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Dynamic Shrinkage Estimation of the
High-Dimensional Minimum-Variance Portfolio

Taras Bodnar , Nestor Parolya , and Erik Thorsén

Abstract—In this paper, new results in random matrix theory
are derived, which allow us to construct a shrinkage estimator of
the global minimum variance (GMV) portfolio when the shrinkage
target is a random object. More specifically, the shrinkage target is
determined as the holding portfolio estimated from previous data.
The theoretical findings are applied to develop theory for dynamic
estimation of the GMV portfolio, where the new estimator of its
weights is shrunk to the holding portfolio at each time of recon-
struction. Both cases with and without overlapping samples are
considered in the paper. The non-overlapping samples corresponds
to the case when different data of the asset returns are used to
construct the traditional estimator of the GMV portfolio weights
and to determine the target portfolio, while the overlapping case al-
lows intersections between the samples. The theoretical results are
derived under weak assumptions imposed on the data-generating
process. No specific distribution is assumed for the asset returns
except from the assumption of finite 4 + ε, ε > 0, moments. Also,
the population covariance matrix with unbounded largest eigen-
value can be considered. The performance of new trading strategies
is investigated via an extensive simulation. Finally, the theoretical
findings are implemented in an empirical illustration based on the
returns on stocks included in the S&P 500 index.

Index Terms—Shrinkage estimator, high-dimensional covar-
iance matrix, random matrix theory, minimum variance portfolio,
parameter uncertainty, dynamic decision making.

I. INTRODUCTION

G LOBAL minimum-variance (GMV) portfolio is the one
of the mostly used investment strategies by both prac-

titioners and researchers in finance. This portfolio possesses
the smallest variance among all optimal portfolios obtained as
solutions of Markowitz’s mean-variance optimization problem
(cf., Markowitz [1]). It solves the following problem

w�Σw → min with w�1p = 1, (I.1)
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where w denotes the vector of the portfolio weights which
determines the structure of the investor portfolio, the symbol
1p stands for the p-dimensional vector of ones, and Σ is the
covariance matrix of the p-dimensional vector of asset returns
y = (y1, . . ., yp)

�.
The solution of the optimization problem (I.1) is given by

wGMV =
Σ−11p

1�
pΣ

−11p
. (I.2)

The weights of the GMV portfolio have several nice properties,
which simplify its applicability in practice and, thus, make it a
popular investment strategy. The weights of the GMV portfolio
do not depend on the mean vector of the asset returns, which
we will denote by μ in the following. This is the only mean-
variance optimal portfolio whose weights are independent of μ.
Moreover, the GMV portfolio has a special location on the set of
the mean-variance optimal portfolios, which is a parabola in the
mean-variance space and is known as the efficient frontier (cf.,
Merton [2]). Its mean and variance determines the location of
the vertex of this parabola (see, e.g, Kan and Smith [3], Bodnar
and Schmid [4]).

The application of (I.2) requires the knowledge of Σ in
practice, which is usually not provided. The covariance matrixΣ
has to be estimated by using historical data of the asset returns,
before the GMV portfolio can be constructed. The quality of the
estimator of Σ has a large impact on the stochastic properties of
holding the GMV portfolio and it leads to further uncertainty in
the investor decision problem, known as the estimation uncer-
tainty. The estimation uncertainty can have a great impact on the
constructed portfolio which could be larger than the one induced
by the model uncertainty included in the optimization problem
(I.1). The effect becomes even stronger, when the portfolio
dimension is comparable to the sample size used to estimate
Σ.

Traditionally, the covariance matrix is estimated by its sample
counterpart given by

Sn =
1

n− 1

n∑
i=1

(yi − ȳn)(yi − ȳn)
�

=
1

n− 1
Yn

(
In − 1

n
1n1

�
n

)
Y�
n (I.3)

with ȳn = 1
n

∑n
i=1 yi, where y1, ..,yn denotes the sample of

asset returns and Yn = (y1, ..,yn) denotes the data matrix. The
symbol In stands for the n-dimensional identity matrix. Then,
the sample (also known) as the traditional estimator of wGMV
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is obtained as

ŵS =
S−1
n 1p

1�
pS

−1
n 1p

. (I.4)

The distributional properties of ŵS have extensively been stud-
ied in statistical and econometric literature. Jobson and Korkie
[5] derive the asymptotic distribution of ŵS assuming that the
asset returns are independent and normally distributed and the
portfolio dimension is considerably smaller than the sample size.
Okhrin and Schmid [6] obtain the exact distribution of the sample
estimator of the GMV portfolio weights assuming normality,
while Bodnar and Schmid [7] extend these results to elliptically
contoured distribution and develop a statistical test theory on the
GMV portfolio weights.

However, when the portfolio dimension is comparable to the
sample size, the results derived under the classical asymptotic
regime, that is when p is considerably smaller than n, can no
longer be used. Moreover, the effect of dimensionality consid-
erably influences the estimation of the covariance matrix needed
to determine the weights of the GMV portfolio. Using the recent
results of the random matrix theory several improved estimator
for the weights of the GMV portfolio has been suggested when
the portfolio dimension is comparable to the sample size (see,
e.g., Rubio et al. [8], Yang et al. [9], Bodnar et al. [10], Ballal
et al. [11], Bodnar et al. [12]), i.e., under the large-dimensional
asymptotic regime (see, e.g., Bai and Silverstein [13]). The
properties of high-dimensional optimal portfolio weights are
also studied by Fan et al. [14], Hautsch et al. [15], Ao et al.
[16], Kan et al. [17], Bodnar et al. [18], Cai et al. [19], Ding
et al. [20], among others.

Shrinkage approach is one of the mostly used methods to
construct an improved estimator for the weights of the GMV
portfolio. Shrinkage-type estimators were first proposed by Stein
[21] with the aim to reduce the estimation error present in the
sample mean vector computed for a sample from a multivari-
ate normal distribution. Recently, this procedure has also been
applied in the construction of the improved estimators of the
high-dimensional mean vector (cf, Chételat and Wells [22],
Wang et al. [23], Bodnar et al. [24]), covariance matrix (see,
e.g., Ledoit and Wolf [25], Ledoit and Wolf [26], Bodnar et al.
[27]), inverse of the covariance matrix (see, e.g., Wang et al.
[28], Bodnar et al. [29]), as well as of the optimal portfolio
weights (see, Bodnar et al. [10], Bodnar et al. [12], Golosnoy
and Okhrin [30], Frahm and Memmel [31], Ledoit and Wolf
[32]). Robust estimators for the covariance matrix are suggested
and applied to practical problems in Yang et al. [9], Tyler [33],
Couillet and McKay [34], Sun et al. [35], Couillet et al. [36],
Kammoun et al. [37], Elkhalil et al. [38], among others. Interval
shrinkage estimators of optimal portfolio weights have recently
been derived by Bodnar et al. [39], Bodnar et al. [40].

The shrinkage estimator for the weights of the GMV portfolio
are obtained as a linear combination of the sample estimator
ŵS and the target portfolio b with b�1 = 1. The estimator is
expressed as (see, Bodnar et al. [10])

ŵSH = ψ̂nŵS + (1− ψ̂n)b (I.5)

where

ψ̂n =
(1− cn)R̂b

cn + (1− cn)R̂b

, (I.6)

with R̂b = (1− cn)b
�Snb · 1�

pS
−1
n 1p − 1 and cn = p/n. The

shrinkage estimator of the GMV portfolio weights is obtained
by minimizing the out-of-sample variance. This leads to the
expression of the optimal shrinkage intensityψn, which depends
on the unknown population covariance matrix Σ. The methods
of the random matrix theory are then used to derive a consistent
estimator (I.6) of the optimal shrinkage intensity and to construct
the resulting (bona-fide) estimator of the GMV portfolio weights
as given in (I.5). Bodnar et al. [10] show that the shrinkage
estimator outperforms the sample estimator of the GMV portfo-
lio weights in terms of minimizing the out-of-sample portfolio
variance and the difference becomes drastic when p approaches
n. Moreover, the shrinkage estimator of the GMV portfolio
weights (I.5) provides a simple and a promising procedure how
the one-period portfolio choice problem based on minimizing
the portfolio variance can be solved in practice.

Once an optimal portfolio is determined, an investor faces
with the problem of optimal portfolio reallocation in the next
period of time. One of the important decision to be made by
the investor is to decide whether the holding portfolio is optimal
or has to be adjusted (see, e.g., Bodnar [41]), while Golosnoy
et al. [42] consider the exponential smoothing method to predict
the weights of the GMV portfolio over some periods of time. In
the current paper we contribute to the literature by developing
a dynamic GMV portfolio based on the shrinkage approach. At
each time point of the portfolio reconstruction the traditional
estimator of the GMV portfolio weights is shrunk towards the
weights of the holding portfolio, which by construction are the
shrinkage estimator of the GMV portfolio from the previous
period. The practical advantage of the new dynamic trading
strategy is two-fold: (i) First, it diminishes the transaction costs
required for the reconstruction of the holding portfolio; (ii)
Second, it reduces the out-of-sample variance of the constructed
GMV portfolio by applying the shrinkage approach in the esti-
mation of the portfolio weights.

From the perspectives of statistical theory, we develop new
results that allow us to use the shrinkage estimators with a
random target. These estimators are obtained under weak condi-
tions imposed on the data-generating process. In particular, only
the existence of the fourth moments is needed without explicit
specification of the probability distribution assumed for the asset
returns. Moreover, no assumption about the boundedness of
the largest eigenvalue of the population covariance matrix is
imposed in the paper. In particular, it can be as large as in the
factor models (see, e.g., Ding et al. [20], Fan et al. [43], Fan
et al. [44]). We only require that the ratio of the variances of the
target portfolio and the GMV portfolio is bounded.

To achieve the goal we provide the asymptotic limits of gen-
eral bilinear forms of the product of inverses of two dependent
random matrices. The dependence is arising from the dynamic
structure of the considered stochastic model. This type of the-
oretical results are entirely new in the random matrix theory
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and allow the application of the overlapping samples in the
determination of the target portfolio and in the construction of
the traditional portfolio used in the specification of the shrinkage
GMV portfolio. The derived dynamic trading strategies can also
be applied when the sample size is smaller than the portfolio
dimension. We also provide the expressions of the shrinkage esti-
mators of the dynamic GMV portfolio weights, when a weighted
estimator of the covariance matrix is used in both cases with
non-overlapping and overlapping samples. Finally, the obtained
findings are implemented in the R-package DOSPortfolio (see,
Bodnar et al. [45]).

The existent in the literature results on the shrinkage estima-
tion of optimal portfolio weights are obtained by considering
single-period optimal portfolio choice problems. Moreover, the
estimators of the optimal portfolio weights are derived by using
improved estimators of the covariance matrix (Rubio et al. [8],
Yang et al. [9], Ledoit and Wolf [32]) or by shrinking the
sample estimator of the portfolio weights to a deterministic
target portfolio (see, Bodnar et al. [10], Bodnar et al. [12],
Golosnoy and Okhrin [30], Frahm and Memmel [31]). The new
results derived in this paper extend previous studies by proposing
dynamic trading strategies and allowing the shrinkage target to
be data-driven and, consequently stochastic.

It is remarkable that the statistical methods developed in the
paper can be linked to the approaches applied in statistical signal
processing by noting that the GMV portfolio is related to the
Capon or minimum variance spatial filter in signal processing
literature (cf, Verdú [46] and Van Trees [47]). Rubio et al. [8]
and Yang et al. [48] investigate the estimation risk of the high-
dimensional minimum variance beamformer, while Li et al.
[49] study its constrained versions. The applications of random
matrix theory to signal processing and portfolio optimization
are presented in Yang et al. [9], Bodnar et al. [39], Bodnar et al.
[40], Feng and Palomar [50].

The rest of the paper is organized as follows. In Section II, the
main theoretical findings of the paper are provided. The dynamic
shrinkage estimator for the weights of the GMV portfolio is
derived in the case of non-overlapping samples in Section II-A,
while Section II-B presents the results in the overlapping case.
Section III extends the results of Section II to the case when a
weighted estimator of the sample covariance matrix is used. The
performance of the new trading strategies is investigated in Sec-
tion IV via an extensive simulation study, where the approaches
are also compared to the existing ones. In Section V, the new
approaches to estimate the GMV portfolio are implemented to
the real data consisting of the returns on stocks included in S&P
500 index. Concluding remarks are given in Section VI, while
the technical proofs are moved to the supplementary material.

II. DYNAMIC ESTIMATION OF GMV PORTFOLIO

Throughout the paper we assume that the GMV portfolio is
constructed at time point t1 by using the sample of size n1, and
then the investor updates the constructed GMV portfolio as new
information arrives on the capital market. The information set
is presented as a sequence of asset returns taken between time
point ti−1 and ti for i = 2, . . ., T . Between each pairs (ti−1, ti)

it is assumed that ni vectors of asset returns are available which
are collected into the data matrix Yni

that is assumed to possess
the following stochastic representation:

Yni
= μ1�

ni
+Σ

1
2Xni

, (II.1)

where Xni
is a p× ni matrix which consists of independent

and identically distributed (i.i.d.) real random variables with zero
mean and unit variance. Also, we assume thatYni

, i = 1, . . ., T ,
are independent random matrices and the entries of Xni

, i =
1, . . ., T , possess the 4 + ε, ε > 0, moments, while no specific
distributional assumption is imposed on the element of Xni

.
To this end, it is assumed that the smallest eigenvalue of the
population covariance matrix Σ is uniformly bounded in p away
from zero, which ensures thatΣ−1 exists for all p and its smallest
eigenvalue does not converge to zero even if p→ ∞.

We consider an investor who opts on the shrinkage estimation
of the GMV portfolio weights in each period of time ti. Namely,
after constructing the shrinkage estimator of the GMV portfolio
as defined in (I.5) at time point t1, the investor updates the GMV
portfolio weights by shrinking their sample estimator computed
at each time point ti to the holding GMV portfolio determined at
time point ti−1. Two estimation strategies are developed in this
section, which are based on non-overlapping and overlapping
samples, respectively. The first procedure can be related to the
rolling window estimation but with probably different sample
sizes. The main advantage here is that smaller sample sizes are
used in the construction of the sample weights of the GMV
portfolio and, thus, the extreme observation observed in the asset
returns will sooner be detected. Such a strategy might be recom-
mendable during the turbulent period on the capital market, since
it allows a faster adjustment of the holding portfolio. In contrary,
when the stable period on the capital market is present, then the
investor would prefer to use all available information, which
leads to the extended window estimation strategy. In this case
the part of data used in the construction of the GMV portfolio has
already been used to determine the currently holding portfolio
to which the new estimator is shrunk and, consequently, we
have the case with overlapping samples. Both situations require
completely different techniques from random matrix theory to
be developed in order to derive the stochastic properties of the
estimation procedures, which are developed in the consequent
two subsections.

A. Dynamic GMV Portfolio With Non-Overlapping Samples

Under the non-overlapping scenario, the investor uses the
sample of asset returns collected in Yni

to construct the sample
estimator of the GMV portfolio at each time point ti expressed
as

ŵS;ni
=

S−1
ni
1p

1�
pS

−1
ni
1p

(II.2)

where

Sni
=

1

ni − 1
Yni

(
Ini

− 1

ni
1ni

1�
ni

)
Y�
ni
. (II.3)

The shrinkage estimator of the GMV portfolio is then obtained
at time point ti by shrinking (II.2) to the weights of the holding
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portfolio, i.e., to the shrinkage estimator of the GMV portfolio
ŵSH;ni−1

constructed in the previous period, by minimizing
the loss function determined as the out-of-sample variance with
respect to the shrinkage intensity ψni

in the following way:

min
ψi

Li(ψi) = min
ψi

ŵ�
SH;iΣŵSH;i (II.4)

with

ŵSH;ni
= ψiŵS;ni

+ (1− ψi)ŵSH;ni−1
, (II.5)

where ŵSH;n0
= b is the shrinkage target used for the construc-

tion of the shrinkage estimator for the GMV portfolio weights
at time point t1.

Rewriting (II.4) we get

Li(ψi) = ψ2
i ŵ

�
S;ni

ΣŵS;ni

+ 2ψi(1− ψi)ŵ
�
S;ni

ΣŵSH;ni−1

+ (1− ψi)
2ŵ�

SH;ni−1
ΣŵSH;ni−1

, (II.6)

which is minimized at

ψ∗
ni

=
ŵ�
SH;ni−1

Σ (ŵSH;ni−1
− ŵS;ni

)

(ŵSH;ni−1
− ŵS;ni

)� Σ (ŵSH;ni−1
− ŵS;ni

)
. (II.7)

The optimal shrinkage intensityψ∗
ni

depends on the unknown
population covariance matrixΣ and, thus, it cannot be computed
in practice. To derive its consistent estimator we proceed in two
steps: (i) first, we find a deterministic asymptotic equivalent
of ψ∗

ni
and (ii) then, we estimate this univariate quantity con-

sistently in the high-dimensional setting. In Theorem II.1, the
asymptotic equivalent to ψ∗

ni
is provided for each ti, while its

consistent estimator is given in the discussion after the theorem.
Theorem II.1: Let Yni

possess the stochastic representation
as in (II.1) and let b be the deterministic shrinkage target for
i = 1. Assume that the relative loss of portfolio b given by

r0 =
Vb

VGMV
− 1 = 1�

pΣ
−11pb

�Σb− 1 (II.8)

is uniformly bounded in p, where

Vb = b�Σb and VGMV = w�
GMVΣwGMV =

1

1�
pΣ

−11p
(II.9)

are the variances of the target portfolio b and of the population
GMV portfolio, respectively. Then it holds that∣∣ψ∗

ni
− ψ∗

i

∣∣ a.s.→ 0 with ψ∗
i =

(1− ci)ri−1

(1− ci)ri−1 + ci
(II.10)

for p/ni → ci ∈ (0, 1) as n→ ∞ where ri is the
asymptotic equivalent of the relative loss rŵSH;ni

=

1�
pΣ

−11pŵ
�
SH;ni

ΣŵSH;ni
− 1 of the portfolio with weights

ŵSH;ni
given by

ri = (ψ∗
i )

2 ci
1− ci

+ (1− ψ∗
i )

2ri−1 (II.11)

for i = 1, . . ., T .
The proof of Theorem II.1 is given in the supplementary

material. Its results provide a simple recursive algorithm how
the shrinkage intensities have to be computed in practice.
Independently of the number of portfolio reallocations, T , the

only unknown quantity in the algorithm is the relative loss of the
target portfolio b used in the construction of the shrinkage esti-
mator for i = 1. Using the sample Yn1

its consistent estimator
is given by

r̂0 =

(
1− p

n1

)
1�
pS

−1
n1
1pb

�Sn1
b− 1. (II.12)

Then, the resulting (bona fide) shrinkage estimator of the GMV
portfolio at time ti is given by

ŵBF ;ni
= ψ̂∗

i ŵS;ni
+ (1− ψ̂∗

i )ŵBF ;ni−1
(II.13)

where ψ̂∗
i =

(ni−p)r̂i−1

(ni−p)r̂i−1+p
and r̂i is computed recursively by

r̂i = (ψ̂∗
i )

2 p

ni − p
+ (1− ψ̂∗

i )
2r̂i−1 (II.14)

with r̂0 as in (II.12) and ŵBF ;n0
= b.

We conclude this section with several important remarks:
Remark II.2: The deterministic target portfolio b can also be

replaced by the sample GMV portfolio computed by using data
available before the sampleYn1

is taken. If we denote these data
by Yn0

, then the target weights b are replaced by

ŵS;n0
=

S−1
n0
1p

1�
pS

−1
n0
1p

(II.15)

In this case the relative loss r0 does not longer depend on
the population covariance matrix Σ and following the proof of
Theorem II.1 it is given by

r̃0 =
c0

1− c0
≈ p

n0 − p
.

As a result, the (bona fide) shrinkage estimator of the GMV
portfolio weights is obtained as in (II.13) and (II.14) with r̂0
replaced by r̃0 and ŵBF ;n0

= ŵS;n0
. In a similar way other

random targets can be employed into our model, e.g., nonlinear
shrinkage Ledoit and Wolf [26], but then the asymptotics and
estimation of r0 become highly nontrivial and one needs to
handle every of those targets separately. Because of the large
number of possible target portfolios b we leave this interesting
topic for the future research. For the sake of brevity concentrate
ourselves on the naive equally weighted target b = 1p/p in our
simulation and empirical studies.

Remark II.3: The results of Theorem II.1 are derived under
very week conditions which require the existent of 4 + ε, ε > 0,
moments only. No structural assumption on Σ neither on b are
imposed.

Remark II.4: Other consistent estimators for r0 can be con-
structed. For instance, we can update our estimator at each time
point ti as soon as new data of the asset returns become available.
Let Ni =

∑i
j=1 nj be the total number of asset return vectors

available at time point ti and letYNi
be the p×Ni matrix of the

asset returns up to time Ni that is YNi
= (Yn1

Yn2
. . .Yni

).
Then, at time point ti, a consistent estimator for r0 is obtained
by

r̂0;i =

(
1− p

Ni

)
1�
pS

−1
Ni

1pb
�SNi

b− 1. (II.16)

where SNi
is the sample covariance matrix based on the data

matrix YNi
as given in (I.3) with n = Ni. Then, the (bona fide)
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Fig. 1. The average computational time of dynamic GMV portfolios when the relative loss r0 of the target portfolio b is estimated by r̂0 as in (II.12) labeled as
DOS1 and when the relative loss r0 of the target portfolio b is re-estimated in each period as in (II.16) labeled as DOS3. The calculation of the computation time
is based on 500 independent runs where Yni is drawn from a t-distribution in each run with ni = 250, i = 1, 2, 3, . . .20 for different values of the concentration
ratio.

shrinkage estimator of the GMV portfolio weights is computed
following (II.13) and (II.14) with r̂0 replaced by r̂0;i. Since larger
dataset is used to estimate r0, we expect that this approach will
perform better as the one suggested in (II.12)–(II.14). On the
other side, the new method is more time demanding, since the
recursion in (II.14) has to be started from the beginning at each
time ti.

In Fig. 1 computation costs of two dynamic optimal shrinkage
portfolios are depicted for several values of the concentration
ratio. The results are obtained by drawing samples from a
t-distribution as described in Section IV. As a target portfo-
lio, the equally-weighted portfolio b = 1p/p is used. The two
plots show that the application of the trading strategy based on
the re-estimated loss of the target portfolio can considerably
increase the computation time, especially for a large value of
the concentration ratio.

B. Dynamic GMV Portfolio With Overlapping Samples

In this section, we present the shrinkage estimator for the
GMV portfolio which is constructed based on the overlapping
samples. In Remark II.4 it is suggested to use all available data
Yn1

,Yn2
, . . .,Yni

up to time point ti to determine a consistent
estimator for the relative loss r0 of portfolio b. Here, we use the
similar idea in the construction of the sample estimator of the
GMV portfolio weights at time ti. Such an approach possesses
an advantage that we only requiren1 > p, while the other sample
sizesn2, . . ., nT can also be smaller than the portfolio dimension
p.

Using the notations Ni, YNi
, and SNi

introduced in Remark
II.4, we define

ŵS;Ni
=

S−1
Ni

1p

1�
pS

−1
Ni

1p
. (II.17)

as the sample estimator of the GMV portfolio weights based on
data of the asset returns included in YNi

. Substituting ŵS;Ni

instead of ŵS;ni
in (II.5), the loss function Li(ψi) in (II.4) is

maximized at

Ψ∗
Ni

=
ŵ�
SH;Ni−1

Σ (ŵSH;Ni−1
− ŵS;Ni

)

(ŵSH;Ni−1
− ŵS;Ni

)� Σ (ŵSH;Ni−1
− ŵS;Ni

)
.

(II.18)
In Theorem II.5 we derive an iterative procedure for comput-

ing the deterministic equivalents to Ψ∗
Ni

for i = 1, . . ., T . The
proof of Theorem II.5 is given in the supplementary material.

Theorem II.5: Let Yni
possess the stochastic representation

as in (II.1) and let b be the deterministic shrinkage target for
i = 1. Assume that the relative loss of portfoliob given byR0 =
1�
pΣ

−11pb
�Σb− 1 is uniformly bounded in p. Then it holds

that ∣∣Ψ∗
Ni

−Ψ∗
i

∣∣ a.s.→ 0

for p/Nj → Cj ∈ (0, 1) as Nj → ∞, j = 1, . . ., i and i =
1, . . ., T where

Ψ∗
i =

(Ri−1 + 1)−Ki

(Ri−1 + 1) + (1− Ci)−1 − 2Ki
, (II.19)

Ki = β∗
i−1;0 +

1

1− Ci

i−1∑
j=1

β∗
i−1;j , (II.20)

Ri = (Ψ∗
i )

2 Ci
1− Ci

+ (1−Ψ∗
i )

2Ri−1

+ 2Ψ∗
i (1−Ψ∗

i )(Ki − 1), (II.21)

with β∗
0;0 = 1, β∗

i−1;i−1 = Ψ∗
i−1 and

β∗
i−1;k = (1−Ψ∗

i−1)β
∗
i−2;k, (II.22)

for k = 0, . . .i− 2.
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Similarly, to the case with non-overlapping samples, the re-
cursive procedure derived in Theorem II.5 depends only on a
univariate unobservable quantityR0, which is the relative loss of
the target portfoliob at time point t1. Both approaches suggested
in Section II-A can be used to construct a consistent estimator
for R0, and hence to obtain a (bona fide) estimator of the GMV
portfolio weights. These procedures are the following:
� We estimate R0 by

R̂0 = r̂0 =

(
1− p

N1

)
1�
pS

−1
N1

1pb
�SN1

b− 1 (II.23)

as in (II.12). In this case the estimator forR0 is constructed
by using the first sample YN1

only and the recursive
procedure of Theorem II.5 is then used leading to the (bona
fide) optimal shrinkage estimators for the weights at each
time point ti, i ∈ 1, . . ., T expressed as

ŵBF ;Ni
= Ψ̂∗

iŵS;Ni
+ (1− Ψ̂∗

i )ŵBF ;Ni−1
(II.24)

where Ψ̂∗
i is computed recursively as in Theorem II.5 with

R0 replaced by R̂0 and using the empirical counterpart for
Ci given by CNi

= p/Ni.
� At each time point i, we use all available information to

estimate R0, i.e.,

R̂0;i = r̂0;i =

(
1− p

Ni

)
1�
pS

−1
Ni
1pb

�SNi
b− 1

(II.25)
and recompute the recursion of Theorem II.5 at each time
point ti. Since a larger dataset is used to estimateR0, better
results are expected although the computation becomes
more time demanding in the second case.

To this end, we note that the deterministic target portfolio b
can be replaced by the sample GMV portfolio computed by using
data Yn0

available before the first sample YN1
as in (II.15) of

Remark II.2. In this case we get

R̃0 =
p

n0 − p
,

which is used in the iterative computation of Theorem II.5
instead of R0. Since no unknown quantities are present in
the definition of R̃0, the iterative procedure of Theorem II.5
becomes deterministic.

C. Dynamic GMV Portfolio for Singular Sample Covariance
Matrix

In this section we extend the results of Sections II-A and II-B
to the case when the sample sizes in each block are smaller
than the portfolio dimension p. In such a situation the sample
covariance matrix Sni

defined in (II.3) is singular and, conse-
quently, its inverse does not exist for i = 1, . . ., T . In practice,
the classical inverse is replaced by a generalized inverse, for
example, by the Moore-Penrose inverse S+

ni
, which is then

used in the computation of portfolio weights. We recall that
the Moore-Penrose inverse is uniquely determined and, for a
matrix A, it is defined as a matrix which fulfills the following
four conditions: (i) AA+A = A, (ii) A+AA+ = A+, (iii)
(A+A)� = A+A, and (iv) (AA+)� = AA+.

First, we present the results for the non-overlapping scenario.
Using the Moore-Penrose inverse Sni

, the sample estimator of
the GMV portfolio at each time point ti is given by

ŵMPS;ni
=

S+
ni
1p

1�
pS

+
ni1p

. (II.26)

Following the derivation of Section II-A, the minimization of
the loss function leads to the shrinkage estimator of the GMV
portfolio at time ti expressed as

ŵMPSH;ni
=ψ∗

MP ;ni
ŵMPS;ni

+(1− ψ∗
MP ;ni

)ŵMPSH;ni−1
,

(II.27)
with ŵMPSH;n0

= b and

ψ∗
MP ;ni

=

ŵ�
MPSH;ni−1

Σ (ŵMPSH;ni−1
− ŵMPS;ni

)

(ŵMPSH;ni−1
− ŵMPS;ni

)� Σ (ŵMPSH;ni−1
− ŵMPS;ni

)
.

(II.28)

In Theorem II.6 we derive the asymptotic equivalent to
ψ∗
MP ;ni

whose consistent estimator will be later used in the
construction of the shrinkage estimator at time ti.

Theorem II.6: Let Yni
possess the stochastic representation

as in (II.1) and let b be the deterministic shrinkage target for
i = 1. Assume that the relative loss of portfolio b given by r0 =
1�
pΣ

−11pb
�Σb− 1 is uniformly bounded in p. Then it holds

that ∣∣ψ∗
MP ;ni

− ψ∗
MP ;i

∣∣ a.s.→ 0

with

ψ∗
MP ;i =

(ci − 1)rMP ;i−1

(ci − 1)rMP ;i−1 + ci + (ci − 1)2
(II.29)

for p/ni → ci > 1 as n→ ∞ where ri is the asymp-
totic equivalent of the relative loss rŵMPSH;ni

=

1�
pΣ

−11pŵ
�
MPSH;ni

ΣŵMPSH;ni
− 1 of the portfolio with

weights ŵMPSH;ni
given by

rMP ;i = (ψ∗
MP ;i)

2 c
2
i − ci + 1

ci − 1
+ (1− ψ∗

MP ;i)
2rMP ;i−1

(II.30)
for i = 1, . . ., T with rMP ;0 = r0.

The proof of Theorem II.6 is given in the supplementary
material. Similarly to the case when the portfolio dimension
p is smaller than the sample size, the results of Theorem II.6
present a simple recursive algorithm for the computation of the
shrinkage intensities with r0 being the only unknown quantity
which is consistently estimated by

r̂MP ;0 =
p

n1

(
p

n1
− 1

)
1�
pS

+
n1
1pb

�Sn1
b− 1. (II.31)

Then, the resulting (bona fide) shrinkage estimator of the GMV
portfolio at time ti is given by

ŵMPBF ;ni
= ψ̂∗

MP ;iŵMPS;ni
+ (1− ψ̂∗

MP ;i)ŵMPBF ;ni−1
,

(II.32)
where

ψ̂∗
MP ;i =

ni(p− ni)r̂MP ;i−1

ni(p− ni)r̂MP ;i−1 + pni + (p− ni)2
(II.33)
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and

r̂MP ;i = (ψ̂∗
MP ;i)

2 p
2 − pni + n2i
ni(p− ni)

+ (1− ψ̂∗
MP ;i)

2r̂MP ;i−1

(II.34)
with r̂MP ;0 as in (II.31) and ŵMPBF ;n0

= b.
The results of Theorem II.6 are derived by approximating

the Moore-Penrose inverse with the reflexive inverse (see, e.g.,
Cook and Forzani [51]), which provides a good approximation
of the Moore-Penrose inverse when ci ∈ (1, 2) (see, Bodnar and
Parolya [52]). In this case, the dynamic shrinkage estimator of
the GMV portfolio (II.32)–(II.34) is expected to perform good
in practice, while for larger values of ci it should be used with
caution. To this end, we note that the estimator r̂MP ;0 for the
relative loss of the target portfolio r0 can be recomputed at each
time ti when a new sample becomes available. Given the sample
of the asset returns YNi

= (Yn1
Yn2

. . .Yni
) at time point ti,

another consistent estimator for r0 is given by

r̂MP ;0;i =

⎧⎨⎩
(
1− p

Ni

)
1�
pS

−1
Ni
1pb

�SNi
b− 1 p < Ni,

p
Ni

(
p
Ni

− 1
)
1�
pS

+
Ni
1pb

�SNi
b− 1 p > Ni.

Next, we present the dynamic shrinkage estimator of the GMV
portfolio under the overlapping sample and singular sample
covariance matrix. Following the previous discussion the results
will be presented when ci is below two, i.e., when the Moore-
Penrose inverse of the sample covariance matrix can be good
approximated by the reflexive inverse. Using the notations Ni,
YNi

, and SNi
introduced in Remark II.4, we define

ŵMPS;Ni
=

S+
Ni

1p

1�
pS

+
Ni

1p
, (II.35)

where the Moore-Penrose inverse of SNi
becomes the ordinary

inverse whenNi > p. Then, the dynamic shrinkage estimator of
the GMV portfolio weights is given by

ŵMPSH;Ni
=ψ∗

MP ;Ni
ŵMPS;Ni

+(1− ψ∗
MP ;Ni

)ŵMPSH;Ni−1
,

with ŵMPSH;N0
= b and

Ψ∗
MP ;Ni

=

ŵ�
MPSH;Ni−1

Σ (ŵMPSH;Ni−1
− ŵMPS;Ni

)

(ŵMPSH;Ni−1
− ŵMPS;Ni

)� Σ (ŵMPSH;Ni−1
− ŵMPS;Ni

)
.

In Theorem II.7 we derive an iterative procedure for comput-
ing the deterministic equivalents to Ψ∗

MP ;Ni
for i = 1, . . ., T .

The proof of Theorem II.7 is given in the supplementary mate-
rial.

Theorem II.7: Let Yni
possess the stochastic representation

as in (II.1) and let b be the deterministic shrinkage target for
i = 1. Assume that the relative loss of portfoliob given byR0 =
1�
pΣ

−11pb
�Σb− 1 is uniformly bounded in p. Then it holds

that ∣∣Ψ∗
MP ;Ni

−Ψ∗
MP ;i

∣∣ a.s.→ 0

for p/Nj → Cj as Nj → ∞, j = 1, . . ., i and i = 1, . . ., T
where

Ψ∗
MP ;i =

(RMP ;i−1 + 1)−KMP ;i

(RMP ;i−1 + 1) +QMP ;i − 2KMP ;i
, (II.36)

RMP ;i = (Ψ∗
MP ;i)

2(QMP ;i − 1) (II.37)

+ (1−Ψ∗
MP ;i)

2RMP ;i−1

+ 2Ψ∗
MP ;i(1−Ψ∗

MP ;i)(KMP ;i − 1), (II.38)

KMP ;i = β∗
MP ;i−1;0 +

i−1∑
j=1

β∗
MP ;i−1;jDMP ;j,i, (II.39)

with β∗
MP ;0;0 = 1, β∗

MP ;i−1;i−1 = Ψ∗
MP ;i−1 and

β∗
MP ;i−1;k = (1−Ψ∗

MP ;i−1)β
∗
MP ;i−2;k, (II.40)

for k = 0, . . .i− 2. Finally, DMP ;j,i and QMP ;i are given by

DMP ;j,i =

{
C2

j (1−Ci)

(Cj−Ci)2
, j = 1,

(1− Ci)
−1, j > 1.

(II.41)

and

QMP ;i =

{
C2
i (Ci − 1)−1, i = 1,
(1− Ci)

−1, i > 1.
(II.42)

Using the consistent estimator of R0 expressed as

R̂MP ;0 = r̂MP ;0 =
p

N1

(
p

N1
− 1

)
1�
pS

+
N1

1pb
�SN1

b− 1,

(II.43)
the (bona fide) shrinkage estimator of the GMV portfolio at time
ti is given by

ŵMPBF ;Ni
= Ψ̂∗

MP ;iŵMPS;Ni
+ (1− Ψ̂∗

MP ;i)ŵMPBF ;Ni−1
,

where Ψ̂∗
MP ;i is computed recursively, as provided in Theorem

II.7 with R0 replaced by R̂MP ;0. To this end, we point out that
similarly to the case with non-overlapping sample, the estimator
ofR0 can be updated as soon as a new sample becomes available.

III. DYNAMIC GMV PORTFOLIO WITH A WEIGHTED

ESTIMATOR OF THE COVARIANCE MATRIX

The sample estimator of the covariance matrix can consid-
erably be impacted by the extreme asset returns and, as such,
it is not robust to outliers. Robust estimators of the covariance
matrix are considered in Tyler [33], Couillet and McKay [34],
Sun et al. [35], Couillet et al. [36], Kammoun et al. [37], Maronna
[53], among others, while Yang et al. [9] derive a shrinkage
estimator of the GMV portfolio weights based on a robust
estimator of the covariance matrix.

Following Rubio et al. [8], we consider a weighted estimator
of the covariance matrix expressed as

SW;ni
=

1

ni − 1
Yni

(
Ini

− 1

ni
Wni

1ni
1�
ni

)
×Wni

(
Ini

− 1

ni
1ni

1�
ni
Wni

)
Y�
ni
, (III.1)
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where Wni
is a deterministic diagonal matrix of weights with

1�
ni
Wni

1ni
= ni. Then, under the non-overlapping scenario,

the sample estimator of the GMV portfolio at each time ti is
given by

ŵWS;ni
=

S−1
W;ni

1p

1�
pS

−1
W;ni

1p
. (III.2)

Furthermore, the shrinkage estimator of the GMV portfolio is
expressed as

ŵWSH;ni
= ψ∗

W;ni
ŵWS;ni

+ (1− ψ∗
W;ni

)ŵWSH;ni−1
,

(III.3)
where ŵWSH;n0

= b and

ψ∗
W;ni

=

ŵ�
WSH;ni−1

Σ (ŵWSH;ni−1
− ŵWS;ni

)

(ŵWSH;ni−1
− ŵWS;ni

)� Σ (ŵWSH;ni−1
− ŵWS;ni

)
.

(III.4)

In Theorem III.1 we derive the asymptotic equivalents to
ψ∗
W;ni

for i = 1, . . ., T .
Theorem III.1: Let Yni

possess the stochastic representation
as in (II.1) and let b be the deterministic shrinkage target for
i = 1. Assume that the relative loss of portfolio b given by r0 =
1�
pΣ

−11pb
�Σb− 1 is uniformly bounded in p. Then it holds

that ∣∣ψ∗
W;ni

− ψ∗
W;i

∣∣ a.s.→ 0 (III.5)

for p/ni → ci ∈ (0, 1) as n→ ∞ with

ψ∗
W;i =

u2ni
rW;i−1

u2ni
rW;i−1 + u′ni

− u2ni

(III.6)

and rW;i the asymptotic equivalent of the relative loss
rŵWSH;ni

= 1�
pΣ

−11pŵ
�
WSH;ni

ΣŵWSH;ni
− 1 of the portfo-

lio with weights ŵWSH;ni
given by

rW;i = (ψ∗
W;i)

2u
′
ni

− u2ni

u2ni

+ (1− ψ∗
W;i)

2rW;i−1 (III.7)

for i = 1, . . ., T and rW;0 = r0, where uni
is the solution of

1− ci =
1

ni
tr[(Ini

+ ciuni
Wni

)−1]

and

u′ni
=

uni

tr[(Ini
+ ciuni

Wni
)−2]

.

The proof of Theorem III.1 is given in the supplementary
material. To derive a consistent estimator for r0 we need the
following lemma whose proof is presented in the supplementary
material.

Lemma III.2: Let Yni
possess the stochastic representation

as in (II.1) and let b be the deterministic shrinkage target for
i = 1. Then, it holds that∣∣∣∣b�SW;n1

b

b�Σb
− 1

∣∣∣∣ a.s.→ 0, (III.8)

for p/n1 → c1 ∈ (0, 1) as n1 → ∞.

Using the proof of Theorem III.1 and the results of Lemma
III.2 we get a consistent estimator of r0 given by

r̂W;0 = u−1
n1
1�
pS

−1
W;n1

1pb
�SW;n1

b− 1. (III.9)

Then, the resulting recursive (bona fide) shrinkage estimator of
the GMV portfolio at time ti is expressed as

ŵWBF ;ni
= ψ̂∗

W;iŵWS;ni
+ (1− ψ̂∗

W;i)ŵWBF ;ni−1
,

(III.10)
where

ψ̂∗
W;i =

u2ni
r̂W;i−1

u2ni
r̂W;i−1 + u′ni

− u2ni

(III.11)

and

r̂W;i = (ψ̂∗
W;i)

2u
′
ni

− u2ni

u2ni

+ (1− ψ̂∗
W;i)

2r̂W;i−1 (III.12)

with r̂W;0 as in (III.9) and ŵWBF ;n0
= b.

Finally, using the sample of the asset returns YNi
=

(Yn1
Yn2

. . .Yni
) at time point ti, another consistent estimator

for r0 is given by

r̂W;0;i = u−1
Ni

1�
pS

−1
W;Ni

1pb
�SW;Ni

b− 1, (III.13)

where uNi
is the solution of the following equation

1− Ci =
1

Ni
tr[(INi

+ CiuNi
WNi

)−1].

Next, we discuss the dynamic shrinkage estimator of the
GMV portfolio under the overlapping sample when the weighted
estimator of the covariance matrix is used. The sample estimator
of the GMV portfolio based on the sampleYNi

and the weighted
estimator of the covariance matrix SW;Ni

is expressed as

ŵWS;Ni
=

S−1
W;Ni

1p

1�
pS

−1
W;Ni

1p
, (III.14)

while the weights of the shrinkage portfolio are given by

ŵWSH;Ni
= Ψ∗

W;Ni
ŵWS;Ni

+ (1−Ψ∗
W;Ni

)ŵWSH;Ni−1
,

(III.15)
with

Ψ∗
W;Ni

=

ŵ�
WSH;Ni−1

Σ (ŵWSH;Ni−1
− ŵWS;Ni

)

(ŵWSH;Ni−1
− ŵWS;Ni

)� Σ (ŵWSH;Ni−1
− ŵWS;Ni

)
.

(III.16)

In Theorem III.3 we derive an iterative procedure for com-
puting the deterministic equivalents to Ψ∗

W;Ni
for i = 1, . . ., T .

Theorem III.3: Let Yni
possess the stochastic representation

as in (II.1) and let b be the deterministic shrinkage target for
i = 1. Assume that the relative loss of portfoliob given byR0 =
1�
pΣ

−11pb
�Σb− 1 is uniformly bounded in p. Then it holds

that ∣∣Ψ∗
W;Ni

−Ψ∗
W;i

∣∣ a.s.→ 0
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for p/Nj → Cj ∈ (0, 1) as Nj → ∞, j = 1, . . ., i and i =
1, . . ., T where

Ψ∗
W;i =

u2Ni
(RW;i−1 + 1−KW;i)

u2Ni
(RW;i−1 + 1− 2KW;i) + u′Ni

, (III.17)

RW;i = (Ψ∗
W;i)

2
u′Ni

− u2Ni

u2Ni

+ (1−Ψ∗
W;i)

2RW;i−1

+ 2Ψ∗
W;i(1−Ψ∗

W;i)(KW;i − 1), (III.18)

KW;i = β∗
W;i−1;0 +

i−1∑
j=1

β∗
W;i−1;jDW;j,i, (III.19)

with β∗
W;0;0 = 1, β∗

W;i−1;i−1 = Ψ∗
W;i−1 and

β∗
W;i−1;k = (1−Ψ∗

W;i−1)β
∗
W;i−2;k, (III.20)

for k = 0, . . .i− 2. Finally, DW;j,i is given by

DW;j,i = Q−1
W;j,i

1

Ni −Nj

(
Ni
uNi

− Nj
uNj

)
(III.21)

and

QW;j,i=
1

Ni −Nj
tr[Wnj+1:ni

(INi−Nj
+ CiuNi

Wnj+1:ni
)−1],

(III.22)
where Wnj+1:ni

= diag(Wnj+1
, . . .,Wni

) and uNi
is the so-

lution of

1− ci =
1

Ni
tr[(INi

+ CiuNi
WNi

)−1]

and

u′Ni
=

uNi

tr[(INi
+ CiuNi

WNi
)−2]

.

The proof of Theorem III.3 is given in the supplementary
material. The application of the results of Theorem III.3 leads
to the (bona fide) shrinkage estimator of the dynamic GMV
portfolio given by

ŵWBF ;Ni
= Ψ̂∗

W;iŵWS;Ni
+ (1− Ψ̂∗

W;i)ŵWBF ;Ni−1
,

(III.23)
where Ψ̂∗

W;i are computed recursively using the recursion pre-
sented in Theorem III.3 and the following consistent estimator
of R0 expressed as

R̂W;0 = r̂W;0 = u−1
N1

1�
pS

−1
W;N1

1pb
�SW;N1

b− 1. (III.24)

Finally, using the whole sample of the asset returns available up
to time ti another consistent estimator of the relative loss of the
target portfolio can be constructed by

R̂W;0;i = u−1
Ni
1�
pS

−1
W;Ni

1pb
�SW;Ni

b− 1. (III.25)

IV. FINITE-SAMPLE PERFORMANCE

A. Benchmark Strategies and the Setup of the Simulation Study

The suggested dynamic estimation strategies are compared to
several benchmark strategies via en extensive simulation study
in this section, while the results of the empirical illustration are
provided in Section V. The performance of the following eight
dynamic trading strategies will be established:

DOS1: Bona fide shrinkage estimator of the GMV portfolio
(II.13) with (II.14) following Theorem II.1 where r0 is esti-
mated from the first sample as in (II.12);

DOS2: Bona fide shrinkage estimator of the GMV portfolio
(II.24) where Ψ̂∗

i is computed recursively as in Theorem II.5
and R0 is estimated from the first sample as in (II.23);

DOS3: Bona fide shrinkage estimator of the GMV portfolio
(II.13) with (II.14) following Theorem II.1 where r0 is recom-
puted as in (II.16) when a new sample becomes available;

DOS4: Bona fide shrinkage estimator of the GMV portfolio
(II.24) where Ψ̂∗

i is computed recursively as in Theorem
II.5 and R0 is recomputed as in (II.25) when a new sample
becomes available;

Sample: Sample estimator of the GMV portfolio computed
at each time ti, i = 1, 2, . . ., T , i.e., ψi = 1 in (II.5) for
i = 1, 2, . . ., T ;

EW: Target portfoliob used at each time ti, i = 1, 2, . . ., T , i.e.,
ψi = 0 in (II.5) for i = 1, 2, . . ., T ;

BPS18: One-period shrinkage estimator of the GMV portfolio
(I.5) with (I.6) reconstructed at each time ti, i = 1, 2, . . ., T ;

LW17: Ledoit and Wolf [32] nonlinear shrinkage estimator of
the GMV portfolio computed at each time ti, i = 1, 2, . . ., T .

BAMA21: Ballal et al. [11] estimator of the GMV portfolio
computed at each time ti, i = 1, 2, . . ., T . Five-fold cross-
validation is used to estimate the shrinkage coefficient with
an equally-spaced grid on 0 to 9.

YCM15: Yang et al. [9] estimator of the GMV portfolio com-
puted at each time ti, i = 1, 2, . . ., T . An equally-spaced
grid on [0,1] is used for the determination of the shrinkage
coefficient.

The first four strategies are based on the theoretical results
derived in Sections II-A and II-B where two different methods
for constructing bona fide shrinkage estimators of the GMV
portfolio weights are explored following the discussion after
Theorems II.1 and II.5, respectively. The Strategies from Sam-
ple to YCM15 are benchmark strategies, based on the traditional
estimator of the GMV portfolio, on the target portfolio, and
on different versions of one-period shrinkage estimators. It is
interesting that the dynamic strategy based on holding the target
portfoliob during the investment procedure can also be obtained
as a special case of the proposed dynamic shrinkage approach.
Namely, settingψ1 = 0 in (II.5) leads to ŵSH;n1

= b at time t1,
which is then use as a shrinkage target at t2. If we continue this
procedure, then we get that ŵSH;ni

= b for all i = 1, . . ., T .
The LW17 strategy is a recent state-of-the-art method of Ledoit
and Wolf [32] (see, also Ledoit and Wolf [54] for its efficient
nonparametric estimation), which efficiently applies the nonlin-
ear shrinkage estimator of the covariance matrix on the GMV
portfolio weights. The BAMA21 and YCM15 strategies are
based on the ridge estimator of the covariance matrix and on
the robust Tyler M-estimator of the covariance matrix adopted
to portfolio theory in Ballal et al. [11] and Yang et al. [9],
respectively.

Since the GMV portfolio is the solution of the portfolio
optimization problem with the aim to minimize the portfolio
variance, the relative loss in the out-of-sample variance is used
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as a performance measure in this comparison study which for
the portfolio with the estimated weights ŵ is expressed as:

Relative loss (w) =
ŵ�Σŵ − VGMV

VGMV

= 1�Σ−11ŵ�Σŵ − 1, (IV.1)

where we use the formula for the global minimum variance
VGMV given in (II.9).

In the simulation study, we will look at two investment hori-
zons T = 10 and T = 20. For each segment we let ni = 250,
which would correspond to an investor who rebalances the hold-
ing portfolio on a yearly basis. The parameters of the listed be-
low models are simulated according to μ = (μ1, . . ., μp)

� with
μi ∼ U(−0.2, 0.2) and the covariance matrix Σ is configured
such that 20% of the eigenvalues are equal to 0.2, 40% equal to
one and 40% equal to 4, whereas the eigenvectors are generated
from the Haar distribution. Following this simulation setup, Σ
will have the same spectral distribution for all considered values
of the concentration ratio c.

Four different stochastic models for the data-generating pro-
cess will be considered, which are listed below:

Scenario 1: t-distribution The elements of xt are drawn inde-
pendently from t-distribution with 5 degrees of freedom, i.e.,
xtj ∼ t(5) for j = 1, . . ., p, whileyt is constructed according
to (II.1).

Scenario 2: CAPM The vector of asset returns yt is generated
according to the CAPM (Capital Asset Pricing Model), i.e.,

yt = μ+ βzt +Σ1/2xt,

with independently distributed zt ∼ N(0, 1) and xt ∼
Np(0, I). The elements of vector β are drawn from the
uniform distribution, that is βi ∼ U(−1, 1) for i = 1, . . ., p.

Scenario 3: CCC-GARCH model of Bollerslev [55] The asset
returns are simulated according to

yt|Σt ∼ Np(μ,Σt)

where the conditional covariance matrix is specified by

Σt = D
1/2
t CD

1/2
t withDt = diag(h1,t, h2,t, . . ., hp,t),

where

hj,t = αj,0 + αj,1(yj,t−1 − μj)
2 + βj,1hj,t−1,

for j = 1, 2, . . ., p, and t = 1, 2, . . ., ni, ˜i = 1, . . ., T . The
coefficients of the CCC model are sampled according to
αj,1 ∼ U(0, 0.1) and βj,1 ∼ U(0.6, 0.7) which implies that
the stationarity conditions, αj,1 + βj,1 < 1, are always ful-
filled. The intercept αj,0 is thereafter chosen such that the
unconditional covariance matrix is equal to Σ.

Scenario 4: VARMA model The vector of asset returns yt is
simulated according to

yt = μ+ Γ(yt−1 − μ) +Σ1/2xt, with xt ∼ Np(0, I)

for t = 1, . . ., ni, i = 1, . . ., T , where Γ =
diag(γ1, γ2, . . ., γp) where γi ∼ U(−0.9, 0.9) for
i = 1, . . ., p.

Scenario 1 and Scenario 2 fulfill the conditions imposed on
the data-generating model in Section II. The application of both
scenarios result in samples that consist of independent random
vectors with finite 4 + ε, ε > 0, moments. Furthermore, the
covariance matrix possesses finite eigenvalues in Scenario 1,
while it has an unbounded spectrum in Scenario 2 (cf., Fan
et al. [44]). On the other side, the samples obtained following
Scenario 3 and Scenario 4 consist of dependent observations.
In Scenario 3 the random vector are uncorrelated although a
non-linear dependence is present in the time series structure of
the model, while the elements of the samples obtained from
Scenario 4 are strongly linearly dependent.

For each segment of the time partition we generate a new sam-
ple ofn = 250 observations, which is applied in the computation
of μ̂, Ŝni

, ŜNi
, ŵS;ni

, and ŵSH;ni
. As a target portfolio in the

DOS1 to 4 and BPS18 strategies, we use the equally-weighted
portfolio with the weightsb = 1p/p, while the remaining strate-
gies do not require the specification of the target portfolio. The
results of the simulation study are based on 1000 independent
runs from which the average relative loss is computed for each
scenario, strategy and several values of the concentration ratio
c.

B. Performance of the Trading Strategies

Figs. 2–5 present the results of the simulation study for
i = {5, 10, 15} when T = 20. Interestingly, the computed av-
erage losses show a similar behaviour independently of the
data-generating model used to draw the samples. Although
Scenarios 3 and 4 do not fulfill the assumptions imposed on the
data-generating model in the derivation of the theoretical results,
the differences in the behaviour of the ten trading strategies is not
large. As such, one can conclude that the presence of non-linear
dependence structure between the observation vectors or even
strong linear dependence has only minor impact on the validity
of the results derived in Theorems II.1 and II.5.

The best performance is obtained for the dynamic optimal
shrinkage estimators DOS1 to 4. However, the ordering is not
consistent. The differences between the computed values for the
DOS strategies are not large. All dynamic estimation strategies
considerably outperform the considered benchmark strategies,
independently of the scenario used to generate samples. On
the next place we often rank the nonlinear shrinkage estimator
LW17 and the ridge shrinkage BAMA21. These two strategies
are very often close to each other and are followed by the
single-period shrinkage estimator PBS18 and the robust Tyler
M-estimator YCM15. Finally, we note that the traditional Sam-
ple estimator performs better than the portfolio strategy based
on the target portfolio, when the concentration ratio c is smaller
than 0.75, while it produces extremely large values of relative
losses, when c approaches one. This observation becomes even
more prominent in case of the Scenario 4, where a strong
autocorrelation was employed. Here, already for c = 0.5 the
target portfolio starts outperforming the traditional estimator.

To this end, we conclude that the dynamic re-estimation of
the relative loss of the target portfolio b shows a significant
improvement when non-overlapping samples are used and the
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Fig. 2. Logarithm of relative losses for the different time steps i and investment horizon T = 20. Data were simulated following Scenario 1 for different values
of c.

Fig. 3. Logarithm of relative losses for the different time steps i and investment horizon T = 20. Data were simulated following Scenario 2 for different values
of c.

concentration ratio c is relatively large. In contrast, the appli-
cation of the dynamic re-estimation of the relative loss in the
case of overlapping samples leads to the considerably large
computation time (see, Fig. 1) without large improvements.
Finally, the increase of the trading horizon T has only a minor
impact on the plots presented in Figs. 2–5. The larger value of T
slightly reduces the computed average relative losses in the case
of DOS1, while they become a slightly larger for the DOS3,
DOS4 and the single-period shrinkage approaches.

V. APPLICATION TO STOCKS FROM S&P 500

In this section we will apply the suggested new approaches
and the benchmark strategies presented in Section IV on daily
market data. The computation is performed by using the R-
package DOSPortfolio (see, Bodnar et al. [45]).

A. Data Description

We will use daily returns on 348 stocks included in the S&P
500 index from March 2011 up until March 2020. The stocks
were chosen by the availability of their price data during the trad-
ing period. Two portfolios of size p = 200 (high-dimensional
case) andp = 150 (low-dimensional case) are considered, where
the stocks are chosen randomly from the 348 stocks included in
the S&P 500 index. We set c = 0.8 or c = 0.6 and therefore, use
ni = 250 trading days for each year i.

B. Results of the Empirical Illustration

A consequence of the exponential weighting schemes to
which the shrinkage estimators belong to, is that the portfolio
structure changes by smaller increments. As a result, we expect
that the portfolio turnover of the dynamic (estimated) GMV
portfolios based on the introduced shrinkage approaches to be
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Fig. 4. Logarithm of relative losses for the different time steps i and investment horizon T = 20. Data were simulated following Scenario 3 for different values
of c.

Fig. 5. Logarithm of relative losses for the different time steps i and investment horizon T = 20. Data were simulated following Scenario 4 for different values
of c.

smaller in comparison to the unconstrained strategy (ψi = 1),
but to be larger in comparison to the static portfolio choice
(ψi = 0). For each strategy k introduced in Section IV-A, let
w(k) denote the vector of the weights induced by the kth strategy
and let w(k)

i,j stand for the weight for the j-th asset after the i-th
portfolio rebalancing.

For each strategy k the turnover is defined by (see e.g. Golos-
noy et al. [42])

Turnover(k) =
1

T

T∑
i=1

||w(k)
i −w

(k)
i−1||1. (V.1)

The turnover measures changes in weights and will therefore
be connected to the cost of transitioning from one portfolio
to another. This definition assumes that the transaction costs

are constant for all assets and time periods. In practise, the
amount of turnover will affect the development of wealth of
the portfolio. Moreover, following Golosnoy et al. [42], we
will compute the average absolute values of holding portfolio
weights, the average minimum and maximum portfolio weights,
the average sum of negative weights in the portfolio, and the
average fraction of negative weights in the portfolio as further
performance measures. These are given by

|w(k)| = 1

Tp

T∑
i=1

p∑
j=1

|w(k)
i,j |, (V.2)

maxw(k) =
1

T

T∑
i=1

(
max
j
w

(k)
i,j

)
, (V.3)
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TABLE I
PERFORMANCE MEASURES OVER T = 8 PERIODS OF REBALANCING. THE STRATEGY WHICH IS MOST PERFORMANT (IN TERMS OF ITS MEASUREMENT) IS

HIGHLIGHTED IN BOLD ON EACH ROW

minw(k) =
1

T

T∑
i=1

(
min
j
w

(k)
i,j

)
, (V.4)

w
(k)
i 1(w(k)

i < 0) =
1

T

T∑
i=1

p∑
j=1

w
(k)
i,j 1(w(k)

i,j < 0), (V.5)

1(w(k)
i < 0) =

1

Tp

T∑
i=1

p∑
j=1

1(w(k)
i,j < 0). (V.6)

Moreover, we also consider important classical portfolio per-
formance measures: total excess portfolio return, out-of-sample
variance and the average Sharpe ratio. The computed values of
the introduced performance measures are summarized in Table I
for each strategy over the entire period. The corresponding
values for EW strategy are also included in the table but many
of its entries are obviously equal to zero, and therefore omitted,
since the weights are all equal.

For the first five performance measures, BAMA21 together
with the EW are the best. The former strategy often mimics the
EW portfolios, with a slight difference in the average maximum
weight where it takes slightly larger positions in comparison
to the EW strategy. None of these weights are negative. The
third, most performant strategy, is LW17 as it takes the smallest
positions, short the smallest amount of stocks and so forth. For
these portfolios, the average maximum weights, mean of all
shorted and the proportion shorted seem to decrease slightly
with p. This can most likely be attributed to the nonlinear
shrinkage of the eigenvalues, which seem to have a direct impact
on the magnitude and direction of the weights. None of the other
strategies has the same flexibility and can not compete with it,
especially the Sample strategy.

The performance measures seen in the four last rows of Table I
are based on the portfolio return. All strategies optimize for
minimizing the portfolio variance and this should therefore be
the primary measure of interest. In this setting, the DOS3 is
the best strategy since it obtains the smallest portfolio variance.
This is consistent over both portfolio sizes. All strategies provide
close to the same return for the portfolio size 150. The DOS2
strategy appears to have a slight edge. It is not large, just a few
percent relative to the second largest which is the LW17 strategy.
For p = 200 the best strategy is the Sample in terms of return.
However, it is one of the worst in terms of its Sharpe ratio. It
takes on a lot of risk to create that return. The strategies with the
highest Sharpe ratio is DOS2 for the smaller portfolio size and
DOS4 for the larger.

The last performance measure is the turnover. As one can
expect, the Sample strategy is worst, generating the largest
turnover. It generated the largest return for p = 200 but it does so
at a large cost. This classic strategy has the most flexibility. This
flexibility often leads to unnecessary reconstruction of the hold-
ing portfolio. This becomes apparent in more extreme case when
p/n is close to one. The smallest turnover is given by BAMA21.
However, this strategy essentially copies the EW strategy with
very little deviations resulting in relatively large variances as
well as small Sharpe ratios. The DOS strategies provide second
to smallest Turnover measurements. These strategies force small
movements between reallocations. The DOS3 and DOS4 strate-
gies change the perception of the initial relative loss. This implies
that algorithm change its opinion of what the optimal weights
should have been. In this application, DOS3 and DOS4 slightly
decrease the turnover in comparison to their counterparts DOS1
and DOS2. Note that the dynamic shrinkage approach does not
optimize towards decreasing turnover but it is a consequence
of enforcing small movements. This also implies that other
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Fig. 6. Development of the investor wealth based on the dynamic trading strategies described in Section IV-A. In this figure the portfolio size is equal to 150.

strategies can be close or better than the dynamic shrinkage
approach. The LW17 strategy shows promise of this feature.
When p increases the nonlinear shrinkage estimator becomes
more stable (between reallocation periods) and decrease its
turnover slightly.

The development of the investors wealth for the ten trading
strategies introduced in Section IV-A over 10 years is depicted
in Fig. 6. We limit the illustrations to the case of p = 150.
The strategies are the same as those presented in Table I with
p = 150, p/ni = 0.6. The wealth is computed according to a
buy-and-hold strategy until next reallocation period. That is,
given that ni days has passed, we use these to estimate the
portfolio weights and then rebalance the holding portfolio to the
new portfolio according to the different strategies. The wealth is
accumulated on a daily basis which corresponds to the frequency
of data used to construct the portfolio.

In Fig. 6 the worst strategy in terms of the final wealth is EW.
It, together with BAMA21 and EW, has large gains early in the
portfolios lifetime but huge losses during COVID. Throughout
the whole period they are very close to each other which one can
also notice from Table I. The rest of the strategies are more or
less close to each other with DOS1 deviating in terms of having
stagnated wealth during 2016–2019 and thereafter it manages
to catch up to most of the other strategies. The strategy which
accumulates most wealth is LW17. It results in a final wealth of
1.98 while DOS2, which had the highest average return, has a
final return of 1.96. The LW17 strategy is around a percent better
and manages to be so from a higher risk profile, as indicated by
the portfolio variance and the Sharpe ratio in I. This figure also
illustrates why DOS3 had the smallest variance in Table I. It
varies very little in contrast to other strategies, even in turbulent
times.

All portfolios are hit quite heavily by COVID in the early
2020, which is indicated by a dashed line on the 1st of March,
2020.1 Some portfolios are quick to adapt to the event and other

1This is of course somewhat arbitrary since it is hard to specify a certain day
that COVID hits the market.

are not. However, all portfolios seem to experience a very sharp
increase in wealth post COVID. In Table II we show the largest
loss of the strategies throughout the whole period. We can see
that EW (p = 150) and LW17 (p = 200) suffers the largest loss.
The Sample strategy suffers the least for both portfolio sizes.
This is most likely due to the fact that this is one observation,
and that it is very hard to describe the relationship between the
largest sample loss and the sample portfolio variance. Second to
best is the YCM15 and thereafter the DOS3. These strategies
seem to have worked well in the COVID crisis.

These results are in line with the previous empirical findings
of Bodnar et al. [40] who document that the equally weighted
portfolio performs well in the stable period on the capital market,
but its performance is very bad during the turbulent periods. To
conclude, all four of the proposed dynamic shrinkage strategies
show impressively good performance over the state-of-the-art
static portfolios especially in case when p becomes close to ni.

VI. SUMMARY

In many practical situation an investor after constructing an
optimal portfolio faces the problem of the portfolio reallocation
based on the new data which arrive on the capital market after the
portfolio was built. We deal with challenging task in the current
paper by developing several dynamic optimal shrinkage estima-
tors for the weights of the GMV portfolio. In the derivation of
the theoretical findings, new results in random matrix theory are
deduced which allow us to obtained optimal shrinkage estimator
in both important cases with and without overlapping samples. In
the case of non-overlapping samples, the investor uses the data of
asset returns after the last reconstruction of the portfolio, while
the whole data might be used in the case of overlapping samples.
It is remarkable that the two settings require different theoretical
results in random matrix theory to be derived and they result in
quite different optimal shrinkage intensities. Moreover, minor
distributional assumptions are imposed on the data-generating
process, like the existence of 4 + ε, ε > 0, moments are required
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TABLE II
LARGEST LOSS FOR THE DIFFERENT STRATEGIES OVER THE GIVEN PERIOD. BOLD VALUES CORRESPOND TO THE STRATEGIES WHICH HAVE THE LARGEST LOSSES

only. Also, the covariance matrix might have an unbounded
spectrum.

The results of the simulation study show that the dynamic
shrinkage procedures derived in the paper are robust against
violations of the model assumptions. In particular, we conclude
based on the results of the simulation study, that the performance
of the suggested dynamic approach will not be strongly influ-
enced when the asset returns are generated from a multivariate
GARCH model and from a VARMA model. Although, both
multivariate times series model assume that the asset returns are
time dependent, it has only a minor influence on the suggested
trading strategies. Finally, we apply the new approaches to real
data of returns on stocks included in the S&P 500 index and
compare them with several benchmark approaches, consisting
of investing into the target portfolio, the sample GMV portfo-
lio, and the single-period GMV portfolio. Several performance
measures are considered and it is shown that the dynamic
shrinkage portfolio constructed by using overlapping samples
possesses the best performance in terms of the turnover and the
development of the portfolio weights.

The dynamic strategies based non-overlapping sample are
simple to implement and they provide drastically less turnover
in comparison to the benchmark approaches. Although the
approaches based on the overlapping estimators are harder to
implement, they decrease the turnover by 50% in comparison to
the corresponding non-overlapping strategies with no significant
loss in wealth. Furthermore, they require that the sample size
is larger than the portfolio dimension only when the portfolio
is constructed for the first time, while the non-overlapping
approaches need the sample size to be larger than the portfolio
dimension by each reconstruction of the portfolio.

No portfolio is ever static. Making optimal transitions are
therefore of great interest to any investor. These results provide
a fully data-driven dynamic approaches how the GMV portfolio
can be rebalanced. In many practical applications the investors
might want to have more assets in their portfolios than the
available sample size. This demands a special attention since the
sample covariance matrix is singular in this case and its inverse
does not exist any longer. We contribute to this challenging prob-
lem by deriving the dynamic shrinkage trading strategies when
the Moore-Penrose inverse of the sample covariance matrix is
used instead of the ordinary inverse. Besides that, we present the
results for a weighted estimator of the covariance matrix.

ACKNOWLEDGMENT

The authors thank Professor Wing-Kin (Ken) Ma, Professor
Abla Kammoun and three anonymous Reviewers for their com-
ments and suggestions which have improved the presentation of
the paper.

REFERENCES

[1] H. Markowitz, “Portfolio selection,” J. Finance, vol. 7, no. 1, pp. 77–91,
1952.

[2] R. C. Merton, “An analytic derivation of the efficient portfolio fron-
tier,” J. Financial Quantitive Anal., vol. 7, no. 4, pp. 1851–1872,
1972.

[3] R. Kan and D. R. Smith, “The distribution of the sample minimum-variance
frontier,” Manage. Sci., vol. 54, no. 7, pp. 1364–1380, 2008.

[4] T. Bodnar and W. Schmid, “Econometrical analysis of the sample efficient
frontier,” Eur. J. Finance, vol. 15, no. 3, pp. 317–335, 2009.

[5] J. D. Jobson and B. Korkie, “Estimation for Markovitz efficient portfolios,”
J. Amer. Stat. Assoc., vol. 75, no. 371, pp. 544–554, 1980.

[6] Y. Okhrin and W. Schmid, “Distributional properties of portfolio weights,”
J. Econometrics, vol. 134, no. 1, pp. 235–256, 2006.

[7] T. Bodnar and W. Schmid, “A test for the weights of the global mini-
mum variance portfolio in an elliptical model,” Metrika, vol. 67, no. 2,
pp. 127–143, 2008.

[8] F. Rubio, X. Mestre, and D. P. Palomar, “Performance analysis and optimal
selection of large minimum variance portfolios under estimation risk,”
IEEE J. Sel. Topics Signal Process., vol. 6, no. 4, pp. 337–350, Aug. 2012.

[9] L. Yang, R. Couillet, and M. R. McKay, “A robust statistics approach to
minimum variance portfolio optimization,” IEEE Trans. Signal Process.,
vol. 63, no. 24, pp. 6684–6697, Dec. 2015.

[10] T. Bodnar, N. Parolya, and W. Schmid, “Estimation of the global minimum
variance portfolio in high dimensions,” Eur. J. Oper. Res., vol. 266, no. 1,
pp. 371–390, 2018.

[11] T. Ballal, A. S. Abdelrahman, A. H. Muqaibel, and T. Y. Al-Naffouri, “An
adaptive regularization approach to portfolio optimization,” in Proc. IEEE
Int. Conf. Acoust., Speech Signal Process., 2021, pp. 5175–5179.

[12] T. Bodnar, Y. Okhrin, and N. Parolya, “Optimal shrinkage-based portfolio
selection in high dimensions,” J. Bus. Econ. Statist., vol. 41, no. 1,
pp. 140–156, 2023.

[13] Z. Bai and J. W. Silverstein, Spectral Analysis of Large Dimensional
Random Matrices. New York, NY, USA: Springer, 2010.

[14] J. Fan, J. Zhang, and K. Yu, “Vast portfolio selection with gross-exposure
constraints,” J. Amer. Stat. Assoc., vol. 107, no. 498, pp. 592–606,
2012.

[15] N. Hautsch, L. M. Kyj, and P. Malec, “Do high-frequency data improve
high-dimensional portfolio allocations?,” J. Appl. Econometrics, vol. 30,
pp. 263–290, 2015.

[16] M. Ao, L. Yingying, and X. Zheng, “Approaching mean-variance ef-
ficiency for large portfolios,” Rev. Financial Stud., vol. 32, no. 7,
pp. 2890–2919, 2019.

[17] R. Kan, X. Wang, and X. Zheng, “In-sample and out-of-sample sharpe
ratios of multi-factor asset pricing models,” Mar. 20, 2020. [Online].
Available: http://dx.doi.org/10.2139/ssrn.3454628

[18] T. Bodnar, H. Dette, N. Parolya, and E. Thorsén, “Sampling distributions of
optimal portfolio weights and characteristics in low and large dimensions,”
Random Matrices: Theory Appl., vol. 11, 2022, Art. no. 2250008.

[19] T. T. Cai, J. Hu, Y. Li, and X. Zheng, “High-dimensional minimum vari-
ance portfolio estimation based on high-frequency data,” J. Econometrics,
vol. 214, no. 2, pp. 482–494, 2020.

[20] Y. Ding, Y. Li, and X. Zheng, “High dimensional minimum variance
portfolio estimation under statistical factor models,” J. Econometrics,
vol. 222, no. 1, pp. 502–515, 2021.

[21] C. Stein, “Inadmissibility of the usual estimator for the mean of a mul-
tivariate normal distribution,” in Proc. 3rd Berkeley Symp. Math. Statist.
Probability, Volume 1: Contributions Theory Statist., 1956, pp. 197–206.
[Online]. Available: https://projecteuclid.org/euclid.bsmsp/1200501656

[22] D. Chételat and M. T. Wells, “Improved multivariate normal mean esti-
mation with unknown covariance when p is greater than n,” Ann. Statist.,
vol. 40, pp. 3137–3160, 2012.

[23] C. Wang, T. Tong, L. Cao, and B. Miao, “Non-parametric shrinkage
mean estimation for quadratic loss functions with unknown covariance
matrices,” J. Multivariate Anal., vol. 125, pp. 222–232, 2014.

Authorized licensed use limited to: TU Delft Library. Downloaded on May 01,2023 at 15:09:44 UTC from IEEE Xplore.  Restrictions apply. 

http://dx.doi.org/10.2139/ssrn.3454628
https://projecteuclid.org/euclid.bsmsp/1200501656


BODNAR et al.: DYNAMIC SHRINKAGE ESTIMATION OF THE HIGH-DIMENSIONAL MINIMUM-VARIANCE PORTFOLIO 1349

[24] T. Bodnar, O. Okhrin, and N. Parolya, “Optimal shrinkage estimator for
high-dimensional mean vector,” J. Multivariate Anal., vol. 170, pp. 63–79,
2019.

[25] O. Ledoit and M. Wolf, “A well-conditioned estimator for large-
dimensional covariance matrices,” J. Multivariate Anal., vol. 88,
pp. 365–411, 2004.

[26] O. Ledoit and M. Wolf, “Nonlinear shrinkage estimation of large-
dimensional covariance matrices,” Ann. Statist., vol. 40, pp. 1024–1060,
2012.

[27] T. Bodnar, A. K. Gupta, and N. Parolya, “On the strong convergence of
the optimal linear shrinkage estimator for large dimensional covariance
matrix,” J. Multivariate Anal., vol. 132, pp. 215–228, 2014.

[28] C. Wang, G. Pan, T. Tong, and L. Zhu, “Shrinkage estimation of large
dimensional precision matrix using random matrix theory,” Statistica
Sinica, vol. 25, pp. 993–1008, 2015.

[29] T. Bodnar, A. K. Gupta, and N. Parolya, “Direct shrinkage estimation
of large dimensional precision matrix,” J. Multivariate Anal., vol. 146,
pp. 223–236, 2016.

[30] V. Golosnoy and Y. Okhrin, “Multivariate shrinkage for optimal portfolio
weights,” Eur. J. Finance, vol. 13, no. 5, pp. 441–458, 2007.

[31] G. Frahm and C. Memmel, “Dominating estimators for minimum-variance
portfolios,” J. Econometrics, vol. 159, pp. 289–302, 2010.

[32] O. Ledoit and M. Wolf, “Nonlinear shrinkage of the covariance matrix for
portfolio selection: Markovitz meets Goldilocks,” Rev. Financial Stud.,
vol. 30, no. 12, pp. 4349–4388, 2017.

[33] D. E. Tyler, “A distribution-free M-estimator of multivariate scatter,” Ann.
Statist., vol. 15, pp. 234–251, 1987.

[34] R. Couillet and M. McKay, “Large dimensional analysis and optimization
of robust shrinkage covariance matrix estimators,” J. Multivariate Anal.,
vol. 131, pp. 99–120, 2014.

[35] Y. Sun, P. Babu, and D. P. Palomar, “Regularized Tyler’s scatter estimator:
Existence, uniqueness, and algorithms,” IEEE Trans. Signal Process.,
vol. 62, no. 19, pp. 5143–5156, Oct. 2014.

[36] R. Couillet, F. Pascal, and J. W. Silverstein, “The random matrix regime
of Maronna’s M-estimator with elliptically distributed samples,” J. Multi-
variate Anal., vol. 139, pp. 56–78, 2015.

[37] A. Kammoun, R. Couillet, F. Pascal, and M.-S. Alouini, “Convergence and
fluctuations of regularized Tyler estimators,” IEEE Trans. Signal Process.,
vol. 64, no. 4, pp. 1048–1060, Feb. 2016.

[38] K. Elkhalil, A. Kammoun, R. Couillet, T. Y. Al-Naffouri, and M.-S.
Alouini, “Asymptotic performance of regularized quadratic discriminant
analysis based classifiers,” in Proc. IEEE 27th Int. Workshop Mach. Learn.
Signal Process., 2017, pp. 1–6.

[39] T. Bodnar, S. Dmytriv, N. Parolya, and W. Schmid, “Tests for the weights
of the global minimum variance portfolio in a high-dimensional setting,”
IEEE Trans. Signal Process., vol. 67, no. 17, pp. 4479–4493, Sep. 2019.

[40] T. Bodnar, S. Dmytriv, Y. Okhrin, N. Parolya, and W. Schmid, “Statistical
inference for the expected utility portfolio in high dimensions,” IEEE
Trans. Signal Process., vol. 69, pp. 1–14, 2021.

[41] O. Bodnar, “Sequential surveillance of the tangency portfolio weights,”
Int. J. Theor. Appl. Finance, vol. 12, no. 06, pp. 797–810, 2009.

[42] V. Golosnoy, B. Gribisch, and M. I. Seifert, “Exponential smoothing of
realized portfolio weights,” J. Empirical Finance, vol. 53, pp. 222–237,
2019.

[43] J. Fan, Y. Fan, and J. Lv, “High dimensional covariance matrix estimation
using a factor model,” J. Econometrics, vol. 147, no. 1, pp. 186–197, 2008.

[44] J. Fan, Y. Liao, and M. Mincheva, “Large covariance estimation by
thresholding principal orthogonal complements,” J. Roy. Stat. Soc. Ser.
B, Stat. Methodol., vol. 75, no. 4, pp. 603–680, 2013.

[45] T. Bodnar, N. Parolya, and E. Thorsén, “DOSPortfolio: Dynamic optimal
shrinkage portfolio,” R package version 0.1.0., 2021. [Online]. Available:
https://CRAN.R-project.org/package=DOSPortfolio

[46] S. Verdú, Multiuser Detection. New York, NY, USA: Cambridge Univ.
Press, 1998.

[47] H. L. Van Trees, Optimum Array Processing. Hoboken, NJ, USA: Wiley,
2002.

[48] L. Yang, M. R. McKay, and R. Couillet, “High-dimensional MVDR beam-
forming: Optimized solutions based on spiked random matrix models,”
IEEE Trans. Signal Process., vol. 66, no. 7, pp. 1933–1947, Apr. 2018.

[49] J. Li, P. Stoica, and Z. Wang, “Doubly constrained robust Capon beam-
former,” IEEE Trans. Signal Process., vol. 52, no. 9, pp. 2407–2423,
Sep. 2004.

[50] Y. Feng and D. P. Palomar, A Signal Processing Perspective on Financial
Engineering. vol. 9. Delft, the Netherlands: Now Publishers Inc., 2016.

[51] R. D. Cook and L. Forzani, “On the mean and variance of the general-
ized inverse of a singular Wishart matrix,” Electron. J. Statist., vol. 5,
pp. 146–158, 2011.

[52] T. Bodnar and N. Parolya, “Spectral analysis of large reflexive generalized
inverse and Moore-Penrose inverse matrices,” in Recent Developments in
Multivariate and Random Matrix Analysis. Berlin, Germany: Springer,
2020, pp. 1–16.

[53] R. A. Maronna, “Robust M-estimators of multivariate location and scatter,”
Ann. Statist., vol. 4, pp. 51–67, 1976.

[54] O. Ledoit and M. Wolf, “Analytical nonlinear shrinkage of large-
dimensional covariance matrices,” Ann. Statist., vol. 48, no. 5,
pp. 3043–3065, 2020, doi: 10.1214/19-AOS1921.

[55] T. Bollerslev, “Modelling the coherence in short-run nominal exchange
rates: A multivariate generalized arch model,” Rev. Econ. Statist., vol. 72,
no. 3, pp. 498–505, 1990.

Taras Bodnar received the M.S. degree in mathemat-
ics (Hons.) from the Ivan Franko National University
of Lviv, Lviv, Ukraine, in 2001, the Ph.D. degree
(summa cum laude) in economics and statistics from
the European University Viadrina, Frankfurt, Ger-
many in 2004 and the Ph.D. degree in mathematics
and physics from the Taras Shevchenko National Uni-
versity of Kyiv, Kyiv, Ukraine in 2009. He is currently
a Professor of mathematical statistics with the De-
partment of Mathematics, the Stockholm University,
Stockholm, Sweden. From March 2005 to August

2012, he was a Research Associate with the Department of Statistics, European
University Viadrina. From September 2012 to November 2014, he was a Re-
search Associate with the Department of Mathematics, Humboldt-University of
Berlin, Berlin, Germany. His research interests include high-dimensional statis-
tics, random matrix theory, Bayesian statistics, statistical methods in finance
among others. He is a Member of the Editorial Boards ofJournal of Multivariate
Analysis and Theory of Probability and Mathematical Statistics. In November
2008, he was the recipient of the Young Scientists Award of the Brandenburg
state for an outstanding work in the Humanities or Social Sciences.

Nestor Parolya received the B.S. and M.S. degrees
(both with Hons.) in mathematics and statistics from
the Ivan Franko National University of Lviv, Lviv,
Ukraine, in 2009 and 2010, respectively, and the Ph.D.
degree (summa cum laude) in economics/ statistics
from the European University Viadrina, Frankfurt
(Oder), Germany. From September 2013 to April
2014, he was doing his Postdoc with the Depart-
ment of Statistics and Econometrics, Ruhr-University
Bochum, and thereafter during 2014–2019 was ap-
pointed as an Assistant Professor (non-tenured) for

financial econometrics with Leibniz University Hannover, Institute of Statistics.
Since April 2019, he has been Assistant Professor in statistics (tenured) with
Delft Institute of Applied Mathematics, Delft University of Technology, Delft,
the Netherlands. His research interest include highdimensional statistics, large
dimensional random matrix theory, statistical/mathematical finance, financial
engineering and operations research. In September 2019, he was the recipient
of the Wolfgang- Wetzel-Preis from the German Statistical Society for an
outstanding contribution to the statistical methodology and its application.

Erik Thorsén received the M.S degree and the Ph.D.
degree in mathematical statistics from Stockholm
University, Stockholm, Sweden, in 2016 and 2022,
respectively. His Ph.D. thesis won the Cramér award
for best Ph.D thesis in mathematics and statistics. His
research interests include high-dimensional statistics,
optimal portfolio theory, and random matrix theory
and their application in statistical learning.

Authorized licensed use limited to: TU Delft Library. Downloaded on May 01,2023 at 15:09:44 UTC from IEEE Xplore.  Restrictions apply. 

https://CRAN.R-project.org/package=DOSPortfolio
https://dx.doi.org/10.1214/19-AOS1921


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


