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A Wavelet-Based Approach to FRF Identification
From Incomplete Data

Nic Dirkx , Koen Tiels , Member, IEEE, and Tom Oomen , Senior Member, IEEE

Abstract— Frequency response function (FRF) estimation from
measured data is an essential step in the design, control,
and analysis of complex dynamical systems, including thermal
and motion systems. Especially for systems that require long
measurement time, missing samples in the data record, e.g.,
due to measurement interruptions, often occur. The aim of this
article is to achieve accurate identification of nonparametric
FRF models of periodically excited systems from noisy output
measurements with missing samples. An identification framework
is established that exploits a wavelet-based transform to
separate the effect of the missing samples in the time domain
from the system characteristics in tre frequency domain. The
framework encompasses both a time-invariant and a time-varying
wavelet-based estimator, which provides different mechanisms
to address the missing samples. Experimental results from a
thermodynamical system confirm that the estimators enable
accurate identification.

Index Terms— Frequency response, linear systems, missing
data, system identification, wavelet transforms.

I. INTRODUCTION

ACCURATE nonparametric frequency response function
(FRF) identification is a key step toward high-

performance control of complex systems. FRF identification,
as opposed to first principles modeling, is considered a
fast and inexpensive approach to obtain thorough insight
into the system dynamics while requiring only mild
assumptions on the actual system [1]. FRFs are used in
many application domains, including flexible mechanical
systems [2] and thermal systems [3], with purposes ranging
from controller synthesis [4], diagnostics [5], and parametric
identification [6].

The mitigation of leakage errors, arising from the
time–frequency domain transformation of finite-length data
records, is an important aspect in nonparametric identification.
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As recognized in, e.g., [7] and [8], leakage errors originate
from a transient phenomenon, which has smooth frequency
characteristics that depend on the system dynamics. This is
exploited in the local polynomial method (LPM) [9], where
the transient is approximated by a polynomial function in a
local frequency-domain window. Extensions to local rational
approximation functions are developed in the local rational
method (LRM) [10]. The LPM has shown to be particularly
effective for the identification of slow dynamic systems that
exhibit significant transient behavior [11].

In many practical applications, and especially for slow
dynamic systems that require long measurement time,
measurements cannot be performed without interruptions,
which leads to missing samples in the data record. Missing
samples may also occur due to communication link or
sensor failure [12]. Locally missing samples in the time
domain introduce global and nonsmooth effects in the
frequency domain [13], which complicates the use of standard
identification algorithms, including the LPM.

Several techniques have been developed to deal with the
missing samples in nonparametric identification. In [14],
a signal reconstruction approach is presented in which an
additional transient is estimated for each data gap, but the
application to FRF estimation is not considered. In [15],
the classical LPM is extended to locally estimate the FRF
parameters together with additional transient parameters for
each data gap. The estimation of additional variables has a
negative impact on the locality of the estimation problem,
leading to a performance deterioration for an increasing
number of data gaps.

Other approaches aim at reconstructing the missing samples.
In [16], a nonparametric iterative spectrum reconstruction
scheme is presented. In [17], reconstruction is based on a
statistical approach. Neither of the approaches are applied for
FRF identification. In [13] and [18], the LPM is extended
to estimate frequency-domain system parameters along with
the missing samples. Due to the global nature of the
time–frequency domain transform, errors in the estimates
of the missing samples induce errors in the frequency-
domain system parameters at all frequencies. This effect
is amplified for an increasing number of missing samples
due to an increasing correlation between the estimated
parameters.

Another line of research has focused on the development
of time-dependent frequency analysis techniques for transient
signals. In particular, the short-time Fourier transform [19]
and the wavelet transform [20], [21] are widely used in,
e.g., signal processing [22], finite-element methods [23], and
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image compression [24], but have not been applied for FRF
identification from incomplete data.

Although important developments have been made in
FRF identification from incomplete data, current approaches
involve the estimation of an increasing number of auxiliary
variables for an increasing amount of missing data. The
aim of this article is to present a nonparametric FRF
identification framework for periodically excited systems that
avoids the estimation of additional variables and the associated
drawbacks.

The main contributions of this article are given as follows.
1) A generalized LPM framework for FRF estimation from

incomplete data that avoids the estimation of additional
variables by separating the effect of the missing samples
in the time-domain system from the frequency-domain
system characteristics. The framework encompasses the
following:

a) a time-invariant wavelet-based estimator (TIE);
b) a time-varying wavelet-based estimator (TVE).

2) An analysis of bias and variance errors for both
estimators.

3) A performance comparison based on experimental
results from a thermodynamic system.

Preliminary results related to the TIE in contribution 1-a) are
presented in [25]. In this current article, the TIE is further
developed toward a generalized framework in which the TIE
is recovered as a specialization.

This article is organized as follows. In Section II, the
problem is formulated. Key principles of wavelet-based
convolution and the time–frequency plane are discussed
in view of the missing samples problem in Section III.
In Section IV, the wavelet-based identification framework
is presented, which extends the existing frequency-domain
LPM to a time–frequency plane approach. Here, the TIE
and TVE are presented as specializations within the general
framework, and their bias and variance properties are
analyzed. Experimental results are presented in Section V, and
conclusions are drawn in Section VI.

Notations and Definitions: The discrete Fourier transform
(DFT) of a sequence x ∈ RN at the kth frequency line is

X(k) =
1

√
N

N−1∑
n=0

x[n]e−1i2πnk/N . (1)

The inverse DFT (IDFT) is given by

xN [n] =
1

√
N

N−1∑
k=0

X(k)e1i2πnk/N (2)

where xN is the N -periodic extension of x and xN [n ±αN ] =

x[n], ∀α ∈ N, n = [0, . . . , N − 1]. Operations X = Fx
and x = HX denote the DFT and IDFT, respectively, where
F and H denote the DFT and IDFT matrices [26, Ch. 2],
respectively, satisfying FH = HF = I . Operator ⊙ denotes
the elementwise product, satisfying Y ⊙ X = diag(Y )X
for a vector Y . Operation X† denotes the Moore–Penrose
inverse, i.e., X†

= (X H X)−1 X H . For notational convenience,
zero-based numbering is applied throughout. For X ∈ RN ,
operation [X ]q selects the q = 0, 1, . . . , N − 1 element,

whereas [X ]q,q selects the qth diagonal entry of a matrix
X ∈ RN×N . The cardinality of a set A is denoted as card(A).

II. PROBLEM FORMULATION

A. Missing Samples Identification Problem

Consider the identification setup in Fig. 1, governed by the
discrete-time input–output relation at the nth sample

y[n] = {go ∗ u}[n] + νy[n]. (3)

Here, go is the impulse response of the to-be-identified single-
input–single-output (SISO) linear time-invariant (LTI) system
Go. Operator ∗ denotes the convolution. Signal u ∈ RN̄

with N̄ = N P is the N -periodic input, for a number of
P ≥ 2 periods with sample size N . Furthermore, y ∈ RN̄

is the true output signal, corrupted by measurement noise
νy = {ho ∗ e}, where ho is the impulse response of the
monic noise dynamics Ho and e is a zero-mean white noise
realization with variance λ.

Using the DFT, the exact expression of (3) in the frequency
domain is [27]

Y (k) = G(�k)U (k)+ TG(�k)+ NY (k) (4)

where Y and U denote the DFT of y and u, respectively.
The index k = 0, . . . , N̄ − 1 points to the frequency k fs/(N̄ )
with fs the sampling frequency and �k = e−1i ·2πk/(N̄ ). Term
G is the FRF of the system and TG is the transient term
due to the difference between the initial and final system
conditions [27]. Term NY is the DFT of νy and is governed by
NY (k) = NYst(k) + TH (�k), where NYst = H(�k)E(k) is the
stationary part of the noise with H(�k) the FRF of the noise,
E is the DFT of e, and TH is the transient term due to the
difference between the initial and final conditions of the noise
dynamics. The noise converges to a circular complex normal
distribution NYst

d
−→ N (0,CY ) for N̄ → ∞ [6].

Suppose that the output signal y is measured with
interruptions, leading to a number of nm missing samples in
its measurement ym. Assuming that the time indices of these
samples are known, the measurement can be expressed as
ym

= W m y, where[
W m]

n,n =

{
1, if sample n is available
0, if sample n is missing

(5)

with n = 0, . . . , N̄ − 1. Also, see Fig. 1. The DFT of ym is
expressed as Y m

= T mY , where

T m
= FW mH. (6)

Missing samples significantly complicate the identification
of G. In particular, due to coupling introduced by matrix
T m when samples are missing, all frequency lines in Y m

contain data of all the missing samples. Thus, the locally
missing samples in the time domain have a global impact on
the frequency domain. Consequently, traditional nonparametric
frequency-domain identification methods that rely on the
frequency-separation principle [28], including the LPM [27],
no longer provide accurate solutions. In this article, a method
is presented for accurate FRF identification when samples are
missing.
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Fig. 1. Identification setup with plant dynamics Go, noise dynamics Ho, and
measurement ym with missing samples, reflected by matrix W m, see (5).

B. Key Idea: Estimation in the Time–Frequency Plane

The main limitation in traditional FRF identification
techniques originates from the fact that the DFT is a
global transform, making it unsuitable for analysis of signals
that exhibit local time-domain phenomena such as missing
samples.

The key idea of the identification method presented in
this article is to employ a local wavelet-based transform [21]
rather than the global DFT transform. Contrary to the DFT,
the wavelet-based transform provides frequency information
that is time-localized, allowing data to be represented in the
2-D time–frequency plane. Exploiting the extra dimension, the
effect of the missing samples can be localized in the time
dimension and separated from the system response in the
frequency dimension.

In Section III, the wavelet-based transform to the
time–frequency plane is introduced, which is exploited for the
formulation of wavelet-based estimators in Section IV.

III. MISSING SAMPLES IN THE TIME–FREQUENCY PLANE

A. Wavelet-Based Transformation

The key step in separating the perturbation from the missing
samples from the FRF of G in (4) is the transformation of
the data ym to the time–frequency plane. This is realized via
convolution with a set of short-time oscillations at the j th
frequency line, referred to as the wavelet functions ψ j .

Definition 1 (Wavelet Convolution): Consider a wavelet
function ψ j ∈ CN̄ with center frequency j . Let ym

N̄ be
the N̄ -periodic extension of signal ym

∈ RN̄ . The circular
convolution zm

j ∈ CN̄ of the signal ym with the wavelet ψ j at
sample n = [0, . . . , N̄ − 1] is defined as

zm
j [n] :=

{
ym ⊛ ψ j

}
[n] :=

1
√

N̄

N̄−1∑
m=0

ψ j [m] · ym
N̄ [n − m]. (7)

By the convolution theorem, the transform zm
j in (7) is

equivalently expressed as the frequency-domain operation

zm
j = H

(
9 j ⊙ Y m)

(8)

where 9 j is the DFT of ψ j .
Expression (7) shows that zm

j describes the characteristics
of ym in the time domain, whereas (8) shows that 9 j acts as
a frequency-domain windowing function upon Y m. Hence, zm

j
reflects the time-domain behavior of the frequency components
of Y m within the selected window, i.e., zm

j provides both time-
and frequency-localized information of Y m.

The transform zm
j is affected by the missing samples in ym.

The key idea is to confine this effect in zm
j by selecting a

suitable wavelet function, which is considered next.

B. Wavelet Selection

The goal of using the wavelet-based transformation in
Definition 1 is to obtain a time- and frequency-domain
localized representation of the data ym, in which the effect
of the missing samples can be confined. As expressed by
the Heisenberg–Gabor uncertainty principle, see, e.g., [29],
there are fundamental limitations to the localization accuracy
that can simultaneously be achieved in the two domains.
In particular, it is not possible to have a wavelet with finite
support in the time domain that is also band limited in the
frequency domain. Wavelet selection, therefore, involves a
tradeoff, and its choice is typically problem-specific.

In this article, a class of wavelets is considered that is
particularly suitable for the confinement of missing samples.

Definition 2 (Wavelet Selection): Let j ∈ {N : j ∈ [0,
N̄ − 1]}, and let δ ∈ {R : N/(2δ) ∈ N, δP ∈ N} be a design
variable. Then, the wavelet ψ [p]

j ∈ CN̄ , p ∈ N is defined as

ψ
[p]
j [m] = c[p]h[p][m] · e1i ·2π j

N̄
m
, m = 0, . . . , N̄ − 1.

Here, h[p]
= H(Fh)p, with superscript p the elementwise

exponent. Function h[p] constitutes the pth order cardinal
B-spline [30] when p > 0, with h the characteristic function

h[m] =

{
1, if m ≤ N/δ
0, otherwise.

The parameter c[p]
= (δ(P/N )1/2)p is a scaling constant.

The wavelet function ψ [p]

j in Definition 2 is composed of a
complex exponential multiplied by an envelope h[p] based on
a pth order cardinal B-spline. The p-parameter controls the
smoothness of the envelope and hereby the wavelet’s time-
and frequency-domain localization properties. In the frequency
domain, the DFT 9

[p]

j is characterized by a Dirichlet kernel,
also referred to as aliased sinc function [31]. This gives rise
to the key properties in the following.

Lemma 1 (Wavelet Properties): The wavelet function ψ [p]

j
in Definition 2 satisfies the following properties.

1) 9 [p]

j equals 1 at the j th frequency line.

2) 9 [p]

j equals zero at frequency lines j ±αδP, α, p ∈ N+.

3) ψ [p]

j has finite time-domain support of length

l [p]

ψ = pN/δ − p + 1, i.e., ψ [p]

j [n] = 0 for n ≥ l [p]

ψ .
4) |9

[p+1]

j | < |9
[p]

j | at all but the j th and j ± αδth
frequency lines.

The proof is presented in the Appendix. The wavelet
properties are further illustrated in Example 1.

Example 1: An example of ψ [2]

20 and ψ
[3]

20 is shown in
Fig. 2, where N = 500, P = 1, and δ = 5. The wavelets
enable approximately extracting local frequency information
around the j th frequency line within a local time window of
l [2]

ψ = 199 and l [3]

ψ = 298 samples, see properties 1) and 3) in
Definition 2. Increasing p improves the frequency-domain
localization accuracy, at the cost of time-domain accuracy, see
properties 3) and 4).

Remark 1: The transform (7) for ψ
[p]

j as defined in
Definition 2 can be reformulated in terms of the discrete-time
short-time Fourier transform [21]. The explicit expression in
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Fig. 2. Wavelets ψ [2]

20 ( ) and ψ [3]

20 ( ) in the time (top) and frequency
domains (bottom). The wavelets extract frequency information around the
frequency line 20, within the finite wavelet duration l[2]

ψ = 199, l[3]

ψ = 298.

terms of a wavelet function serves the interpretation in view
of the missing samples problem.

The compactness of the support, as expressed by property 3)
in Lemma 1, is crucial for confining the effect of the missing
samples, which is illustrated next.

C. Missing Samples in the Time–Frequency Plane

Since the wavelets in Definition 2 have compact support
in the time domain, the effect of missing samples in the
data ym can be confined in the transform zm

j in (7). Let
wm ∈ Nnm contain the indices of the nm missing samples.
Then, the samples v in the transform zm

j [v] that are unaffected
by the missing samples are given by v ∈ D[p], where
D[p]

=
⋂nm

i=1D
[p]

i and

D[p]
i =

{
v ∈ N : max

(
wm[i] − N̄ + l[p]

ψ , 0
)

≤ v < wm[i]

or min
(
wm[i] + l[p]

ψ , N̄
)

≤ v < N̄
}
. (9)

Likewise, the indices v of the samples zm
j [v] that are affected

by the missing samples are contained in the set

A[p] =

{
v ∈

[
0, N̄ − 1

]
\ D[p]

}
. (10)

The set D[p] in (9) depends on the length of the wavelet
support l [p]

ψ and on the number and pattern of the missing
samples. The implications on the estimator are further
discussed in Section IV.

Clearly, the sets A[p] and D[p] are disjoint sets, which
enables separating the affected samples from the unaffected
samples. This concept is illustrated in Example 2.

Example 2: Consider the system G with FRF, as shown
in ( ) in Fig. 3. The system is periodically excited with
P = 5 and N = 1200 at frequency lines 10, 20, . . . , 2990.
The excitation spectral magnitude has a uniform frequency
distribution. A noiseless measurement is performed, where
samples 1200, . . . , 1800 and 3900, . . . , 4000 are missing.
The result of wavelet convolution zm

j with wavelets ψ
[2]

j ,

j = 10, 30, . . . , 2990 is shown in Fig. 3.
The main result is that the transforms zm

j shown in
Fig. 3(b) provide a time–frequency representation of the

combination of the system G and the transient TG , in which
the part of zm

j associated with the set D[p] (in ) is fully
unaffected by the missing samples. In Section IV, a wavelet-
based estimator is presented, which exploits these unaffected
data to accurately identify the two individual components
G and TG . Furthermore, an estimator is presented, which
additionally extracts information from the affected samples
in A[p] to reduce variance errors. These estimators constitute
contributions 1-a) and 1-b).

IV. WAVELET-BASED LPM

In this section, the wavelet-based estimation algorithms
are presented for the accurate FRF identification from
measurements with missing samples. The methods extend
the existing frequency-domain LPM [27], [32] to estimators
in the time–frequency plane. First, a recapitulation of the
classical LPM approach is provided in Section IV-A, which
provides the mathematical notation and foundation for the
extended estimator presented in Section IV-B. This extension
encompasses both a TIE and a TVE, which are presented in
Sections IV-C and IV-D, respectively. The two estimators are
unified in a single framework, as presented in Section IV-E.
All proofs are presented in the Appendix.

A. Classical LPM and Its Limitations

The classical LPM [32] provides an effective method for
FRF identification for complete data but does not produce
accurate estimates when samples are missing. In this section,
the classical LPM for periodic input signals is recapitulated
and its limitations are discussed. The LPM forms the basis for
the wavelet-based estimators presented in this article, which
address these limitations.

Consider input–output relation (4). For periodic inputs
u ∈ RN̄ , the DFT U ∈ CN̄ contains energy only at the
excited frequency (EF) lines k̄ = [k̄0, . . . , k̄ N̄−1], where k̄ j =

jγ P, j = 0, . . . , N̄ − 1, and N̄ = ⌊N/γ ⌋. User-defined
parameter γ ∈ N+ selects the sparsity of the EF lines in
the frequency grid. Due to the periodicity of u, the system
response G(�k)U (k) is zero at the nonexcited frequency
(NEF) lines k̄+q with q = 1, 2, . . . , γ P−1. This is visualized
in Fig. 4. Thus, the output (4) at the NEF lines reduces to

Y
(
k̄ j + q

)
= T

(
�k̄ j +q

)
+ NYst

(
k̄ j + q

)
(11)

where T = TG + TH combines the transient of the system
and the noise dynamics. The transient term T is a smooth
function of the frequency. It can be locally approximated by
the (R + 1)th order polynomials

T
(
�k̄ j +q

)
= T

(
�k̄ j

)
+

∑R
s=1 ts

(
k̄ j

)
qs

+Ok̄ j
(q) (12)

where Ok̄ j
(q) = (1/

√

N̄ )O((q/N̄ )R+1) is the remainder of
an (R + 1)th order Taylor series expansion around T (�k̄ j

),
see [27]. The polynomial approximation (12) is shown in
Fig. 4. At the EF lines, the output (4) is expressed as

Y
(
k̄ j

)
= G

(
�k̄ j

)
U

(
k̄
)
+ T

(
�k̄ j

)
+ NYst

(
k̄ j

)
. (13)
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Fig. 3. (a) Wavelet-based convolution of signal ym with a wavelet ψ [2]

j , j = 30, represented in the time domain (left column) and the frequency domain
(right column). Left top: signal ym ( ) with locally missing samples ( ). Left center: convolution is visualized as a translation over time of the wavelet ψ j
with respect to the signal ym, see (7). Left bottom: transforms zm

j = {ym ⊛ψ j } ( ) and z j = {y ⊛ψ j } in case of complete data ( ). The effect of the missing
samples in zm

j is confined within the yellow boxes, which is associated with the set A[p], see (10). The samples outside the boxes, associated with set D[p],
see (9), provide information of the system and the transient that is unaffected by the missing samples. Right top: DFT Y m ( ) and the DFT Y ( ). The
locally missing samples in the time domain affect the DFT Y m at all frequency lines, showing the global impact on missing samples in the frequency domain.
Right center: DFT magnitude |9 j | is largest at its central frequency line j = 30, enabling approximate frequency-domain localization around this line. Right
bottom: DFT Zm

j is dominated by the frequency content around the j th frequency line. (b) Transforms zm
j , j = 10, 30, . . . , 2990 provide a time–frequency

representation of the stationary response of the system G and the transient TG , in which the unaffected samples in D[p] ( ) are separated from the affected
samples in A[p] ( ) on the time axis, see (9) and (10).

Combining (11)–(13) enables expressing the output Y in the
local frequency window k̄ j + r , with

r =
[
−γ P + 1,−γ P + 2, . . . , γ P − 1

]T (14)

as the regression model

Y
(
k̄ j + r

)
= K k̄ j

(r)2k̄ j
+Ok̄ j

(r)+ NYst

(
k̄ j + r

)
. (15)

Here, 2k̄ j
collects the n2 = R+2 unknown plant and transient

parameters around the EF line k̄ j

2k̄ j
=

[
G

(
�k̄ j

)
T

(
�k̄ j

)
t1

(
k̄ j

)
· · · tR

(
k̄ j

) ]T
(16)

and the regressor K k̄ j
(r) is composed as

K k̄ j
(r) =

[
U

(
k̄ j + r

)
r0 r1

· · · r R
]
. (17)

Choosing the polynomial order R such that nr > n2 enables
estimating the parameters 2k̄ j

from the nr = 2(γ P − 1) + 1
frequency lines around the EF line k̄ j via the linear least-
squares minimization problem

2̂k̄ j
= arg min

2k̄ j
∈Cn2

∥∥∥Y
(
k̄ j + r

)
− K k̄ j

(r)2k̄ j

∥∥∥2

2
. (18)

Asymmetric frequency windows r may be chosen near the
boundaries, see [27].

The limitations of the LPM (18) in view of the missing
samples problem become apparent by observing that the
method, by exploiting local behavior, hinges on the frequency-
separation principle. In addition, through (12), it hinges
on smooth frequency-domain characteristics of the transient.
These properties no longer apply when missing samples

Fig. 4. Frequency-domain representation of response Y in (4) for NY = 0,
P = 3, and γ = 1. At the EF lines [1P, 2P, 3P], the response consists
of both the transient (gray arrows) and the periodic response (black arrows).
At the NEF lines, the response contains only transient contributions. The gray
line represents the local transient estimate based on the nr frequency lines
around the 2Pth EF line.

are present. In Section IV-B, the LPM is extended toward
a wavelet-based framework that addresses these limitations,
which constitutes contribution 1.

B. Wavelet-Based LPM for Handling Missing Data

In this section, the wavelet-based LPM estimator is
formulated for FRF identification in the presence of missing
samples, as part of contribution 1. The extension upon the
traditional LPM (18) is twofold. First, the local criteria (18) are
combined into a single global criterion to facilitate handling
the global effect of the missing samples. Second, a global
weighting matrix M̄ is introduced, which embeds the wavelet-
based transformation for a bank of wavelets.

Exploiting the local parametrization (15) of the classical
LPM, the global frequency-domain output Y is parametrized
exactly by the regression model

Y = K̄ 2̄+ Ō + NYst + Y1. (19)
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Here, the n2̄ = 2Ñn2 parameters are given by

2̄ =

 ℜ

([
2T

k̃0
· · · 2T

k̃ Ñ−1

]T
)

ℑ

([
2T

k̃0
· · · 2T

k̃ Ñ−1

]T
)

 ∈ Rn
2̄

where k̃ = [k̃0, . . . , k̃ Ñ−1] ⊂ k̄ is a yet to be chosen vector k̃
that selects the desired frequency lines and 2k̃ j

is of the form
(16). The regressor K̄ is defined as

K̄ =


01×

1
2 n

2̄
01×

1
2 n

2̄

K̃ i · K̃
01×

1
2 n

2̄
01×

1
2 n

2̄

Iconj
(
K̃

)
−i · Iconj

(
K̃

)
 ∈ CN̄×n

2̄ . (20)

Here, the zero rows coincide with the zero and Nyquist
frequencies, matrix I is a ((1/2)N̄ −1)-sized exchange matrix,
and K̃ ∈ C(1/2)N̄−1×(1/2)n

2̄ is composed of the local matrices
K k̃ j

(r j ) of the form (17) as[
K̃

]
k̃ j +r j −1,c j

= K k̃ j

(
r j

)
(21)

with column index c j = [ jn2, jn2+1, . . . , ( j+1)n2−1]. The
term Ō ∈ CN̄ in (19) consists of the local remainders O in (12)
and is vertically stacked accordingly to (20) and (21). The term
Y1 ∈ CN̄ in (19) consists of the deterministic contributions
in Y that lie outside the support of K̄ and Ō such that
[Y1]k̃ j +r j

= 0, j = 0, 1, . . . , Ñ − 1.
Similar to (19), the frequency-domain output Y m with

missing samples is parameterized as the regression model

Y m
= K̄ 2̄+ Ō + NYst + Y1 +

(
Y m

− Y
)
. (22)

The term (Y m
−Y ) forms an omitted variable in the inference

of the parameters 2̄ from the incomplete data (22). The key
point of the wavelet-based LPM is the use of the weighting
matrix M̄ in the regression problem

ˆ̄2 = arg min
2̄∈Rn

2̄

∥∥M̄
(
Y m

− K̄ 2̄
)∥∥2

2 (23)

in which M̄ incorporates a bank of wavelets to eliminate the
perturbation term (Y m

− Y ). Specifically, M̄ is selected as

M̄ =

[
MT

q̃0
· · · MT

q̃ Ñq −1

]T
(24)

where

Mq̃ j
= WHdiag

(
9

[p]
q̃ j

)
FRH (25)

with q̃ = [q̃0, . . . , q̃ Ñ q−1] ⊂ k̄. Here, W is a diagonal
weighting matrix, 9q̃ j

represents the DFT of the wavelet
function ψq̃ j

defined in Definition 2, and R is a to-be-
chosen matrix. The specific selection and interpretation of
these parameters are presented later.

The considered estimator associated with (23) is given by

ˆ̄2 =
(
ℜ

(
K̄ H M̄ H M̄ K̄

))−1
ℜ

(
K̄ H M̄ H M̄Y m)

. (26)

The following result provides the conditions for M̄ under
which the estimate ˆ̄2 is exact.

Theorem 1 (Exact Estimation): Assume that the noise term
NYst and the remainder Ō in (22) are zero. Then, the estimate
ˆ̄2 to (26) is exact, i.e., ˆ̄2 = 2̄, if for j = 0, 1, . . . , Ñ − 1.

1) Mq̃ j
(Y − Y m) = 0.

2) rank(M̄ K̄ ) = n2̄.
3) Mq̃ j

Y1 = 0.
Conditions 1)–3) in Theorem 1 formulate the essential

requirements for establishing an exact estimator in the sense
of Theorem 1. Conditions 1) and 3) impose that the solution
is invariant to the effects of the missing samples and the
contribution Y1, respectively, i.e., M̄ may be regarded as
acting as an instrumental variable [33, Ch. 8] to these
variables. Condition 2) ensures that the solution ˆ̄2 is unique.

The conditions in Theorem 1 impose specific demands on
the selection of the parameters {W, 9,R}. In addition, this
parameter selection is crucial in the tradeoff between variance
and bias errors. In Sections IV-C and IV-D, it is shown that the
estimator (26) encompasses both a TIE and a TVE, through
the choice of the matrix M̄ . The TIE and TVE estimators
provide different mechanisms to achieve conditions 1)–3) in
Theorem 1 and to deal with bias and variance errors.

C. Time-Invariant Wavelet-Based Estimator

The main idea of the TIE is to identify the FRF in the
time–frequency plane from the data associated with set D[p]

in (9). In this section, the method is formalized, and its
properties in view of bias and variance errors are analyzed.
This section constitutes contributions 1-a) and 2.

1) Estimator Formulation: The TIE arises from the
generalized estimator (26) by setting R = I in (25), by which
Mq̃ j

reduces to

Mq̃ j
= WHdiag

(
9

[p]
q̃ j

)
. (27)

Note that Mq̃ j
Y m reflects the time–frequency plane transfor-

mation (8) with the additional time weight W .
To obtain an exact estimator (23) in the sense of Theorem 1,

the parameters W and 9q̃ j
in (27) must be selected such

that conditions 1)–3) in Theorem 1 are satisfied. To satisfy
condition 1), the weighting matrix W is chosen such that the
samples of zm

q̃ j
that are affected by the missing samples in ym

are discarded, to retain only the unaffected samples collected
in set D[p] in (9), i.e., W = WD, where

[
WD]

v,v
=

{
1, if v ∈ D[p]

0, otherwise
(28)

for v = 0, . . . , N̄ − 1.
By virtue of (28), the cardinality of the set D[p]

upper bounds the rank of the weighted regressor, i.e.,
rank(M̄ K̄ ) ≤ card(D[p]). Hence, card(D[p]) plays an
important role in view of the rank condition 2) in Theorem 1.
Since card(D[p]) depends on the support of the wavelet
functions ψq̃ j

, see (9), sensible selection of the wavelet
parameters is crucial. In the next section, a selection of
wavelet and LPM parameters is presented, which addresses
conditions 2) and 3) in Theorem 1.
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TABLE I
SELECTION OF PARAMETERS FOR IDENTIFICATION

AT THE ODD FREQUENCY LINES

2) Selection of LPM Window and Wavelet Parameters: In
this section, the selection of the LPM parameters {k̃, r} in
(21) and wavelet parameters {q̃, δ, p} in (25) is presented,
which leads to satisfaction of condition 3) in Theorem 1
while maximizing the cardinality of the set D[p] in favor
of condition 2). An overview of the parameters is provided
in Table I. The specific selection divides the identification
problem into two independent subproblems.

The first subproblem is aimed at estimating Ĝ at the odd
EF lines k̄odd = γ kodd P with kodd = [1, 3, . . . , (N/2γ ) − 1],
as shown in Fig. 5. For notational convenience, suppose that
N/(4γ ) ∈ N in the following. The LPM windows are centered
at the odd EF lines by setting k̃ = k̄odd, and r j = r for j =

0, . . . , Ñ −1, with r defined in (14). Likewise, the wavelets are
centered at q̃ = k̄odd. This enables extracting local information
around these lines while suppressing the contributions at other
frequency lines. In addition, by selecting δ = γ , the zeros of
9q̃ coincide with all EF lines outside the current local window
and with the zero and Nyquist frequencies (see Fig. 5).

The result of this selection is twofold. First, the regressor
K̄ in (20) is zero at the even lines [0, 2γ P, 4γ P, . . . ,
(N − γ )P]. Hence, Y1 in Theorem 1 can attain nonzero
values at these lines only. Since the wavelet DFT magnitude is
zero at precisely these even lines, condition 3) in Theorem 1
is satisfied. Second, separating the estimation at the odd
lines from the even lines allows for a larger δ parameter,
which reduces the time-domain support lψ , see property 3) in
Lemma 1, and thus enlarges card(D[p]) in favor of condition 2)
in Theorem 1.

The second subproblem is aimed at estimating Ĝ at the even
EF lines k̄even = γ keven P with keven = [2, 4, . . . , (N/2γ )− 2].
The selection is analogous to the first subproblem.

Next, the role of the parameter p and the number of missing
samples on noise-induced variance and remainder-induced bias
is analyzed.

3) Variance Analysis: The variance error is generally a
complicated function of the number and the specific pattern in
which the missing samples occur. The following result presents
an upper bound on the achievable variance.

Theorem 2: Assume that NY in (4) is the DFT of a zero-
mean white noise realization, i.e., H = I and TH = 0. Let
the wavelets ψ [p]

q̃ be defined by Definition 2, with parameters
{q̃, δ} selected as in Section IV-C2. Then, the variance of the

Fig. 5. Frequency-domain representation of Y in (4) for P = 3, γ = 1, and
k̃ = γ kodd P . The LPM windows K1P and K3P ( ) and the wavelets 91P
( ) and 93P ( ) are centered at the odd EF lines [1P, 3P] (solid arrows),
and have zero magnitude at the even lines [0, 2P, 4P] (dashed arrows).

estimates [
ˆ̄2]m, m = 1, . . . , n2̄ is upper bounded by

var
([

ˆ̄2
]

m

)
≤

[(
P[p]

TIE

)−1
]

m,m
≤

[(
P[p+1]

TIE

)−1
]

m,m
(29)

with p ∈ N, B̄ = M̄ H M̄ , and

P[p]
TIE =

2
λ

ℜ

∑
i∈D[p]

Ñ q−1∑
j=0

(
Hi diag

(
9

[p]
q̃ j

)
K̄

)H(
Hi diag

(
9

[p]
q̃ j

)
K̄

)
(30)

where Hi selects the i th sample from the IDFT operation.
The first inequality in (29) originates from a general

variance upper bound in weighted least-squares regression
[34, Sec. 9.5], in conjunction with the specific properties of
the considered class of wavelets. The second inequality in (29)
indicates that using wavelets with good frequency localization
properties (large p) leads to an increase in variance errors.
This is due to property 3) in Lemma 1, which states that the
support of the wavelet function becomes larger for increasing
p, which in turn reduces the cardinality of the set D[p], leading
to a smaller P [p]

TIE in (30). In addition, expression (30) implies
that the variance increases for an increasing number of missing
samples via the reduction of the cardinality of D[p].

Minimal variance is achieved for p = 0, as stated in the
following result.

Corollary 1: Assume that NY in (4) is the DFT of a zero-
mean white noise realization. The estimator (23) with Mq̃ j

in
(27) achieves minimal variance for p = 0, which yields 9 [0]

=

1N̄ . The variance is computed by var([ ˆ̄2]m) = [P−1
TIE]m,m ,

where PTIE = (2/λ)ℜ
∑

i∈D[p](Hi K̄ )H (Hi K̄ ). Note that for
p = 0, set D[p] contains all available samples.

Corollary 1 recovers the situation without wavelet func-
tion, by which the transform (8) reduces to the IDFT.
Theorem 2 and Corollary 1 show that frequency-domain
localizing wavelets negatively affect variance errors. However,
frequency-domain localization provides an important instru-
ment to attenuate bias errors, as shown next.

4) Bias Analysis: Bias in the parameter estimates due to
the remainders O in (12) plays a particularly important role
in the presence of missing samples since these samples have
an effect on all the frequencies. Provided that the matrices
M̄ and K̄ are selected to comply with conditions 1)–3) in
Theorem 1 and assuming that NY = 0, this is apparent from
the parameter estimates

ˆ̄2 = 2̄+
(
ℜ

(
K̄ H B̄ K̄

))−1
ℜ

(
K̄ H B̄Ō

)
(31)
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Fig. 6. Cross-diagonal entries of B̄ for p = 0 ( ), p = 1 ( ), and
p = 2 ( ), as indicator for coupling. For increasing p, the magnitude of B̄
at all entries other than the center entry reduces significantly, which indicates
a significant reduction of coupling.

where B̄ = M̄ H M̄ . Expression (31) shows that nondiagonality
of the matrix B̄ introduces global coupling between the local
estimates 2k̃ j

, even when the structure of K̃ in (21) is
decoupled (block diagonal). Thus, matrix B̄ is an indicator
of coupling-induced bias errors in the parameter estimates.
Expressing B̄ as

B̄ = M̄ H M̄ =

Ñ q−1∑
j=0

diag
(
9

[p]
q̃ j

)H
FWHdiag

(
9

[p]
q̃ j

)
(32)

shows that 9[p]

q̃ forms the crucial design parameters to achieve
approximate diagonality of the matrix B̄ and hence to mitigate
the coupling-induced bias errors. The following example
demonstrates the role of the wavelet 9 [p], and in particular
of its design parameter p, in the diagonalization of B̄.

Example 3: Consider the scenario of Example 2, for
wavelets ψ [p]

q̃ for p = 0, 1, and 2. To visualize the achieved
approximate diagonality of the matrix B̄ in (32), its cross-
diagonal entries are shown in Fig. 6. For increasing values of
p, the cross-diagonal entries of B̄ reduce significantly.

Example 3 and (32) indicate that achieving approximate
diagonality of B̄ requires wavelets with good frequency-
domain localization properties and thus large values of p.
This observation, together with Corollary 1, shows that the
minimization of variance on the one hand and of bias on the
other hand require the opposite wavelets in terms of parameter
p. This once more illustrates the intrinsic tradeoff between
time- and frequency-domain accuracy in wavelet selection,
as discussed in Section III-B.

5) Computational Aspects: In contrast to existing
approaches such as the LPM for missing samples [13] and
the LPM for concatentated datasets [15], the wavelet-based
approach aims at eliminating the effects of the missing
samples, rather than reconstructing the missing parts. As a
result, the total number of estimated parameters does not
increase with the number of missing data samples (nm) or
data gaps (ng). This is supported by the results in the second
column of Table II, which compares the total number of
estimation variables for different approaches. Here, nG = 2Ñ
represents the total number of real-valued plant parameters
for all EF lines, while nT = 2Ñ (R + 1) represents the total
number of real-valued transient parameters.

TABLE II
COMPARISON OF COMPUTATIONAL ASPECTS

FOR DIFFERENT METHODS

In addition, the third column of Table II compares the
complexity of the nm- and ng-dependent computations. The
dominant computation in the missing data approach [13] is in
the QR-factorization of a matrix whose size depends linearly
on nm , resulting in a cubic complexity in terms of nm . In the
concatenated data approach [15], a number of Ñ systems of
equations with dimensionality ngn2 are solved, resulting in a
cubic complexity in terms of ng . For the wavelet-based LPM
approach, the pattern of the missing data appears in the form
of the weighting matrixW in (32), by which the computational
complexity is independent of the number of missing samples.
The wavelet-based LPM requires the computation of the DFT
of Ñ wavelet functions ψ j . This computation is performed
once and is done efficiently using the fast Fourier transform
(FFT), resulting in a complexity of Ñ N̄ log(N̄ ).

6) Discussion: The TIE forms an effective approach to
obtain low-bias FRF estimates, making the method well-suited
as a nonparametric preprocessing step prior to identifying a
parametric model. Furthermore, avoiding reconstruction of the
missing data eliminates the need for introducing priors, e.g.,
smoothness assumptions, associated with the reconstruction
procedure, as in [13].

A disadvantage of the TIE is that the cardinality of set
D[p] becomes small when (many) missing samples occur in
a scattered pattern in the signal ym, which leads to a large
variance induced uncertainty in the parameters. In a worst
case situation set, D[p] is empty, in which case the TIE
does not provide a viable method. In Section IV-D, the TVE
is presented, which addresses the limitation of the TIE by
eliminating the need for data discardment.

D. Time-Varying Wavelet-Based Estimator

The main idea of the TVE is to avoid data discardment
by adjusting the wavelet, at each sample of the convolution,
to the pattern of the missing samples. As such, the TVE
addresses the main limitation of the TIE. In this section, the
time-varying wavelet-based transformation and the resulting
TVE are presented, and its bias and variance properties are
analyzed. This section constitutes contributions 1-b) and 2.

1) Time-Varying Wavelet-Based Transformation: The time-
varying wavelet-based transformation lies at the basis of the
TVE and is defined as follows.

Definition 3 (Time-Varying Wavelet Convolution):
Consider the wavelet function ψ̃ ⟨n⟩

j ∈ CN̄ that is employed at
instance n. Let yN̄ be the N̄ -periodic extension of y ∈ RN̄ .
The circular convolution z j ∈ CN̄ of the signal y with the
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wavelet ψ̃ ⟨n⟩

j at samples n = 0, . . . , N̄ − 1 is defined as

z j [n] =

{
y ⊛ ψ̃

⟨n⟩

j

}
[n] =

1
√

N̄

N̄−1∑
m=0

ψ̃
⟨n⟩

j [m] · yN̄ [n − m]. (33)

The key point of the time-varying wavelet convolution
in (33) is that it enables obtaining a transformation that is
invariant to the missing samples, i.e.,

zm
j [n] =

{
ym ⊛ ψ̃

⟨n⟩

j

}
[n] =

{
y ⊛ ψ̃

⟨n⟩

j

}
[n] (34)

provided that ψ̃ ⟨n⟩ is suitably selected.
Specifically, (34) is achieved by enforcing structural zeros

at the entries of ψ̃ ⟨n⟩

j that coincide with the missing samples
in ym during the convolution, as shown in Fig. 7. A similar
principle is applied in [24] in image compression. Such
wavelet modification enables avoiding the discardment of
samples compared to the TIE in Section IV-C, which is
beneficial in view of the rank condition 2) in Theorem 1 and
for the mitigation of variance errors.

Adjusting the wavelet function to the missing samples
affects its frequency-domain characteristics and hence must
be done carefully. An algorithm to compute time-varying
wavelets ψ̃ ⟨n⟩ that achieve (34) and additionally adopt certain
properties of a so-called template wavelet, i.e., a user-selected
fixed wavelet, is presented next.

Definition 4 (Time-Varying Wavelet): Consider a user-
selected template wavelet ψ j of the form in Definition 2. The
time-varying wavelet ψ̃ ⟨n⟩

j at sample n = 0, . . . , N̄ − 1 is
defined as

ψ̃
⟨n⟩

j = arg min
ψ̃

⟨n⟩

j

∥∥∥ψ j − ψ̃
⟨n⟩

j

∥∥∥2

2
s.t. A⟨n⟩ψ̃

⟨n⟩

j = b⟨n⟩

j

where

A⟨n⟩
=

 Am

A f

At


︸ ︷︷ ︸

:=A

P ⟨n⟩, b⟨n⟩

j =

 0
A f

At

P ⟨n⟩ψ j . (35)

Matrix Am
= IN̄ − W m incorporates the time-domain

pattern of the missing samples in the wavelet function ψ̃ ⟨n⟩

j ,
with W m in (5). The matrix A f imposes frequency-domain
constraints on ψ̃ j and is chosen as A f

= Fv , where
user-defined parameter v selects the vth frequency line in
F . The matrix At imposes time-domain constraints on ψ̃ j

and is selected as At
= [ϕT

1 , . . . , ϕ
T
ntc

]
T , where ϕi , i =

1, . . . , ntc represent user-defined basis-functions. The time-
varying matrix P ⟨n⟩ incorporates the effect of the translation
of the wavelet with respect to the signal ym and is given by

P ⟨n⟩
= [

In+1 0
0 IN̄−(n+1)

], where Im is an (m ×m)-dimensional

exchange matrix.
The rationale of Definition 4 is that the adjusted wavelet

ψ̃
⟨n⟩

j remains close to the template wavelet ψ j , in 2-norm,
as to approximately preserve its properties. In addition, the
constraint matrices At and A f in (35) enable adopting
specific time- and frequency-domain properties of the template
wavelet, as selected by the user. The selection of these
constraints is discussed later. First, consider the following

Fig. 7. Visualization of time-varying wavelet-based convolution at sample n.
The entries of the wavelet function ψ̃ ⟨n⟩

j that coincide with the missing samples
in ym are set to 0.

result, which enables incorporating the transform (33) in the
estimator (26).

Lemma 2: Let ψ̃ ⟨n⟩

j be defined in Definition 4. Then, the
transform in (33) is equivalently expressed as

z j [n] = Hndiag
(
9 j

)
FRHY (36)

where Hn selects the nth sample in H and

R =

(
I −

[
Am 0 0

](
AT )†

)
W m (37)

with A given in (35) and W m in (5).
The achieved result of Lemma 2 is that the convolution

with a time-varying wavelet in (33) is posed as the frequency-
domain operation (36) involving time-invariant matrices.
In addition, expression (36) separates the template wavelet 9 j

from the pattern of the missing samples in Am and W m in
(37) and from the selected constraints in matrices A f and At .
Next, the transform (36) is embedded in the generalized LPM
estimator.

2) Estimator Formulation: The TVE is obtained from the
general estimator (26) by setting W = I in (25) and setting
R as in (37). This yields the weighting matrix

Mq̃ j
= Hdiag

(
9

[p]
q̃ j

)
FRH (38)

which embeds the transformation (36) into (23). The template
wavelets 9[p]

q̃ j
are selected as discussed in Section IV-C.

The key advantage of the resulting TVE compared to the
TIE in Section IV-C is that it enables satisfying condition 1) in
Theorem 1 without the discardment of samples. By avoiding
discardment, the cardinality of the set D[p] in (9) no longer
limits the rank condition 2) in Theorem 1. Instead, for the
TVE, it is obtained that rank(M̄ K̄ ) ≤ N̄ − nm . Comparing
this bound to that of the TIE, where rank(M̄ K̄ ) ≤ card(D[p]),
and observing that N̄ − nm > card(D[p]) when p > 0, shows
that the TVE is capable of dealing with a larger number of
missing samples than the TIE.

The remaining design freedom in the weighting matrix Mq̃ j

in (38) lies in the choice of constraints that determine R
in (37). A constraint selection that leads to satisfaction of
condition 3) in Theorem 1 is presented next.

3) Selection of Constraint Parameters: The constraints in
(35) provide an important instrument to ensure that the time-
varying wavelet ψ̃ ⟨n⟩ preserves, as much as possible, the
favorable properties of the template wavelet.

In particular, to obtain an exact estimator in the sense of
Theorem 1, it is required that condition 3) in Theorem 1
remains met for the time-varying wavelet. As discussed in
Section IV-C2, the key mechanism to achieve this condition
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is the specific placement of the zeros in the DFT 9. For the
TVE, it is therefore crucial that the zeros in the DFT 9 of the
template wavelet are adopted in the DFT 9̃⟨n⟩ of the modified
wavelet. This is achieved via the selection of the constraint
matrix A f , as shown in the following result.

Theorem 3: Suppose that rank(M̄ K̄ ) = n2̄. Furthermore,
let the LPM window and wavelet center frequencies be
selected as k̃ = q̃ = k̄odd, and let p > 0 and δ = γ . Then, the
TVE is an exact estimator in the sense of Theorem 1 if the
matrix A f is selected as A f

= Fv with v the even frequency
lines

v =
[
0, 2γ P, 4γ P, . . . , (N − 2γ )P

]
. (39)

A similar result applies to the estimation of Ĝ at the even
frequencies. An example of a modified wavelet ψ̃ j that adopts
the zeros of the DFT of template wavelet 9 j is given in the
following.

Example 4: Let N = 500, P = 1, and γ = 5.
Consider the template wavelet ψ [2]

15 ( ) in Fig. 8. For samples
150, . . . , 180 missing, the corresponding modified wavelet
ψ̃

[2]

15 is shown in ( ). It is constructed by selecting the
frequency-domain constraints as in Theorem 3. The wavelet
ψ̃

[2]

15 has zero magnitude in time domain at the missing
samples. In addition, the zeros in the DFT 9̃

[2]

15 at the even
frequency lines v = [0, 10, 20, . . . , 490] coincide with those
of the template wavelet. In addition, the modified wavelet well-
preserves the global shape of the template wavelet.

To further shape the modified wavelet ψ̃ ⟨n⟩, additional
constraints may be imposed. For example, the time-domain
constraint matrix At may be selected as the orthonormal basis
of [ϕT

1 , . . . , ϕ
T
ntc

]
T , where

ϕi =

[
−

1
2

N̄ ,−
1
2

N̄ + 1, . . . ,
1
2

N̄ − 1
]i

(40)

represents real-valued polynomials of degree i = 1, . . . , ntc.
The basis functions (40) emphasize the preservation of the
low-frequency characteristics of the template wavelet, which
is typically desirable for systems with first-order transient
behavior. Other basis functions may be chosen, depending
on the application. The TVE parameters are summarized in
Table I. Variance and bias properties of the TVE are analyzed
in the following.

4) Variance Analysis: The use of the time-varying wavelet-
based transformation is beneficial for mitigating variance
errors. The following result shows that the TVE admits
a tighter upper bound on the variance in the estimated
parameters than the TIE.

Theorem 4: Assume that NY in (4) is the DFT of a zero-
mean white noise realization and assume that At , A f

= 0.
Let the wavelets ψ

[p]

q̃ be defined by Definition 2, with
parameters {q̃, δ} selected as in Section IV-C2. The variance
of [

ˆ̄2]m, m = 1, . . . , n2̄ obtained from the TVE is upper
bounded by

var
([

ˆ̄2
]

m

)
≤

[
P−1

TVE

]
m,m ≤

[
P−1

TIE

]
m,m (41)

where B̄ = M̄ H M̄ with M̄ given by (24) and Mq̃ j
by (38).

Furthermore, P2 is the matrix in (30) related to the variance

Fig. 8. Template wavelet ψ [2]

15 ( ) and modified wavelet ψ̃ [2]

15 ( ).
The modified wavelet ψ̃ [2]

15 has structural zeros at the missing samples
150, . . . , 180, and its DFT preserves the zeros at the even frequency lines
v = [0, 10, 20, . . . , 490].

in the TIE, and PTVE is given by

PTVE =
2
λ

ℜ K̄ H (
T R

)H
Ñ q−1∑
j=0

diag
(∣∣∣9[p]

q̃ j

∣∣∣2
)
T R K̄ (42)

where T R = FRH.
The inequalities in (41) show that the TVE is a more

efficient estimator than the TIE. Comparing PTVE in (42) with
PTIE in (30) shows that the TVE is indeed less affected by
the choice of p than the TIE since PTVE does not depend
on the size of the set D[p], in contrast to PTIE. Still, it can
straightforwardly be shown that increasing p enlarges the
upper bound on the variance, due to the frequency-domain
characteristics of 9 [p]

q̃ j
in (42). Consider the following result.

Corollary 2: Under the assumptions in Theorem 4 and for
p = 0, the TVE recovers the minimal variance estimator in
Corollary 1.

5) Bias Analysis: The wavelet plays a different role in the
mitigation of bias errors for the TVE than for the TIE. Recall
that when NY = 0, the parameter estimates are expressed
by (31), in which matrix B̄ forms an indicator of coupling-
induced bias errors. For the TVE, B̄ is expressed as

B̄ = M̄ H M̄ =
(
T R

)H
Ñ q−1∑
j=0

diag
(∣∣∣9[p]

q̃ j

∣∣∣2
)
T R. (43)

This shows that for the TVE the matrix, B̄ cannot be
diagonalized via the choice of 9 [p]

q̃ . Hence, the TVE provides
fewer opportunities to reduce coupling-induced bias than the
TIE. Still, since increasing the value of p leads to a tighter
frequency window around the q̃ j th frequency line, choosing
larger values of p generally reduces bias in the estimates.

In summary, this illustrates that the TVE generally yields
low-variance estimates, at the price of bias errors, whereas
the TIE produces low-bias estimates with larger variance.
In Section IV-E, the two estimators are unified via a joint
criterion.
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E. Unification

The TIE and TVE employ different approaches to deal with
missing data, yet the two estimators are closely related. Define
the signal yr

= Rym and observe that, by virtue of the
definition of R in (37), signal yr is equal to ym except at
the missing samples. Since the weighting matrix Mq̃ j

in (27)
used in the TIE discards the data that are affected by precisely
these missing samples, it holds that

zm
j [n] = Hndiag

(
9

[p]
q̃ j

)
Y m

= Hndiag
(
9

[p]
q̃ j

)
FRHY m

for n ∈ D[p] and when p > 0. Thus, the TIE and TVE
act identically upon the samples in the set D[p]. This enables
unifying the two estimators via the joint weighting matrix

Mk̃ j
=

(
(1 − β)WD

+ β I
)
Hdiag

(
9

[p]
q̃ j

)
FRH (44)

where β ∈ [0, 1]. The TIE is recovered when β = 0 and the
TVE is recovered when β = 1.

V. EXPERIMENTAL RESULTS

In this section, the TIE and TVE are experimentally vali-
dated and compared on a thermodynamic system, in support
of the theoretical claims made in Section IV.

A. Experiment Setup

1) System Description: The experimental setup is shown
in Fig. 9. It consists of two aluminum cylinders separated
by a piece of polyoxymethylene (POM). The setup represents
an industrial mixed-material thermodynamic system, in which
the aluminum parts reflect a thermal conductor and the POM
reflects a thermal resistance. The system is equipped with a
heater and temperature sensor at the indicated locations, which
form the system input u and output y, respectively.

The system dynamics are characterized by slow thermo-
dynamic behavior, which gives rise to significant transient
behavior with a duration of several hours. When there
are no missing samples, the classical LPM provides an
effective approach to FRF identification from transient data,
as illustrated in [35]. In this section, identification in the
presence of missing samples is considered.

2) Experiment Description: The system is excited with a
periodic excitation signal u consisting of P = 12 periods with
period length N = 720. The sample time Ts = 5 s, leading
to a period duration of 1 h. The spectral magnitudes of the
excitation signal u are uniformly distributed over the EF lines
k̄ = γ k P with k = 0, . . . , ⌊N/γ ⌋−1, with sparsity parameter
γ = 2, recall Section IV-A. The spectral phase is selected from
a uniform random distribution on [0, 2π). Since the heat input
is intrinsically constrained to be positive, the input spectrum
has a positive-valued contribution at the 0-frequency, resulting
in an offset in the heater input.

The measured output response y is shown in Fig. 10(a).
The signal contains a significant transient response, e.g., due
to the heater offset. To mimic the situation of a data record
ym with missing samples, a number of nm = 1105 out of
N̄ = 8640 samples is set to zero via the selection matrix W m

in (5). The missing samples form five data gaps, as shown in

Fig. 9. Experimental setup. The aluminum cylinder has a heater input u and
temperature measurement y.

Fig. 10. Time- and frequency-domain representations of the responses of
the experimental setup with and without missing samples. (a) Temperature
response y ( ) and the mimicked incomplete signal ym ( ). Note that the
signals largely overlap. The missing data parts are highlighted in red. (b) DFT
Y ( ) of the complete data record and DFT Y m ( ) of the incomplete record.
The locally missing samples in the time domain have a global effect in the
frequency domain. Using the TIE with p = 2, the estimate Ŷ = K̄ ˆ̄2 ( )
accurately approximates Y ( ) at and around the odd EF lines while having
access to Y m only ( ).

Fig. 10(a). These data ym form the input to the estimators. The
corresponding frequency-domain representations Y and Y m are
shown in Fig. 10(b). The global frequency-domain impact of
the locally missing samples in the time domain is evident.

3) Estimator Selection: In the following, the performance
of the TIE and TVE is analyzed for wavelet parameter values
p = 1, 2, 3, 4. The polynomial order R in (12) for the transient
estimation is selected as R = 3, based on the LPM guidelines
in [27]. For the TVE, a number of ntc = 10 basis functions ϕ
is selected, see (40), to emphasize on low-frequency accuracy
in the computation of the time-varying wavelet functions ψ̃ .

In addition, for the purpose of error analysis, a reference
model Gref is identified from the complete data y using
the classical LPM estimator described in Section IV-A. The
resulting reference model is shown in black in Figs. 11 and 12.
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Fig. 11. Frequency–time plane results using the TIE for p = 2. Left: transforms zm
[v] for samples v ∈ D. Center: estimated FRF Ĝ (surface) at samples v

and the FRF of the reference model Gref ( ). Right: estimated transient T̂ at samples v.

Fig. 12. Bode magnitude plot of the reference model Gref ( ), and the
estimates obtained from the classical LPM ( ), the TIE (× ), and the
TVE (△ ) for p = 2. In addition, the model errors of the TIE ( ) and
TVE are shown ( ). Both the TIE and TVE achieve accurate identification
from incomplete data, in contrast to the classical LPM.

Fig. 13. Model errors ε[p]

TIE and ε[p]

TVE ( ) and the estimated contributions due
to stochastic noise ( ).

B. Results

1) Time–Frequency Plane Results: The transforms zm
q̃ [v]

according to (7) are shown in the time–frequency plane for
v ∈ D on the left in Fig. 11, for the wavelet parameter p = 2.
Both stationary and transient contributions can be recognized.
These contributions are distinguished by the TIE, resulting in
the estimated FRF Ĝ and the transient T̂ shown in the center
and right plots, respectively. The estimated FRF Ĝ obtained
from the incomplete data accurately matches the reference
model in ( ). Similar observations are made for the TIE for
different values of p, but these results are not displayed to
conserve space.

2) Frequency-Domain Results: The estimated DFT
Ŷ = K̄ ˆ̄2 using the TIE for p = 2 and k̄ = γ kodd P is shown

in ( ) in Fig. 10(b). Although the available incomplete data
Y m ( ) significantly differs from the complete data Y ( ),
the estimate Ŷ ( ) provides an accurate estimate of Y ( ) at
and around the odd EF lines.

In Fig. 12, the models estimated by the TIE (×) and the TVE
(△) for p = 2 are shown. In addition, the respective model
errors with respect to the reference model ( ) are shown in ( )
and ( ). Both estimators achieve accurate FRF identification.
The classical LPM ( ) fails to estimate an accurate model.
An error analysis for different values of p is presented
next.

3) Bias and Variance Analysis: In this section, the bias and
variance contributions in the model error are compared for the
TIE and the TVE for different values of p.

As a global indicator of estimation performance, consider
the frequency-averaged model error defined as ε

[p]

X =

(1/Ñ )
∑

k̃ |Gref(k̃)− Ĝ[p]

X (k̃)|, where X ∈ {TIE, TVE}. These
indicators are shown in ( ) in Fig. 13. In addition, the estimated
contribution of the stochastic noise to the model error is shown
in ( ), which is estimated from an auxiliary measurement. The
lower bound on the noise contribution based on the minimal
variance estimator in Corollary 1 is shown in ( ). For low
values of p, the TIE and TVE both achieve variance errors
close to the lower bound.

For the TIE, the model error is increasingly dominated
by stochastic noise contributions for larger values of p,
resulting in a model error increase. In turn, this implies that
the contribution of systematic errors is reduced for larger
p values. These observations are in line with the results in
Section IV-C.

For the TVE, the noise contribution is lower overall and
increases only slightly for increasing p. Observing that the
total model error decreases with increasing p implies that the
model error is dominated by systematic errors for small p,
which are reduced for larger values of p. These observations
are in line with the results in Section IV-D.

Overall, the smallest model error is achieved by the TVE
for p = 4. This outcome depends on the (application-)
specific balance between the level of stochastic and systematic
contributions. In general, the TIE produces low-bias models,
yet with a larger stochastic uncertainty. Such models may
be preferred as an intermediate model toward a parametric
model. The TVE, on the other hand, can provide more accurate
models when the measurement noise is large or when the
number of missing samples is large.
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VI. CONCLUSION

The presented methods achieve accurate identification of
nonparametric FRF models from measured data records with
many missing samples. This is realized by generalizing the
existing frequency-domain LPM to a wavelet-based LPM that
enables isolating the effect of the missing samples in the
time–frequency plane. The generalization encompasses a time-
invariant estimator and a time-varying estimator, which have
different performances in terms of bias and variance errors.
Contrary to most existing algorithms for dealing with missing
samples, a benefit of the presented approach is that it does
not require the explicit estimation or reconstruction of the
missing data parts, and as such, the number of estimation
variables does not increase with the amount of missing data.
Confrontation with a thermodynamical experimental setup
confirms that accurate FRF identification is achieved.

APPENDIX

Proof of Lemma 1: First, properties 1) and 2) will be proven
for p = 1. Using (1), the DFT of ψ [p]

j is expressed as

9
[p]
j (k) =

c[p]
√

N̄

N̄−1∑
m=0

h[p][m] · e−1i ·2π k− j
N̄

m
. (45)

For p = 1, expression (45) describes the DFT of a rectangular
function, which is a Dirichlet kernel [31] obeying

9
[1]
j (q + j) =

c[1]

√

N̄
exp

(
iπq
N̄

(
N
δ

− 1
))

·
sin

(
πq
δP

)
sin

(
πq
N̄

) (46)

where variable substitution k = q + j is applied. Properties 1)
and 2) for p = 1 then follow from the properties of the
Dirichlet kernel [31]. In particular, 9[1]

j (q + j)|q→0 = 1
is obtained via L’Hopital’s rule, which proves property 1).
Property 2) is immediate since sin((πq/δP)) = 0 for q =

αδP, ∀αN+.
Next, properties 1) and 2) will be proven for p ∈ N. Let

H [p] be the DFT of h[p] and observe from Definition 2 that
H [p]

= (H [1])p and that c[p]
= (c[1])p. Using (45), the DFT

of ψ [p]

j is expressed as

9
[p]
j (q + j) = c[p] H [p](q) =

(
c[1] H [1](q)

)p

=

(
9

[1]
j (q + j)

)p
. (47)

Thus, properties 1) and 2) are immediate. Property 4) follows
from (47) and the fact that the Dirichlet kernel attains its
maximum magnitude of 1 at q = 0.

Finally, property 3) is proven. By Definition 2, for p = 1,
the support l [1]

ψ = N/δ = pN/δ−p + 1. For p = 0, the
function h[p] reduces to the discrete unit impulse, and hence,
l [0]

ψ = 1 = pN/δ−p + 1. For p ≥ 2, it is observed that
h[p]

[m] = {h[p−1] ⊛ h[1]
}[m]. Exploiting the standard result

that the length of convolution of two sequences with lengths
N and M equals N + M − 1, the support of h[p], p ≥ 2 is
l [p]

ψ = l [p−1]

ψ + l [1]

ψ − 1 = pl [1]

ψ −p + 1 = pN/δ−p + 1.
Proof of Theorem 1: By condition 1), M̄Y m

= M̄Y .
Furthermore, the assumptions impose that Y = K̄ 2̄ + Y1.
Substituting this result into (26), it follows that ˆ̄2 = 2̄ when

condition 3) is satisfied and, in addition, when ℜ(K̄ H M̄ H M̄ K̄ )
is invertible. The latter always holds under condition 2).

Proof of Theorem 2: First, the first inequality in (29) is
proven. For ease of notation, the superscript [p] is omitted
at first. Exploiting the closed-form solution (26), the property
M̄Y m

= M̄Y , and the circular complex normal distribution of
NYst , the covariance matrix cov( ˆ̄2) = E{

ˆ̄2 ˆ̄2
H
} is given by

cov
(
ˆ̄2
)

=
2
λ

P−1
TIEℜ

(
K̄ H B̄ B̄ K̄

)
P−1

TIE (48)

where B̄ = M̄ H M̄ and PTIE is given in (30), also see [34, Sec.
9.5]. By the definition of M̄ in (24), matrix B̄ is expressed as

B̄ = M̄ H M̄ =

Ñ q−1∑
j=0

diag
(
9

[p]
q̃ j

)H
FWHdiag

(
9

[p]
q̃ j

)

=

∑
i∈D[p]

Ñ q−1∑
j=0

(
Hi diag

(
9

[p]
q̃ j

))H(
Hi diag

(
9

[p]
q̃ j

))
and hence, PTIE satisfies the expression (30).

The maximum singular value σ̄ of B̄ is upper bounded by

σ̄
(
B̄

)
= σ̄

 ∑
i∈D[p]

Ñ q−1∑
j=0

(
Hi diag

(
9

[p]
q̃ j

))H(
Hi diag

(
9

[p]
q̃ j

))
≤ σ̄

N̄−1∑
i=0

Ñ q−1∑
j=0

(
Hi diag

(
9

[p]
q̃ j

))H(
Hi diag

(
9

[p]
q̃ j

))
= σ̄

Ñ q−1∑
j=0

diag
(∣∣∣9[p]

q̃ j

∣∣∣2
) = 1 (49)

where the first inequality in (49) is due to Weyl’s
inequality [36] and the latter equality follows from the
construction of 9 [p]

q̃ j
, as defined in Definition 2. Since B̄ ∈ H

+
,

the singular value decomposition yields B̄ = U6U H , and thus,
B̄ B̄ = U62U H . From (48),

var
([

ˆ̄2
]

m

)
=

2
λ

[
P−1

TIEℜ
(
K̄ H B̄ B̄ K̄

)
P−1

TIE

]
m,m

≤ σ̄
(
B̄

)2
λ

[
P−1

TIEℜ
(
K̄ H B̄ K̄

)
P−1

TIE

]
m,m

= σ̄
(
B̄

)[
P−1

TIE

]
m,m ≤

[
P−1

TIE

]
m,m (50)

where the latter inequality is due to (49). This proofs (29).
Next, the second inequality in (29) is proven. Define Q[p]

i =

(2/(σ̄ (CY )))ℜ
∑Ñ q−1

j=0 (Hidiag(9[p]

q̃ j
K̄ ))H (Hi diag(9[p]

q̃ j
)K̄ ) such

that P [p]

TIE =
∑

i∈D[p] Q[p]

i . Define the difference set
Z [p+1]

= D[p]
\D[p+1]. By definition of ψ [p]

q̃ j
in Definition 2,

it holds that 9 [p+1]

q̃ j
= 9

[p]

q̃ j
⊙ 9

[1]

q̃ j
. Since Q[p]

i is rank-one

and |9
[1]

q̃ j
| ≤ 1, it can be written as

Q[p]
i = Q[p+1]

i +1
[p+1]
i (51)

where 1[p+1]

i is symmetric positive semidefinite (PSD) and is
defined by (51) itself. Thus, it can be expressed as

P[p]
TIE = P[p+1]

TIE +

∑
i∈D[p+1]

1
[p+1]
i +

∑
i∈Z[p+1]

Q[p]
i . (52)
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Since both 1i and Qi are PSD, the second inequality in
(29) follows by applying the Woodbury matrix identity, which
completes the proof.

Proof of Lemma 2: Define ψP,⟨n⟩

j := P ⟨n⟩ψ j and ψ̃P,⟨n⟩

j :=

P ⟨n⟩ψ̃
⟨n⟩

j . Then, the transform in (33) is also expressed as

z j [n] =
1

√

N̄
yT ψ̃

P,⟨n⟩

j =
1

√

N̄
yT W mψ̃

P,⟨n⟩

j (53)

where the latter equality is due to the constraint matrix Am in
(35). The closed-form solution to ψ̃P,⟨n⟩

j in Definition 4 is

ψ̃
P,⟨n⟩

j = (I − D)ψP,⟨n⟩

j = W m(I − D)ψP,⟨n⟩

j (54)

where D = A†
[ (Am)T 0 0 ]

T . Substituting (54) into (53)
yields

z j [n] =
1

√

N̄
vTψ

P,⟨n⟩

j (55)

where v := (I − DT )W m y = Ry, in which R is given by
(37). By Definition 1, transform z j [n] in (55) is expressed as

z j [n] =
1

√

N̄
vTψ

P,⟨n⟩

j =
{
v ⊛ ψ j

}
[n] = Hn

(
9 j ⊙ V

)
where V is the DFT of v, satisfying V = FRHY . This
completes the proof.

Proof of Theorem 3: Satisfaction of condition 1) in
Theorem 1 is immediate by observing that RHY =

Ry = Rym, due to the matrix W m in (37).
Condition 2) is satisfied by assumption.
Next, condition 3) is proven. Observe that the constraints

(35) impose that Fvψ̃P,⟨n⟩
= FvψP,⟨n⟩

= FvRTψP,⟨n⟩ where
the latter equality is due to (54). Thus,[

FRTH9P,⟨n⟩
]
v

=
[
9P,⟨n⟩

]
v
. (56)

Define the complementary indices w ∈ [0, 1, . . . , N̄ − 1]\v.
Since (56) holds for any 9P,⟨n⟩, it is obtained that the sub-
matrix [FRTH]v,v = I and the submatrix [FRTH]v,w = 0.
Since by selection of v in (39) matrix A f is composed of
conjugate pairs, it can be shown that R in (37) is real-valued.
Thus, taking the Hermitian transpose of the submatrices above
yields [FRH]v,v = I and [FRH]w,v = 0. By virtue of
property 2) in Lemma 1, [9]v = 0 when δ = γ and p > 0,
and hence, [diag(9)FRH]:,v = 0. By observing that Y1 in
Theorem 1 can attain nonzero values at the frequency lines v
only, it is immediate that diag(9)FRHY m

= 0, and hence,
Mq̃ j

Y1 = 0 with Mq̃ j
in (38). This completes the proof.

Proof of Theorem 4: First, the first inequality in (41) is
proven. Similar to the proof of Theorem 2, the parameter
covariance for the TVE is expressed as

cov
(
ˆ̄2
)

=
2
λ

P−1
TVEℜ

(
K̄ H B̄ B̄ K̄

)
P−1

TVE (57)

where PTVE = (2/λ)ℜ(K̄ H B̄ K̄ ), and for the TVE, the
matrix B̄ = M̄ H M̄ = (T R)H ∑Ñ q−1

j=0 diag(|9q̃ j
|
2)T R. Hence,

expression (42) is immediate.
By the assumption that A f

= 0, At
= 0, matrix R in (37)

reduces to R = W m, and consequently, T R = T m with T m

in (6). Since σ̄ (T m) = 1 and σ̄ (
∑Ñ q−1

j=0 diag(|9q̃ j
|
2)) = 1 by

construction, it follows that σ̄ (B̄) ≤ 1. Then, along the lines
of (50), it is obtained that var([ ˆ̄2]m) ≤ [P−1

TVE]m,m .
Second, the second inequality in (41) is proven. Define

Mq̃ j
[i] as the i th row of the matrix Mq̃ j

in (38). Then, the
matrix PTVE in (42) can be decomposed as

PTVE = PDTVE + PATVE (58)

with

P X
TVE =

2
λ

ℜ

∑
i∈X

Ñ q−1∑
j=0

K̄ H M H
q̃ j

[i]Mq̃ j
[i]K̄ (59)

where X denotes either set D or A, see (9) and (10).
Consider the transform z[i] = Mq̃ j

[i]Y , where Y is the
DFT of any y ∈ RN̄ , and consider ym

= W m y with
DFT Y m

= T mY . Using the definition of Mq̃ j
in (38) and

T R = T m, this transform z[i] is equivalently expressed as
z[i] = Hi diag(9k̃ j

)T mY = Hi diag(9k̃ j
)Y m. By definition of

D, the transform z[i] is unaffected by the missing samples for
i ∈ D, and thus, z[i] = Hi diag(9k̃ j

)T mY = Hi diag(9k̃ j
)Y

for i ∈ D. This applies to any Y , and hence, Mq̃ j
[i] =

Hi diag(9q̃ j
)T m

= Hi diag(9q̃ j
) for i ∈ D. So, PDTVE in (59)

is equal to PTIE in (30).
Finally, applying the Woodbury matrix identity to (58) gives

P−1
TVE = P−1

TIE −

(
PTIE

(
PATVE

)−1
PTIE + PTIE

)−1
. (60)

Then, the second inequality in (41) follows since the most
right term is a symmetric PSD matrix, which completes the
proof.

Proof of Corollary 2: Under the assumptions in Theorem 4,
the matrix R in (37) reduces to R = W m. Observing that
9

[p]

q̃ j
= 1N̄ when p = 0, the matrix Mq̃ j

in (38) used in
the TVE simplifies to Mq̃ j

= HFW mH = W mH, which is
identical to the matrix Mq̃ j

in (27) in the TIE for p = 0.
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