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Abstract

This paper presents a new multi-criteria decision-making (MCDM) method, namely

the ratio product model (RPM). We first overview two popular aggregating models:

the weighted sum model (WSM) and the weighted product model (WPM). Then, we

argue that the two models suffer from some fundamental issues mainly due to ignor-

ing the ratio nature of the alternatives' scores with respect to the criteria and the

importance weights of the criteria. Building on the notion of compositional data anal-

ysis, the developed RPM regards performance scores and criteria weights as compo-

sitions, which solves the issues around the WSM and WPM. Using several examples,

we show that the WSM and WPM could lead to erroneous conclusions, whereas the

RPM could lead to fully reliable conclusions. Since many MCDM methods rely on

some aggregation approaches, the proposed method is a significant contribution to

the field and puts forward the correct way to analyze decision problems while

respecting the nature and constraints of the input data.

K E YWORD S

compositional data, rank reversal, weighted product model, weighted sum model

1 | INTRODUCTION

Multi-criteria decision-making (MCDM) is a scientific field that

studies the decision-making problems entailing a set of alternatives

and multiple, typically conflicting, criteria. The goal is to rank, sort or

select the best alternatives based on a chosen set of criteria. For doing

so, the relative importance of criteria needs to be quantified by

eliciting the preferences of single or multiple decision-makers (DMs).

There are several methods for the preference elicitation and comput-

ing the weights of criteria, among which are analytic hierarchy process

(AHP) (Saaty, 1977), analytic network process (ANP) (Saaty, 2001), best–

worst method (BWM) (Rezaei, 2015), Tradeoff (Keeney et al., 1976), sim-

ple multi-attribute rating technique (SMART) (Edwards, 1977) and Swing

(Mustajoki et al., 2005).

For processing the alternatives, the performance of alterna-

tives for each criterion needs to be identified, resulting in the so-

called performance matrix that includes the performance of all the

alternatives over all the criteria. There are two ways to build the

performance matrix. The first way consists of a data collection

step, gathering information regarding the alternatives. When such

a data collection is infeasible, the performance matrix can be cre-

ated by using an MCDM method, such as AHP or BWM, and con-

ducting the pairwise comparison between the alternatives for each

criterion. The performance matrix is then created by solving the

MCDM problem for each criterion. In this case, each alternative is

assigned a weight concerning a criterion, also referred to as local

priority.

Given the weights of the criteria and the performance matrix, there

are multiple MCDM methods that process the alternatives. A class of

such methods is outranking methods, where the goal is to rank

the alternatives given a set of criteria and their relative importance.

The well-known outranking methods are TOPSIS (Technique for order
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preference by similarity to ideal solution) (Tzeng & Huang, 2011),

VlseKriterijumska Optimizacija I Kompromisno Resenje (VIKOR;

Opricovic, 1998), ELimination and Choice Expressing REality

(ELECTRE; Figueira et al., 2005), and Preference Ranking Organiza-

tion METHod for Enrichment of Evaluations (PROMETHEE;

Brans & Mareschal, 2005). Another class evaluates the alternatives

based on the given criteria and their weights. The two widely used

methods are the weighted sum model (WSM) and the weighted

product model (WPM). The WSM and WPM aggregate the perfor-

mance of criteria and their weights and summarize the alternatives'

overall performance in a score, also referred to as global priority.

Perhaps needless to say that the alternatives can be ranked

according to global priorities of the alternatives. The main focus of

this study is on the latter class, where the alternatives' values, con-

sidering the weights of the criteria, are aggregated into an overall

score.

Many studies in the literature of MCDM consider the pros and

cons of the WSM and WPM. Specifically, the WSM is criticized

because the ranking obtained based on the aggregated score can

be reversed if, for example, an alternative or an indiscriminating cri-

terion is added or deleted (Barzilai & Golany, 1994; Leskinen &

Kangas, 2005; Triantaphyllou, 2001). This phenomenon is called rank

reversal. The rank reversal has been long studied in MCDM, arguably

started by Belton and Gear (1983) (Belton et al., 1985), in which the

rank reversal of the WSM in the standard AHP was studied. Ever

since many studies have scrutinized this phenomenon in more detail

(see the study by Aires & Ferreira, 2018) for a review. Along the same

line, the WSM needs to normalize the columns of the performance

matrix, that is the scores of different alternatives for a criterion, and

the way to make the normalization can also affect the ranking. Thus,

the selection of the normalization techniques can potentially change

the ranking of the alternatives even when the weights of the criteria

and the values in the performance matrix remain the same. It is

proved that there exists at least an MCDM problem for which

the rank reversal indeed happens if a particular normalization tech-

nique is used, where the normalization is assumed to be in the form

of dividing the values of a performance matrix by a number (Barzilai &

Golany, 1994).

As a remedy to the rank reversal, the WPM is typically put for-

ward as it has been shown to preserve the alternatives ordering under

different circumstances (Triantaphyllou, 2001). A recent study indi-

cates that the WPM is particularly preferred to the WSM in AHP for

evaluating the alternatives, primarily due to its robustness against nor-

malization (Krejčí & Stoklasa, 2018).

Despite their differences, what is common between WSM and

WPM is that they ignore the nature of the weights and the perfor-

mance matrix. In particular, the outcome of the MCDM methods like

AHP is a weight vector whose sum is one. For such vectors, the mag-

nitude of each part is of no importance but rather the ratio between

its different parts. These sort of variables with the constant-sum con-

straints is called compositional data in statistics (Aitchison, 1982;

Pawlowsky-Glahn & Buccianti, 2011), whose analyses should be

done differently in comparison to other multivariate variables with no

constraints. In particular, it has been well-studied that the proper

methods for analyzing compositional data must be based on the ratios

between different parts rather than working with the parts them-

selves (Aitchison, 1981; Aitchison, 1982). This observation is in line

with criteria weights and performance matrices computed by MCDM

methods since what is gauged and conveyed by the outcome of many

MCDM methods (i.e., a non-negative vector with unit-sum constraint)

is the ratios highlighting the relative importance between different cri-

teria or alternatives. That being said, the WSM seems to improperly

use the weights and the performance matrix since it takes the values

in a weight vector and applies standard arithmetic operations

(i.e., addition and multiplication) as if the weights lie in the real space,

while they lie indeed on a simplex. This improper use of operations

can lead to incorrect analyses with disastrous side effects, including

rank reversal.

The WPM is a step in the right direction since it considers the

ratios in the performance matrix. This is why the WPM prevents

rank reversal and is agnostic to normalization. However, a significant

problem of the WPM is that, while the ratios between the perfor-

mance of alternatives are considered, it does not do the same for the

criteria weights. This is because the criteria weights are treated as

real values and used as the power of ratios computed from the per-

formance matrices. Since the ratios between the criteria weights are

not considered, the ranking of alternatives accordingly could be erro-

neous. In addition, if the scale of criteria weights differs, while the

ratios among them remain unchanged, the outcome of the WPM

alters, even though the rankings of alternatives remain the same.

Besides, if two alternatives have the same value for multiple criteria,

the WPM ignores those criteria, and they do not influence the differ-

ence between the final aggregated scores. However, it is expected

that the alternatives with similar values for criteria have a closer

aggregated score and thus lower differences.

In this paper, we first discuss the WSM's and WPM's drawbacks

and issues. To the best of our knowledge, this is the first article show-

ing the problems in the WPM, while the issues of the WSM have been

discussed in the literature. Then, we propose the ratio product model

(RPM), a new method for analyzing alternatives, given a set of criteria,

their weights, and a performance matrix. This method respects the

compositional nature of both the weights and the performance matrix

and is agnostic to the normalization of the performance matrix and

the scale of the criteria weights. It is also proved that the RPM pre-

vents the rank reversal phenomenon when a new alternative or crite-

rion is added or removed.

The rest of the paper is structured as follows. Section 2 is dedi-

cated to the prerequisite of the article; we first review the WSM and

WPM models and the normalization techniques being used and then

provide a rudimentary introduction to compositional data. Next,

Section 3 is dedicated to the pitfalls and issues of the WSM and

WPM, primarily because of the ignorance of the compositional nature

of the data. Next, Section 4 presents the RPM and several examples,

and the theoretical insights of the proposed method is presented in

Section 5. Finally, Section 6 concludes the article and puts forward

lines for future research.
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2 | PRELIMINARIES

In this section, we first study two ways for computing global priori-

ties of alternatives, that is the WSM and WPM, based on multiple

criteria and their importance, and their local priorities or a given per-

formance matrix. We then review the basic notions and concepts of

compositional data.

2.1 | Weighted sum and weighted product models

There are several normalization techniques for computing the local

priorities in the literature, two of which are typically used, especially

for the AHP method. The first one is the distributive normalization,

where the performance of alternatives for a criterion is divided by

the sum of all the values for the corresponding criterion so that the

unit-sum constraint is assumed. The second technique, on the other

hand, is called ideal normalization, in which the performance of

alternatives for a criterion is divided by the maximum performance

values of alternatives for that criterion. Thus, for a criterion cj, it

means that:

Xm
i¼1

Pij ¼1 distributiveð Þ,

max iPij ¼1 idealð Þ,
ð1Þ

where P�Rm�n is the normalized performance matrix, containing the

performance of m alternatives for n criteria, and Pij is the normalized

performance of alternative i for criterion j.

In the literature, there are two widely-used aggregation method-

ologies for computing the global priorities, shown by for alternative i.

The first one is the WSM, which is defined as:

gWSM
i ¼

Xn
j¼1

wjPij, 8i¼1,…,m, ð2Þ

where gWSM
i is the global priority of alternative i by the WSM, wj is the

weight of criterion j, and Pij is the local priority of alternative i for cri-

terion j.

Since the WSM method does not take into account the ratios in

form of Pij=Pi0 j for the local priorities of alternatives, Lootsma (1993)

proposed the WPM as follows:

gWPM
i ¼

Yn
j¼1

P
wj

ij , 8i¼1,…,m, ð3Þ

where gWPM
j is the global priority computed by the WPM method.

Using Equation (3), comparing the value of two alternatives i and i0

can be done by dividing their global priorities:

gWPM
i

gWPM
i0

¼
Yn
j¼1

Pij
Pi0 j

 !wj

, ð4Þ

where the ratios of the local priorities are taken into account. We

now show that under a specific normalization technique

(i.e. normalization by logarithm), the WSM and WPM are equivalent.

Lemma 2.1. By taking logarithm from the local priorities

in matrix P, the outcome of the WSM becomes equiva-

lent to the WPM.

Proof. By using Equation (2) and taking logarithm of the local pri-

orities, we have:

gWSM
i ¼

Xn
j¼1

wj log Pij
� �

¼
Xn
j¼1

log P
wj

ij

� �
¼ log

Yn
j¼1

P
wj

ij

 !
,

ð5Þ

which would result in the same ratio between alternatives since loga-

rithm is a monotone function. In addition, the difference between two

alternatives is computed as:

gWSM
i �gWSM

i0 ¼ log
Yn
j¼1

P
wj

ij

 !
� log

Yn
j¼1

P
wj

i0 j

 !

¼ log
Yn
j¼1

P
wj

ij

P
wj

i0 j

 !
,

ð6Þ

which again results in the same ratio as the WPM. □

2.2 | Compositional data

Compositional data refer to the multivariate variables whose sum is

constrained with a fixed number. The difficulty of analyzing such data

was pointed out as early as 1897 by Pearson in his famous article on

the spurious correlation (Pearson, 1897), which refers to the correla-

tion of ratios with similar nominators/denominators. However, it was

not until the 1970s where proper statistical analyses for such data

were developed (Aitchison, 1982). We first provide a formal definition

of composition.

Definition 2.2. (Aitchison, 1982) A composition w of n

parts is a vector with positive components w1,…,wn whose

sum is a fixed number like K.

The fixed number in a composition can be any positive number,

like one or 100. Since the ratios between the parts in a composition

are the only relevant information, multiplying a composition to a real

positive number would not change it. Thus, if α>0 is a real number,

then the compositions w1,…,wn½ � and αw1,…,αwn½ � are indiscernible

and convey identical information. This means that a composition is a

MOHAMMADI and REZAEI 3
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class of equivalent compositional data (Aitchison, 1982).It becomes

evident that the weights and the local priorities in MCDM are compo-

sitional data, meaning that their analysis should be based on the ratios

between the parts. For example, a weight vector w should be repre-

sented by all the pairwise ratios between its components. This means

that w can be rewritten as a matrix showing the ratios between its

components. The following example clarifies this point.

Example 2.3. Let w¼ 0:4,0:3,0:2,0:1½ � be the weights of

criteria C¼ c1,c2,c3,c4f g. Then, the weights represent

the following ratios between the criteria:

Example 2.3 shows that a matrix can represent all the ratios

between the components of a composition. This matrix is similar to

the pairwise comparison matrix (PCM), which means that any weight

vector can be represented by a PCM. We first investigate an essential

property of this matrix.

Definition 2.4. (Saaty, 1977) Matrix M is a fully consis-

tent PCM if and only if it satisfies the following property:

mij ¼mih�mhj, i, j,h¼1,…,n: ð7Þ

According to this definition, it is evident that the resulting PCM

of a weight vector is always fully consistent.

3 | CRITIQUES ON THE WSM AND WPM

In this section, we discuss the pitfalls of the WSM and WPM in com-

puting the global priorities. We specifically show that rank reversal in

MCDM happens due to neglecting the compositional nature of

priorities.

The rank reversal in MCDM is generally defined as a change in

the ranking of alternatives under a particular circumstance, for exam-

ple adding or removing an alternative or indiscriminating criteria. The

reason for introducing the ideal normalization is to handle rank rever-

sal in MCDM problems. However, from a compositional perspective,

changing the normalization technique should not affect any analysis

since the ratio between the priorities of the alternatives for each crite-

rion is the same. In fact, the DM has expressed the preferences in the

form of ratios, and these ratios should be taken into account for a

meaningful aggregation of local priorities. In addition, it is proved that

any normalization in the form of dividing the performance matrix by a

number (the same as the distributive and ideal normalization) would

lead to rank reversal in one way or another (Barzilai & Golany, 1994).

Therefore, instead of looking into the normalization techniques, we

need to devise a proper method for aggregation that takes into

account the compositional nature of the priorities and the perfor-

mance matrix. We now discuss the pitfalls of the WSM and WPM

using several examples.

Example 3.1. Assume that we have two criteria c1 and c2

with the same importance, that is w1 ¼w2 ¼0:5, and

three alternatives A1, A2 and A3. Table 1 shows the value

of criteria for the alternatives in the first two columns with

the distributive normalization. The columns of gWSM and

gWPM are the global priorities computed by the WSM and

WPM, respectively, and the remaining two columns are the

ratios of global priorities computed by the WSM and

WPM. A similar analysis is conducted by using the ideal

normalization as shown in Table 2.

It is readily seen that the ratio of global priorities is not identi-

cal for the WSM when different normalization techniques are

applied. Simultaneously, the ratio of the global priorities for the

WPM is the same for both normalization techniques, simply

because the WPM considers the ratios between the local priorities

that remain the same under different normalization. Besides, this

means that the WSM is sensitive to the normalization being used.

In addition to the difference in the ratios of global priorities, the

rankings of alternatives change as well: A1 is preferred over A2 for

the distributive normalization, while A2 is preferred over A1 for the

ideal normalization.

Example 3.2. Assume that we have three criteria (i.e. c1, c2

and c3) with the same importance, w1 ¼w2 ¼w3 ¼0:333,

and three alternatives A1, A2 and A3. Table 3 tabulates

the analysis of this problem by using the WSM and WPM.

According to the WSM, the ranking of alternatives is as fol-

lows: A2 ≻A1 ≻A3. The same ranking is obtained based on

the WPM. Table 3 also shows the ratio between different

alternatives for both the WSM and WPM.

We now want to investigate how the rankings of alternatives

change if we add another alternative. For doing so, we add alternative

A4 with identical performance as A2. Table 4 shows the evaluation of

this problem by using the WSM and WPM. According to the WSM,

A1 ≻A2 ¼A4 ≻A3. Thus, the ranking of A1 and A2 is reversed when A4

is added (i.e. rank reversal happens). However, according to the WPM,

the ranking and the ratios between different alternatives remain

unchanged.

Similar examples to Examples 3.1 and 3.2 have been the base for

favoring the WPM over WSM, the primary reason of which is WPM's

agnosticism to normalization and avoiding rank reversal. However, the

WPM also has several problems. Before looking into the issues of the

WPM, we first provide an example.

Example 3.3. Consider Example 3.1 with the weights of

criteria being w1 ¼0:6 and w2 ¼0:4 and only two alterna-

tives A1 and A2. Table 5 shows the global priorities with

4 MOHAMMADI and REZAEI
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their corresponding ratios computed by the WPM and the

distributive normalization. According to this table, the global

priority of the second alternative is higher than that of the

first alternative, making it the most preferred one. But, based

on the local priorities and the weights of criteria, A1 is twice

more preferable than A2 with respect to c1, but A2 is three

times more preferable to A1 regarding c2. If the weights of

c1 and c2 were the same (as it was in Example 3.1), then

A2 should be favored over A1. But because the weight of

c2 (for which A2 is three times more preferable than A1) is

two-third of the weight of c1 (for which A1 is twice more

preferable than A2), we expect that A1 and A2 have identi-

cal global priorities. The WPM method arrives at different

global priorities as tabulated in Table 5, basically because

it uses the weights of the criteria as the exponent of the

local priorities. To compute a ratio, we can write:

TABLE 1 Aggregation of local priorities for Example 3.1 with the distributive normalization.

A c1 c2 gWSM WSM ranking Ratio of gWSM gWPM WPM ranking Ratio of gWPM

A1 8/13 1/7 69/91 1 gWSM
1 /gWSM

2 =69/67 8=91ð Þ0:5 2 gWPM
1 /gWPM

2 = 2=3ð Þ0:5

A2 4/13 3/7 67/91 2 gWSM
1 /gWSM

3 =69/46 12=91ð Þ0:5 1 gWPM
1 /gWPM

3 = 8=3ð Þ0:5

A3 1/13 3/7 46/91 3 gWSM
2 /gWSM

3 =67/46 3=91ð Þ0:5 3 gWPM
2 /gWPM

3 = 40:5

Note: The WSM and WPM are computed with w1 ¼w2 ¼0:5.

TABLE 2 Aggregation of local priorities for Example 3.1 with the ideal normalization.

A c1 c2 gWSM WSM ranking Ratio of gWSM gWPM WPM ranking Ratio of gWPM

A1 1 1/3 2/3 2 gWSM
1 /gWSM

2 =1/2 1=3ð Þ0:5 2 gWPM
1 /gWPM

2 = 2=3ð Þ0:5

A2 1/2 1 3/4 1 gWSM
1 /gWSM

3 =32/27 1=2ð Þ0:5 1 gWPM
1 /gWPM

3 = 8=3ð Þ0:5

A3 1/8 1 9/16 3 gWSM
2 /gWSM

3 =4/3 1=8ð Þ0:5 3 gWPM
2 /gWPM

3 = 40:5

Note: The WSM and WPM are computed with w1 ¼w2 ¼0:5.

TABLE 3 Aggregation of local priorities for Example 3.2 with the distributive normalization and three alternatives.

A c1 c2 c3 gWSM WSM ranking Ratio of gWSM gWPM WPM ranking Ratio of gWPM

A1 1/11 9/11 8/18 0.451 2 gWSM
1 =gWSM

2 ¼0:96 0.321 2 gWPM
1 =gWPM

2 ¼0:96

A2 9/11 1/11 9/18 0.470 1 gWSM
1 =gWSM

3 ¼5:70 0.333 1 gWPM
1 =gWPM

2 ¼4:16

A3 1/11 1/11 1/18 0.080 3 gWSM
2 =gWSM

3 ¼5:93 0.077 3 gWPM
1 =gWPM

2 ¼4:32

Note: The criteria weights are w1 ¼w2 ¼w3 ¼0:333.

TABLE 4 Aggregation of local priorities for Example 3.2 with the distributive normalization and four alternatives.

A c1 c2 c3 gWSM WSM ranking Ratio of gWSM gWPM WPM ranking Ratio of gWPM

A1 1/20 9/12 8/27 0.365 1 gWSM
1 =gWSM

2 ¼1:26 0.223 3 gWPM
1 =gWPM

2 ¼0:95

A2 9/20 1/12 9/27 0.289 2 gWSM
1 =gWSM

3 ¼6:43 0.232 1 gWPM
1 =gWPM

3 ¼4:16

A3 1/20 1/12 1/27 0.057 4 gWSM
2 =gWSM

3 ¼5:08 0.053 4 gWPM
2 =gWPM

3 ¼4:32

A4 9/20 1/12 9/27 0.289 2 gWSM
2 =gWSM

4 ¼1 0.232 1 gWPM
2 =gWPM

4 ¼1

Note: The first three alternatives are the same as those in Table 3, and the fourth alternative is a repetition of alternative A2. The criteria weights

are w1 ¼w2 ¼w3 ¼0:333.

TABLE 5 Aggregation of local priorities for Example 3.3 with the ideal normalization.

A c1 c2 gWPM Ratio of gWPM

A1 1 1/3 1=3ð Þ0:4 gWPM
1 /gWPM

2 = 20:6=30:4 ¼0:977

A2 1/2 1 1=2ð Þ0:6

Note: The WPM are computed with w1 ¼0:6 and w2 ¼0:4.

MOHAMMADI and REZAEI 5
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prf A1 ≻A2ð Þ¼
ffiffiffiffiffiffiffiffiffi
2w1

3w2

2

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�1:5�w2

3w2

2

s
¼1, ð8Þ

where equation w1 ¼1:5w2 (i.e., 0:6¼1:5�0:4) is

replaced in the nominator, the square root is because we

have two criteria (similar to the geometric mean), and the

final value of one means that A1 is as preferred as A2 in

this problem.

Example 3.4. We now look into two similar cases to fur-

ther highlight the drawbacks of the aggregation by the

WPM. Consider two alternatives with two criteria in

Table 6 with the weights of criteria being 0:6 and 0:4.

Compared to Example 3.3, the performance of A1 over c2

is increased. For this example, the WPM gives the same

global priorities for both alternatives, thereby making

equally desirable. However, the ratio, similar to Equation

(8) is computed as:

prf A1 >A2ð Þ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�1:5
2:8282

2

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

2:8282
2

r
¼1:03:

This equation indicates that A1 should be preferred over A2, while

the WPM deems them as equivalent.

Consider also the performance matrix in Table 7, where the per-

formance of A1 over c2 is a bit decreased with respect to that in

Table 6. Computing global priorities for this performance matrix, the

WPM still favors A2 over A1. Computing the ratios would give:

prf A1 >A2ð Þ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�1:5
2:9412

2

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

2:9412
2

r
≈1:01,

which means that it favors A1 over A2. Such a preference is

entirely in contrast of that computed by the WPM.

These examples show that the ranking provided by the WPM

could also be fallacious: The could compute the global priorities in a

way that the ranks of alternatives are entirely in contrast to what is

expected. In addition, the magnitude of ratios provided by the WPM

between pairs of alternatives has not been regarded. The ratio values

could be misleading and does not reflect the true preference of

one alternative over another. A major reason for this issue is that

the criteria weights are used as the exponent of the ratios of the

local priorities, which means that the ratios between the weights

(as compositions) are not considered. A by-product of such an

interpretation is the sensitivity to the scale of the weights, so if the

unit-sum constraint is replaced by, for example, percentage, the ratio

outcome of the WPM is different, despite the fact that the ratios

between the weights of criteria remain the same. For instance, in

Example 3.1, the ratio between A1 to A2 would be 260=340 ¼0:095

for the percentage weight, which is significantly different from

20:6=30:4 ¼0:9767 for the unit-sum weights. At the same time, the

ratio in Equation (8) remains the same, regardless of the type of con-

straints on the criteria weights. On top of that, the equal criteria

values of two alternatives have zero impact on the difference

between the alternatives because the ratio of those criteria for the

two alternatives is one, and the WPM treats them as if they do not

exist. In reality, on the other hand, one expects that if two alternatives

have the same values for one criterion, then it affects the difference

of their aggregated score in a way that the two alternatives have

closer global priorities.

Overall, both the WSM and WPM have several drawbacks. The

WSM is sensitive to normalization techniques being used and cannot

prevent the rank reversal phenomenon. The WPM, on the other hand,

is sensitive to the type of the sum constraint of the criteria weights

and can result in wrong rankings of alternatives, though it can pre-

serve the ranks and is agnostic to the normalization of the local

priorities.

4 | RATIO PRODUCT MODEL

This section presents the RPM, which provides meaningfully

correct rankings, is agnostic to the normalization of the perfor-

mance matrix, and preserve the ranks in different situations. For

the RPM, we need to translate the criteria weights as well as the

performance matrix into ratio forms. Given a performance matrix P

of m alternatives and n criteria with weights w, the RPM includes the

following steps:

TABLE 6 Aggregation of local
priorities for Example 3.4 with the ideal
normalization.

A c1 c2 gWPM Ratio of gWPM

A1 1 0.3535 0:3535ð Þ0:4 gWPM
1 /gWPM

2 = 20:6= 2:8282ð Þ0:4 ≈1

A2 1/2 1 1=2ð Þ0:6

Note: The WPM is computed with w1 ¼ 0:6 and w2 ¼ 0:4.

TABLE 7 Aggregation of local
priorities for Example 3.4 with the ideal
normalization.

A c1 c2 gWPM Ratio of gWPM

A1 1 0.34 0:34ð Þ0:4 gWPM
1 /gWPM

2 = 20:6=2:94120:4 ¼ 0:9845

A2 1/2 1 1=2ð Þ0:6

Note: The WPM are computed with w1 ¼0:6 and w2 ¼0:4.

6 MOHAMMADI and REZAEI
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Step 1: Compute the weight ratio vector bw by dividing the criteria

weights to the minimum weight value. Let wmin ¼ min1≤ i≤ nwi, bw is

defined as:

bw¼ w1

wmin
,
w2

wmin
,…,

wn

wmin

� �
: ð9Þ

In such a way, the criterion with the minimum weight is consid-

ered as the unit of measure, according to which the importance of

other criteria is measured.

Step 2: For each criterion, create a matrix by computing all the possible

ratios between the performance values of alternatives for that criterion.

The creation of such a matrix for each criterion can be computed identically

to Example 2.3. As a result, we have n matrices shown by Mk ,k¼1,…,n,

representing the ratios between the performance of alternatives for

all the criteria. Since these matrices show the preferences of alterna-

tives on a criterion and take no account for the importance of the cri-

teria, we refer to them as local pairwise ratio matrix (PRM).

Step 3: Compute scaled pairwise ratio matrices bM by multiplying

the weight ratios to the corresponding local RPM matrices. The

weight ratio is directly multiplied to the values greater than one in the

matrix, its inverse weight ratio is multiplied by the values less than

one, and the entries with a value of one remain intact. Hence, the ele-

ments of matrix bMk
, shown by Mk

ij , are computed as:

bMij ¼
bwkM

k
ij ifMk

ij >1

Mk
ij=bwk ifMk

ij <1

Mk
ij ifMk

ij ¼1

8>><>>: ð10Þ

The matrices bMk
take into account the criteria weights and are

comparable.

Step 4: The global preferences between alternatives are then

computed by aggregating the scaled PRM bMk
by using the geometric

mean. This matrix is called the global PRM and is shown by Magg .

Remark 4.1. The RPM considers the ratios between the

weights of criteria as well as between the performance of

alternatives. So, it is agnostic to the normalization technique

being used in the performance matrix, as well as the sum con-

strained imposed on the criteria weights. It also respects the

compositional nature of criteria weights and local priorities.

Remark 4.2. If two alternatives have the same values for

a criterion, then the corresponding element in the local

PRM is one. While a value one does not change the com-

puted aggregated fraction of the two alternatives both in

local and scaled PRMs, it affects the ratio of the alternative

in the aggregated PRM Magg by increasing the root degree

in the geometric mean. As a result, the aggregated ratios

become closer for alternatives having criteria with identical

values, as opposed to the WPM where it ignores the

criteria with the same performance.

Remark 4.3. The local PRMs are fully-consistent, but the

global PRMs typically have inconsistencies caused by the

multiplication of the weight ratios. In fact, unless the

weight ratio is one, the global PRMs have inconsistencies.

Remark 4.4. In regression analysis for the compositional

data, where the predictor and predicted variables are com-

positional, the convex combination of compositions

(i.e., composition of compositions) is modeled by the logis-

tic normal distribution (Aitchison & Bacon-Shone, 1999),

and not a unique composition. This implies that the com-

position of compositions is not unique. The inconsistency in

the global PRM is in line with this fact, as an inconsistent

PRM implies a non-unique composition.

Example 4.5. In this example, we consider the MCDM

problem in Example 3.1, where there are two criteria and

three alternatives as tabulated in Table 1. We also assume

that the weights of the two criteria are the same, similar to

Example 3.1. The following steps are the result of applying

the RPM to this problem:

Step 1: Since the weights of two criteria are the same, then the

weight ratio bw is computed as:

bw¼ 1,1½ �: ð11Þ

Step 2: We now find matrices Mk ,k¼1,2 for the two criteria

C¼ c1,c2f g as:

Step 3: Since the weights of the criteria are the same and the weight

ratios are one, then bM1 ¼M1 and bM2 ¼M2.

Step 4: The global preferences of alternatives are computed by

aggregating bM1
and bM2

using the geometric mean:

Magg ¼
1 2=3 8=3

3=2 1 4

3=8 1=4 1

0B@
1CA

1=2

, ð14Þ

where the power of the matrix is element-wise.

Step 5: The alternatives can be ranked based on Magg, which

is A2 ≻A1 ≻A3.

MOHAMMADI and REZAEI 7

 10991360, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/m

cda.1806 by T
u D

elft, W
iley O

nline L
ibrary on [24/04/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Example 4.6. Now consider Example 3.3, which is the

same as the previous example but the criteria weights are

different, that is w¼ 0:6,0:4½ �. Then, the steps of the RPM

would be as follows.

Step 1: We first compute the weight ratios as:

bw¼ 1:5,1½ �: ð15Þ

Step 2: We now find matrices Mk ,k¼1,2, for the two

criteria C¼ c1,c2f g as:

Step 3: In contrast to the previous example, the scaled

PRMs are different and computed as:

Step 4: We now compute the global PRM as:

Magg ¼
1 1 4

1 1 6

1=4 1=6 1

0B@
1CA

1=2

: ð19Þ

Step 5: The ranking of alternatives is A1 ¼A2 ≻A3

Example 4.7. Now consider the MCDM problem in Exam-

ple 3.2, where it entails three criteria with three alterna-

tives. Let the criteria weights be 0:5,0:4,0:1½ �. The RPM

steps are as follows:

Step 1: Since the criteria weights are identical, the

weight ratio bw is computed as:

bw¼ 5,4,1½ �: ð20Þ

Step 2:The matrices Mk ,k¼1,2,3 for the three criteria

C¼ c1,c2,c3f g are obtained as:

Step 3: The scaled PRMs bMk
,k¼1,2,3 are computed as:

Step 4: The global preferences of alternatives are com-

puted by aggregating the scaled PRMs, that is

Magg ¼
1 32=45 36

45=32 1 405

1=36 1=405 1

0B@
1CA

1=3

: ð27Þ

Step 5: The alternatives can be ranked based on Magg ,

which is A2 ≻A1 ≻A3.

5 | THEORETICAL INSIGHTS OF RATIO
PRODUCT MODEL

This section investigates the features of the proposed RPM and high-

lights its main advantages over the WSM and WPM.

We first show that the RPM is equivalent to the WPM if the

weights of criteria are the same.

Lemma 5.1. Let C¼ c1,c2,…,cnf g be n criteria with

weights W¼ w1,w2,…,wn½ �. If the weights of criteria are

identical, then the WPM is analogous to the RPM.

8 MOHAMMADI and REZAEI
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Proof. The ratio between two alternatives i and i0 in the WPM is

computed as:

Yn
j¼1

Pij
Pi0 j

 !wj

¼
Yn
j¼1

Pij
Pi0 j

 !1
n

, ð28Þ

where the last equality is obtained since w1 ¼w2 ¼…¼wn ¼1=n. We

now need to compare the ratio between two alternatives in the WPM

with the corresponding element in Magg . Since the weights of criteria

are the same, the weight ratios bw will be all one in the RPM (i.e.,bMj ¼Mj, j¼1,…,n), and the elements in the global preferences PCM

can be calculated as:

Magg
ii0 ¼

Yn
j¼1

bMj

ii0

 !1
n

¼
Yn
j¼1

Mj
ii0

 !1
n

¼
Yn
j¼1

Pij
Pi0 j

 !1
n

:

ð29Þ

Since i and i0 are arbitrary and the ratio between the associated

alternatives is identical, the RPM and WPM are equivalent for the

case where the weights of criteria are the same, and this completes

the proof. □

Remark 5.2. Lemma 5.1 highlights the observation that

the WPM, though is a step in the right direction, is still

erroneous because it deals with the criteria weights in a

wrong way. When the weights are identical for all the cri-

teria, the WPM has no issue (and identical to the RPM).

Keep in mind, though, the case where all the criteria have

the same importance is quite rare in MCDM.

We now prove three important lemmas for the proposed RPM:

Its agnosticism to the normalization technique and the scale of criteria

weights, as well as the robustness of its ranking against adding/

removing new alternative(s).

Proposition 5.3. The RPM provides the same ratios and

ranking of alternatives regardless of the normalization

technique (in form of dividing/multiplying the scores) being

used for the performance matrix or the scale of criteria

weights.

Proof. It is clear that by changing the scale of the criteria

weights, the weight ratio vector remains the same, since the ratio

between criteria weights to the minimum weight does not alter. On

the other hand, any normalization technique in form of dividing/

multiplying the scores in the performance matrix would not affect

the local PRM. As a result, scaled PRMs for each criterion as well as

the global PRM are not affected, and the final ranking remains the

same. □

Proposition 5.4. The ranks provided by the RPM are not

reversed if a new alternative added/removed.

Proof. If a new alternative is added or removed, the elements in

the local PRMs are not changed, and only a row and a column are

added to the matrix. This means that the ratios between the previous

alternatives remain the same, and the final ratios and the correspond-

ing ranking do not alter. □

It is also likely that some indiscriminating criteria (i.e. a criterion

whose value is the same for all alternatives) get eliminated from the

MCDM problems. In those case, the weights for the reduced set of

criteria are normalized (to satisfy the unit-sum constraint), and the fol-

lowing processes, like aggregation by the WSM or WPM, are con-

ducted accordingly. It is studied that removing indiscriminating criteria

could also lead to rank reversal. We now show that ranks provided by

the RPM are not affected by indiscriminating criteria, and is thus

robust to adding/removing such criteria.

Proposition 5.5. The ranks provided by the RPM are

robust to adding/removing indiscriminating criteria.

Proof. The ranking of two alternatives with n criteria is based on

global PRM Magg . For two alternatives Ai and Aj , Ai is ranked higher

than A2 if Magg
ij >1. Now, assume that criterion ck is indiscriminating,

the local RPM for such a criterion is a matrix of one (since all alterna-

tives have the same performance for the criterion), as well as the

scaled RPM (see Step 3 in the RPM). This means that:

Magg
ij ¼ ffiffiffi

αn
p

, ð30Þ

where α denotes the products of the corresponding elements in

scaled PRMs. If we remove ck , then α remains the same, and the new

global priority for the two alternatives is computed as:

bMagg

ij ¼ ffiffiffi
αn�1

p
: ð31Þ

If α is greater (less) than one (meaning that A1 (A2) is preferred

over A2 (A1)), the right hand side of both Equations (30) and (31) is

greater (less) than one, meaning that ranks provided by the RPM is

robust to adding/removing indiscriminating criteria. This completes

the proof. □.

6 | CONCLUSION AND FUTURE WORK

This paper presented RPM, a new multi-criteria decision-making

(MCDM) method. The RPM development was motivated by highlight-

ing the problems and drawbacks of two popular approaches in

MCDM, namely the WPM and WSM. While the drawbacks of the

WSM have already been discussed in the literature, this article also

inspects the drawbacks of the WPM. In addition, we discussed the

origin of the errors in the WPM and WSM, which is in principle their

MOHAMMADI and REZAEI 9
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ignorance of nature and the constraints of the input data. Having

identified the source of the problems, the RPM is developed with

respect to the compositional nature of the criteria weights as well as

the performance matrix.

The issues in the WSM and WPM exist in many MCDM methods.

For example, the outranking methods typically treat the criteria

weights as if they lie in the real space, thereby ignoring their composi-

tional nature. This leads to issues such as rank reversal to those

methods. As a result, the same approach used in this article can be

applied to other MCDM methods so that they respect the nature of

the input data and they are robust against rank reversal.

Aside from issues in the methods, the vision put forward in the

RPM should be used in other problems inside MCDM. For instance,

for MCDM problems with many criteria, the common practice is to

create a tree-based hierarchy and apply an MCDM method for each

of the levels. The weights of criteria at the last level are then com-

puted by multiplying their weights to the weight of the parent criteria.

Since the criteria weights are compositional, the multiplication of two

weights is meaningless, making the overall weights of criteria unreli-

able and invalid. As a result, another venue for future research would

be the use of vision propounded in the RPM for creating a proper

structure for hierarchical-based MCDM problems. Further, as another

venue for future, it is critical to show that the global PRM has the

transitivity property so that the ranks provided based on the RPM are

consistent.
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