut eggs, pepper, lime and milk. The second rule states that the 

ser dislikes dishes with eggs, parsley, and no pepper. 

To extract rules, we use a well known SKE algorithm, namely 

ART [1] , that allow us to generate a list of logic rules. CART needs

s input a dataset, the one used to train the neural network, and 

he trained ML predictor that is used as an oracle. Broadly speak- 

ng, the undergoing neural network predicts classes for the input 

ataset. Then, CART is applied to the new dataset (input dataset 

lus the predicted classes). The output of the algorithm is a classi- 

cation decision tree (DT) converted into logic rules [61] . 

The process of transforming a DT into rules is straightforward: 

ach path from the root to a leaf is a rule, where nodes are en-

oded into logical condition (i.e., if an ingredient is liked or not) 

nd the leaf represent the class assigned to the recipe. The al- 

orithm can take several hyper-parameters, we choose to set the 

aximum number of leafs – i.e., rules – to R = 50 and the max- 

mum depth of the DT to D = 10 —i.e., the maximum amount of 

ngredients that can appear in the right hand side of a logic rule. 

We choose to constrain the output rules in this way for mainly 

wo reasons. The first one is to put a limit to the growth of the

T avoiding spending too much computational time. If we have N

inary features – ingredients – we can obtain a DT with maximum 

epth of N + 1 , while the maximum number of leafs – recipes or 

attern of recipes – are 2 N . With N = 1032 it would be infeasible.

he second reason why we limit the DT is that even with fewer in- 

redients the output rules should not be too long – not including 

oo much ingredients in the right hand side of the formula – and 

oo many — if they are hundreds or thousands no human will read 

nd understand that. Of course this is a deliberative choice that 

as a trade-off between performance measures (e.g., accuracy, pre- 

ision) and interpretability. Because in this scenario we are more 

nterested in the explanation of why a prescription may or may not 

e welcome by a user, we sacrifice performance over interpretabil- 

ty. 

Table 1 summarises the accuracy that the extracted rules have 

ver the test sets. It also shows the fidelity values of the rules w.r.t. 

he sub-symbolic predictors. The fidelity is computed like the ac- 

uracy but instead of checking if the prediction is the same as the 

round truth of the test set it is compared with the class value 

redicted by the ML predictor. In other words, the fidelity is an 

ccuracy computed on the test set but with the predicted classes 

f the networks. 

About the choice of decision trees as the means for rule extrac- 

ion, one may argue that DT are very sensitive to semantic and/or 

tructural instability [62,63] . On the one hand, structural instability 

efers to the situation where small perturbations in the training 

ata lead to considerably different DT. For instance, adding new 

nstances to the training dataset may lead CART to make different 

plits [64] . This is more likely to happen when some features of 

he training are highly correlated, hence similarly contributing to 
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he splitting criteria of some DT training algorithm [65] . On the 

ther hand, semantic instability refers to the situation where per- 

urbations in the training set lead to DT making different predic- 

ions. 

As far as our approach is concerned, we argue that instability 

s not a problem. In fact, our methodology does not prescribe any 

articular means for rule extraction, and CART is one of many pos- 

ible choices. As long as a high-enough level of fidelity is achieved, 

ther rule-extraction procedures may be adopted instead of CART 

cf. Sabbatini et al. [10] , Sabbatini and Calegari [66,67] , Sabbatini 

t al. [68] ). In particular, here we choose CART because of its sim- 

licity (both in terms of understandability and algorithmic com- 

lexity) and scalability. 

.4. Proposed recipes 

The goal of our experiments is to understand how users’ pref- 

rences and nutritional prescriptions are combined to recommend 

ecipes. To do so, we rely upon sets of logic rules expressing 

omain-expert prescriptions. In total, we have 6 sets of rules, for 

s many meals—one per meal. For each meal, we may have sev- 

ral (from 2 to 4) rules—one for each dish of the meal. Notably, 

rescriptions are expressed via the same formalism we adopt to 

epresent user’s preferences (see Section 3.1 ). More precisely, we 

ely on 6 prescriptions – i.e. three days, two meals per day –, to 

e shared among our 12 users. 

For the sake of readability, we minimise the amount of pre- 

criptions – as well as the complexity of each prescription –, while 

ocussing on demonstrating the feasibility of our approach. As a 

ey simplification, in particular, we omit quantities when repre- 

enting prescriptions in clausal form. Of course, should our ap- 

roach be adopted in practice, it would need to take into ac- 

ount more prescriptions, possibly including quantity-related in- 

ormation. However, it is worth mentioning that both the perfor- 

ance and the scalability of our approach are not related to the 

umber of prescriptions the system is taking into account. In fact, 

rescriptions are provided by experts, whereas recommendations 

re commonly constructed starting from a single prescription. 

Accordingly, in the following we identify the six prescriptions 

y index, and represent them via the rule sets below: 

p.1 First day, lunch: “Rice with vegetables. 80 g of raw rice, 35 g 

of raw lentils, 120 g of raw chicken, 120 g of mix vegetables. 

Garlic, herbs, 2 teaspoons of olive oil, 1 piece of orange”. 

should _ eat (R ) ← has (R, chicken ) ∧ has (R, rice ) 
should _ eat (R ) ← has (R, lentils ) 
should _ eat (R ) ← has (R, orange ) 
should _ eat (R ) ← has (R, garlic ) 

∧ has (R, X ) ∧ has (R, Y ) ∧ has (R, Z) 
∧ v egetable (X ) ∧ herb (Y ) ∧ essential _ oil (Z) 

p.2 First day, dinner: “Burger and grilled vegetables. 90 g of 

beef, 80 g of bread, 120 g of vegetables, 1 teaspoon of oil, 

1 cup of strawberries”. 

should _ eat (R ) ← has (R, beef ) ∧ has (R, bread ) 
should _ eat (R ) ← has (R, strawberry ) 
should _ eat (R ) ← has (R, X ) ∧ has (R, Y ) 

∧ v egetable (X ) ∧ essential _ oil (Y ) 

p.3 Second day, lunch: “Tuna salad. 120 g of tuna, 120 g of 

vegetables, 1 teaspoon olive oil, 80 g of bread, 35 g of raw 
8 
beans, 1 cup of blueberries”. 

should _ eat (R ) ← has (R, bread ) ∧ has (R, beans ) 
should _ eat (R ) ← has (R, tuna ) 

∧ has (R, X ) ∧ has (R, Y ) 
∧ v egetable (X ) ∧ herb (X ) ∧ essential _ oil (Y ) 

should _ eat (R ) ← has (R, blueberry ) 

p.4 Second day, dinner: “Chicken with mustard and lemon juice. 

90 of chicken, 120 g of vegetables, 80 g of raw pasta, 1 tea- 

spoon of olive oil. Mustad and lemon juice, 1 cup of clemen- 

tines”. 

should _ eat (R ) ← has (R, chicken ) ∧ has (R, mustard ) 
∧ has (R, lemon _ juice ) 

should _ eat (R ) ← has (R, pasta ) 
∧ has (R, X ) ∧ essential _ oil (X ) 

should _ eat (R ) ← has (R, X ) ∧ v egetable (X ) 
should _ eat (R ) ← has (R, citrus _ fruits ) 

p.5 Day three, lunch: “Salmon with potatoes. 120 g of salmon, 

240 g of cooked potatoes, 120 g of vegetables, 1 teaspoon of 

butter, 1 pear”. 

should _ eat (R ) ← has (R, compound _ salmon ) ∧ has (R, potato ) 
should _ eat (R ) ← has (R, pear ) 
should _ eat (R ) ← has (R, butter ) 

∧ has (R, X ) ∧ v egetable (X ) 

p.6 Day three, dinner: “Turkey in papillote. 90 g of turkey, 1 

teaspoon of olive oil, 120 g of vegetables, 35 g of raw gram 

bean, 80 g Raw wholegrain rice, 1 orange”. 

should _ eat (R ) ← has (R, gram _ bean ) 
should _ eat (R ) ← has (R, rice ) 
should _ eat (R ) ← has (R, orange ) 
should _ eat (R ) ← has (R, turkey ) 

∧ has (R, X ) ∧ has (R, Y ) 
∧ v egetable (X ) ∧ essential _ oil (Y ) 

For each user and for each prescription we compute the recipes 

o be proposed (consider reading Appendix A.2 for implementa- 

ion details). To evaluate how the recommendation performs, we 

alculate the precision over the test sets, i.e., number of proposed 

ecipes actually liked by the user over the total amount of pro- 

osed recipes. Results are summarised in Table 2 . We remind that 

he system has never seen recipes in the test sets in any of its 

hases (NN training, rule extraction and recipes recommendation) 

xcept for test itself. Table 3 , similarly to Table 2 , reports the pre-

ision of the recommendation phase but instead of using the ex- 

racted rules to evaluate users’ preferences it use the sub-symbolic 

redictors. 

It is worth noticing that there is the possibility of corner cases 

n the recommendation process. If the system is dealing with a 

ser whose preferences are in conflict with the prescriptions it 

ould happen that no recipe is recommended. This scenario is not 

n issue for our system but it is an intrinsic characteristic of the 

omain. To avoid empty recommendations the right action to take 

s simply change prescriptions to be more adequate to user’s pref- 

rences. In the computing of accuracies these corner cases are ig- 

ored. 

.5. Results 

In order to keep our experiments realistic, we adopt reasonable 

riteria to generate synthetic datasets of users preferences. Along 

his line, we avoid synthesising users that always follow trivial 

ules (e.g., always liking a particular ingredient, and, therefore, any 
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Table 2 

Precision values of the algorithm per user and prescription. Precision values denote ac- 

tually liked recipes (i.e., true positive) over the all proposed recipes (i.e., true positive 

plus false positive) obtained by prescriptions and extracted rules. 

users p. 1 p. 2 p. 3 p. 4 p. 5 p. 6 average 

user 1 0.831 0.8 0.8621 0.6667 0.6875 0.7857 0.7722 

user 2 0.6338 0.2979 0.8 0.7083 0.9268 0.7727 0.6899 

user 3 0.7625 0.4333 0.7297 0.75 0.6111 0.6604 0.6578 

user 4 0.75 0.6 0.8387 0.65 0.5435 0.7755 0.693 

user 5 0.8571 0.7667 0.95 0.7083 0.8182 0.8095 0.8183 

user 6 0.6 0.5116 0.8636 0.8261 0.55 0.619 0.6617 

user 7 0.7625 0.4667 0.1852 0.8276 0.7391 0.7826 0.6273 

user 8 0.85 0.75 0.9048 0.5758 0.6667 0.7872 0.7558 

user 9 0.6316 0.9 0.8929 0.8085 0.8936 0.6809 0.8012 

user 10 0.875 0.66 0.7692 0.7879 0.717 0.7692 0.763 

user 11 0.8625 0.84 0.963 0.7391 0.64 0.8113 0.8093 

user 12 0.7875 0.8333 0.9024 0.8108 0.7037 0.8776 0.8192 

Table 3 

Precision values of the algorithm per user and prescription. Note that precision values 

denote actually liked recipes (i.e., true positive) over the all proposed recipes (i.e., true 

positive plus false positive) obtained by prescriptions and NN. 

users p. 1 p. 2 p. 3 p. 4 p. 5 p. 6 average 

user 1 0.8267 0.8333 1.0 0.9474 0.8696 0.8913 0.8947 

user 2 0.95 0.9474 0.931 1.0 0.95 0.94 0.9531 

user 3 0.7875 0.7797 0.7273 0.8478 0.88 0.8163 0.8064 

user 4 0.775 0.7833 0.871 0.8158 0.7442 0.7447 0.789 

user 5 0.9265 0.9333 0.9565 0.9474 0.9524 0.9375 0.9423 

user 6 0.9375 0.9833 1.0 0.9615 0.9592 0.9583 0.9666 

user 7 0.8 0.8667 0.9 0.8571 0.8723 0.8913 0.8646 

user 8 0.8625 0.7833 0.8837 0.7 0.8077 0.8065 0.8073 

user 9 0.7875 0.7833 0.9118 0.8095 0.6786 0.6842 0.7758 

user 10 0.8125 0.5667 0.8049 0.7632 0.7959 0.84 0.7639 

user 11 0.8875 0.7667 0.7674 0.8723 0.7917 0.7931 0.8131 

user 12 0.825 0.8667 0.8049 0.68 0.8246 0.8364 0.8063 
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ecipes containing it). To do so, we introduce some noise in the 

atasets’ synthesis process (e.g., ingredients have preference values 

nside distributions, classes are stochastically assigned). The overall 

ffect is two folded. Firstly, we discourage situations where users’ 

references can be trivially described by logic rules. Secondly, we 

imic real-life scenarios where the combination of disparate in- 

redients in different recipes may affect users’ preferences in com- 

lex ways. 

Table 1 reports the accuracy of the neural networks trained to 

redict users’ preferences, other than the accuracy and fidelity of 

he logic rules extracted from them. Individual network accuracies 

ange from 0.74 to 0.97 with a mean value of almost 0.86. This is 

uite a wide variability range. We speculate that the reason why 

here is a wide gap is due to the aforementioned noise. Each user 

s different from each others and the difference in their tastes can 

e huge – like in the real life – therefore some users have more 

redictable preferences than others. The accuracies of the extracted 

ange from 0.68 to 0.86 with a mean value of 0.76. We notice 

hat there is almost a mean difference of 0.095 between the accu- 

acy of the networks and the accuracy computed on the rules. This 

act should not be surprising, given that, in the extraction process, 

e limited decision trees’ depth considerably, therefore the per- 

ormance of the resulting rules is inherently affected. Similar con- 

iderations can be made upon precision measure. Finally, we re- 

ind that extracted rules simply approximate the internal decision- 

aking process of the NN they have been extracted from. So, their 

erformance cannot overcome the original network’s one. 

Table 2 summarises the precision obtained during the recom- 

endation phase using prescriptions and the extracted rules of 

he previous step. We can notice that the precision can change a 

ot depending on the user and on the prescription. If we look at 
9 
he mean precision value of all experiments (the last cell of the 

able), that is about 0.74, we notice that it is quite close to the 

verage precision of rules in Table 1 . More in detail, if we apply 

he Student’s T -test to the precision values in Table 1 (“r. prec.”

olumn) and the precision values in Table 2 (“average” column) 

e obtain a P-value of 0.386. This means that there is no sta- 

istical difference between the two distributions. In other words, 

he process of recommending recipes that users will like from 

he whole dataset of available recipes has the same statistical ef- 

ectiveness of recommending liked recipes prescribed by human 

xperts. 

Table 3 summarises the precision obtained during the recom- 

endation phase using prescriptions and the predictions of the 

ub-symbolic predictors. If we apply the same analysis done to 

able 2 we obtain similar results. The P-value of the statistic test 

s 0.403 bringing us to the same conclusion: the recommendation 

rocess has the same effectiveness in proposing prescribed liked 

ecipes and just liked recipes with NN. 

. Discussion 

Summarising, experiments show that using sub-symbolic pre- 

ictors for this personalised food recommendation task is better 

han using interpretable symbolic predictors—as far as only the 

verall precision is considered. However, the goal of our frame- 

ork is not to reach higher performance w.r.t. sub-symbolic pre- 

ictors or other existing systems. Rather, our goal is to help users 

nd experts – i.e. humans – to understand why recipes are wel- 

ome or not. The extracted rules address this issue. In fact, they 

an be used by experts to adjust their prescription to make them 

tter for the user. Moreover, the overall performance obtained by 
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ules, despite being lower than the one with the NN, it is still quite 

cceptable in a real-case scenarios. 

For example, while trying to motivate any recommendation 

rovided to user 1 when considering p.1 , we can easily figure out 

hy the system provided that particular recommendation by look- 

ng at which logic rule the system exploited to draw its recommen- 

ation. Consider, for instance, the recipe “Shakkara (Sweet) Pongal”

recipe id 4055). It is actually liked by the user 1, and it is com-

osed of: basmati rice, butter, camphor, cardamom, cashew nut, 

entils, milk, raisin and sugar. This recipe is recommended because 

t contains milk and sugar—as we can figure out by looking at 

he rules extracted for user 1. Dually, if we analyse some random 

ecipe which is not liked by the user – such as “Lasagna Spinach 

oll-Ups” (recipe id 10,815), made of several ingredients that we 

o not report for readability — we find out that it is disliked be- 

ause it contains eggs and pepper. 

So, the value added of our symbolic approach lays in the ex- 

lainability of the whole system—here intended as the possibility 

o derive motivations for recommendations. 

. Conclusions 

In this study we apply symbolic knowledge extraction to de- 

ign agent-based nutritional recommendation systems. We do so 

ollowing the purpose of understanding whether it is possible to 

esign nutritional RS which are simultaneously correct (w.r.t. ex- 

erts prescriptions), acceptable (w.r.t. users’ preferences), and ex- 

lainable . Along this line, we propose to adopt logic solvers – in- 

tead of bare sub-symbolic predictors – as the underlying engine to 

enerate personalised recommendations. Provided that users pref- 

rences can be brought into symbolic form – and it can, via SKE 

, we show how the adoption of a symbolic, logic-based way to 

epresent/manipulate knowledge is fundamental to support the ex- 

lainability feature of nutritional RS—at the price of a negligible 

eduction of predictive performance. In particular, logic makes it 

ossible to observe how a recommender agent has reached a par- 

icular conclusion—and this, in turns, makes it possible to provide 

otivations to the users. 

Future works 

As future work, we plan to extend and exploit this work in sev- 

ral directions. 

As far as extensions are concerned, we plan to refine our ap- 

roach so as to support not only recipes/prescription involving in- 

redients, but also recipes/prescriptions containing given quantities 

f ingredients. This would require slight modifications to the logi- 

al modelling of both recipes and prescription, yet it may involve 

ore complexity in the way we train the sub-symbolic predictors, 

s well as in the way we extract rules out of them. It is worth

entioning that this kind of extension would not affect the over- 

ll methodology presented in this study, but it would contribute 

n making explainable nutritional recommendation systems more 

ealistic. 

As far as exploitations are concerned, we plan to integrate the 

roposed approach into an explainable nutritional recommender 

ystem that we can test through user experiments. Moreover, some 

ultural and economical aspects could be taken into consideration. 

 person who lives in, say, Asia may have different nutritional pref- 

rences from a person who lives in Europe—and vice versa. Simi- 

arly, the cost of ingredients may play a key role in user’s choices. 

n the context of the Expectation project (cf. Section 6 ), which is 

upporting this work, the possibility of doing such sorts of person- 

lisation is a key outcome. Along this way, our contribution plays 

 pivotal role in the adaptation of nutritional recommendation sys- 

ems to disparate user preferences, as well as to the provisioning 

f motivations for the recommendations. 
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ppendix A. Details about experiments 

1. Synthesis of users preferences data 

The dataset 04_Recipe-Ingredients_Aliases describes 

he composition of recipes in terms of ingredients. For each user 

hat we plan to use in our experiments, we build a synthetic 

ataset starting from the aforementioned one. In particular, we 

enerate a synthetic label for each recipe, stating whether the user 

ikes it or not. Class “like” is encoded as 1, whereas class “dislike”

s encoded as 0. 

The whole process of assigning a class to a recipe, for user i , is

ummarised below: 

1. a profile is defined for the user i ; the profile is a set of value

ranges for a number of ingredients/categories 

2. for each range, we generate a value with uniform distribution –

i.e. a random number guaranteed to lay in the [ −1 , 1] interval

– representing how much the i th user likes that ingredient; if 

the range targets a category, then a value is generated for each 

ingredient belonging to that category 

3. ingredients without a prior distribution have value equals to 0 

(neutral) 

4. each recipe r is then assigned with a likeness value (Łi 
r ), corre- 

sponding to the sum of the likeness values of the ingredients 

the recipe is made of; so, recipes for which Łi 
r ≥ 0 are generally 

appreciated by user i , whereas recipes with Łi 
r < 0 are not 

5. all recipes are ordered according to their likeness value, in de- 

scending order 
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6. recipes in the first quantile are then assigned to class 1 (“like”), 

while all remaining recipes are either assigned with class 0 

(“dislike”) if their Łi 
r is negative, or randomically to 1 (resp. 0) 

with probability Łi 
r (resp. 1 - Łi 

r ) 

The rationale behind this choice of class assignment is that each 

ser has its own preferences for some ingredients. Usually, if a 

ecipe is mostly composed by “liked” ingredients, then it is likely 

ppreciated as a whole (recipes in the first quantile). In case of 

ecipes composed by both liked and disliked ingredients in similar 

roportions, the user may or may not like them (random selec- 

ion). Finally, recipes that have more disliked ingredients or a few 

ut very much disliked are always rejected by the user. 

2. Computing recommendations efficiently 

The recommendation phase of our experiments aims to identify 

nd propose the recipes that are compliant to a given prescription 

nd, simultaneously, liked by the user. To do so we could use a 

ogic engine, such as Prolog [2] , but unfortunately current avail- 

ble implementations of logic engines tend to be slow when deal- 

ng with tens of thousand of queries. Therefore, because the rules 

e rely upon are very simple, we exploit the functionalities of the 

andas library [69] to perform the recommendation task in a much 

aster way. 

After the identification of all recommendable recipes we de- 

ide to order them by the number of ingredients in ascending way. 

hen we select the top R recipes with R = 20 and the system rec-

mmends them. There are two main reasons for this choice: firstly 

ecause a user will not likely read all the possible recommendable 

ecipes (they can be hundreds or thousands), secondly because we 

refer to recommend recipes more similar to the prescription, i.e., 

ow amount of ingredients (ideally just the ones elicited in the pre- 

cription). 
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