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Abstract
In this paper we study the evolution of a small rigid body in a viscous incompressible fluid,
in particular we show that a small particle is not accelerated by the fluid in the limit when its
size converges to zero under a lower bound on its mass. This result is based on a new a priori
estimate on the velocities of the centers of mass of rigid bodies that holds in the case when
their masses are also allowed to decrease to zero.

Keywords Fluid-structure · Asymptotic analysis · Navier-Stokes

1 Introduction

In the recent works [13] and [14], the authors showed that the presence of a small rigid body
is negligible in a viscous incompressible fluid. In this paper we study the trajectory of this
small object. We show that a small rigid body is not influenced by the fluid under some
constrain on its mass, in particular the rigid body is not accelerated by the fluid and it moves
with its initial velocity.

Let start by introducing the equations that describe the dynamic of the system.Ford = 2, 3,
let us denote by S(t) ⊂ R

d the position of the rigid body at time t ∈ R
+ = [0,+∞). The

fluid occupies the domainF(t) = R
d\S(t) and it ismodelled by theNavier–Stokes equations

∂t u + u · ∇u − ν�u + ∇ p = 0 for x ∈ F(t),

div (u) = 0 for x ∈ F(t),

u = uS for x ∈ ∂S(t),

u −→ 0 as |x | −→ +∞, (1)

where u : R+ ×F(t) −→ R
d is the velocity field and p : R+ ×F(t) −→ R is the pressure

which is a scalar quantity. The real number ν > 0 is the viscosity coefficient. Finally uS is
the velocity of the rigid body.
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Regarding the rigid body we assume that it occupies S(0) = S in a closed, connected,
simply connected subset of Rd with no empty interior and smooth boundary and that it has
density ρin : S in −→ R such that ρin > 0. The dynamic of S(t) is completely determined
by the evolution of the center of mass h(t) and the angular rotation Q(t) around the center
of mass. More precisely

S(t) =
{
x ∈ R

d such that QT (t)(x − h(t)) ∈ S in
}

.

Here for a matrix A we denote by AT its transpose. The density of the rigid body S(t) is
given by ρ(t, x) = ρin(QT (t)(x − h(t))) and its velocity uS : R+ × S(t) −→ R

d is

uS(t, x) = d

dt
(h(t) + Q(t)y)

∣∣∣
y=QT (t)(x−h(t))

= h′(t) + Q′(t)QT (t)(x − h(t)).

The matrix Q(t) is a rotation, we deduce that Q′(t)QT (t) is skew-symmetric and can be
identify in dimension three with a vector ω(t) in the following way

Q′(t)QT (t)x = ω(t) × x

for any x ∈ R
3. We call ω the angular velocity. If we denote by �(t) = h′(t) the velocity of

the center of mass, the solid velocity is

uS(t, x) = �(t) + ω(t) × (x − h(t)).

Let recall that the mass m and the center of mass h is defined as

m =
∫

S(t)
ρ(t, x) dx and h(t) = 1

m

∫

S(t)
ρ(t, x)x dx

and without loss of generality we assume h(0) = 0 and Q(0) = 0. The evolution of the
center of mass h(t) and Q(t) follows the Newton’s laws that write

m�′(t) = −
∮

∂S(t)
�(u,p)nds, (2)

J (t)ω′(t) = J (t)ω(t) × ω(t)−
∮

∂S(t)
(x − h(t)) × �(u, p)nds,

where n is the normal component to ∂F(t) exiting from the fluid domain, the inertia matrix
J (t) is defined as

J (t) =
∫

S(t)
ρ(t, x)

[|x − h(t)|2I − (x − h(t)) ⊗ (x − h(t))
]
dx

where I is the identity matrix of d dimensions. Finally the stress tensor

�(u, p) = 2νD(u) − pI where D(u) = ∇u + (∇u)T

2

is the symmetric gradient.
For the system (1)-(2) the initial conditions are

u(0, .) = uin in F(t), �(0) = �in and ω(0) = ωin . (3)

where uin is the initial fluid velocity, �in ∈ R
d and ωin ∈ R

2d−3. Moreover they satisfy the
compatibility conditions

div (uin) = 0 in F(0) and uin · n = �in + ωin × x on ∂S(0). (4)
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Notice that in the case of dimension two the matrix Q′(t)QT (t) can be identify with a scalar
quantity that we denote again byω and uS(t, x) = �(t)+ω(t)(x−h(t))⊥, where for x ∈ R

2

we denote by x⊥ = (−x2, x1)T . Moreover the inertia matrixJ becomes a scalar independent
of time and the second equation of (2) simplifies.

Let us recall that the system (1)-(2)-(3) has been widely studied in the literature. In fact
the first works on the existence of Hopf-Leray type weak solutions are [27] and [33] where
they consider the case 	 = R

3. These results were then extended in [26]- [7]- [8]- [9]- [10].
Uniqueness was shown in [24] in dimension two and in [30] in dimension three under Prodi-
Serrin conditions. Regularity was studied in dimension three under Prodi-Serrin conditions
in [31]. Well-posedness of strong solutions in Hilbert space setting was proved in [25]- [15]-
[34]- [35] and in the Banach space setting in [18]- [29]. Notice that similar results hold in the
case the Navier-Slip boundary conditions are prescribed on ∂S, see [32]- [19]- [2]- [1]- [6].
Existence of time-periodic solutions to the Navier-Stokes equations around a moving body
was studied in [17] while the steady case was tackled in [17].

Among all different types of solutions, in this work we consider Hopf-Leray type weak
solutions for the system (1)-(2)-(3). To recall this definition let introduce some notations from
[14]. Let denote by

ρ̃ = χF(t) + ρχS(t) (5)

which is the extension by 1 of the density of the rigid body. Here for a set A ⊂ R
d , we denote

by χA the indicator function of A, more precisely χA(x) = 1 for x ∈ A and 0 elsewhere.
Similarly we define the global velocity

ũ = uχF(t) + uSχS(t) = uχF(t) + (�(t) + ω × (x − h(t))) χS(t).

Notice that if ũin ∈ L2(F(0)), then the compatibility conditions (4) on the initial data imply
that div (ũin) = 0 in an appropriate weak sense. After all these preliminaries we introduce
the definition of Hopf-Leray type weak solution for the system (1)-(2)-(3).

Definition 1 Let S in and ρin be the initial position and density of the rigid body, let
(uin, �in, ωin) be initial velocities satisfying hypothesis (4) and such that ũin ∈ L2(Rd).
Then a triple (u, �, ω) is a Hopf-Leray weak solution for system (1)-(2)-(3) associated with
initial data S in , ρin , uin , �in and ωin , if

• the functions u, � and ω satisfy

� ∈ L∞(R+;Rd), ω ∈ L∞(R+;R2d−3)

u ∈ L∞(R+; L2(F(t))) ∩ L2
loc(R

+; H1(F(t))), and ũ ∈ Cw(R+; L2(Rd));
• the vector field ũ is divergence free in R

d with D(ũ) = 0 in S(t);
• the vector field ũ satisfies the system in the following sense:

−
∫

R+

∫

Rd
ρ̃ũ · (∂tϕ + ũ · ∇ϕ) − 2νD(ũ) : D(ϕ) dx dt =

∫

Rd
ρ̃in ũin · ϕ(0, .) dt,

(6)

for any test function ϕ ∈ C∞
c (R+ × R

d) such that div (ϕ) = 0 and D(ϕ) = 0 in S(t).
• The following energy inequality holds

∫

Rd
ρ̃(t, .)|ũ(t, .)|2 dx + 4ν

∫ t

0

∫

Rd
|D(ũ)|2 dxdt ≤

∫

Rd
ρ̃|ũin |2, (7)

for almost any time t ∈ R
+.
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The existence of weak solutions for the system (1)-(2)-(3) is now classical and can be
found for example in [15]- [35]- [32]- [9].

Theorem 1 For initial data S in , ρin , uin, �in and ωin satisfying the hypothesis (4) and such
that ũin ∈ L2(Rd), there exist a Hopf-Leray weak solution (u, �, ω) of the system (1)-(2)-(3).

Let now introduce a small parameter ε > 0 that control the size of the rigid body. We will
consider initial rigid body of the size S in

ε ⊂ B0(ε). In [13] and [14] the authors studied the
limit as ε goes to zero for solutions of the system (1)-(2)-(3) under some mild assumptions
on the initial data ρin

ε , uinε , �inε and ωin
ε and in particular they show that in the limit the the

presence of the small rigid body does not influence the limit dynamics. These results can be
resume as follows.

Theorem 2 (Th. 3 of [13] and Th. 2 of [14].) Let (uε, �ε, ωε) be a sequence of Hopf-Leray
solutions associated with the initial data S in

ε , ρin
ε , uinε , �inε and ωin

ε satisfying the hypothesis
(4) and such that ũinε ∈ L2(Rd). If we assume that

• The rigid body S in
ε ⊂ B0(ε);

• The mass of the rigid body mε/ε
d −→ +∞;

• The initial velocity ũinε −→ uin in L2(Rd) and mε|�ε|2 + (Jεω
in
ε ) · ωin

ε −→ 2E ;

Then up to subsequence

ũε
w−⇀ u weak-� in L∞(R+; L2(Rd)) and weak in L2

loc(R
+; H1(Rd))

where u is a distributional solution to the Navier–Stokes equations that satisfies the energy
inequality

∫

Rd
|u(t, .)|2 dx + 4ν

∫ t

0

∫

Rd
|D(u)|2 dxdt ≤

∫

Rd
|uin |2 + 2E . (8)

Notice that there are many results in this direction. For example in [28] the authors studied
the vanishing object problem in dimension two under the assumptionmε = ε2m. For viscous
compressible fluid the three dimensional case was tackled in [4] and improved in [12] and
more recently in [11] was studied the two dimensional case for a weakly compressible fluid.
Notice that for viscous compressible fluid the vanishing object problem in two dimensions
is still an open problem due to the lack of integrability of the pressure.

In the case of dimension two and for an inviscid incompressible fluid modelled by the
Euler equations, i.e. system (1)-(2)-(3) with ν = 0, the vanishing object problem was studied
in [21]-[23]. In this case the presence of the small rigid body creates a vortex point in the
limiting dynamics and the intensity is associated with the initial circulation around the object.
In this case the authors were able to determine the position of the rigid body in the limit and
it coincides with the center of the vortex.

The goal of this paper is to study the evolution of the small rigid body in the limit as
ε −→ 0 in the case the fluid is viscous and incompressible. In particular we will show that
its dynamics is not influenced by the fluid.

Theorem 3 Let (uε, �ε, ωε) be a sequence of Hopf-Leray solutions associated with the initial
data S in

ε , ρin
ε , uinε , �inε and ωin

ε satisfying the hypothesis (4) and such that ũinε ∈ L2(Rd). If
to the assumptions of Theorem 2 we add

• mε/ε
1/2 −→ +∞ for d = 3 and mε ≥ C > 0 for d = 2;

• �inε −→ �in .
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Then

�ε −→ �in in L∞
loc(R

+).

Notice that in the above theorem �ε −→ �in and �in is independent of time. This means
that the small rigid body in not accelerated by the fluid.

In the special case the rigid bodies S in
ε = Bε(0) and they have densities ρε constant in

the space variables, the assumption on the masses in Theorem 3 can be rewritten in the form
ρεε

5/2 −→ +∞ for d = 3 and ρεε
2 ≥ C > 0 for d = 2. This implies that the densities ρε

of the rigid ball diverge to infinity.
The difficulty of the result is the fact that we allow the mass of the rigid body to go to zero,

in particular it is not enough to show that in the limit m�′ = 0 because m = 0. Moreover
from the energy estimate we only deduce mε|�ε|2 uniformly bounded and this is not enough
to have an a priori bound on �ε.

Finally notice that the evolution of the small rigid body seems richer in the case of a two
dimensional inviscid incompressible fluid but this is due to the fact that in this setting it is
possible to consider initial data with non-zero circulation around the object. In the case of
zero circulation, the limit velocity of the center of mass of the small rigid body is trivial in the
sense that �(t) = �in , see Section 1.4 of [20]. Notice that a velocity field that has non-zero
circulation around the body behaves as 1/|x | when |x | goes to +∞, in particular it is not
L2 so it does not enter in the theory of Hopf-Leray weak solutions, see also the comments
in section 2 of [28]. Let recall that an existence result in this direction is available in [3]
where the author considers initial data for the velocity field of the type uin + x⊥/|x2| with
uin ∈ L2(F in) for the system (1)-(2)-(3). The vanishing rigid body problem is still open in
this setting.

Let now move to the proof of Theorem 3. The remaining part of the paper is divided in
two main sections. First of all we recall some useful cut off. In the second one we show the
L∞ convergence for the velocity of the center of mass.

2 Some Appropriate Cut-Off

In this section we introduce some cut-off functions that have been considered also in [13].
They have the property that they optimized the Ld norm of the gradient and we denote them
by ηε,αε . The parameter ε > 0 indicates that ηε,αε = 1 in the ball Bε(0) and αε indicates that
the support of the ηε,αε is contained in the ball of size εαε .

Proposition 1 For any ε > 0 and αε ≥ 2, there exists a cut-off function ηε,αε ∈ C∞
c (Bεαε (0))

such that ηε,αε (x) = 1 for x ∈ Bε(0), ‖ηε,αε‖L∞ ≤ 1 and the following bounds hold with
constant C independent of ε and αε .

1. For 1 ≤ q < +∞
‖ηε,α‖Lq + ‖|x |∇ηε,α‖Lq (Rd ) ≤ C(εαε)

d/q .

2. We have
∥∥∇ηε,αε

∥∥d
Ld (Rd )

+ ∥∥|x |∇2ηε,αε

∥∥d
Ld (Rd )

≤ C

(logαε)d−1 .

3. For 1 ≤ q < d,

∥∥∇ηε,αε

∥∥q
Lq (Rd )

+ ∥∥|x |∇2ηε,αε

∥∥q
Lq (Rd )

≤ C

d − q

(εαε)
d−q

(logαε)q
.
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The proof of the above proposition is a straight-forward extension of Lemma 3 of [13],
so let us postpone the proof in Appendix A.

For ε > 0 and αε ≥ 2, let us introduce a family of linear operators �ε,αε that associate
to any vector z ∈ R

d a divergence free vector field �ε,αε [z] ∈ C∞
c (Bε,αε (0)) such that it is

equal to z in Bε(0). In dimension three

�ε,αε : R3 −→ C∞
c (R3)

is the map z �→ �ε,αε [z] defined by

�ε,αε [z](x) = curl

⎛
⎝ηε,αε (x)

⎛
⎝
z2x3
z3x1
z1x2

⎞
⎠

⎞
⎠ . (9)

for any x in R
3

Similarly in dimension two the operator �ε,αε : R2 −→ C∞
c (R2) is defined by

�ε,αε [z](x) = ∇⊥ (
ηε,αε (x)(z2x1 − z1x2)

)
, (10)

for any x in R
2.

In the following we use square brackets only to denote to which vector z ∈ R
d we apply

the operator �ε,αε .

Lemma 1 The family of operators �ε,αε satisfies the following bounds where the constant C
are independent of ε and αε .

1. For 1 ≤ q < +∞, we have

‖�ε,αε [z](x)‖Lq (Rd ) ≤ C(εαε)
d/q |z|.

2. We have

∥∥∇�ε,αε [z](x)
∥∥d
Ld (Rd )

≤ C
|z|d

(logαε)d−1 .

3. For 1 ≤ q < d,

∥∥∇�ε,αε [z](x)
∥∥q
Lq (Rd )

= C
|z|q
d − q

(εαε)
d−q

(logαε)q
.

Proof Let us show the lemma in dimension two for simplicity. Notice that

�ε,αε [z](x) = ∇⊥ηε,αε (x)(z2x1 − z1x2) + ηε,αε (x)z

We estimate

‖�ε,αε [z]‖Lq (Rd ) ≤C
(‖|x |∇ηε,αε‖Lq (Rd ) + ‖ηε,αε‖Lq (Rd )

) |z|
≤C(εαε)

d/q .

from point 1 of Proposition 1. To estimate the gradient of �ε,αε [z], we compute

∇�ε,αε [z](x) =∇⊥ ⊗ ∇ηε,αε (x)(z2x1 − z1x2) + ∇⊥ηε,αε (x) ⊗ z⊥ + z ⊗ ∇ηε,αε (x).

where for two vector in u, v ∈ R
d we use the notation u ⊗ v ∈ R

d×d to denote the matrix
with entries (u ⊗ v)i j = uiv j . For 1 ≤ q ≤ d , we bound

∥∥∇�ε,αε [z](x)
∥∥q
Lq (Rd )

≤ C
(‖|x |∇2ηε,αε‖Lq (Rd ) + ‖∇ηε,αε‖Lq (Rd )

) |z|.
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We then deduce points 2 and 3 of Lemma 1 from points 2 and 3 of Proposition 1 respectively.
��

We use the special test functions (9) and (10) in equation (6) to prove the main result.

3 Proof of Theorem 3

In this section we will prove Theorem 3 in dimension two and three. From the definition of
Leray-Hopf weak solutions and in particular from (7), we have

mε|�ε(t)|2 + (JSε(t)ωε(t)
) · ωε(t) +

∫

Fε(t)
|uε(t, .)|2 dx + 4ν

∫ t

0

∫

Rd
|D(uε)|2 dxdt

≤
∫

Rd
ρ̃in

ε |ũinε |2 ≤ C, (11)

withC independent of ε. The last inequality is a consequence of the convergence ũinε −→ ũin

in L2(R2) andmε|�ε|2+ (Jεω
in
ε ) ·ωin

ε −→ 2E that is stated in Theorem 2. The above bound
was used in [13] and [14] to show Theorem 2 but it does not give information on �ε in the
case the mass of the rigid body converges to zero. We will now present a new estimate that
gives us control of the L∞-norm of �ε . Recall that that the L∞-norm in the interval (0, T )

can be defined by

‖ f ‖L∞(0,T ) = sup
γ∈C∞

c (0,T )

∣∣∣∫ T
0 f γ dτ

∣∣∣
‖γ ‖L1(0,T )

.

We will use this form to show our results.
Given γ ∈ C∞

c ([0, T );Rd), we consider the divergence free vector fields

ψε(t, x) = 1

mε

�ε,αε

[∫ T

t
γ (τ) dτ

]
(x − hε(t))

for t ∈ [0, T ] and ψε identically zero for t > T . Using (9), the function ψε in dimension
three is

ψε(t, x) = 1

mε

curl

⎛
⎜⎝ηε,αε (x − hε(t))

⎛
⎜⎝

∫ T
t γ2(τ ) dτ(x3 − h3,ε(t))∫ T
t γ3(τ ) dτ(x1 − h1,ε(t))∫ T
t γ1(τ ) dτ(x2 − h2,ε(t))

⎞
⎟⎠

⎞
⎟⎠ ,

for t ≤ T . First of all notice that for x ∈ Sε(t)

ψε(t, x) = 1

mε

�ε,αε

[∫ T

t
γ (τ) dτ

]
(x − hε(t)) = 1

mε

∫ T

t
γ (τ) dτ.

We deduce that

−
∫

R+

∫

Sε(t)
ρεuS,ε · ∂tψε dxdt =

∫ T

0
�ε · γ dt,

and similarly
∫

Sε(0)
ρεu

in
S,ε · ψε(0, .) dx = �inε ·

∫ T

0
γ (τ) dτ.
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To show the L∞ convergence of �ε , we rewrite equation (6) with ϕ = ψε in the form

∫ T

0
(�ε − �in) · γ dt =

∫ T

0

∫

Fε(t)
uε · (∂tψε + uε · ∇ψε) − 2νD(uε) : D(ψε) dx dt

+
∫

Fε(0)
uinε · ψε(0, .) dx + (�inε − �in) ·

∫ T

0
γ dt . (12)

In particular, if we show that the absolute value of the right hand side of (12) is bounded by

c(ε)‖γ ‖L1(0,T )

with c(ε) −→ 0, then the convergence �ε −→ �in follows from (12).
It remains to estimate the right hand side of (12). Let start by computing for x ∈ Fε(t)

∂tψε = ∂t

(
1

mε

�ε,αε

[∫ T

t
γ (τ) dτ

]
(x − hε(t))

)

= − 1

mε

�ε,αε

[
γ (t)

]
(x − hε(t)) − �ε · ∇

(
1

mε

�ε

[∫ T

t
γ (τ) dτ

])
(x − hε(t))

(13)

At this step the proof in dimension two and three start to differ so let start by consider the
case of dimension three.

Proof of Theorem 3 for d = 3. In this case, we choose αε = 2. For simplicity we write �ε,2 =
�ε. Let estimate any term of the right hand side of (12) separately. Using the computation
(13), we deduce that

∣∣∣∣
∫ T

0

∫

Fε(t)
uε · ∂tψε dxdt

∣∣∣∣ ≤
∣∣∣∣
∫ T

0

∫

Fε(t)
uε · 1

mε

�ε

[
γ (t)

]
(x − hε(t)) dxdt

∣∣∣∣

+
∣∣∣∣
∫ T

0

∫

Fε(t)
uε ·

[
�ε · ∇

(
1

mε

�ε

[∫ T

t
γ (τ) dτ

])
(x − hε(t))

]
dxdt

∣∣∣∣

≤ ‖uε‖L∞(0,T ;L2(Fε(t)))

∥∥∥∥
�ε

mε

[
γ (t)

]∥∥∥∥
L1(0,T ;L2(R3))

+ ‖uε‖L∞(0,T ;L2(Fε(t)))

∥∥∥∥
1

mε

∇�ε

[∫ T

t
γ (τ) dτ

]∥∥∥∥
L∞(0,T ;L2(R3))

‖�ε‖L1(0,T )

≤C‖uε‖L∞(0,T ;L2(Fε(t)))
ε3/2

mε

‖γ ‖L1(0,T )

+ C‖uε‖L∞(0,T ;L2(Fε(t)))
ε1/2

mε

∥∥∥∥
∫ T

t
γ (τ) dτ

∥∥∥∥
L∞(0,T )

‖�ε‖L1(0,T )

≤C‖uε‖L∞(0,T ;L2(Fε(t)))
ε1/2

mε

(
ε + T ‖�ε‖L∞(0,T )

) ‖γ ‖L1(0,T ), (14)

where in the third inequality we used points 1 and 3 of Lemma 1 for q = 2. Moreover notice
that ‖uε‖L∞(0,T ;L2(Fε(t))) is uniformly bounded in ε from (11).
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To estimate the convective term∣∣∣∣
∫ T

0

∫

Fε(t)
uε · (uε · ∇ψε) dxdt

∣∣∣∣

≤ ‖uε‖2L2(0,T ;L6(Fε(t)))

∥∥∥∥
1

mε

∇�ε

[∫ T

t
γ (τ) dτ

]∥∥∥∥
L∞(0,T ;L3/2(Fε(t)))

≤ C‖ũε‖2L2(0,T ;L6(R3))

ε

mε

‖γ ‖L1(0,T ), (15)

where we used point 3 of Lemma 1 for q = 3/2. Moreover ‖ũε‖L2(0,T ;L6(R3)) is uniformly
bounded in ε, in fact by Sobolev embedding and Korn inequality we have

‖ũε‖L6(R3) ≤ ‖∇ũε‖L2(R2) ≤ C‖Dũε‖L2(R3).

Inequality (11) implies that

‖ũε‖L2(0,T ;L6(R3)) ≤ C‖Dũε‖L2(0,T ;L2(R3)) ≤ C .

Similarly
∣∣∣∣
∫ T

0

∫

Fε(t)
Duε · Dψε dxdt

∣∣∣∣

≤ ‖Duε‖L2(0,T ;L2(Fε(t)))

∥∥∥∥
1

mε

∇�ε

[∫ T

t
γ (τ) dτ

]∥∥∥∥
L2(0,T ;L2(Fε(t)))

≤ C‖Duε‖L2(0,T ;L2(Fε(t)))
ε1/2

mε

√
T ‖γ ‖L1(0,T ). (16)

For the term involving the initial fluid velocity, we estimate
∣∣∣∣
∫

Fε(0)
uin · ψε(0, .) dx

∣∣∣∣ ≤
∣∣∣∣
∫

F(0)

1

mε

uinε · �ε

[∫ T

0
γ (τ) dτ

]
dx

∣∣∣∣

≤C‖uinε ‖L2(F(0))
ε3/2

mε

‖γ ‖L1(0,T ), (17)

where we used point 1 of Lemma 1 for q = 2, Finally
∣∣∣∣(�inε − �in) ·

∫ T

0
γ dτ

∣∣∣∣ ≤
∣∣∣�inε − �in

∣∣∣ ‖γ ‖L1(0,T ). (18)

Putting estimates (14)- (15)-(16)-(17)-(18) together and using the uniform estimates (11), the
convergence of the initial data and the hypothesis that mε/ε

1/2 −→ +∞, we deduce from
(12) that

∣∣∣∣
∫ T

0
(�ε − �in) · γ dt

∣∣∣∣ ≤ c̃(ε)‖γ ‖L1 + c̄(ε)‖�ε‖L∞(0,T )‖γ ‖L1(0,T ),

where c̃(ε), c̄(ε) −→ 0 and

c̄(ε) = C‖uε‖L∞(0,T ;L2(Fε(t)))
ε1/2

mε

T . (19)

If we divide the right and the left hand side by the L1 norm of γ and we take the sup for
γ ∈ C∞

c (0, T ), we deduce

‖�ε − �in‖L∞ ≤ c̃(ε) + c̄(ε)‖�ε − �in‖L∞(0,T ) + c̄(ε)|�in |.
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We can now absorb the second term of the right hand side and deduce that �ε −→ �in in
L∞. ��

Let now move to the case of dimension two. In this case the the energy inequality (11)
implies that �ε is uniformly bounded in L∞(0, T ) thanks to the hypothesis mε ≥ C > 0. It
remains to show the strong convergence.

Proof of Theorem 3 for d = 2. Choose αε such that εαε −→ 0 and αε −→ +∞. Consider test
functions

ψε(x, t) = 1

mε

�ε,αε

[∫ T

t
γ (τ) dτ

]
(x − hε(t)),

for γ : [0, T ] −→ R
2 with γ ∈ C∞

c ((0, T )). Notice that (12) holds also in the case of
dimension two, in fact the same computations are true. We now show that the right hand side
of (12) converges to zero.

Let us estimate
∣∣∣∣
∫ T

0

∫

Fε(t)
uε · ∂tψε dxdt

∣∣∣∣ ≤
∣∣∣∣
∫ T

0

∫

Fε(t)
uε · 1

mε

�ε,αε

[
γ (t)

]
(x − hε(t)) dxdt

∣∣∣∣

+
∣∣∣∣
∫ T

0

∫

Fε(t)
uε ·

[
�ε · ∇

(
1

mε

�ε,αε

[∫ T

t
γ dτ

]
(x − hε(t))

)]
dxdt

∣∣∣∣

≤‖uε‖L∞(0,T ;L2(Fε(t)))

∥∥∥∥
�ε,αε [γ (t)]

mε

∥∥∥∥
L1(0,T ;L2(R2))

+ ‖uε‖L∞(0,T ;L2(Fε(t)))

∥∥∥∥
1

mε

∇�ε,αε

[∫ T

t
γ (τ) dτ

]∥∥∥∥
L∞(0,T ;L2(R2)

‖�ε‖L1(0,T )

≤C‖uε‖L∞(0,T ;L2(Fε(t)))
1

mε

(
εαε + 1√

log(αε)
T ‖�ε‖L∞(0,T )

)
‖γ ‖L1(0,T ).

In the third inequality we used points 1 and 2 of Lemma 1 for q = 2 and d = 2. Then we
consider

∣∣∣∣
∫ T

0

∫

Fε(t)
uε · (uε · ∇ψε) dxdt

∣∣∣∣

≤ ‖uε‖2L2(0,T ;L4(Fε(t)))

∥∥∥∥
1

mε

∇�ε,αε

[∫ T

t
γ (τ) dτ

]∥∥∥∥
L∞(0,T ;L2(Fε(t)))

≤ C‖ũε‖2L2(0,T ;L4(R2))

1

mε

1√
log(αε)

‖γ ‖L1(0,T ),

where we used point 2 of Lemma 1 for q = 2. The term
∣∣∣∣
∫ T

0

∫

Fε(t)
Duε · Dψε dxdt

∣∣∣∣

≤ ‖Duε‖L2(0,T ;L2(Fε(t)))

∥∥∥∥
1

mε

∇�ε,αε

[∫ T

t
γ (τ) dτ

]∥∥∥∥
L2(0,T ;L2(Fε(t)))

≤ C‖Duε‖L2(0,T ;L2(Fε(t)))
1

mε

1√
log(αε)

√
T ‖γ ‖L1(0,T ).
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Finally for the terms associated with the initial data,
∣∣∣∣
∫

Fε(0)
uin · ψε(0, .) dx

∣∣∣∣ ≤
∣∣∣∣
∫

F(0)

1

mε

uinε · �ε,αε

[∫ T

0
γ (τ) dτ

]
dx

∣∣∣∣
≤C‖uinε ‖L2(Fε(0))

εαε

mε

‖γ ‖L1(0,T ),

where we used point 1 of Lemma 1 for q = 2, and
∣∣∣∣(�inε − �in) ·

∫ T

0
γ dτ

∣∣∣∣ ≤
∣∣∣�inε − �in

∣∣∣ ‖γ ‖L1(0,T ). (20)

Putting all the above estimates together, we deduce from (12) that
∣∣∣∣
∫ T

0
(�ε − �in) · γ dt

∣∣∣∣ ≤ c̃(ε)‖γ ‖L1 ,

where c̃(ε) −→ 0. In fact we have that ‖uε‖L∞(0,T ;L2(Fε(t))), ‖�ε‖L∞(0,T ),
‖Duε‖L2(0,T ;L2(Fε(t))) are uniformly bounded in ε from (11) and Korn inequality, 1/mε and

‖ũinε ‖L2(Fε(0)) are uniformly bounded by hypothesis, 1/
√
log(αε) −→ 0 from the choice

αε −→ +∞ and |�inε − �in | −→ 0 by hypothesis. It only remains to show a uniform bound
for ‖ũε‖L2(0,T ;L4(R2)). By Sobolev embedding see for instance Lemma 4 of [5], we have

‖ũε‖L2(0,T ;L4(R2)) ≤C‖ũε‖L2(0,T ;L2(Fε(t))) + C‖∇ũε‖L2(0,T ;L2(R2))

≤C‖ũε‖L2(0,T ;L2(Fε(t))) + C‖Dũε‖L2(0,T ;L2(R2)),

where in the last step we use the Korn inequality. Notice that the right hand side of the above
inequality is uniformly bounded due to (11).

If we divide the right and the left hand side of (20) by the L1 norm of γ and we take the
sup for γ ∈ C∞

c (0, T ), we deduce

‖�ε − �in‖L∞(0,T ) ≤ c̃(ε) −→ 0

as ε converges to zero. ��
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A Proof of Proposition 1

In this section we prove Proposition 1 which is a straight-forward extension of Lemma 3 of
[13]. First of all for A, B ∈ R with 0 < A < B, we denote by α = B/A > 1 and we define
the functions

f A,B(z) =

⎧
⎪⎨
⎪⎩

1 for 0 ≤ z < A,
log z−log B
log A−log B for A ≤ z ≤ B,

0 for z > B.

It holds that f A,B ∈ W 1,∞(R+). We define the d-dimensional cut-off

η̃ε,αε (x) = fε,αεε(|x |),
for x ∈ R

d and αε > 1.

Proposition 2 The functions η̃ε,αε have the following properties

1. ‖η̃ε,αε‖L∞(Rd )≤1.

2. For 1 ≤ q < +∞
‖η̃ε,αε‖Lq (Rd ) + ‖|x |∇η̃ε,αε‖Lq (Rd ) ≤ C(εαε)

d/q .

3. We have

∥∥∇η̃ε,αε

∥∥d
Ld (Rd )

= 2d−1π

(logαε)d−1 .

4. For 1 ≤ q < d,

∥∥∇η̃ε,αε

∥∥q
Lq (R3)

= 2d−1π

d − q

α
d−q
ε − 1

(logαε)q
εd−q .

5. For 1 ≤ q < d,

∥∥|x |∇2η̃ε,αε

∥∥q
Lq (Bεαε (0)\Bε)

≤ 2d−1π

d − q

α
d−q
ε − 1

(logαε)q
εd−q .

Proof After passing to spherical coordinates the proof is straight-forward. For example to
show part 2. in dimension three, we compute

∥∥∥∇̃ηε,αε

∥∥∥
3

L3(R3)
=

∫ 2π

0

∫ π

0

∫ εαε

ε

∣∣∣∣
1

r

1

log(ε) − log(εαε)

∣∣∣∣
3

sin(ϕ)r2 drdϕdθ

= 4π

(log(αε))3.

[
log(r)

]εαε

ε

= 4π

(log(αε))2.
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See Lemma 2 of [13] for the proof in dimension two. ��
As noticed in [13] the functions η̃ε,αε satisfy all the bounds of Proposition 1 but they are

not smooth, in fact they are not even C2 on ∂Bε(0) ∪ ∂Bεαε (0). To tackle this issue, the
authors of [13] modify the functions η̃ε,αε as follows. They consider g ∈ C∞

c ([0, 12/10))
such that 0 ≤ g ≤ 1 and g(y) = 1 for y ∈ [0, 11/10]. Then they define

ηε,αε (x) = 1 +
(
1 − g

( |x |
ε

)) (
η̃ε,αε (x)g

(
13

10

|x |
αεε

)
− 1

)
, (21)

which rewrites

ηε,αε (x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1 for |x | < 11
10ε,

1 +
(
1 − g

( |x |
ε

)) (
η̃ε,αε (x) − 1

)
for 11

10ε ≤ |x | < 12
10ε,

η̃ε,αε (x) for 12
10ε ≤ |x | < 11

13εαε,

η̃ε,αε (x)g
(
13
10

|x |
αεε

)
for 11

13εαε ≤ |x | < 12
13εαε,

0 for |x | ≥ 12
13εαε.

The functions ηε,αε are smooth. It remains to show that they satisfy all the properties stated
in Proposition 1

Proof of Proposition 1 Weverify that the family ηε,αε defined in (21) satisfies all the properties
stated in Proposition 1. First of all by definition ηε,αε ∈ C∞

c (Bεαε (0)), ηε,αε (x) = 1 for
x ∈ Bε(0) and ‖ηε,αε‖L∞ ≤ 1. Let now bound the Lq norm of ∇ηε,αε . As in [13], we denote
by

g1ε (x) =
(
1 − g

( |x |
ε

))
, g2ε (x) = g

(
13

10

|x |
αεε

)

and by Ar ,R = BR(0) \ Br (0) the annulus for 0 < r < R. Finally we notice that

‖η̃ε,αε − 1‖
L∞

(
A 11

10 ε, 1210 ε

) =
∥∥∥∥
log(|x |/ε)
log(αε)

∥∥∥∥
L∞

(
A 11

10 ε, 1210 ε

) ≤ C

log(αε)

and similarly

‖η̃ε,αε‖
L∞

(
A 11

13 εαε, 1213 εαε

) =
∥∥∥∥
log(|x |/(εαε))

log(αε)

∥∥∥∥
L∞

(
A 11

13 εαε, 1210 εαε

) ≤ C

log(αε)
.

For 1 ≤ q ≤ p, we estimate

‖∇ηε,αε‖Lq (Rd ) ≤‖∇(g1ε (η̃ε,αε − 1))‖
Lq

(
A 11

10 ε, 1210 ε

) + ‖∇η̃ε,αε‖
Lq

(
A 12

10 ε, 1113 εαε

)

+ ‖∇(g2ε η̃ε,αε )‖
Lq

(
A 11

13 εαε , 1210 εαε

)

≤‖∇η̃ε,αε‖Lq (Rd )

(‖g1ε‖L∞(Rd ) + 1 + ‖g2ε‖L∞(Rd )

)

‖η̃ε,αε − 1‖
L∞

(
A 11

10 ε, 1210 ε

)‖∇g1ε‖Lq (Rd ) + ‖η̃ε,αε‖
L∞

(
A 11

13 εαε , 1213 εαε

)‖∇g2ε‖Lq (Rd )

≤C‖∇η̃ε,αε‖Lq (Rd ) + C

log(αε)
((αεε)

(d−q)/q + ε(d−q)/q ),
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where we use that 1 − g1ε and g2ε are appropriate rescaling of g to estimate the Lq norm of
∇g1ε and ∇g2ε . The bounds of the Lq norm of ∇ηε,αε follows from the above estimate and
Proposition 2.

Similarly we estimate

‖|x |∇ηε,αε‖Lq (Rd ) ≤‖|x |∇(g1ε (η̃ε,αε − 1))‖
Lq

(
A 11

10 ε, 1210 ε

) + ‖|x |∇η̃ε,αε‖
Lq

(
A 12

10 ε, 1113 εαε

)

+ ‖|x |∇(g2ε η̃ε,αε )‖
Lq

(
A 11

13 εαε , 1210 εαε

)

≤‖|x |∇η̃ε,αε‖Lq (Rd )

(‖g1ε‖L∞(Rd ) + 1 + ‖g2ε‖L∞(Rd )

)

+ ‖η̃ε,αε − 1‖
L∞

(
A 11

10 ε, 1210 ε

)‖|x |∇g1ε‖Lq (Rd )

+ ‖η̃ε,αε‖
L∞

(
A 11

13 εαε , 1213 εαε

)‖|x |∇g2ε‖Lq (Rd )

≤C
(‖|x |∇2η̃ε,αε‖Lq (Rd ) + ‖∇η̃ε,αε‖Lq (Rd )

) + C

log(αε)
((αεε)

d/q + εd/q ).

where we use that 1 − g1ε and g2ε are appropriate rescaling of g to estimate the L∞ norm of
|x |∇g1ε and |x |∇g2ε . Finally we estimate

‖|x |∇2ηε,αε‖Lq (Rd ) ≤‖|x |∇2(g1ε (η̃ε,αε − 1))‖
Lq

(
A 11

10 ε, 1210 ε

) + ‖|x |∇2η̃ε,αε‖
Lq

(
A 12

10 ε, 1113 εαε

)

+ ‖|x |∇2(g2ε η̃ε,αε )‖
Lq

(
A 11

13 εαε, 1210 εαε

)

≤‖|x |∇2η̃ε,αε‖Lq (Rd )

(‖g1ε‖L∞(Rd ) + 1 + ‖g2ε‖L∞(Rd )

)

+ ‖∇η̃ε,αε‖Lq (Rd )

(‖|x |∇g1ε‖L∞(Rd ) + ‖|x |∇g2ε‖L∞(Rd )

)

+ ‖η̃ε,αε − 1‖
L∞

(
A 11

10 ε, 1210 ε

)‖|x |∇2g1ε‖Lq (Rd )

+ ‖η̃ε,αε‖
L∞

(
A 11

13 εαε, 1213 εαε

)‖|x |∇2g2ε‖Lq (Rd )

≤C
(‖|x |∇2η̃ε,αε‖Lq (Rd ) + ‖∇η̃ε,αε‖Lq (Rd )

)

+ C

log(αε)
((αεε)

(d−q)/q + ε(d−q)/q).

where as before we use that 1 − g1ε and g2ε are appropriate rescaling of g to estimate the Lq

norm of |x |∇2∇g1ε and |x |∇2g2ε . ��
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