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Time-Domain Electromagnetic Leaky Waves
Martin Štumpf , Senior Member, IEEE, Junhong Gu, Student Member, IEEE,

and Ioan E. Lager , Senior Member, IEEE

Abstract— A causality preserving interpretation of the elec-
tromagnetic (EM) leaky-wave (LW) propagation in space and
time is proposed for the first time. The Cagniard–deHoop (CdH)
joint transform technique is applied for elucidating the relation
between time-domain (TD) head waves (HWs), body waves
(BWs), Cherenkov wave effects, and LWs. It is conjectured
that the LW phenomenon in the TD is associated with a local
maximum in the observed signal that occurs between the arrivals
of the HW and BW constituents. A quantitative analysis that
enables the space-time localization of the LW effect is performed
theoretically and, then, illustrated via representative examples
including the pulsed EM radiation from both a line source above
a dielectric half-space, and narrow-slot antennas.

Index Terms— Body wave (BW), Cagniard–deHoop (CdH)
technique, Cherenkov radiation, head waves (HWs), leaky wave
(LW), time-domain (TD) analysis.

I. INTRODUCTION

LEAKY waves (LWs) can be viewed as nonmodal solu-
tions (or noneigenmodes) of the source-free field equa-

tions in an open space. Owing to their improper physical
behavior, LWs cannot exist on their own, but they can be
utilized to represent the total field in a bounded subdomain
of space [1]. Such solutions were dominantly investigated
under the assumption of sinusoidally in time-varying fields,
i.e., in the frequency domain (FD) (see [1], [2], [3], [4], [5],
[6], [7], [8], [9], [10, Sec. 11.8]).

As far as the time-domain (TD) analysis of LW phenomena
is concerned, the available literature on the subject is extremely
scarce: Felsen and Niu [11] analyze dedicated joint-transform
schemes to transform the terms of a hybrid ray-mode series
expansion pertaining to the horizontal-electric-dipole excited
fields inside a grounded slab. Next, Duffy [12] pursues a
sophisticated analytical approach to replace a branch-cut inte-
gral by a sum of residue contributions corresponding to poles
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on a “nonphysically acceptable” Riemann sheet. A similar line
of reasoning is also followed in [13], where both line- and
point-source excited TD LWs in a grounded slab are analyzed
in great detail. A very enlightening discussion in this respect
can also be found in [14, Sec. 3.9], where TD LWs are first
identified in the Laplace-transform domain expression for the
1-D plane-wave field reflected against a grounded slab and,
subsequently, discussed in the context of line-source-excited
head wave (HW) phenomena.

Inspired by the results in [12], [13], and [14], this article sets
itself the task to offer for the first time a causality preserving
interpretation of the electromagnetic (EM) LW propagation in
space and time. Our framework hinges around conjecturing
a relationship between HWs, body waves (BWs), LWs, and
Cherenkov radiation effects. Since we programmatically aim
at conceptual clarifications, we restrict ourselves to studying
configurations that lend themselves to completely analytical
handling. Our instrument of choice will be the Cagniard-
deHoop (CdH) joint transform technique [15], [16], the inver-
sion methodology that has been previously successfully used
to explain and quantitatively describe the pseudo-Rayleigh-
wave effect (also referred to as the Rayleigh LW) as observed
along a fluid/solid planar interface [17], [18]. By this means
we shall analyze the 2-D EM propagation in some canon-
ical two-media configurations comprising a homogeneous,
isotropic, dielectric domain embedded in free space.

After discussing some prerequisites, we shall first investi-
gate the EM field due to an impulsive electric line source
traveling with a constant velocity inside a dielectric half-
space. Such a configuration may seem contrived from a
practical point of view. Apart from being intrinsically relevant
as an EM model for the Cherenkov radiation, it lays the
conducive basis for developing the arguments that are central
to our interpretation of the TD LW phenomenon. Subse-
quently, we shall examine a stationary line source located in
a dielectric half-space, the analysis of the TD reflected field
at the interface demonstrating a behavior that we associate
with the TD LW phenomenon (see the detailed explanation
on the used terminology in the Appendix). This phenomenon
will also be observed in the case of the EM radiation from
a 2-D slot-excited dielectric slab, where we analyze HW,
LW, and BW contributions as they propagate by multiple
reflections inside the slab. The final step will concern the
study of the EM field propagating along an infinite slot in a
perfectly electrically conducting (PEC) screen that separates a
dielectric half-space from a free-space one. We end by drawing
conclusions.

0018-926X © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
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II. DEFINITIONS

Position in the analyzed problem configurations is specified
by the coordinates {x, y, z} with respect to an orthogonal
Cartesian reference frame with the origin, O, and the three
base vectors {i x , i y, i z}. The time coordinate is denoted by t .
The Dirac-delta distribution is denoted by δ(t) and the Heav-
iside unit-step function is represented by H(t).

To properly account for the universal property of causal-
ity, TD LWs will be analyzed with the aid of the CdH
joint-transform technique that makes use of a unilateral
Laplace transformation in combination with the wave-slowness
(Fourier-type) representation [15]. To show the notation,
we give the integral expressions for the y-component of the
electric-field strength, Ey(x, y, z, t). The Laplace transform
can be then written as

Ê y(x, y, z, s) =

∫
∞

t=0
exp(−st)Ey(x, y, z, t)dt

for {s ∈ R; s > 0} (1)

and the wave-slowness representation along the x-direction,
for instance, can be expressed as

Ê y(x, y, z, s) =
s

2π i

∫ i∞

p=−i∞
exp(−spx)Ẽ y(p, y, z, s)dp

(2)

where p is the (imaginary-valued) slowness parameter and s
serves as a scaling parameter. If the problem configuration
permits, a similar representation can also be taken along the
y- or/and z-direction.

III. IMPULSIVE LINE SOURCE OVER A HALF-SPACE

In this section, we shall examine the EM-field radiation from
an impulsive line source in a two-medium configuration. More
precisely, we shall analyze the TD reflected field due to a
y-oriented, impulsive electric line source that is located at a
height h > 0 in the upper half-space, say D1 = {−∞ <

x < ∞, −∞ < y < ∞, z > 0}, whose EM properties
are described by (scalar, real-valued and positive) electric
permittivity ϵ1 and magnetic permeability µ0. Likewise, the
EM properties of the lower half-space, D0 = {−∞ < x <

∞, −∞ < y < ∞, z < 0}, are described by ϵ0 and µ0
(see Fig. 1). The corresponding EM wave speeds in D0,1 are
described by c0,1 = (µ0ϵ0,1)

−1/2 > 0, respectively. We shall
assume that the line source is located in a denser medium,
i.e., c1 < c0.

In our analysis, we shall consider two cases. First, bearing
in mind that the Cherenkov effect [19] is in the literature occa-
sionally associated with LW phenomena (see [9], [20], [21],
for example), we shall analyze the TD EM field associated
with a traveling line source. In the second case, the same
problem configuration is to be excited by a fixed line source.
For detailed CdH analyses of TD EM-fields radiated from
stationery and traveling line current sources in the presence
of a dielectric half-space we refer the reader to [22] and [23],
respectively.

Fig. 1. Impulsive electric-line source above a half-space.

A. Traveling Line Source

First, we shall analyze the reflected field due to the
electric-line source that travels in the positive x-direction along
z = h at a constant speed, say v > 0 (see Fig. 1). The latter
is assumed to be higher than the wave speed in D1, but lower
than c0 corresponding to D0, i.e., c1 < v < c0. Assuming next,
for simplicity, the unit-step temporal profile, the traveling line
source can be defined via its electric-current volume density
as

Jy(x, z, t) = I0δ(x − vt)δ(z − h)H(t) (3)

where I0 (in A) denotes the electric-current amplitude. Since
the problem configuration and the excitation source are y-
independent, the nonvanishing (E-polarized) field components
are {Ey, Hx , Hz}(x, z, t). Those components that are tangen-
tial with respect to the (source-free) interface do meet the
continuity-type conditions

lim
z↓0

{Ey, Hx }(x, z, t) = lim
z↑0

{Ey, Hx }(x, z, t)

for all x ∈ R and t > 0. (4)

To solve the boundary-value problem, its general solution
is traditionally written as the superposition of the incident and
reflected fields, Ey = E i

y + E r
y in D1, and as the (total) trans-

mitted field in Ey = E t
y in D0. Combining now the Laplace

transformation (1) with the slowness representation (2), the
corresponding reflected EM-field in the s-domain can be
expressed via the following complex-slowness integral:

Ê r
y(x, z, s) =

µ0 I0

2iπ

∫ i∞

p=−i∞
exp{−s[px + γ1(p)(z + h)]}

×
R̃⊥(p)

vp − 1
dp

2γ1(p)
(5)

where the (transform-domain) reflection coefficient, R̃⊥(p),
is expressed via the vertical slowness parameters, γ0,1(p), as

R̃⊥(p) = [γ1(p) − γ0(p)]/[γ1(p) + γ0(p)] (6)

γ0,1(p) =
(
c−2

0,1 − p2)1/2
with Re(γ0,1) ≥ 0. (7)

The slowness integral can be transformed to the TD ana-
lytically via the standard CdH technique [15]. To that end,
the integrand is first analytically continued away from the
imaginary axis, while keeping Re(γ0,1) ≥ 0 throughout the
complex p-plane. This leads to the horizontal branch cuts
along {c−1

0,1 ≤ |Re(p)| < ∞, Im(p) = 0}. In addition,
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Fig. 2. CdH path in the complex p-plane pertaining to the reflected field
above the half-space due to the traveling line source for x > 0. The gray
and black zigzags represent the branch cuts originating at c−1

0 and c−1
1 ,

respectively.

we encounter a simple pole singularity at p = v−1 that for
the chosen parameters, c1 < v < c0, lies on the branch
cut emanating from p = c−1

0 . Consequently, by virtue of
Cauchy’s theorem and Jordan’s lemma, the integration contour
is deformed into the CdH path that can be defined by

px + γ1(p)(z + h) = τ for {τ ∈ R; τ > 0} (8)

where τ has the meaning of the time parameter. The latter
equation can be satisfied along a hyperbolic path, where the
horizontal slowness parameter takes the values pB = pB(τ )

and p∗

B = p∗

B(τ ), and around a loop encircling the branch
cut, where pH = pH(τ ) and p∗

H = p∗

H(τ ) in Im(p) ≷ 0,
respectively (see Fig. 2).

In contrast to the more prevalent transform-domain method
(see [10, Sec. 11.8]), the CdH approach allows to associate
each singularity in the complex slowness plane with a causal
physical phenomenon that occurs in the resulting wave motion.
This can be illustrated via Fig. 2. Here, the integration along
the straight segments pH ∪ p∗

H can be associated with the HW
contribution, whose arrival time can be linked to the branch
point p = 1/c0 via (8) as

TH = |x |c−1
0 + (z + h)

(
c−2

1 − c−2
0

)1/2
. (9)

Upon noting that the intersection of the hyperbolic BW path
with Im(p) = 0 is at p0 = (|x |/r)c−1

1 , where r = [x2
+ (z +

h)2
]
1/2, it can be concluded that the HW contribution shows

up in the bounded region of space, where p0 > c−1
0 , that is,

|x |/r > sin(θ c) = c1/c0 (10)

where we introduced the “critical angle” θ c. The latter can
be associated with the “total reflection” against the interface.
A similar line of reasoning can be readily pursued to analyze
the contribution of the pole singularity at p = v−1 that is to be
associated with the reflected Cherenkov effect. Indeed, upon
carrying out the integration around the pole, it is found that

E r;C
y (x, z, t) =

−µ0 I0

2(v2
/

c2
1 − 1)1/2

v2
/

c2
1 + v2

/
c2

0 − 2

v2
/

c2
1 − v2

/
c2

0
δ(t − TC)

(11)

where TC denotes the arrival time of the Cherenkov reflected
wavefield constituent. This arrival time can be determined by
using p = v−1 in (8), which yields [see (9)]

TC = xv−1
+ (z + h)

(
c−2

1 − v−2)1/2
. (12)

Fig. 3. Ray trajectories of the HW, LW, and BW constituents.

In a similar fashion as the HW constituent, the Cherenkov
reflected radiation occurs only in a bounded region of space,
where [see (10)]

x/r > c1/v. (13)

Apparently, the HW and Cherenkov reflected-field con-
stituents bear similarities. Finally, the BW wavefield follows
upon carrying out the integration along the hyperbolic contour
pB∪ p∗

B. Its arrival time, say TB, corresponds to the intersection
point p0 = (|x |/r)c−1

1 , which via (8) leads to

TB = rc−1
1 . (14)

The ray trajectories of both HW and BW field constituents
are shown in Fig. 3. A closer inspection of (9), (12), and
(14) reveals that for the given parameters, c1 < v < c0,
we have TH < TC < TB. The latter implies that the Cherenkov
effect shows up between the occurrence of the HW and BW
constituents.

B. Stationary Line Source

The reflected field due to a stationary electric-line source
can be derived from (5), where we let v = 0, i.e.,

Ê r
y(x, z, s) = −

µ0 I0

2iπ

∫ i∞

p=−i∞
exp{−s[px + γ1(p)(z + h)]}

× R̃⊥(p)
dp

2γ1(p)
. (15)

Likewise the integrand in (5), the integrand in (15) has
algebraic branch points at p = ±c−1

0,1 [see (7)]. But, since
the denominator of the transform-domain reflection coefficient
[see (6)], i.e.,

1⊥(p) = γ1(p)/µ0 + γ0(p)/µ0 (16)

never vanishes in the entire complex p-plane, the integrand,
in contrast to the transform-domain expression corresponding
to the traveling line source, has no pole in the complex
p-plane (see Fig. 4). Consequently, neither true surface waves
(see [24], for example) nor Cherenkov waves can be excited
in this (static-source) case.

It will be shown, however, that the absence of a pole sin-
gularity in the complex p-plane does not necessarily exclude
the existence of an interesting TD wave feature that occurs
between the HW and BW constituents. For that reason,
we shall more closely evaluate the contribution along the
HW CdH path, pH ∪ p∗

H. Accordingly, upon combining the
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Fig. 4. CdH path in the complex p-plane pertaining to the reflected field
above the half-space due to the stationary line source for x > 0. The gray
and black zigzags represent the branch cuts originating at c−1

0 and c−1
1 ,

respectively.

contributions from pH and p∗

H, the HW contribution follows
as:

E r;H
y (x, z, t) = −(µ0 I0/2π)Im

{
R̃⊥[pH(t)]

}
×

H(t − TH) − H(t − TB)

(T 2
B − t2)1/2

. (17)

Apart from the factor with the typical inverse square-root
singularity at the arrival time of BW [14, eq. (3.4.13)], the
amplitude of the HW constituent depends on the (imaginary
value of the) reflection coefficient along pH(t) in TH < t < TB.
Along this CdH-HW path, γ0 is purely imaginary, while γ1 is
real-valued and positive, i.e.,

γ0(pH) = −i
(

p2
H − c−2

0

)1/2
and γ1(pH) =

(
c−2

1 − p2
H

)1/2
.

(18)

The amplitude of the HW constituent can be then specified
more explicitly via

Im
[
R̃⊥(pH)

]
=

2
(
c−2

1 − p2
H

)1/2(
p2

H − c−2
0

)1/2

c−2
1 − c−2

0

(19)

which is a relatively simple function of pH. Consequently, it is
straightforward to show that this function attains its maximum
(= 1) at pH = p̄L, where(

c−2
1 − p̄2

L

)1/2
−

(
p̄2

L − c−2
0

)1/2
= 0. (20)

It is noted that this equation bears a resemblance with
1⊥(p) = 0 evaluated along the CdH-HW path. Indeed, using
(18) in (16), it is found that 1⊥(pH) = 0 is equivalent to(

c−2
1 − p2

H

)1/2
− i

(
p2

H − c−2
0

)1/2
= 0. (21)

Accordingly, it is seen that the condition for the existence
of causal surface waves, 1⊥(p) = 0, is in the interval TH <

t < TB identical to the condition for existence of a maximum
of the HW amplitude, if the vertical slowness γ0 is replaced
with 00 according to

γ0 = −i
(

p2
− c−2

0

)1/2
⇒ 00 = −

(
p2

− c−2
0

)1/2
. (22)

Interestingly, under this replacement, the transform-domain
field as transmitted to D0 has the following form:

Ẽ t
y(p, z, s) ⇒ −(µ0 I0/2sγ1)(1 + R̃E)

× exp(−sγ1h) exp
[
−s

(
p2

− c−2
0

)1/2
z
]

(23)

Fig. 5. Imaginary part of the reflection coefficient along the CdH-HW path.

which in the lower half-space, where z < 0, represents a
function that grows exponentially with the increasing distance
away from the interface. That is a typical property associated
with LW phenomena [2]. While the surface-wave condition
(21) can hardly ever be satisfied, (20) leads to

p̄L = ±
(
c−2

0 + c−2
1

)1/2
/
√

2 (24)

thereby localizing a local maximum in the amplitude of HW
along the CdH-HW path (see Fig. 4). Consequently, the use
of (24) in (8) yields the corresponding “arrival time” [see (9)]

T̄ L =
|x |
√

2

(
c−2

1 + c−2
0

)1/2
+

z + h
√

2

(
c−2

1 − c−2
0

)1/2
. (25)

Fig. 5 illustrates a typical behavior of (the imaginary value
of) the reflection coefficient along the CdH-HW path. For the
chosen parameters, i.e., ϵ1/ϵ0 = 6, x = 6h and z = h/10,
the HW arrives at the field point at TH/TB ≃ 0.57 and the
coefficient takes the maximum value (=1) at T̄ L/TB ≃ 0.87.

Since there is no disturbance wavefront associated with p̄L
and T̄ L, the corresponding feature is, strictly mathematically
speaking, a (pseudo)-LW (see [18], for another example from
this category, and the Appendix). Since c−1

0 < | p̄L| < c−1
1 for

c0 > c1, the LW phenomenon occurs in between the HW’s
and BW’s arrival, i.e., TH < T̄ L < TB. Furthermore, in like
manner as the HW and Cherenkov effect, the occurrence of
LW is limited to a bounded region of space. Indeed, the LW
shows up only if p̄L < p0, which leads to [see (10)]

|x |/r > sin
(
ϑc

L

)
= c1/v̄ =

(
1 + c2

1/c2
0

)1/2
/
√

2 (26)

where ϑc
L denotes the corresponding LW “critical angle” and

v̄ = 1/| p̄L| is the “pseudo-wave speed” at which the LW
“propagates” along the interface. The corresponding LW ray
trajectory is shown in Fig. 3, where the (horizontal) section
that is traversed at the speed v̄ is denoted by a wavy line.

On account of the relation, c−1
0 < | p̄L| < c−1

1 for c0 > c1,
it is seen that the condition for the existence of the HW [see
(10)] is always satisfied if the LW condition (26) holds true,
i.e., ϑc

L > θ c. In other words, for a given contrast ratio, c0/c1,
and for a fixed vertical propagation path, z+h, the LW occurs
at a larger horizontal offset |x | compared to the one pertaining
to HW. From (24) and (26) [see also (9) and (25)], we may

Authorized licensed use limited to: TU Delft Library. Downloaded on May 01,2023 at 07:03:22 UTC from IEEE Xplore.  Restrictions apply. 



3386 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 71, NO. 4, APRIL 2023

Fig. 6. Slot-excited dielectric slab.

express the speed of LW, v̄, in the following form:

v̄ =
√

2
/(

c−2
0 + c−2

1

)1/2
. (27)

We note that this speed corresponds to the “average per-
mittivity” pertaining to half-spaces D0 and D1. Indeed, if we
define the relative permittivity, ϵr > 1, via

√
ϵr = c0/c1, then

(27) implies that c2
0/v̄

2
= (ϵr + 1)/2.

A similar quantitative analysis can be applied to more
complex problem configurations. This is illustrated in
Sections IV and V.

IV. SLOT-EXCITED DIELECTRIC SLAB

A detailed CdH analysis of the pulsed EM radiation from
the slot antenna under consideration can be found in [25] (see
also [26] for a more general slot antenna configuration). Since
the corresponding TD LW analysis (see Section IV-B) relies
in part on the results of [25], its main outcomes are next, for
the reader’s convenience, briefly summarized.

The antenna configuration (see Fig. 6) consists of a slot
of vanishing width in a PEC wall that, except for the slot,
occupies the z < 0 half-space. The slot is infinitely long and
is cut along the y-axis. The slotted PEC screen is covered by
a dielectric slab that occupies domain D1 = {−∞ < x <

∞, −∞ < y < ∞, 0 < z < d}, where d > 0 denotes its
thickness. The slot antenna radiates into an unbounded domain
D0 = {−∞ < x < ∞, −∞ < y < ∞, d < z < ∞}. As far
as the EM constitutive properties are concerned, the media in
D0 and D1 are again described by (real-valued and positive)
scalar parameters {ϵ0, µ0} and {ϵ1, µ0}, respectively.

The antenna is excited at t = 0 via its narrow slot, along
which the (y-independent) excitation electric-field distribution
is described by

Ex (x, 0+, t) = V0δ(x)H(t) for all x ∈ R and t > 0 (28)

where V0 (in V) denotes the excitation voltage amplitude.
Since the problem configuration as well as its excitation are
y-independent, only the (H -polarized) EM field components,
{Hy, Ex , Ez}(x, z, t), are excited. Across the planar interface
in between D0 and D1, the tangential EM field components
satisfy the continuity-type conditions

lim
z↓d

{Ex , Hy}(x, z, t) = lim
z↑d

{Ex , Hy}(x, z, t)

for all x ∈ R and t > 0. (29)

It is the goal of Sections IV-A–IV-C to study the TD radiated
EM fields satisfying the corresponding EM field equations

under the excitation and continuity conditions (28) and (29),
respectively.

A. Time-Domain Solution

To solve the thus formulated antenna radiation problem,
we may pursue the CdH approach presented in [25]. To that
end, we combine the time Laplace transform (1) with the
wave-slowness representation in the x-direction (2), again.
Using the integral transformations, the magnetic field strength
as observed in D0 can be in the s-domain expressed as
(see [25, eq. (19)])

Ĥ y(x, z, s) =
ϵ1V0

2π i

∫ i∞

p=−i∞
exp(−spx)

×
T̃ ∥(p) exp{−s[γ1d + γ0(z − d)]}

1 − R̃∥(p) exp(−2sγ1d)

dp
γ1

(30)

where the (transform-domain) transmission and reflection
coefficients are given by

T̃ ∥(p) = 1 + R̃∥(p) =
2γ1/ϵ1

γ1/ϵ1 + γ0/ϵ0
(31)

in which γ0,1(p) are defined via (7). As far as its analytical
properties in the complex p-plane are concerned, it is seen
that the integrand in (30) has only branch-point singularities
due to γ0 that are associated with the branch cut along
{c−1

0 < |Re(p)| < ∞, Im(p) = 0}. In contrast to the standard
real-FD representation (see [10, Sec. 11.8], for example), the
integrand under the conditions laid upon the Laplace-transform
parameter s and γ0,1 does not have any poles in the entire
complex p-plane. This, in turn, implies again the absence of
true surface waves.

To perform the exact transformation of (30) back to the TD,
the integrand is expanded as

Ĥ y(x, z, s) =

∞∑
n=0

Ĥ [n]

y (x, z, s) (32)

where its nth generalized-ray constituent has the form that is
amenable to the CdH technique, i.e.,

Ĥ [n]

y (x, z, s) =
ϵ1V0

2π i

∫ i∞

p=−i∞
T̃ ∥(p)R̃n

∥
(p)

× exp{−s[px + γ1zn + γ0(z − d)]}dp/γ1

(33)

for z ≥ d, where zn = (2n + 1)d . Note that in contrast to
(30), the integrand in (33) is made single valued by introducing
the horizontal branch cuts along Im(p) = 0 as indicated before
in Fig. 4 for x > 0.

For our purposes, it is next sufficient to provide the TD
original of (33) for field points lying just at the interface at
z = d . Hence, following the joint-inversion strategy presented
in [25, Appendix A], the TD counterpart of (33) follows as:

H [n]

y (x, d, t) = H H;[n]

y (x, d, t) + H B;[n]

y (x, d, t) (34)
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where the nth HW and BW constituents can be expressed as
[see (17)]

H H;[n]

y (x, d, t) = (ϵ1V0/π) Im
{
T̃ ∥[pH(t)]R̃n

∥
[pH(t)]

}
×

H(t − TH;n) − H(t − TB;n)

(T 2
B;n − t2)1/2

(35)

and

H B;[n]

y (x, d, t) = (ϵ1V0/π) Re
{
T̃ ∥[pB(t)]R̃n

∥
[pB(t)]

}
×

H
(
t − TB;n

)(
t2 − T 2

B;n

)1/2 (36)

respectively. Again, the HW constituent, in like manner as an
LW, shows up only in the subregion of space bounded by the
condition [see (10)]

|x |/rn > sin(θ c) = c1/c0 (37)

thereby introducing again the “critical angle” θ c. In
(35) and (36), we used TB;n and TH;n to denote the arrival times
of the nth BW and HW constituent, respectively. Through their
expressions, i.e.,

TB;n = rnc−1
1 , (38)

TH;n = |x |c−1
0 + zn

(
c−2

1 − c−2
0

)1/2
(39)

with rn = (x2
+ z2

n)
1/2 > 0, one may construct the

corresponding ray trajectories. Fig. 7 shows examples of
the HW- and BW-ray trajectories pertaining to the zeroth
and first constituents. For the sake of completeness, in the
TD expressions we used the values of the (time-dependent)
slowness parameter p along the BW and HW CdH paths in
Im(p) > 0, viz,

pB(t) =
(
x
/

r2
n

)
t + i

(
zn

/
r2

n

)(
t2

− T 2
B;n

)1/2
(40)

for all t > TB;n , and

pH(t) =
(
x
/

r2
n

)
t −

(
zn

/
r2

n

)(
T 2

B;n − t2)1/2
+ i0 (41)

for TH;n < t < TB;n . It is clear from (35), (36), (38), and
(39) that the (n + 1)th wave constituent arrives at the field
point later than the nth one. Consequently, the total number
of generalized-ray constituents is finite in any bounded time
window of observation.

B. Time-Domain Leaky-Wave Analysis

We shall next assume that the horizontal offset between
the slot and the field point at (x, d) is large enough such
that condition (37) for the existence of HWs is for a given
contrast ratio, say c0/c1, satisfied. For the sake of brevity,
we shall further express the latter via the relative permittivity
of the slab,

√
ϵr = c0/c1. Consequently, following the lines of

reasoning pursued in Section III-B, we may study the condi-
tion under which the pulse shape of an HW constituent (35)
exhibits a local maximum. For the sake of clarity, the corre-
sponding analysis is first carried out for the zeroth constituent
(i.e., n = 0), the amplitude of which is proportional
to Im[T̃ H(pH)] for c−1

0 < |pH| < p0, where p0 =

c−1
1 (|x |/rn) denotes the intersection of the CdH-BW path with

Fig. 7. Ray trajectories of the nth HW, LW and BW constituents. (a) n = 0.
(b) n = 1.

Im(p) = 0 [see (40)]. With reference to the chosen branch cuts
(see Fig. 4), it is seen that

Im
[
T̃ ∥(pH)

]
=

2ϵr

ϵ2
r − 1

(
c−2

1 − p2
H

)1/2(
p2

H − c−2
0

)1/2

p2
H − c−2

1 /(ϵr + 1)
(42)

along the HW part of the CdH contour. Upon solving
∂pIm[T̃ ∥(p)] = 0 for c−1

0 < |p| < p0, it is straightforward to
demonstrate that the HW amplitude takes its maximum value
at [see (24)]

p̄L;0 = ±
1
c1

(
ϵr + 1
ϵ2

r + 1

)1/2

. (43)

First, it is easy to show that c−1
0 < | p̄L;0| < c−1

1 for any
bounded ϵr > 1. Second, to reach the maximum along the
CdH-HW path, the condition | p̄L;0| < p0 must be met. This
condition can be rewritten as [see (37)]

|x |/r0 > sin
(
ϑc

L

)
= c1/ṽ =

(
ϵr + 1
ϵ2

r + 1

)1/2

(44)

which clearly bounds the region of space where the
zeroth-order LW effect shows up and we used ṽ = 1/| p̄L;0|.
Since ϑc

L > θ c for ϵr > 1, the occurrence of the “bump”
in the HW constituent of the received signal thus requires,
for a given dielectric slab, a larger horizontal offset than the
one needed for the excitation of the HW [see (37)]. Finally,
the “arrival time” of this zeroth-order LW effect follows from
T̄ L;0 = p̄L;0x + γ1( p̄L;0)d as [see (39) for n = 0]:

T̄ L;0 =
|x |

c1

(
ϵr + 1
ϵ2

r + 1

)1/2

+
d
c1

(
ϵ2

r − ϵr

ϵ2
r + 1

)1/2

. (45)

Despite its apparent complexity, (45) has a straightfor-
ward geometric interpretation. Indeed, T̄ L;0 can be explained
through the LW ray trajectory shown in Fig. 7(a). This graph-
ical representation can be clarified by writing T̄ L;0 = |x |/ṽ +

(d/c1) cos(ϑc
L), where ϑc

L is associated with the corresponding
LW “critical angle” and ṽ with the speed at which the LW
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effect travels along the interface [see (44)]. In contrast to v̄

given by (27), the actual ṽ cannot be directly related to the
“average permittivity” of the adjoining media, but c2

0/ṽ
2

=

ϵr(ϵr + 1)/(ϵ2
r + 1) instead.

Adopting the approach pursued in Section III-B, it is next
briefly demonstrated that these results can also be obtained
using the replacement (22). Indeed, it is first observed using
(33) with n = 0 that a true surface wave would be excited,
if the transmission coefficient [see (31)] had a pole in the
complex p-plane, that is, if [see (16)]

1∥(p) = γ1(p)/ϵ1 + γ0(p)/ϵ0 = 0. (46)

Since the real part of the square roots is kept positive
throughout the complex p-plane, (46) cannot hold true in
the cut p-plane. But, if the vertical slowness corresponding
to D0, γ0 is replaced by 00 according to (22), then we get
an alternative equation, say 1̄∥(p) = 0. The latter equation
can be solved for p = p̄L;0, at which the amplitude of
the HW constituent attains its maximum [see (43)]. Under
the replacement (22), the propagation factor corresponding to
D0 takes the following form [see (33)]:

exp
[
−sγ0(z − d)

]
⇒ exp

[
s
(

p2
− c−2

0

)1/2
(z − d)

]
. (47)

Apparently, (47) for s > 0 and the positive square root
represents an exponentially increasing function as the field
point is moving away from the interface in z > d.

Finally, it is noted that the higher-order wave constituents
(as well as other problem configurations) can be analyzed
along the same lines. Indeed, taking n = 1 in (35), for exam-
ple, it is found that the HW amplitude Im[T̃ ∥(pH)R̃∥(pH)]

takes its maximum at [see (43)]

p̄L;1 = ±
1
c1

[
ϵ3

r + (6 −
√

33)ϵ2
r + (6 +

√
33)ϵr + 3

ϵ4
r + 12ϵ2

r + 3

]1/2

(48)

while the corresponding LW “arrival time” follows from:

T̄ L;1 = p̄L;1x + γ1( p̄L;1)z1. (49)

Fig. 7(b) shows the corresponding LW ray trajectory. The
presented results are further illustrated in Section IV-C through
numerical examples.

C. Illustrative Examples

We next illustrate the results presented in Sections IV-A
and IV-B on selected examples. To that end, we shall cal-
culate the unit-step-excited (i.e., V0 = 1 V) magnetic-field
on the surface z = d of a dielectric slab of thickness d =

1.0 mm. The TD responses are evaluated via (34) and (35)
and the TD counterpart of (32) in the bounded time window
0 ≤ c1t/d ≤ 6.

In the first example, the horizontal offset of the field
point is x = 4 d and the dielectric constant of the slab is
ϵr = 4. Fig. 8(a) shows the corresponding magnetic-field
waveform along with the arrival times of all HWs, BWs
and pLWs that showed up in the chosen time window. First,
at c1TH;0/d ≃ 2.87 the zeroth HW arrives at the field point.

Fig. 8. Unit-step-excited magnetic-field strength at (a) (x, z) = (4d, d) for
ϵr = 4 and (b) (x, z) = (5d, d) for ϵr = 6.

Shortly after this arrival, the signal takes its local maximum at
c1T̄ L;0/d ≃ 3.01. The next signal discontinuity at c1TB;0/d ≃

4.12 is associated with the occurrence of the zeroth BW, where
the signal exhibits the typical line-source inverse square-root
singularity [see (36)]. The following sharp peak occurs at
c1T̄ L;1/d ≃ 4.62 almost immediately after the arrival time
of the first-order HW at c1TH;1/d ≃ 4.60. It is clearly seen
that the temporal separation of both first-order LW and BW
from the corresponding HW is significantly smaller compared
to the zeroth wave constituents.

A somewhat different waveform is shown in Fig. 8(b) for
x = 5 d and ϵr = 6. Here, owing to the relatively high
permittivity of the slab, the temporal separation between HWs
and pLWs is smaller with respect to the previous example
[see (39) and (45)]. In addition, it is seen now that the
zeroth BW (with its inverse square-root behavior) reaches the
field point at c1TB;0/d ≃ 5.10 later than both zeroth and
first HWs and pLWs with their arrival times at c1TH;0/d ≃

2.95, c1T̄ L;0/d ≃ 3.08 and c1TH;1/d ≃ 4.78, c1T̄ L;1/d ≃

4.81, respectively. Finally, the first BW shows up at
c1TB;1/d ≃ 5.83.

V. ELECTRIC-CURRENT EXCITED INFINITE SLOT

In this section, we shall briefly study the EM waves excited
along an infinite slot in a PEC screen that separates two
homogeneous media. This problem has been analyzed before
in the FD with regard to the excitation of LWs [6].

The analyzed problem configuration consists of a narrow
infinite slot that occupies domain S = {−w/2 < x < w/2,
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Fig. 9. Electric-current-excited slot at the interface of two half-spaces.

−∞ < y < ∞, z = 0}, where w > 0 denotes its (relatively
small) width. The PEC screen is located at the interface
between two homogeneous half-spaces, D0 = {−∞ < x <

∞, −∞ < y < ∞, z < 0} and D1 = {−∞ < x < ∞, −∞ <

y < ∞, z > 0} (see Fig. 9). Their EM properties are
described by scalar parameters {ϵ0,1, µ0}, again, thus implying
the wavespeeds c0,1 = (µ0ϵ0,1)

−1/2, respectively. Following
the excitation model introduced by Galejs [27], the slot is
excited by a lumped electric-current source that can be defined
via its electric-current surface density [see (3)]:

∂ Jx (x, y, t) = I05w(x)δ(y)H(t) (50)

where I0 (in A) represents the electric-current amplitude,
again, and 5w(x) denotes the rectangular function of width
w, i.e., 5w(x) = 1 if x ∈ [−w/2, w/2] and 5w(x) = 0 else-
where. Our analysis aims at (the space-time distribution of)
the voltage induced across the narrow slot, say V = V (y, t).

The thus defined problem can be formulated via the TD
EM reciprocity theorem of the time-convolution type [28,
Sec. 28.2]. This theorem can be used to link the actual
scattered EM-field, defined with respect to the “short-circuited
slot” and further denoted by superscript s, with the auxiliary
testing EM-field (to be denoted by superscript T). Upon
applying the theorem to both D0 and D1, we get two relations
whose difference leads to (see [29, eq. (3)])∫
S

∂K s
y(x, y, t) ∗t

[
H T

y (x, y, 0+, t) − H T
y (x, y, 0−, t)

]
dA

= −

∫
S

∂ Jx (x, y, t) ∗t ∂K T
y (x, y, t)dA (51)

where the induced magnetic-current surface density,
K s

y(x, y, t), can be related to the desired voltage as

∂K s
y(x, y, t) ≃

2
πw

5w(x)

[1 − (2x/w)2]1/2 V (y, t). (52)

Through (52) we postulate the typical inverse-square root
singularity of the axial magnetic current along the edges of
the slot. The way how the testing-current density, K T

y (x, y, t),
is related to the testing fields H T

y (x, y, z, t) in D0,1 can
be easily determined in the transform domain. To that end,
we next employ the Laplace transform (1) with the wave
slowness representation of the type defined via (2) in both
x- and y-directions. This joint-transform CdH approach

Fig. 10. CdH path in the complex p-plane pertaining to the voltage excited
along the slot for y > 0. The gray and black zigzags represent the branch
cuts originating at c−1

0 and c−1
1 , respectively.

enables to cast the TD reciprocity relation (51) into the form of
complex-slowness integrals (see [30, Sec. 14.2], for example).
In the next step, following the lines of reasoning presented
in [6], the integration pertaining to the transverse direc-
tion is carried out analytically using [31, Formula 11.4.48]
and from the thus obtained relation we readily derive the
transform-domain induced voltage, say Ṽ (p, s). Then, using
the slowness representation of the type (2), we may write

V̂ (y, s) =
sµ0 I0π

2iπ

∫ i∞

p=−i∞

exp(−spy)

1(p, s)
dp (53)

where p has the meaning of the axial slowness along the
y-direction, and

1(p, s) = s2γ 2
0 (p)I0[sγ0(p)a]K0[sγ0(p)a]

+ s2γ 2
1 (p)I0[sγ1(p)a]K0[sγ1(p)a] (54)

in which I0(x) and K0(x) denote the modified Bessel func-
tions of the first and second kind, respectively, and we have
introduced the “equivalent radius” a = w/4, for brevity.
Owing to the definition of square roots via (7), the horizontal
branch cuts in the complex p-plane along {c−1

0,1 ≤ |Re(p)| <

∞, Im(p) = 0} are introduced, again. Since the integrand
meets the condition for the applicability of Jordan’s lemma
[28, p. 1054], the original contour can be replaced with
the loop along the branch cuts. In the process of defor-
mation, potential pole contributions must be accounted for.
Accordingly, upon closer inspection using the small-argument
expansions of the Bessel functions [31, Formulas 9.6.7 and
9.6.8], (54) reveals that for a vanishing slot’s width we may
write 1(p, s) ≃ s2

[γ 2
0 (p) + γ 2

1 (p)]K0[sγ0(p)a]. Under this
approximation, the equation 1(p, s) = 0 is satisfied at p = p̄L
as given by (24), again. Using v̄ = 1/| p̄L|, it is seen that the
contribution of the pole singularity, likewise the line-source
excited LW effect along the half-space interface [see (27)],
travels at the speed corresponding to the “average permittivity”
(see [27, eq. (1)]).

Fig. 10 shows the corresponding complex p-plane for
y > 0 with the CdH path encircling the branch cuts. The
integration CdH contour consists of the CdH-BW and CdH-
HW parts and of circular arcs of vanishing radius enclosing
the branch-point and pole singularities at p = c−1

0,1 and p =

p̄L, respectively. As far as the singularities in the complex
slowness plane are concerned, the transform-domain expres-
sion for the lumped-source-induced voltage in the narrow
slot resembles the EM-field radiated from a traveling source
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Fig. 11. Ray trajectories of the HW, LW, and BW constituents around the
interface. The LW trajectory is represented by the blue wavy line.

(see Fig. 2). The singular points can be again associated with
the arrival times of (causal) wave constituents forming the total
wave motion. Indeed, the distance from the electric-current
source [see Fig. 9 and (50)] to the field point at (0, y, 0) is
first traversed by the HW constituent at slowness p = c−1

0 .
In a similar fashion, the LW and HW constituents travel at the
slowness p = v̄−1 and p = c−1

1 , respectively. Accordingly, the
HW, LW, and BW arrival times are given by

TH = |y|c−1
0 < T̄ L = |y|v̄−1 < TB = |y|c−1

1 (55)

respectively. The corresponding ray trajectories are indicated
in Fig. 11.

Apparently, the LW feature shows up, again, between the
arrival of HW and BW constituents. In contrast to the LW
phenomena that were associated with the local maximum
in the wave amplitude (see Sections III-B and IV-B), the
LW described in this section can vaguely be explained as a
traveling-source wave effect (see Section III-A). The study
in this section is an initial step toward the examination of
the field radiating away from the slot, this task being pivotal
to elucidating the TD operation of a multitude of readily
available LW antennas. A fully analytical treatment of the
entailed 3-D EM problem seems (at least at this moment) not
possible and, thus, it calls upon purely numerical strategies
for its solution. This investigation is then deferred to future
research.

VI. DISCUSSION

LW antennas are currently studied and designed exclu-
sively in the FD that requires an established steady state
of time-harmonic EM fields. However, the tendency is now
toward sophisticated, very complex modulations that squeeze
the interval over which the true steady state can be actually
assumed. To address the limitation, our study proposes a TD
interpretation of LW phenomena along with an efficient ana-
lytical instrument to describe them in a quantitative manner.
Accordingly, the results presented in this article can serve, for
example, for understanding transient EM effects at the moment
of interrupting the steady state and predicting the behavior of
the LW antennas during the transition to the new steady state.

Although the present work is concerned with relatively
simple problems only, the described CdH approach can be
readily applied to localize the space-time LW propagation
in significantly more complex problem configurations. This,
in particular, applies to an N -layered structure, for which
the corresponding CdH path can be constructed at once via
straightforward iterative techniques [32, Ch. 2]. To our knowl-
edge, such a general analytical methodology that is capable of

Fig. 12. Magnetic-field strength [normalized with respect to
(ϵ0/µ0)

1/2Vmax/w] at x/d = 5 on the slot-excited dielectric slab of
relative permittivity ϵr = 4 as calculated analytically using the CdH
technique and numerically using the FIT.

quantifying TD EM LW effects is currently lacking in the
literature on the subject.

The CdH technique is a well-established mathematical tool
that yields analytical solutions in terms of expressions that can
be evaluated with any prescribed accuracy. Consequently, this
method is ideally suited for benchmarking (both in precision
and speed) of purely numerical solutions. To gain confidence
in our code implementations and to study complex problems
that are not amenable to analytical solutions, we have also
developed numerical models of the analyzed antennas [33],
[34]. Fig. 12 shows the output of a typical validation test
concerning the model of a slot-excited dielectric slab, the TD
analysis of which was discussed in Section IV. The examined
configuration is given in Fig. 6, that figure also explaining all
notations employed in Fig. 12, except for w > 0 which is the
slot’s width. The slab between z = 0 and z = d consists
of a lossless dielectric with relative permittivity ϵr = 4.
The represented quantity is the magnetic-field strength nor-
malized by (ϵ0/µ0)

1/2Vmax/w for a power-exponential shaped
excitation V0(t), with amplitude Vmax and raising power
ν = 2 [26, Appendix C]. The sampling point is located
along the interface at {x, z} = {5d, d}. The plot in Fig. 12
cogently demonstrates the practical identity between our CdH
analytical results and numerical ones calculated by means of
the finite-integration technique (FIT), as implemented in CST
Microwave Suite. Despite the fundamental differences in their
mathematical formulation (see [33]), the results of simulations
agree very well. For more details about the antenna models,
the reader is referred to [33].

VII. CONCLUSION

In this work, LW phenomena have been analytically studied
in the TD with the aid of the CdH joint-transform technique.
For layered structures activated by a pulsed EM source,
we have suggested that the TD LW effect can be associated
with the local maximum that is in certain circumstances
observed in the interval bounded by the HW and BW times
of arrival. To enable the localization of such wave effects
in space and time, the existence conditions, “arrival times”
and their travel speeds have been discussed and analyzed
quantitatively. Furthermore, it has been demonstrated that

Authorized licensed use limited to: TU Delft Library. Downloaded on May 01,2023 at 07:03:22 UTC from IEEE Xplore.  Restrictions apply. 



ŠTUMPF et al.: TIME-DOMAIN ELECTROMAGNETIC LEAKY WAVES 3391

the CdH transform-domain expression corresponding to the
response of a localized-source-excited long slot in a conductive
plane located on a dielectric half-space bears similarities with
the one describing the reflected field induced by a point source
traveling over the half-space. Consequently, we conclude that
the analogy to Cherenkov’s reflected wave can be instructive
to grasp the physics of LW EM radiation from traveling-wave
antennas.

APPENDIX
NOTES ON THE TERMINOLOGY

The term HW is frequently used in the seismological
literature, where it is also known as the “conical wave” or
“lateral wave” [35, Sec. 6.2]. In most of the EM literature the
term “lateral wave” applies to the FD counterpart of the HW
[36, Ch. 2], as in the FD analysis of acoustic waves in the
neighborhood of an interface between two media.

A second type of wave employed in the text is the BW
which travels with the wave speed in the relevant medium—
in Fig. 3 it corresponds to the reflected wave. The terminology
also originates from the seismological literature which is used
to denote a wave constituent that travels via the interior of
the Earth. Unlike the arrival of the BW, the HW arrival time
is linearly related to the horizontal source-field spatial offset
[see (9)]. Furthermore, while BW can exist at any location in
space, HW occurs in a certain region of space only, which
is determined by the critical angle of total internal reflection
[see (10)]. In this sense, HW phenomena bear similarities with
the Cherenkov radiation, which is a wave effect due to a
uniformly moving EM source that passes through a medium at
a higher speed with respect to the wave speed of that medium
[19], [20]. Likewise, the TD HW can be associated with an
equivalent secondary EM source traveling along the interface
of two media, an exact space-time quantitative description of
which is facilitated by the CdH method.

To conclude, this study highlighted the TD LW phe-
nomenon. It should be noted that in line with the theory of
hyperbolic partial differential equations [37, Sec. 5.8], if there
is no wavefront associated with the observed wave effect, such
a feature should be, strictly mathematically speaking, denoted
as a “pseudo-wave” [18]. Accordingly, the wave speed (= the
positive magnitude of velocity) term is then associated here
with the speed of a disturbance front. A thorough discussion
on the velocity of EM-field pulses can be found in [38].

Although the TD LW phenomenon may fall within the
category of pseudo-waves, for precluding possible confusions,
the employed terminology deliberately excluded the “pseudo”
attribute. In like manner as HW, the TD LWs also occur in
a bounded region of space determined by the corresponding
critical angle. They too can be associated with equivalent sec-
ondary EM sources traveling along the intermedium interface
with velocities exceeding the wave speed in the dielectric, thus
bearing similarities with the Cherenkov radiation.
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