

Delft University of Technology

Active Inference and Behavior Trees for Reactive Action Planning and Execution in
Robotics

Pezzato, Corrado; Corbato, Carlos Hernandez; Bonhof, Stefan; Wisse, Martijn

DOI
10.1109/TRO.2022.3226144
Publication date
2023
Document Version
Final published version
Published in
IEEE Transactions on Robotics

Citation (APA)
Pezzato, C., Corbato, C. H., Bonhof, S., & Wisse, M. (2023). Active Inference and Behavior Trees for
Reactive Action Planning and Execution in Robotics. IEEE Transactions on Robotics, 39(2), 1050-1069.
https://doi.org/10.1109/TRO.2022.3226144

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/TRO.2022.3226144
https://doi.org/10.1109/TRO.2022.3226144

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

1050 IEEE TRANSACTIONS ON ROBOTICS, VOL. 39, NO. 2, APRIL 2023

Active Inference and Behavior Trees for Reactive
Action Planning and Execution in Robotics

Corrado Pezzato , Carlos Hernández Corbato , Stefan Bonhof , and Martijn Wisse

Abstract—In this article, we propose a hybrid combination of
active inference and behavior trees (BTs) for reactive action plan-
ning and execution in dynamic environments, showing how robotic
tasks can be formulated as a free-energy minimization problem.
The proposed approach allows handling partially observable ini-
tial states and improves the robustness of classical BTs against
unexpected contingencies while at the same time reducing the
number of nodes in a tree. In this work, we specify the nominal
behavior offline, through BTs. However, in contrast to previous
approaches, we introduce a new type of leaf node to specify the
desired state to be achieved rather than an action to execute. The
decision of which action to execute to reach the desired state is
performed online through active inference. This results in continual
online planning and hierarchical deliberation. By doing so, an
agent can follow a predefined offline plan while still keeping the
ability to locally adapt and take autonomous decisions at runtime,
respecting safety constraints. We provide proof of convergence and
robustness analysis, and we validate our method in two different
mobile manipulators performing similar tasks, both in a simulated
and real retail environment. The results showed improved runtime
adaptability with a fraction of the hand-coded nodes compared to
classical BTs.

Index Terms—Active inference, behavior trees (BT), biologically
inspired robots, free-energy principle, mobile manipulators,
reactive action planning.

I. INTRODUCTION

D ELIBERATION and reasoning capabilities for acting are
crucial parts of online robot control, especially when op-

erating in dynamic environments to complete long-term tasks.
Over the years, researchers developed many task planners with
various degrees of optimality, but little attention has been paid
to actors [1], [2], i.e., algorithms endowed with reasoning and
deliberation tools during plan execution. The authors in [1] and
[2] advocate a change in focus, explaining why this lack of
actors could be one of the main causes of the limited spread
of automated planning applications. Authors in [3], [4], [5]

Manuscript received 13 June 2022; revised 19 October 2022; accepted 15
November 2022. Date of publication 2 January 2023; date of current version 5
April 2023. This work was supported by Ahold Delhaize. All content represents
the opinion of the authors, which is not necessarily shared or endorsed by
their respective employers and/or sponsors. This article was recommended for
publication by Associate Editor J. Bohg and Editor W. Burgard upon evaluation
of the reviewers’ comments. (Corresponding author: Corrado Pezzato.)

The authors are with the Department of Cognitive Robotics, TU Delft,
2628 CD Delft, The Netherlands (e-mail: c.pezzato@tudelft.nl; c.h.corbato@
tudelft.nl; s.d.bonhof@gmail.com; m.wisse@tudelft.nl).

This article has supplementary material provided by the authors and color
versions of one or more figures available at https://doi.org/10.1109/TRO.
2022.3226144.

Digital Object Identifier 10.1109/TRO.2022.3226144

proposed the use of BTs as graphical models for more reactive
task execution, showing promising results. Other authors also
tried to answer the call for actors [6], [7], but there are still
open challenges to be addressed. These challenges have been
identified and highlighted by many researchers, and can be
summarized as in [1] and [4] in two properties that an actor
should possess.

1) Hierarchical deliberation: each action in a plan may be a
task that an actor may need to further refine online.

2) Continual online planning and reasoning: an actor should
monitor, refine, extend, update, change, and repair its
plans throughout the acting process, generating activities
dynamically at run time.

Actors should not be mere action executors then, but they
should be capable of intelligently taking decisions. This is
particularly useful for challenging problems, such as mobile
manipulation in dynamic environments, where actions planned
offline are prone to fail. In this article, we consider mobile manip-
ulation tasks in a retail environment with a partially observable
initial state. We propose an actor based on active inference. Such
an actor is capable of following a task planned offline while still
being able to take autonomous decisions at run-time to resolve
unexpected situations.

Active inference is a neuroscientific theory that has recently
shown its potential in control engineering and robotics [8], [9],
[10], [11], particularly in real-world experiments for low-level
adaptive control [12], [13]. Active inference describes a biolog-
ically plausible algorithm for perception, action, planning, and
learning. This theory has been initially developed for continuous
processes [14], [15], [16], where the main idea is that the brain’s
cognition and motor control functions could be described in
terms of free-energy minimization [17]. In other words, we, as
humans, take actions in order to fulfill prior expectations about
a desired prior sensation [18]. Active inference has also been
extended to Markov decision processes for discrete decision-
making [19], recently gathering more and more interest [20],
[21], [22], [23]. In this formulation, active inference is proposed
as a unified framework to solve the exploitation–exploration
dilemma by acting to minimize the free-energy. Agents can
solve complicated problems once provided a context sensitive
prior about preferences. Probabilistic beliefs about the state of
the world are built through Bayesian inference, and a finite
horizon plan is selected in order to maximize the evidence for
a model that is biased toward the agent’s preferences. At the
time of writing, the use of discrete active inference for symbolic
action planning is limited to low-dimensional and simplified

1552-3098 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: TU Delft Library. Downloaded on May 02,2023 at 06:42:39 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-1835-9578
https://orcid.org/0000-0001-6094-4917
https://orcid.org/0000-0001-9385-7457
https://orcid.org/0000-0001-8210-7562
mailto:c.pezzato@tudelft.nl
mailto:c.h.corbato@tudelft.nl
mailto:c.h.corbato@tudelft.nl
mailto:s.d.bonhof@gmail.com
mailto:m.wisse@tudelft.nl
https://doi.org/10.1109/TRO.2022.3226144
https://doi.org/10.1109/TRO.2022.3226144

PEZZATO et al.: ACTIVE INFERENCE AND BEHAVIOR TREES FOR REACTIVE ACTION PLANNING AND EXECUTION IN ROBOTICS 1051

simulations [22], [23]. In addition, current solutions rely on
fundamental assumptions, such as instantaneous actions without
preconditions, which do not hold in real robotic situations.

To tackle these limitations of active inference and to address
the two main open challenges of hierarchical deliberation and
continual planning, we propose a hybrid combination of active
inference and BTs. We then apply this new idea to mobile
manipulation in a dynamic retail environment.

A. Related Work

In this section, we mainly focus on related work on reactive
action planning and execution, a class of methods that exploits
reactive plans, which are stored structures that contain the
behavior of an agent. To begin with, BTs [3], [24] gathered
increasing popularity in robotics to specify reactive behaviors.
BTs are de-facto replacing finite state machines (FSM) in several
state-of-the-art systems, for instance in the successor of the ROS
Navigation Stack, Nav2 [25] BTs are graphical representations
for action execution. The general advantage of BTs is that they
are modular and can be composed into more complex higher
level behaviors, without the need to specify how different BTs
relate to each other. They are also an intuitive representation
that modularizes other architectures, such as FSM and decision
trees, with proven robustness and safety properties [3]. These
advantages and the structure of BTs make them particularly
suitable for the class of dynamic problems we are considering in
this work, as explained later on in Section II. However, in clas-
sical formulations of BTs, the plan reactivity still comes from
hard-coded recovery behaviors. This means that highly reactive
BTs are usually big and complex and that adding new robotic
skills would require revising a large tree. To partially cope with
these problems, the authors in [4] proposed a blended reactive
task and action planner which dynamically expands a BT at
runtime through back-chaining. The solution can compensate for
unanticipated scenarios, but cannot handle partially observable
environments and uncertain action outcomes. Conflicts due to
contingencies are handled by prioritizing (shifting) subtrees.
Safronov et al. [5] extended [4] and showed how to handle
uncertainty in the BT formulation as well as planning with
nondeterministic outcomes for actions and conditions. Other
researchers combined the advantages of BTs with the theoretical
guarantees on the performance of planning with the planning
domain definition language (PDDL) by representing robot task
plans as robust logical-dynamical systems (RLDS) [6]. RLDS
results in a more concise problem description with respect to
using BTs only, but online reactivity is again limited to the sce-
narios planned offline. For unforeseen contingencies, replanning
would be necessary, which is more resource-demanding than
reacting, as shown in the experimental results in [6]. The output
of RLDS is equivalent to a BT, yet BTs remain more intuitive
to compose and have more support from the community with
open-source libraries and design tools.

Goal-oriented action planning (GOAP) [26], instead, focuses
on online action planning. This technique is used for nonplayer-
characters (NPC) in video games [27]. Goals in GOAP do not
contain predetermined plans. Instead, GOAP considers atomic

behaviors which contain preconditions and effects. The general
behavior of an agent can then be specified through very simple
FSMs because the transition logic is separated from the states
themselves. GOAP generates a plan at run-time by searching in
the space of available actions for a sequence that will bring the
agent from the starting state to the goal state. However, GOAP
requires hand-designed heuristics that are scenario-specific and
it is computationally expensive for long-term tasks.

Hierarchical task Planning in the Now (HPN) [28] is an
alternate plan and execution algorithm, where a plan is generated
backward starting from the desired goal, using A*. HPN recur-
sively executes actions and replans. To cope with the stochas-
ticity of the real world, HPN has been extended to belief HPN
(BHPN) [29]. A follow-up work [30] focused on the reduction of
the computational burden by implementing selective replanning
to repair local poor choices or exploit new opportunities without
the need to recompute the whole plan which is very costly since
the search process is exponential in the length of the plan.

A different method for generating plans in a top-down manner
is the hierarchical task network (HTN) [31]. At each step, a
high-level task is refined into lower level tasks. In practice [32],
the planner exploits a set of standard operating procedures for
accomplishing a given task. The planner decomposes the given
task by choosing among the available ones until the chosen
primitive is directly applicable to the current state. Tasks are
then iteratively replaced with new task networks. An important
remark is that reactions to failures, time-outs, and external events
are still a challenge for HTN planners. HTN requires the designer
to write and debug potentially complex domain-specific recipes
and, in very dynamic situations, replanning might occur too
often.

Finally, active inference is a normative principle underwriting
perception, action, planning, decision-making, and learning in
biological or artificial agents. Active inference on discrete state
spaces [33] is a promising approach to solving the exploitation–
exploration dilemma and empowers agents with continuous
deliberation capabilities. The application of this theory, however,
is still in an early stage for discrete decision-making, where
current works only focus on simplified simulations as proof of
concept [20], [21], [22], [23]. In [23], for instance, the authors
simulated an artificial agent which had to learn and solve a maze
given a set of simple possible actions to move (up, down, left,
right, stay). Actions were assumed instantaneous and always
executable. In general, current discrete active inference solutions
lack a systematic and task-independent way of specifying prior
preferences, which is fundamental to achieving a meaningful
behavior, and they never consider action preconditions that are
crucial in real-world robotics. As a consequence, plans with
conflicting actions which might arise in dynamic environments
are never addressed in the current state-of-the-art.

B. Contributions

In this work, we propose the hybrid combination of BTs and
active inference to obtain more reactive actors with hierarchi-
cal deliberation and continual online planning capabilities. We
introduce a method to include action preconditions and conflict

Authorized licensed use limited to: TU Delft Library. Downloaded on May 02,2023 at 06:42:39 UTC from IEEE Xplore. Restrictions apply.

1052 IEEE TRANSACTIONS ON ROBOTICS, VOL. 39, NO. 2, APRIL 2023

Fig. 1. High-level visualization of an active inference agent. The generative
process describes the true causes of the agent’s observations o. An agent can
apply actions to change the state of the world and to get observations that are
aligned with its internal preferences.

resolution in active inference, as well as a systematic way of
providing prior preferences through BTs. The proposed hybrid
scheme leverages the advantages of online action selection with
active inference and it removes the need for complex predefined
fallback behaviors while providing convergence guarantees. In
addition, we provide extensive mathematical derivations, exam-
ples, and code, to understand, test, and reproduce our findings.

C. Article Structure

The rest of this article is organized as follows. In Section II we
provide an extensive background on active inference and BTs.
Our novel hybrid approach is presented in Section III, and its
properties in terms of robustness and stability are analyzed in
Section IV. In Section V, we report the experimental evaluation,
showing how our solution can be used with different mobile
manipulators for different tasks in a retail environment. Sec-
tion VI contains the discussion. Finally, Section VII concludes
this article.

II. BACKGROUND ON ACTIVE INFERENCE AND BTS

A. Background on Active Inference

Active inference provides a unifying theory for perception,
action, decision-making, and learning in biological or artifi-
cial agents [33]. Our active inference agent rests on the tuple
(O,S,A, P,Q). This is composed of: a finite set of observations
O, a finite set of states S , a finite set of actions A, a generative
model P , and an approximate posterior Q.

Active inference proposes a solution for action and perception
by assuming that actions will fulfill predictions that are based
on inferred states of the world, given some observations. The
generative model contains beliefs about future states and action
plans, where plans that lead to preferred observations are more
likely. Perception and action are achieved through the optimiza-
tion of two complementary objective functions, the variational
free-energyF , and the expected free-energyG. These quantities
to optimize are derived based on the generative model and the
approximate posterior, as detailed later. Variational free-energy
measures the fit between the generative model and past and
current sensory observations, while expected free-energy scores
future possible courses of action according to prior preferences
and predicted observations. Fig. 1 depicts the general high

level idea. For a first-time reader of active inference, we advise
consulting [20] for a more extensive introduction.

In the following, we explain the form of the generative model
and how the model parameters relate to states, actions, and
observations. Based on this model, we present the expressions
for the free-energy and expected free-energy that are used to
derive the equations for perception and decision-making. We
complement the theory with pen-and-paper examples and as-
sociated Python code.1 All the other necessary mathematical
derivations are added in the Appendixes.

1) Generative Model: In active inference [20], the generative
model P is chosen to be a Markov process that allows to infer
the states of the environment and to predict the effects of actions
as well as future observations. This is expressed as a joint
probability distribution P (ō, s̄,η, π), where ō is a sequence
of observations, s̄ is a sequence of states, η represents model
parameters, and π is a plan. In particular, once given fixed model
parameters η for a task2, we can write

P (ō, s̄, π) = P (π)

T∏
τ=1

P (sτ |sτ−1, π)P (oτ |sτ). (1)

The full derivation of the generative model in (1), the assump-
tions under its factorization, and how this joint probability is
used to define the free-energy F can be found in Appendix A.
The probability distributions in (1) are represented internally by
an active inference agent through the following parameters

1) A ∈ [0, 1]r,m is a matrix representation of the conditional
probability P (oτ |sτ), where r is the number of possible
observations andm the number of possible states.A is also
called the likelihood matrix, and it indicates the probability
of observations given a specific state. Each column of A
is a categorical distribution. It holds that P (oτ |sτ ,A) =
Cat(Asτ). For a generic entry Aij = P (oτ = i|sτ = j).

2) B ∈ [0, 1]m,m represents a transition matrix. In particular
P (sτ+1|sτ , aτ) = Cat(Baτ

sτ). For a symbolic action
aτ in a planπ,Baτ

represents the probability of state sτ+1

while applying action aτ from state sτ . The columns of
Baτ

are categorical distributions.
3) π is a sequence of actions over a time horizon T . π is the

posterior distribution, a vector holding the probability of
different plans. These probabilities depend on the expected
free-energy in future time steps under plans given the
current belief: P (π) = σ(−G(π)). Here, σ indicates the
softmax function used to normalize probabilities.

An active inference agent contains also a model D ∈ [0, 1]m

that represents the belief about the initial state at τ = 1. So
P (s0) = Cat(D). In addition, an agent also represents prior
preferences about desired observations for goal-directed behav-
ior in C ∈ Rr, such that P (oτ) = C.

In the context of this article, we do not consider additional
generative model parameters, such as the E vector to encode
priors over plans used to represent habits [34], [35]. The param-
eter E could be used to include common sense knowledge in

1[Online]. Available: https://github.com/cpezzato/discrete_active_inference/
blob/main/discrete_ai/scripts/paper_examples.py

2Note that, in the general case, model parameters are not fixed and can be
updated as well through active inference [20].

Authorized licensed use limited to: TU Delft Library. Downloaded on May 02,2023 at 06:42:39 UTC from IEEE Xplore. Restrictions apply.

https://github.com/cpezzato/discrete_active_inference/blob/main/discrete_ai/scripts/paper_examples.py
https://github.com/cpezzato/discrete_active_inference/blob/main/discrete_ai/scripts/paper_examples.py

PEZZATO et al.: ACTIVE INFERENCE AND BEHAVIOR TREES FOR REACTIVE ACTION PLANNING AND EXECUTION IN ROBOTICS 1053

TABLE I
NOTATION FOR ACTIVE INFERENCE

the decision-making process, but this will be addressed in future
work. Table I summarizes the notation adopted in this article. The
top part contains quantities computed by active inference, while
the bottom part the domain parameters required. As explained
in the following, these internal models will be used by an active
inference agent to compute the free-energy and the expected
free-energy.

2) Variational Free-Energy: Given the generative model as
before, one can derive an expression for the variational free-
energy. By minimizingF , an agent can determine the most likely
hidden states given sensory information. The expression for F
is given by

F (π) =

T∑
τ=1

sπ�τ

[
ln sπτ − ln (Baτ−1s

π
τ−1)− ln (A�oτ)

]
(2)

where F (π) is a plan specific free-energy. The logarithm is con-
sidered elementwise. For the derivations please see Appendix
B.

3) Perception: According to active inference, both percep-
tion and decision-making are based on the minimization of
free-energy. In particular, for state estimation, we take partial
derivatives of F with respect to the states and set the gradient
to zero. The posterior distribution of the state, conditioned by a
plan, is given by

sπτ=1 = σ(lnD + ln (B�aτ
sπτ+1) + ln (A�oτ)) (3a)

sπ1<τ<T = σ(ln (Baτ−1s
π
τ−1) + ln (B�aτ

sπτ+1) + ln (A�oτ))
(3b)

sπτ=T = σ(ln (Baτ−1s
π
τ−1) + ln (A�oτ)) (3c)

whereσ is the softmax function. The column ofB�aτ
are normal-

ized. For the complete derivation, please see to Appendix C. Note
that when τ = 1 it holds ln (Baτ−1s

π
τ−1) = lnD. We provide

below an example of state update and highlight the effect of
uncertain action outcomes in the state estimation process.

Example 1. State Estimation: An active inference agent lives
in a simple world composed of one state which can have two
possible values. The only action the agent can do is to stay still
(Bidle), so π = aτ∀τ with aτ = idle. However, there are some
chances that unwanted transitions between states can occur. The
agent can only predict one step ahead (T = 2) and it receives an
observation oτ=1 at the start, that is related to the state through
A. The agent has no prior information about the initial state or
future observations, thusD is uniform as well as the initial guess
about the posterior distributions of the state. This is modeled as
follows:

A =

[
0.9 0.1

0.1 0.9

]
, Bidle =

[
0.8 0.2

0.2 0.8

]
, D =

[
0.5

0.5

]

oτ=1 =

[
1

0

]
, oτ=2 =

[
0

0

]
, sπτ=1 = sπτ=2 =

[
0.5

0.5

]
.

The update of the posterior distribution for state estimation is,
according to (3)

sπτ=1 = σ

(
ln

[
.5

.5

]
+ ln

([
.8 .2

.2 .8

][
.5

.5

])

+ ln

([
.9 .1

.1 .9

][
1

0

]))
=

[
.9

.1

]

sπτ=2 = σ

(
ln

([
.8 .2

.2 .8

][
.9

.1

])
+ ln

([
.9 .1

.1 .9

][
0

0

]))

=

[
.74

.26

]
.

As commonly done in active inference literature, a small number
(for instance e−16 [34]) is added when computing the logarithms.
This prevents numerical errors in case of ln(0). Note that, if there
would be no uncertainty on the actions the agent can take, i.e.,
Bidle is the identity in this case, then the estimated hidden state
at τ = 2 would be sπτ=2 = [0.9, 0.1]�. The agent would then be
more confident under this action.

4) Expected Free-Energy: Active inference unifies action
selection and perception by assuming that actions fulfill pre-
dictions based on inferred states. Since the internal model can
be biased toward preferred states or observations (prior desires),
active inference induces actions that will bring the current beliefs
toward the preferred states. An agent builds beliefs about future
states which are then used to compute the expected free-energy.
The latter is necessary to evaluate alternative plans. Plans that
lead to preferred observations are more likely. Preferred obser-
vations are specified in the model parameter C. This enables
action to realize the next (proximal) observation predicted by
the plan that leads to (distal) goals. The expected free-energy

Authorized licensed use limited to: TU Delft Library. Downloaded on May 02,2023 at 06:42:39 UTC from IEEE Xplore. Restrictions apply.

1054 IEEE TRANSACTIONS ON ROBOTICS, VOL. 39, NO. 2, APRIL 2023

for a plan π at time τ is given by

G(π, τ) = oπ�
τ [lnoπ

τ − lnC]︸ ︷︷ ︸
Reward seeking

−diag(A� lnA)�sπτ︸ ︷︷ ︸
Information seeking

. (4)

The diag() function simply takes the diagonal elements of a
matrix and puts them in a column vector. This is just a method
to extract the correct matrix entries in order to compute the
expected free-energy [34]. By minimizing expected free-energy
the agent balances reward and information seeking (see Ap-
pendix D for derivations). Reward and information-seeking
behaviors that arise from the formulation of the expected free-
energy are illustrated, respectively, in Examples 2 and 3. To
keep the examples reasonably simple to be computed by hand,
we consider that the posterior over states according to different
plans have already been computed following (3), and are given.

Example 2. Reward Seeking: Consider an agent has com-
puted the posterior distribution of the states sπ1

τ and sπ2
τ under

two different plans π1 and π2. The agent has a preference for a
particular value of the state encoded in C. The model for this
example is the following:

A =

[
0.9 0.1

0.1 0.9

]
, C =

[
1

0

]
, sπ1

τ =

[
0.95

0.05

]
, sπ2

τ =

[
0.05

0.95

]
.

Let us consider the reward-seeking term in (4) (note that the
information-seeking term is equal in both plans for this exam-
ple). The observations expected under the two different plans
are

oπ1
τ = Asπ1

τ =

[
0.86

0.14

]
, oπ2

τ = Asπ2
τ =

[
0.14

0.86

]
.

Intuitively, according to C, the first plan is preferable and it
should have the lowest expected free-energy because it leads to
preferred observations with higher probability. Numerically

oπ1�
τ [lnoπ1

τ − lnC] =

[
0.86

0.14

]�

×
[
ln

[
0.86

0.14

]
− ln

[
1

0

]]
≈ 1.84.

Similarly for π2, oπ2�
τ [lnoπ2

τ − lnC] ≈ 13.35. As can be no-
ticed, the plan that brings the posterior state closest to the
preference specified in C leads to the lowest reward-seeking
term.

Example 3. Information Seeking: Let us consider a variation
of Example 2. The agent is not given any preference for a specific
state, and the likelihood matrix A encodes now the fact that
observations are expected to provide more precise information
when the agent is in the second state (second column ofA). This
results in the following models:

A =

[
0.7 0.1

0.3 0.9

]
, C =

[
0

0

]
, sπ1

τ =

[
0.9

0.1

]
, sπ2

τ =

[
0.1

0.9

]
.

We expect that the plan which leads to a state with less ambigu-
ous information has the lowest information-seeking term. For
the first plan

− diag(A� lnA)�sπ1
τ =

− diag

([
0.7 0.3

0.1 0.9

]
ln

[
0.7 0.1

0.3 0.9

])� [
0.9

0.1

]
≈ 0.58.

For the second plan, the information-seeking term is instead
≈ 0.35. The state achieved with the second plan generates less
ambiguous observations. Plans that lead to the lowest ambiguity
in sensory information, and thus, minimize G, are preferred.

In more complex examples, minimizing G leads to a
balance in reward and information seeking. For a fully
fledged exploration–exploitation problem, see a recently re-
leased Python library for active inference [36] which contains
an interactive and visual example3 of the emergent behavior of
a rat in a grid world which has to collect cues to disclose the
location of the reward.

a) Planning and decision-making: Taking the gradient of
F with respect to plans, and recalling that the generative model
specifies the approximate posterior over plans as a softmax
function of the expected free-energy [33] it holds that

π = σ(−Gπ − F π) (5)

where the vector π encodes the posterior distribution over
plans reflecting the predicted value of each plan. F π =
(F (π1), F (π2), . . .)

� andGπ = (G(π1), G(π2), . . .)
�. See Ap-

pendix E for the details.
b) Plan independent state-estimation: Given the probabil-

ity over p possible plans, and the plan dependent states sπτ , we
can compute the overall probability distribution for the states
over time through the Bayesian model average

sτ =
∑
i

sπi
τ πi, where i ∈ {1, . . ., p} (6)

where sπi
τ is the probability of a state at time τ under plan i and

πi is the probability of plan i. This is the average prediction for
the state at a certain time, so sτ , according to the probability
of each plan. In other words, this is a weighted average over
different models. Models with high probability receive more
weight, while models with lower probabilities are discounted.

c) Action selection: The action for the agent to be executed
is the first action of the most likely plan

λ = max([π1,π2, . . .,πp]︸ ︷︷ ︸
π�

), aτ = πλ(τ = 1) (7)

where λ is the index of the most likely plan.
Example 4: Plan and Action Selection: By computing the

expected free-energy of Exercise 2 using (4) and including the
information seeking term, we obtain Gπ = [G(π1), G(π2)]

� ≈
[2.16, 13.68]�. For the sake of this example, let us as-
sume the free-energy is equal for both plans, that is F π =
[F (π1), F (π2)]

� ≈ [1.83, 1.83]�. The posterior distribution
over plans is then

π = σ

(
−
[
2.16

13.68

]
−
[
1.83

1.83

])
≈
[
0.99

0.01

]
.

As can be seen, the most likely plan is the first one, in accordance
with the conclusions of Exercise 2. The action to be applied by
the agent is the first action of π1.

3[Online]. Available: https://pymdp-rtd.readthedocs.io/en/latest/notebooks/
cue_chaining_demo.html

Authorized licensed use limited to: TU Delft Library. Downloaded on May 02,2023 at 06:42:39 UTC from IEEE Xplore. Restrictions apply.

https://pymdp-rtd.readthedocs.io/en/latest/notebooks/cue_chaining_demo.html
https://pymdp-rtd.readthedocs.io/en/latest/notebooks/cue_chaining_demo.html

PEZZATO et al.: ACTIVE INFERENCE AND BEHAVIOR TREES FOR REACTIVE ACTION PLANNING AND EXECUTION IN ROBOTICS 1055

Algorithm 1: Action Selection With Active Inference
1: Set C � prior preferences
2: for τ = 1 : T do
3: If not specified, get state from D if τ == 1
4: If not specified, get observation from A
5: Compute F for each plan � (2)
6: Update posterior state sπτ � (3)
7: Compute G for each plan � (4)
8: Bayesian model averaging � (6)
9: Action selection � (7)

10: end for
11: Return a � Preferred action

The active inference algorithm is summarized in the pseudo-
code in Algorithm 1.

5) Multiple Sets of States and Observations: The active in-
ference model introduced in this section can also handle multiple
sets of independent states and observations [34]. A famous
example in the active inference literature covers a rat in a
T-maze [20]. The rat is seeking a reward (cheese) but the location
of the cheese is only known after receiving a cue. In this case,
one set of states encodes the location of the rat, while another
set encodes the initially unknown location of the cheese. Each
independent set of states is called a state factor. In the same
way, there can be multiple sets of observations coming from
different sensors. Each set is a different observation modality.
The authors in [34] and [35] provided a step-by-step tutorial on
active inference with fully worked out toy examples including
multiple factors and modalities. We provide explicit models for
our robotic case with multiple state factors and observations in
Section III-A.

B. Background on BTs

We now describe the high-level concepts at the basis of BTs
according to previous work, such as [3], [24]. These concepts
will be useful to understand the novel hybrid scheme proposed
in the next section. A BT is a directed tree composed of nodes
and edges that can be seen as a graphical modeling language. It
provides a structured representation for the execution of actions
that are based on conditions and observations in a system. The
nodes in a BT follow the classical definition of parents and
children. The root node is the only node without a parent,
while the leaf nodes are all the nodes without children. In a
BT, the nodes can be divided into control flow nodes (Fallback,
Sequence, Parallel, or Decorator), and into execution nodes
(Action or Condition) which are the leaf nodes of the tree. When
executing a given BT in a control loop, the root node sends a tick
to its child. A tick is nothing more than a signal that allows the
execution of a child. The tick propagates in the tree following the
rules dictated by each control node. A node returns a status to the
parent, which can be running if its execution has not finished yet,
success if the goal is achieved, or failure in the other cases. At
this point, the return status is propagated back up the tree, which
is traversed again following the same rules. The most important
control nodes are as follows.

Fig. 2. Example of BT. The tick traverses the tree starting from the Root. If
Condition is true Action1 is executed. Then, if Action1 returns success, the
Root returns success, otherwise Action2 is executed.

Fallback Nodes: A fallback node ticks its children from
left to right. It returns success (or running) as soon as one of
the children returns success (or running). When a child returns
success or running, the fallback does not tick the next child,
if present. If all the children return failure, the fallback returns
failure. This node is graphically identified by a gray box with a
question mark “?.”

Sequence Nodes: The sequence node ticks its children
from left to right. It returns running (or failure) as soon as a
child returns running (or failure). The sequence returns success
only if all the children return success. If a child returns running
or failure, the sequence does not tick the next child, if present.
In the library, we used to implement our BTs [37] the sequence
node, indicated with [→], keeps ticking a running child, and it
restarts only if a child fails. Faconti [37] also provides reactive
sequences [→R], where every time a sequence is ticked, the
entire sequence is restarted from the first child.

The execution nodes are Actions and Conditions.
Action Nodes: An Action node performs an action in the

environment. While an action is being executed, this node returns
running. If the action is completed correctly it returns success,
while if the action cannot be completed it returns failure. Actions
are represented as red rectangles.

Condition Nodes: A Condition node determines if a con-
dition is met or not, returning success or failure accordingly.
Conditions never return running and do not change any states or
variables. They are represented as orange ovals.

An example BT is given in Fig. 2.

III. ACTIVE INFERENCE AND BTS FOR REACTIVE ACTION

PLANNING AND EXECUTION

In this section, we introduce our novel approach using BTs
and active inference. Even though active inference is a very
promising theory, from a computational perspective computing
the expected free-energy for each possible plan that a robot might
take is cost-prohibitive. This curse of dimensionality is due to the
combinatorial explosion when looking deep into the future [33].
To solve this problem, we propose to replace deep plans with
shallow decision trees that are hierarchically composable. This
will allow us to simplify our offline plans, exploit opportunities,
and act intelligently to resolve local unforeseen contingencies.
Our idea consists of two main intuitions as follows.

Authorized licensed use limited to: TU Delft Library. Downloaded on May 02,2023 at 06:42:39 UTC from IEEE Xplore. Restrictions apply.

1056 IEEE TRANSACTIONS ON ROBOTICS, VOL. 39, NO. 2, APRIL 2023

1) To avoid combinatorial explosion while planning and act-
ing with active inference for long-term tasks we specify
the nominal behavior of an agent through a BT, used as a
prior. In doing so, BTs provide global reactivity to foreseen
situations.

2) To avoid coding every possible contingency in the BT, we
program only desired states offline, and we leave action
selection to the online active inference scheme. Active
inference provides then local reactivity to unforeseen sit-
uations.

To achieve such a hybrid integration, and to be able to deploy
this architecture on real robotic platforms, we addressed the
following three fundamental problems: 1) How to define the
generative models for active inference in robotics, 2) how to use
BTs to provide priors as desired states to active inference, and
3) how to handle action preconditions in active inference, and
possible conflicts which might arise at run-time in a dynamic
environment.

A. Definition of the Models for Active Inference

The world in which a robot operates needs to be abstracted
such that the active inference agent can perform its reasoning
processes. In this work, we operate in a continuous environment
with the ability of sensing and acting through symbolic decision-
making. In the general case, the decision-making problem will
include multiple sets of states, observations, and actions. Each
independent set of states is a factor, for a total of nf factors.
For a generic factor fj , where j ∈ J = {1, . . ., nf}, the corre-
sponding state factor is

s(fj) =
[
s(fj ,1), s(fj ,2), . . ., s(fj ,m

(fj))
]�

S =
{
s(fj)|j ∈ J

}
(8)

where m(fj) is the number of mutually exclusive symbolic
values that a state factor can have. Each entry of s(fj) is a real
value between 0 and 1, and the sum of the entries is 1. This
represents the current belief state. Then, we define x ∈ X the
continuous states of the world and the internal states of the robot
are accessible through the symbolic perception system. The role
of this perception system is to compute the symbolic obser-
vations based on the continuous state x, such that they can be
manipulated by the discrete active inference agent. Observations
o are used to build a probabilistic belief about the current state.
Assuming one set of observations per state factor with r(fj)

possible values, it holds

o(fj) =
[
o(fj ,1), o(fj ,2), . . ., o(fj ,r

(fj))
]�

O =
{
o(fj)|j ∈ J

}
. (9)

In addition, the robot has a set of symbolic skills to modify the
corresponding state factor

aτ ∈ α(fj) =
{
a(fj ,1), a(fj ,2), . . ., a(fj ,k

(fj))
}

A =
{
α(fj)|j ∈ J

}
(10)

wherek(fj) is the number of actions that can affect a specific state
factor fj . Each generic action a(fj ,·) has associated a symbolic
name, parameters, pre- and postconditions

where prec
a(fj,·) and post

a(fj,·) are first-order logic predi-
cates that can be evaluated at run-time. A logical predicate is a
Boolean-valued function P : X → {true, false}.

Finally, we define the logical state l(fj) as a one-hot encod-
ing of s(fj). We indicate as Lc(τ) = {l(fj)|j ∈ J } the (time
varying) current logical state of the world. Defining a logic state
based on the probabilistic belief s built with active inference,
instead of directly using the observation of the states o, increases
robustness against noisy sensor readings, as we will explain in
Example 12. Given the model of the world just introduced, we
can now define for each factor fj the likelihood matrix A(fj),
the k(fj) transition matrices B

a
(fj,·)
τ

, and the prior preferences

C(fj). When an observation is available, A(fj) provides infor-
mation about the corresponding value of a state factor s(fj).
For a particular state, the probability of a state observation pair
o
(fj)
τ and s

(fj)
τ is given by A(fj) ∈ Rr(fj)×m(fj) . In case a state

factor is observable with full certainty, each state maps into
the corresponding observation thus the likelihood matrix is the
identity of size m(fj), I

m(fj) . Note that knowing the mapping
between observations and states does not necessarily mean that
we can observe all the states at all times. Observations can be
present or not, and when they are the likelihood matrix indicates
the relation between that observation and the state. This relation
can be more complex and incorporate uncertainty in the mapping
as well. To define the transition matrices, we need to encode in
a matrix form the effects of each action on the relevant state
factors. The probability of a ending up in a state s

(fj)
τ+1, given

s
(fj)
τ and action a

(fj ,·)
τ is given by

P (s
(fj)
τ+1|s(fj)τ , a

(fj ,·)
τ) = Cat(B

a
(fj,·)
τ

s
(fj)
τ)

B
a
(fj,·)
τ

∈ Rm(fj)×m(fj)

. (11)

In other words, we define B
a
(fj,·)
τ

as a square matrix encoding

the postconditions of action a
(fj ,·)
τ . The prior preferences over

observations (or states) need to be encoded, for each factor,
in C(fj) ∈ Rm(fj) , with C = {C(fj)|j ∈ J }. The higher the
value of a preference, the more preferred a particular state is,
and vice-versa. Priors are formed according to specific desires
and they will be used to interface active inference and BTs.
Finally, one has also to define the vector encoding the initial
belief about the probability distribution of the states, that is
D(fj) ∈ Rm(fj) . This vector is normalized, and when no prior
information is available, each entry will be 1/m(fj). In this
work, we assume the model parameters, such as likelihood and
transition matrices to be known. However, one could use the
free-energy minimization to learn them [38].

Example 5: Consider a mobile manipulator in a retail envi-
ronment. We want the robot to be able to decide when to navigate

Authorized licensed use limited to: TU Delft Library. Downloaded on May 02,2023 at 06:42:39 UTC from IEEE Xplore. Restrictions apply.

PEZZATO et al.: ACTIVE INFERENCE AND BEHAVIOR TREES FOR REACTIVE ACTION PLANNING AND EXECUTION IN ROBOTICS 1057

to a certain goal location. To achieve so, we need one state factor
s(loc), one observation o(loc), and one symbolic action a(loc,1) =
moveTo(goal). The robot can also decide not to do anything,
so a(loc,2) = idle.

The current position in space of the robot is a continuous
value x ∈ X . However, during execution the robot is given
an observation o(loc) which indicates simply if the goal has
been reached or not. In this case, A(loc) = I2. The agent is
then constantly building a probabilistic belief s(loc) encoding
the chances of being at the goal. In case the robot has not
yet reached the goal, a possible configuration at time τ is the
following:

o(loc) =

[
isAt(goal)

!isAt(goal)

]
=

[
0

1

]
, s(loc) =

[
0.08

0.92

]
(12)

l(loc) =

[
0

1

]
, BmoveTo =

[
0.95 0.9

0.05 0.1

]
, Bidle =

[
1 0

0 1

]
.

The preference over a state to be reached is given throughC(loc).
A robot wanting to reach a location will have, for instance, a
preference C(loc) = [1, 0]�.

The transition matrix BmoveTo encodes the probability of
reaching a goal location through the action moveTo(goal),
which might fail with a certain probability. We also encode an
Idle action, which does not modify any state, but it provides
information on the outcome of the action selection process as we
will see in the next subsections. In this simple case, the world
state is just a single state factor s(loc). On the other hand, in
later more complicated examples, the world state will contain
all the different aspects of the world, for which a probabilistic
representation of their value is built and updated.

Using the proposed problem formulation for the active infer-
ence models, we can abstract redundant information which is
not necessary to make high-level decisions. For instance, in the
example above, we are not interested in building a probabilistic
belief of the current robot position. To decide if to use the action
moveTo(goal) or not, it is sufficient to encode if the goal
has been reached or not.

B. BTs Integration: Planning Preferences, Not Actions

To achieve a meaningful behavior in the environment through
active inference, we need to encode specific desires into the
agent’s brain through C = {C(fj)|j ∈ J }.

A Prior as BT: We propose to extend the available BT
nodes in order to be able to specify desired states to be achieved
as leaf nodes. We introduce a new type of leaf node called prior
nodes, indicated with a green hexagon. These nodes can be seen
as standard action nodes but instead of commanding an action,
they simply set the desired value of a state in C and they run
active inference for action selection. The prior node is then just
a leaf node in the BT which returns: Success if a state is

Fig. 3. Path among states is planned offline using the available set of actions
but only the sequence of states is provided at run-time. Actions are chosen online
from the available set with active inference.

Fig. 4. BT to navigate to a location using a classical BT and a BT for
active inference. One action moveTo(goal) is available and one condition
isAt(goal) provides information if the current location is at the goal. The
prior node for active inference (green hexagon) sets the desired prior and runs
the action selection process.

achieved, Running while trying to achieve it, or Failure
if for some reason it is not possible to reach the desired state.
The return statuses are according to the outcome of our reactive
action selection process, as explained in Section III-D.

Subgoals through BTs: To reach a distal goal state, we
plan achievable subgoals in the form of desired logical states l,
according to the available actions that a robot possesses. This
idea of using subgoals was already used in [23], but in our
solution with BTs, we provide a task-independent way to define
subgoals which is only based on the set of available skills of
the robot, such that we can make sure that it can complete the
task. At planning time, we define the ideal sequence of states
and actions to complete a task such that subsequent subgoals (or
logical desired states) are achievable by means of one action.
This can be done manually or through automated planning. At
run-time, however, we only provide the sequence of states to the
algorithm, as in Fig. 3.

Example 6: To program the behavior of the robot in Exam-
ple 5 to visit a certain goal location, the BT will set the prior
over s(loc) to C(loc) = [1, 0]� meaning that the robot would like
to sense to be at goal.

A classical BT and a BT for active inference with prior nodes
are reported in Fig. 4. Note that the action is left out in the BT
for active inference because these are selected at runtime. In this
particular case, the condition isAt(goal) can be seen as the
desired observation to obtain.

Authorized licensed use limited to: TU Delft Library. Downloaded on May 02,2023 at 06:42:39 UTC from IEEE Xplore. Restrictions apply.

1058 IEEE TRANSACTIONS ON ROBOTICS, VOL. 39, NO. 2, APRIL 2023

Note that the amount of knowledge (i.e., number of states and
actions) that is necessary to code a classical BT or our active
inference version in Example 6 is the same. However, we abstract
the fallback by planning in the state space and not in the action
space. Instead of programming the action moveTo(goal) we
only set a prior preference over the state isAt(goal) since
the important information is retained in the state to be achieved
rather than in the sequence of actions to do so. Action selection
through active inference will then select the appropriate skills
to match the current state of the world with the desired one,
minimizing this discrepancy through free-energy minimization.

Example 7: Consider the scenario in Example 5 with the prior
as in Example 6. The prior is specifying a preference over being
at the desired goal location, but the mobile manipulator is not.
The plan generated at runtime with Algorithm 1 (see Examples
2 and 4) would be to perform the action moveTo(goal),
since this increases the probability of getting an observation
isAt(goal).

As we will thoroughly explain in Section IV-A, our algorithm
creates online a stable region of attraction from the current state
to the goal state instead of planning it offline through fallbacks.
See Example 11 for a concrete case.

C. Action Preconditions and Conflicts

Past work on active inference, such as [23], was based on the
assumption that actions were always executable and noncon-
flicting, but these do not hold in more realistic scenarios.

Action Preconditions in Active Inference: We propose to
encode action preconditions as desired logical states that need to
hold to be able to execute a particular action. This is illustrated
in the next example.

Example 8: We add one more action to the set of skills of
our mobile manipulator:pick(obj) and the relative transition
matrix Bpick. The action templates are extended as follows:

o(hold) =

[
isHolding(obj)

!isHolding(obj)

]
, Bpick =

[
0.95 0.9

0.05 0.1

]

o(reach) =

[
isReachable(obj)

!isReachable(obj)

]
(13)

where we added a new logical state l(hold), the relative belief
s(hold), and observation o(hold), which indicates if the robot is
holding the object obj. In the simplest case, we suppose that
the only precondition for successful grasping is that obj is
reachable. We then add a logical state l(reach), as well as s(reach)

and o(reach), to provide active inference with information about
this precondition. o(reach) can be built for instance trying to
compute a grasping pose for a given object. The robot can act on
the state l(hold) through pick, and it can act on l(reach) through
moveTo.

Conflicts Resolution in Active Inference: Conflict reso-
lution due to dynamic changes in the environment and online
decision-making is handled through modification of the prior
preferences inC. The BT designed offline specifies at runtime the
desired state to be achieved. This is done by populating the prior
preference over a state with the value of one. Note that if there is
no goal, the preferences over states are set to zero everywhere so
there is no incentive to act to achieve a different state. Given some
preferences over states, the online decision-making algorithm
with active inference selects an action, and checks if the precon-
ditions are holding according to the current belief state. If so, the
action is executed, if not, the missing preconditions are added to
the current preferred state with a higher preference (i.e., > 1), in
our case with value 2. This can lead to conflicts with the original
BT [4], that is the robot might want to simultaneously achieve
two conflicting states. However, the state relative to a missing
precondition has higher priority (i.e., > 1) by construction. As
explained in Algorithm 2, if preconditions are missing at run-
time, action selection is performed again with the updated prior
C, such that actions that will satisfy them are more likely. With
our method, there is no need to explicitly detect a conflict and
reordering a BT then, as was done in past work on the dynamic
expansion of BTs [4]. In fact, since the decision-making with
active inference happens continuously during task execution,
once a missing precondition is met this is removed from the
current desired state. Thus, the only remaining preference is the
one imposed by the BT, which can now be resumed. This leads
to a natural conflict resolution and plan resuming without ad
hoc recovery mechanisms. The advantage of active inference
is that we can represent which state is important but also when
with different values of preference. Since missing preconditions
are added to the current prior with a higher preference with
respect to the offline plan, this will induce a behavior that can
initially go against the initial BT because the new desire is more
appealing to be satisfied. Conflict resolution is then achieved
by locally updating prior desires about a state, giving them
higher preference. The convergence analysis of this approach
is reported in Section IV, and a concrete example of conflict
resolution in a robotic scenario is presented in Section V-D,
Example 13.

D. Complete Control Scheme

Our solution is summarized in Algorithm 2 and Fig. 5. Every
time a BT is ticked, given a certain frequency, Algorithm 2 is run.
The symbolic perception layer takes the sensory readings and
translates these continuous quantities into logical observations.
This can be achieved through user-defined models according
to the specific environment and sensors available. The logical
observations are used to perform belief updating to keep a
probabilistic representation of the world in S . Then, the logical
state Lc(τ) is formed. Every time a prior node in the BT is
ticked, the corresponding priors in C are set.

For both missing preconditions and conflicts, high priority
priors are removed from the preferences C whenever the pre-
conditions are satisfied or the conflicts resolved (lines 6-10),
allowing to resume the nominal flow of the BT. Active inference

Authorized licensed use limited to: TU Delft Library. Downloaded on May 02,2023 at 06:42:39 UTC from IEEE Xplore. Restrictions apply.

PEZZATO et al.: ACTIVE INFERENCE AND BEHAVIOR TREES FOR REACTIVE ACTION PLANNING AND EXECUTION IN ROBOTICS 1059

Fig. 5. Overview of the control architecture for reactive action planning and execution using active inference. Adaptive action selection is performed according
to Algorithm 2. The symbolic perception module computes the symbolic observations based on the continuous state. In this work we assume this mapping known
and encode it through simple rules based on measurements from the robot’s sensors. However learning methods to define this relationship from data could be
employed as well.

from Algorithm 1 is then run for action selection. If no action
is required since the logical state corresponds to the prior, the
algorithm returns Success, otherwise, the selected action’s
preconditions are checked and eventually pushed with higher
priority. Then, action selection is performed with the updated
prior. This procedure is repeated until either an executable action
is found, returning Running, or no action can be executed,
returning Failure. The case of Failure is handled through
the global reactivity provided by the BT. This creates dynamic
and stable regions of attraction, as explained in Section IV-A, by
means of sequential controller composition [39] (lines 17-31
of Algorithm 2).

Crucially, in this work, we propose the new idea of using
dynamic priors. For a factor fj , C(fj) is not fixed a priori as
in past active inference works, but instead, it can change over
time according to the BT for a task. This allows preconditions
checking and conflict resolution within active inference. A robot
can follow a long programmed routine while autonomously
taking decisions to locally compensate for unexpected events.
This reduces considerably the need for hard-coded fallbacks,
allowing to compress the BT to a minimal number of nodes.

IV. THEORETICAL ANALYSIS

A. Analysis of Convergence

We provide a theoretical analysis of the proposed control
architecture. There are two possible scenarios that might occur
at run-time. Specifically, the environment might or might not
differ from what has been planned offline through BTs. These
two cases are analyzed in the following to study the convergence
to the desired goal of our proposed solution.

1) Dynamic Environment is as Planned: In a nominal execu-
tion, where the environment in which a robot is operating is the
same as the one at planning time, there is a one-to-one equiva-
lence between our approach and a classical BT formulation. This
follows directly by the fact that the BT is defined according to
Section III-B, so each subsequent state is achievable by means of
one single action. At any point of the task, the robot finds itself in
the planned state and has only one preference over the next state
given by the BT through C. The only action which can minimize
the expected free-energy is the one used during offline planning.
In a nominal case, then, we maintain all the properties of BTs,
which are well explained in [3]. In particular, the behavior will be
finite-time successful (FTS) [3] if the atomic actions are assumed

Algorithm 2: Pseudo-Code for Adaptive Action Selection.
1: Get desired prior and parameters from BT:
2: C, param← BT � With priority 1
3: Set current observations, beliefs and logical state:
4: Set O, S, Lc(τ)
5: Remove preferences with high-priority (i.e., > 1) if

satisfied:
6: for all priors C(fj) with preference ≥ 1 do
7: if l(fj)c holds then
8: Remove pushed preference for l

(fj)
c ;

9: end if
10: end for
11: Run active inference given O, S and C:
12: aτ ← Action_selection(O,S, C) � Algorithm 1
13: Update Lc(τ)
14: if aτ == Idle then
15: return Success; � No action required
16: else
17: Check action preconditions:
18: while aτ !=Idle
19: if precaτ

∈ Lc(τ) OR precaτ
= ∅ then

20: Execute(aτ);
21: break, return Running; � Executing aτ
22: else
23: Push missing preconditions in C:
24: C ← precaτ

; � With priority 2
25: Exclude aτ and re-run Algorithm 1:
26: Remove(aτ);
27: aτ ← Action_selection(O,S, C)
28: if aτ == Idle then
29: return Failure; � No solution
30: end if
31: end if
32: end while
33: end if

to return success after a finite time. Note that, so far we did
not consider actions with the same postconditions. However, in
this case, Algorithm 2 would sequentially try all the alternatives
following the given order at design time. This can be improved
for instance by making use of semantic knowledge at runtime
to inform the action selection process about preferences over

Authorized licensed use limited to: TU Delft Library. Downloaded on May 02,2023 at 06:42:39 UTC from IEEE Xplore. Restrictions apply.

1060 IEEE TRANSACTIONS ON ROBOTICS, VOL. 39, NO. 2, APRIL 2023

actions to achieve the same outcome. This information can be
stored for instance in a knowledge base and can be used to
parametrize the generative model for active inference.

2) Dynamic Environment IS NOT as Planned: The most in-
teresting case is when a subsequent desired state is not reachable
as initially planned. As explained before, in such a case we
push the missing preconditions of the selected action into the
current prior C to locally and temporarily modify the goal. We
analyze this idea in terms of sequential controllers (or actions)
composition as in [39], and we show how Algorithm 2 generates
a plan that will eventually converge to the initial goal. First of
all, we provide some assumptions and definitions that will be
useful for the analysis.

Assumption 1: The action templates with pre- and postcon-
ditions provided to the agent are correct;

Assumption 2: A given desired goal is achievable by at least
one atomic action.

Definition 1: The domain of attraction of an action ai is
defined as the set of its preconditions. This domain for ai is
indicated as D(ai).

Definition 2: We say that an action a1 prepares action a2 if
the postconditions Pc of a2 lie within the domain of attraction
of a1, so Pc(a2) ⊆ D(a1).

Note: For the derivations in this section we consider,
without lack of generality, one single factor such that we can
drop the superscripts, i.e., C(fj) = C.

Following Algorithm 2 each time a prior leaf node is ticked in
the BT, active inference is used to define a sequence of actions
to bring the current state toward the goal. It is sufficient to show,
then, that the asymptotically stable equilibrium of a generic
generated sequence is the initial given goal.

Lemma 1: Let Lc(τ) be the current logic state of the world,
and A the set of available actions. An action ai ∈ A can
only be executed within its domain of attraction, so when
Lc(τ) ∈ D(ai). Let us assume that the goal encoded in C is
a postcondition of an action a1 such that Pc(a1) = C, and that
Lc(τ) �= C. If Lc(τ) �∈ D(a1), Algorithm 2 generates a plan
π = {a1, . . . , aN}with domain of attractionD(π) according to
the steps as follows.

1) Let the initial sequence contain a1 ∈ A, π(1) = {a1},
D(π) = D(a1), set N = 1.

2) Remove aN from the available actions, and add the unmet
preconditions D(aN) to the prior C with higher priority,
such that C = C ∪ D(aN).

3) SelectaN+1 through active inference (Algorithm 1). Then,
aN+1 prepares aN by construction, π(N + 1) = π(N) ∪
{aN}, DN+1(π) = DN (π) ∪ D(aN+1), and N = N +
1.

4) Repeat 2, 3 until Lc(τ) ∈ D(aN) OR aN == Idle
If Lc(τ) ∈ D(aN), the sequential composition π with region

of attraction D(π) = ⋃ai
D(ai) for i = 1, . . ., N stabilizes the

system at the given desired state C. If ai ∈ A are FTS, then π
is FTS.

Proof: Since Lc(τ) ∈ D(aN) and Pc(aN) ⊆ D(aN−1), it
follows that Lc(τ) is moving toward C. Moreover, by construc-
tion D(a1) ⊆

⋃
ai
Pc(ai) for i = 2, . . ., N . After completing

Fig. 6. Schematic visualization of the domain of attraction D(·) of different
controllers around the current logical stateLc(τ), as well as their postconditions
within the domain of attraction of the controller below.

action a1, it results in Lc(τ) ≡ C since by definition Pc(a1) =
C. �

Note that if Lc(τ) ∈ D(aN) does not hold after sampling all
available actions, it means that the algorithm is unable to find a
set of actions that can satisfy the preconditions of the initially
planned action. This situation is a major failure that needs to be
handled by the overall BT. Lemma 1 is a direct consequence of
the sequential behavior composition of FTS actions, where each
action has effects within the domain of attraction of the action
below. The asymptotically stable equilibrium of each controller
is either the goal C, or it is within the region of attraction of
another action earlier in the sequence, see [3], [39], [40]. One
can visualize the idea of sequential composition in Fig. 6.

B. Analysis of Robustness

It is not easy to find a common and objective definition of
robustness to analyze the characteristics of algorithms for task
execution. One possible way is to describe robustness in terms
of domains or regions of attraction as in past work [3], [39].
When considering task planning and execution with classical
BTs, often these regions of attraction are defined offline leading
to a complex and extensive analysis of the possible contingencies
that might eventually happen [3], and these are specific to each
different task. Alternatively, adapting the region of attraction
requires either replanning [6] or dynamic BT expansion [4].
Robustness can be measured according to the size of this region,
such that a robot can achieve the desired goal from a plurality
of initial conditions. With Algorithm 2 we achieve robust be-
havior by dynamically generating a suitable region of attraction
according to the minimization of free-energy. This region brings
the current state toward the desired goal. We then cover only the
necessary region in order to be able to steer the current state to
the desired goal, changing prior preferences at run-time.

Corollary 1: When an executable action aN is found
during task execution through Algorithm 2 such that π =
{a1, . . . , aN}, the plan has a domain of attraction toward a
given goal that includes the current state Lc(τ). If D(a1) ⊆⋃

ai
Pc(ai) for i = 2, . . ., N the plan is asymptotically stable.

Authorized licensed use limited to: TU Delft Library. Downloaded on May 02,2023 at 06:42:39 UTC from IEEE Xplore. Restrictions apply.

PEZZATO et al.: ACTIVE INFERENCE AND BEHAVIOR TREES FOR REACTIVE ACTION PLANNING AND EXECUTION IN ROBOTICS 1061

Fig. 7. Simulation of the mobile manipulation task.

Proof: The corollary follows simply from Lemma 1. �
Example 9: Let us assume that Algorithm 2 produced a plan

π = {a1, a2}, a set of FTS actions, where a2 is executable so
Lc(τ) ∈ D(a2), and its effects are such that Pc(a2) ≡ D(a1).
Since a2 is FTS, after a certain running time Lc(τ) ∈ Pc(a2).
The next tick after the effects of a2 took place, π = {a1}, where
this time a1 is executable since Lc(τ) ∈ D(a1) and Pc(a1) =
C. The overall goal is then achieved in a finite time.

Instead of looking for globally asymptotically stable plans
from each initial state to each possible goal, which can be
unfeasible or at least very hard [39], we define smaller regions of
attractions dynamically, according to the current state and goal.

V. EXPERIMENTAL EVALUATION

In this section, we evaluate our algorithm in terms of robust-
ness, safety, and conflicts resolution in two validation scenarios
with two different mobile manipulators and tasks. We also
provide a theoretical comparison with classical and dynamically
expanded BTs.

A. Experimental Scenarios

1) Scenario 1: The task is to pick one object from a crate
and place it on top of a table. This object might or might not be
reachable from the initial robot configuration, and the placing
location might or might not be occupied by another movable
box. Crucially, the state of the table cannot be observed until
the table is reached. This results in a partially observable initial
state at the start of the mission where the place location has a
50% chance of being either free or occupied. In addition, we
suppose that other external events, or agents, can interfere with
the execution of the task, resulting in either helping or adversarial
behavior. The robot used for the first validation scenario is a
mobile manipulator consisting of a Clearpath Boxer mobile base,
in combination with a Franka Emika Panda arm. The experiment
for this scenario was conducted in a Gazebo simulation in a
simplified version of a real retail store, see Fig. 7.

2) Scenario 2: The task is to fetch a product in a mockup re-
tail store and stock it on a shelf using the real mobile manipulator
TIAGo, as in Fig. 8.

Importantly, the BT for completing the task in the real store
with TIAGo is the same one used for simulation with the Panda
arm and the mobile base, just parametrized with a different object

Fig. 8. Experiments with TIAGo, stocking a product on the shelf.

TABLE II
NOTATION FOR STATES AND ACTIONS

and place location. The code developed for the experiments and
theoretical examples is publicly available.4

B. Implementation

1) Models for Scenarios 1 and 2: In order to program the
tasks for Scenarios 1 and 2, we extended the robot skills defined
in our theoretical Example 8. We added then two extra states and
their relative observations: isPlacedAt(loc, obj) called
s(place), and isLocationFree(loc) called s(free). The state
s(place) indicates whether or not obj is at loc, with associated
probability, while s(free) indicates whether loc is occupied by
another object. Then, we also had to add three more actions,
which are 1) place(obj, loc), 2) push(obj) to free a
placing location, and 3) placeOnPlate(obj), to place the
object held by the gripper on the robot’s plate. We summarize
the states and skills for the mobile manipulator in Table II.

The likelihood matrices are just the identity, while the tran-
sition matrices simply map the postconditions of actions, sim-
ilarly to Example 8. Note that the design of actions and states
is not unique, and other combinations are possible. One can
make atomic actions increasingly more complex, or add more
preconditions. The plan, specified in a BT, contains the desired

4[Online]. Available: https://github.com/cpezzato/discrete_active_inference

Authorized licensed use limited to: TU Delft Library. Downloaded on May 02,2023 at 06:42:39 UTC from IEEE Xplore. Restrictions apply.

https://github.com/cpezzato/discrete_active_inference

1062 IEEE TRANSACTIONS ON ROBOTICS, VOL. 39, NO. 2, APRIL 2023

Fig. 9. BT with prior nodes to complete the mobile manipulation task in the
retail store, Scenario 1 and 2. locs, locp are, respectively, the location in front
of the shelf in the store and the desired place location of an item.

sequence of states to complete the task, leaving out from the
offline planning other complex fallbacks to cope with contingen-
cies associated with the dynamic nature of the environment. The
BT for performing the tasks in both Scenario 1 and Scenario 2 is
reported in Fig. 9. Note that the fallback for the action moveTo
could be substituted by another prior node, as in Fig. 4; however,
we opted for this alternative solution to highlight the hybrid com-
bination of classical BTs and active inference. Design principles
to choose when to use prior nodes and when normal fallbacks
are reported in Section V-F.

2) Execution of Algorithm 2: We provide a full execution of
Algorithm 2 in Example 10. We consider Scenario 1, for which
the initial configuration of the robot is depicted in Fig. 7, and
the BT for the task is the one if Fig. 9.

Example 10: Let us consider Algorithm 2 and Scenario 1.
At the start of the task, the first node isHolding(obj) in
the BT is ticked, and the corresponding prior preference is
set, C(hold) = [1, 0]� (line 2 Algorithm 2). Since the robot is
not holding the desired obj and it is not reachable, o(hold) =
o(reach) = [0, 1]�. At the start, the initial states are a uniform
distribution s(hold) = s(reach) = [0.5, 0.5]� (line 4). Since the
task just started, the only prior preference is the one set by
the BT, so there are no high-priority priors (lines 6–10). Algo-
rithm 1 is then run (line 12), updating the states s(hold), s(reach)

according to the given observations, and selecting an action
aτ . In this example, the updated most probable logical state
(line 13) will be l

(hold)
c = l

(reach)
c = [0, 1]� and aτ will be

pick(obj) since there is a mismatch between the C(hold) and
l
(hold)
c . The preconditions ofpick(obj) are checked (line 19).

This action requires the object to be reachable, so this missing
precondition is added to the preferences with high priority, that is
C(reach) = [2, 0]�. Active inference is run again with the update
prior (line 27). This process (lines 17–32) is repeated until either
an executable action is found (lines 19–21) or the selected action
is idle (lines 28–30). In the first case, aτ is executed and
the algorithm returns running. In the second case, a failure is
returned indicating that no action can be performed to satisfy
prior preferences. In this example, rerunning active inference
(line 27) with C(hold) = [1, 0]� and C(reach) = [2, 0]� would
return the action moveTo. There are no preconditions for this

Fig. 10. Dynamic domain of attraction generated by Algorithm 2 for Ex-
ample 11. (a) relates to the action pick(obj), and (b) is the composition
of moveTo(loc) and pick(obj) after automatically updating the prior
preferences.

action, thus it can be executed (lines 20–21). The BT keeps
being ticked at a certain frequency, and until the object becomes
reachable, the same steps, as just described, will be repeated. As
soon as the robot can reach the object, so l

(reach)
c = [1, 0]�,

the preference for C(reach) is removed (lines 6–10) and set
to [0, 0]�. This time, when the action pick is selected, its
preconditions are satisfied, and thus, it can be executed. After
holding the object, when the BT is ticked no action is needed
since the prior is already satisfied. Algorithm 2 returns success
(lines 14–16) and the task can proceed with the next node in the
BT.

Note that the BT designed for Scenario 1 was entirely reused
in Scenario 2, with the only adaptation of the desired object and
locations in the BT. In Section V-C and V-D, robustness and
run-time conflicts resolution are analyzed for Scenario 1, but
similar considerations can be derived for scenario 2.

C. Robustness: Dynamic Regions of Attraction

With our approach we improve robustness compared to clas-
sical BTs in two different ways: 1) in terms of task execution,
and 2) against noisy sensory readings, which we elaborate in the
following.

1) Robustness of Task Execution: With our algorithm we can
generate complex regions of attraction dynamically at runtime,
alleviating the burden of programming every fallback before-
hand in a BT, which is prone to fail in edge cases that have
not been considered at design time. We illustrate this in the
following example. Consider Example 10. According to the
current world’s state, Algorithm 2 selects different actions to
generate a suitable domain of attraction.

Example 11: The initial conditions are such that the object is
not reachable. Let s(hold) be the probabilistic belief of holding an
object, and s(reach) be the probabilistic belief of its reachability.
The domain of attraction generated by Algorithm 2 at runtime is
depicted in Fig. 10 using phase portraits, as in [3]. Actions, when
performed, increase the probability of their postconditions.

Authorized licensed use limited to: TU Delft Library. Downloaded on May 02,2023 at 06:42:39 UTC from IEEE Xplore. Restrictions apply.

PEZZATO et al.: ACTIVE INFERENCE AND BEHAVIOR TREES FOR REACTIVE ACTION PLANNING AND EXECUTION IN ROBOTICS 1063

Fig. 11. Erroneous transition in a purely reactive BT due to a noisy observation
at time τ . F , S, and R mean, respectively, Failure, Success and Running.

From Fig. 10, we can see that the goal of the active inference
agent is to hold obj so C(hold) = [1 0]�. The first selected
action is then pick(obj). However, since the current logical
state is not contained in the domain of attraction of the action,
the prior preferences are updated with the missing (higher pri-
ority) precondition according to the action template provided,
that is isReachable so C(reach) = [2, 0]�. This results in a
sequential composition of controllers with a stable equilibrium
corresponding to the postconditions of pick(obj). On the
other hand, to achieve the same domain of attraction with a
classical BT, one would require several additional nodes, as
explained in Section V-F and visualized in Fig. 14. Instead
of extensively programming fallback behaviors, Algorithm 2
endows our actor with deliberation capabilities and allows the
agent to reason about the current state of the environment, the
desired state, and the available action templates.

2) Robustness Against Noisy Sensory Readings: BTs are
purely reactive which means that every action, or subbehavior,
is executed in response to an event or a condition determined at
the current time step τ . If an instantaneous observation is erro-
neous, wrong transitions could be triggered because in classical
BTs there is no notion and representation of a “state” that is
maintained and updated over time. This might be a problem in
the presence of noise in the observations.

Example 12: Consider a generic fallback based on a condition
check in a BT, as in Fig. 11. The perception system, on which
the condition check is based produced at time τ an erroneous
observation, for instance, due to poor lighting conditions in an
object detection algorithm. If the condition is checked at time
τ , a purely reactive system would produce a wrong transition
because the condition returns failure, and the fallback would
tick the action.

In active inference, the probabilistic representation of a state
helps filter out this kind of spurious sensory input. For instance,
a wrong observation like the one above would have caused the
robot to be just slightly less confident about that state, with no
erroneous transition.

D. Resolving Run-Time Conflicts

Unexpected events affecting the system during action selec-
tion can lead to conflicts with the initial offline plan. This is
the case in one execution of the mobile manipulation task, as in
Fig. 12, where after picking the object and moving in front of the
table, the robot senses that the place location is not free. In this
situation, a conflict with the offline plan arises, where there is
a preference for two mutually exclusive states, namely, holding

Fig. 12. Example of conflict during mobile manipulation using the BT from
Fig. 9. The BT is defining a preference of 1 over holding the red cube, but
the runtime situation requires a free gripper to safely push away an unexpected
object. Active inference is then required to achieve an unmet precondition with
higher preference.

the red cube but also having the gripper free in order to empty
the place location. We describe this situation more formally in
Example 13, and we then explain how such a conflict is resolved.

Example 13: For solving the situation in Fig. 12 using the BT
in Fig. 9, the robot should 1) hold the object, 2) be at the desired
place location, and 3) have the object placed. The preferences
are planned offline and the BT populates the relative priors
with a unitary preference at runtime [(14a)]. At this point of
the execution, there is a mismatch between the current logical
belief about the state l(place) and the desired one, in fact C(place)

differs from l(place) [(14b)] because the object is not placed at
the desired location

C(hold) =

[
1

0

]
, C(place) =

[
1

0

]
(14a)

l(hold) =

[
1

0

]
, l(place) =

[
0

1

]
. (14b)

The selected action with active inference in this situation is
place(obj,loc). The missing precondition on the place
location to be free is added to the prior [see C(free) in (15)] and
the action selection is performed again. The only action that can
minimize free-energy further is now push. Then, the missing
precondition for this action (i.e., !isHolding) is added in
the current prior with higher priority in C(hold) (line 24 in
Algorithm 2)

C(free) =

[
2

0

]
, C(hold) =

[
1

2

]
. (15)

The required push action to proceed with the task has a
conflicting precondition with the offline plan, seeC(hold) in (15).

Even though the desired state specified in the BT is isH-
olding(obj), at this particular moment there is a higher
preference for having the gripper free due to a missing pre-
condition to proceed with the plan. Algorithm 2 selects then
the action that best matches the current prior desires, or equiv-
alently that minimizes expected free-energy the most, that is
placeOnPlate to obtain l(hold) = [0, 1]�. This allows, then,
to perform the action push. Once the place location is free after
pushing, the high-priority preference on having the location free
is removed from the prior. As a consequence, there are also no
more preferences pushed with high priority over the state l(hold)

Authorized licensed use limited to: TU Delft Library. Downloaded on May 02,2023 at 06:42:39 UTC from IEEE Xplore. Restrictions apply.

1064 IEEE TRANSACTIONS ON ROBOTICS, VOL. 39, NO. 2, APRIL 2023

Fig. 13. BT with safety guarantees while allowing runtime adaptation.

which is only set by the BT as C(hold) = [1, 0]�. The red cube is
then picked again and placed on the table since no more conflicts
are present.

Videos of the simulations and experiments can be found
online.5 The BTs to encode priors for active inference are
implemented using a standard library [37].

E. Safety

When designing adaptive behaviors for autonomous robots,
attention should be paid to safety. The proposed algorithm allows
to retain control over the general behavior of the robot and to
force a specific routine in case something goes wrong leveraging
the structure of BTs. In fact, we are able to include adaptation
through active inference only in the parts of the task that require
it, keeping all the properties of BTs intact. Safety guarantees for
the whole task can easily be added by using a sequence node,
where the leftmost part is the safety criteria to be satisfied [3]
by the right part of the behavior, as shown in Fig. 13. In this
example, the BT allows avoiding battery drops below a safety-
critical value while performing a task. The subtree on the right
can be any other BT, for instance, the one used to solve Scenario
1 and Scenario 2 from Fig. 9.

Since, by construction, a BT is executed from left to right,
one can assure that the robot is guaranteed to satisfy the leftmost
condition first before proceeding with the rest of the behavior.
In our specific case, this allows us to easily override the online
decision-making process with active inference where needed, in
favor of safety routines. Note that safety guarantees can also be
provided in specific parts of the three only, and not necessarily
for the whole tree. For example in Fig. 9, one might ensure
navigation at a low speed only while transporting an object to a
place location.

F. Comparison and Design Principles

1) Comparison With Other BT Approaches: The hybrid
scheme of active inference and BTs aims at providing a frame-
work for reactive action planning and execution in robotic
systems. For this reason, we compare the properties of our
approach with standard BTs [3] and with BTs generated through

5[Online]. Available: https://youtu.be/dEjXu-sD1SI

TABLE III
SUMMARY OF COMPARISON

expansion from goal conditions [4]. Scenario 1 and Scenario 2
can be tackled, for instance, by explicitly planning every fallback
behavior with classical BTs, as in Fig. 14. Even if this provides
the same reactive behavior as the one generated by Fig. 9, far
more (planning) effort is needed: to solve the same task one
would require 12 control nodes, 8 condition nodes, and 7 actions,
for a total of 27 nodes compared to the 6 needed in our approach
that is an ∼88% compression.

Importantly, the development effort of a prior node in a BT
is the same as a standard action node. It is true that active infer-
ence requires specifying the likelihood and transition matrices
encoding actions pre- and postconditions, but this has to be done
only once while defining the available skills of a robot, and it
is independent of the task to be solved. Thus, a designer is not
concerned with this when adding a prior node in a BT.

Instead of planning several fallbacks offline, Colledanchise
et al. [4] dynamically expanded a BT from a single goal condi-
tion, through backchaining, to blend planning and acting online.
To solve Scenario 1 and Scenario 2 with this approach, one
needs to define a goal condition isPlacedAt(obj, loc)
similarly to our solution, and define the preconditions of the
action place(obj, loc) such that they contain the fact
that the robot is holding the object, that the place location is
reachable, and it is free. Then, to solve Scenarios 1 and 2
one needs to define only the final goal condition and run the
algorithm proposed in [4]. Even though this allows to complete
tasks similar to what we propose,Colledanchise et al. [4] comes
with a fundamental theoretical limitation: adaptation cannot be
selectively added only to specific parts of the tree. The whole
behavior is indeed determined at runtime based on preconditions
and effects of actions starting from a goal condition. The addition
of safety guarantees can only happen for the whole task, and not
in selected parts of the tree derived online.

To conclude, the hybrid combination of active inference and
BTs allows for combining the advantages of both offline design
of BTs and online dynamic expansion. In particular, it drastically
reduces the number of necessary nodes planned offline in a BT, it
can handle partial observability of the initial state, and it allows
to selectively add adaptation and safety guarantees in specific
parts of the tree.

Another important difference between our approach and other
BTs solutions is that we introduced the concept of state in a BT
through the prior node for which a probabilistic belief is built,
updated, and used for action planning at runtime with uncertain
action outcomes.

Authorized licensed use limited to: TU Delft Library. Downloaded on May 02,2023 at 06:42:39 UTC from IEEE Xplore. Restrictions apply.

https://youtu.be/dEjXu-sD1SI

PEZZATO et al.: ACTIVE INFERENCE AND BEHAVIOR TREES FOR REACTIVE ACTION PLANNING AND EXECUTION IN ROBOTICS 1065

Fig. 14. Possible standard BT to perform Scenario 1 and Scenario 2 without prior nodes for active inference. Parts of the behavior that require several fallbacks
can be substituted by prior nodes for online adaptation instead.

Table III reports a summary of the comparison with standard
BTs and BT with dynamic expansion for Scenarios 1 and 2.

2) Comparison With ROSPlan: One may argue that other
solutions, such as ROSPlan [41] could also be used for planning
and execution in robotics in dynamic environments. ROSPlan
leverages automated planning with PDDL2.1, but it is not de-
signed for fast reaction in case of dynamic changes in the envi-
ronment caused by external events, and would not work in case
of a partially observable initial state. Consider Scenario 1. At the
start of the task, the robot can sense that the gripper is empty and
it has access to its current base location. However, it has no in-
formation about the state of the table (occupied or free) on which
the red cube needs to be placed. At the start of the mission, the
table has then 50% chance of being occupied and a 50% chance
of being free, since it cannot be observed. Yet, the whole task
can be planned at a high level, as in Fig. 9, and be executed. Once
the robot reaches the placing location, observations regarding the
state of the table become available and the internal beliefs can be
updated until enough evidence is collected and a decision can be
taken. Without knowing the full state at the start, a solution with
ROSPlan would require making assumptions on the value of the
unknown states, and either planning for the worst-case scenario,
which might not even be needed, or failing during execution and
replan.

3) Design Principles: We position our work in between two
extremes, namely, fully offline planning and fully online dy-
namic expansion of BTs. In our method, a designer can decide if
to lean toward a fully offline approach or a fully online synthesis.
The choice depends on the task at hand and the modeling of
the actions pre- and postconditions. Even though the design
of behaviors is still an art, we give some design principles
which can be useful in the development of robotic applications
using this hybrid BTs and active inference method. Take for
instance Figs. 9 and 14. Prior nodes for local adaptation can be
included in the behavior when there are several contingencies
to consider or action preconditions to be satisfied in order to
achieve a subgoal. A designer can: 1) plan offline where the task
is certain or equivalently where a small number of things can
go wrong; 2) use prior nodes implemented with active inference
to decide at runtime the actions to be executed whenever the

task is uncertain. This is a compromise between a fully defined
plan where the behavior of the robot is predefined in every
part of the state space and a fully dynamic expansion of BTs
which can result in a suboptimal action sequence [4]. This is
illustrated in Fig. 9, where the actions for holding and placing
an object are chosen online due to various possible unexpected
contingencies, whereas the moveTo action is planned. Prior
nodes should be used whenever capturing the variability of a
part of a certain task would require much effort during offline
planning.

VI. DISCUSSION

In this work, we considered a mobile manipulator in a re-
tail store domain with particular focus on plan execution. In
this scope, offline planning is arguably better suited to offload
computations at runtime for the parts of the task that do not
change frequently. In our case, this was the sequence of states
to stock a product that was encoded in a BT. On the other
hand, at the cost of additional online computations, local online
planning is better suited for execution in uncertain environments,
such as a busy supermarket, because one can avoid planning
beforehand for every contingency. We achieved this through
active inference. With the proposed method we can leverage the
complementary advantages of both offline and online planning,
and in the following we discuss in detail the choice of using BTs
and active inference specifically.

A. Active Inference as a Planning Node in a BT

We opted for the use of active inference with action pre-
conditions as a planning node in the BT because this allows
achieving online PDDL-style planning with noisy observations
and partially observable probabilistic states. An alternative so-
lution to our approach could be to use a simple PDDL plan-
ner in conjunction with a filtering scheme. By replanning for
a small subtask at the same frequency used for the active
inference node, one can achieve similar reactiveness to our
approach. However, by means of active inference, one can
make use of the full probabilistic information on the states,

Authorized licensed use limited to: TU Delft Library. Downloaded on May 02,2023 at 06:42:39 UTC from IEEE Xplore. Restrictions apply.

1066 IEEE TRANSACTIONS ON ROBOTICS, VOL. 39, NO. 2, APRIL 2023

and one does not require full knowledge of the symbolic initial
state.

B. Why Choosing BTs

An experienced roboticist could also wonder why we opted
for BTs in the first place, instead of other PDDL-style planning
approaches to encode the solution to a task. First of all, the
focus of this article is on the runtime adaptability and reactivity
in dynamic environments with partially observable initial state,
and not on the generation of complex offline plans.

In this context, BTs are advantageous because they are de-
signed to dispatch and monitor actions execution at runtime. This
allows to quickly react to changes in the environment that are not
necessarily a consequence of the robot’s own actions. A plan that
is generated through PDDL planning and executed bypassing
BTs cannot provide this type of reactivity unless one defines
specific replanning strategies to mimic BTs’ reactiveness.

However, we see potential extensions of this work by com-
bining it with other PDDL planning methods. For instance,
PDDL can be used to automatically generate plans for which
their execution is optimized through BTs [42]. This allows for
instance to take advantage of parallel action execution and would
remove the need to hand-design a BT. In additional, an action at
runtime can be executed as soon as its requirements are available
instead of waiting for what is established offline by the planner.

C. Why Choose Active Inference

Active inference could potentially be substituted by other
valid POMDP approaches. We see two possible ways of doing
so, that is either using an offline or an online POMDP solver.

First, one could solve a policy offline and then use it for
online decision-making. This approach can be more effective
than active inference once the transition matrices, the reward,
and the task are fixed. However, the addition of new symbolic
actions (so new skills as transitions), or a substantial change in
the task while using the same skills, would require recomputing
the policy. In addition, planning offline for all possible states and
actions combinations is a much larger problem than computing
a plan online for the current state only. As concluded in [43],
for the parts of a task subject to frequent unpredictable changes,
computing locally an online plan as we do with active inference
is preferable to offline policies.

Second, one could perform online decision-making without
offline computations and achieve similar performance, see [44]
and [45]. Compared to both offline and online POMDPs, how-
ever, active inference exposes extra model parameters to bridge
abstract common sense knowledge with discrete decision-
making. These extra model parameters can be updated with
runtime information to adapt plans on the fly. Take for instance
the prior over plans p(π) = Cat(E). The E vector can be
updated at runtime to steer the decision-making while computing
the posterior distribution π = σ(lnE −Gπ − F π) [34]. This
vector can be used to encode common sense and habits [34], [35],
but can also be used to adapt the plans online due for instance to
runtime component failure. This opens up many possibilities for
extensions, to be explored in future work. We are particularly

interested in active inference because it is a flexible and unified
framework that connects different branches of control theory
at different abstraction levels. Active inference can unify 1)
abstract decision-making with guarantees, as in this article, 2)
adaptive [12] and fault tolerant [10], [11], [46] torque control,
as well as 3) state estimation and learning.

VII. CONCLUSION

In this work, we tackled the problem of action planning and
execution in real-world robotics. We have addressed two open
challenges, namely, hierarchical deliberation, and continual on-
line planning, by combining BTs and active inference. The
proposed algorithm and its core idea are general and independent
of the particular robot platform and task. Our solution provides
local reactivity to unforeseen situations while keeping the initial
plan intact. In addition, it is possible to easily add safety guaran-
tees to override the online decision-making process thanks to the
properties of BTs. We showed how robotic tasks can be described
in terms of free-energy minimization, and we introduced action
preconditions and conflict resolution for active inference by
means of dynamic priors. This means that a robot can locally
set its own sub-goals to resolve a local inconsistency, and then
return to the initial plan specified in the BT. We performed a
theoretical analysis of the convergence and robustness of the
algorithm, and the effectiveness of the approach is demonstrated
on two different mobile manipulators and different tasks, both
in simulation and real experiments.

APPENDIX A

GENERATIVE MODELS

Consider the generative model in active inference
P (ō, s̄,η, π). By using the chain rule, we can write

P (ō, s̄,η, π) = P (ō|s̄,η, π)P (s̄|η, π)P (η|π)P (π). (16)

Note that ō is conditionally independent from the model parame-
ters η and π given s̄. In addition, under the Markov property, the
next state and current observations depend only on the current
state

P (ō|s̄,η, π) =
T∏

τ=1

P (oτ |sτ). (17)

The model is further simplified considering that s̄ and η are
conditionally independent given π

P (s̄|η, π) =
T∏

τ=1

P (sτ |sτ−1, π). (18)

Finally, consider the model parameters explicitly

P (ō, s̄,η, π) = P (ō, s̄,A,B,D, π)

= P (π)P (A)P (B)P (D)

T∏
τ=1

P (sτ |sτ−1, π)P (oτ |sτ).

(19)

P (A), P (B), P (D) are the Dirichlet distributions over the
model parameters, [20]. In case the model parameters are fixed

Authorized licensed use limited to: TU Delft Library. Downloaded on May 02,2023 at 06:42:39 UTC from IEEE Xplore. Restrictions apply.

PEZZATO et al.: ACTIVE INFERENCE AND BEHAVIOR TREES FOR REACTIVE ACTION PLANNING AND EXECUTION IN ROBOTICS 1067

by the user, as in this work, it holds

P (ō, s̄, π) = P (π)

T∏
τ=1

P (sτ |sτ−1, π)P (oτ |sτ). (20)

Given the generative model above, we are interested in finding
the posterior hidden causes of sensory data. For the sake of these
derivations, we consider that the parameters associated with the
task are known and do not introduce uncertainty. Using the Bayes
rule

P (s̄, π|ō) = P (ō|s̄, π)P (s̄, π)

P (ō)
. (21)

Computing the model evidenceP (ō) exactly is a well known and
often an intractable problem in the Bayesian statistics. The exact
posterior is then computed minimizing the Kullback–Leibler
divergence (DKL, or KL-divergence) with respect to an approx-
imate posterior distribution Q(s̄, π). Doing so, we can define
the free-energy as a functional of approximate posterior beliefs
which results in an upper bound on surprise. By definition DKL

is a nonnegative quantity given by the expectation of the loga-
rithmic difference between Q(s̄, π) and P (s̄, π|ō). Applying the
KL-divergence

DKL [Q(s̄, π)||P (s̄, π|ō)]
= EQ(s̄,π) [lnQ(s̄, π)− lnP (s̄, π|ō)] ≥ 0 (22)

DKL is the information loss when Q is used instead of P .
Considering (21) and the chain rule, (22) can be rewritten as

DKL [·] = EQ(s̄,π)

[
lnQ(s̄, π)− ln

P (ō, s̄, π)

P (ō)

]
= EQ(s̄,π) [lnQ(s̄, π)− lnP (ō, s̄, π)]︸ ︷︷ ︸

F [Q(s̄,π)]

+ lnP (ō).

(23)
We have just defined the free-energy as the upper bound of
surprise

F [Q(s̄, π)] ≥ − lnP (ō). (24)

APPENDIX B

VARIATIONAL FREE-ENERGY

To fully characterize the free-energy in (23), we need to
specify a form for the approximate posterior Q(s̄, π). There
are different ways to choose a family of probability distribu-
tions [47], compromising between complexity and accuracy
of the approximation. In this work, we choose the mean-field
approximation. It holds

Q(s̄, π) = Q(s̄|π)Q(π) = Q(π)
T∏

τ=1

Q(sτ |π). (25)

Under mean-field approximation, the plan-dependent states at
each time step are approximately independent of the states at any
other time step. We can now find an expression for the variational
free-energy. Considering the mean-field approximation and the
generative model in (20) we can write

F [Q(s̄, π)] = EQ(s̄,π)

[
lnQ(π) +

T∑
τ=1

lnQ(sτ |π)

− lnP (π)−
T∑

τ=1

lnP (sτ |sτ−1, π)−
T∑

τ=1

lnP (oτ |sτ)
]
. (26)

Since Q(s̄, π) = Q(s̄|π)Q(π), and since the expectation of a
sum is the sum of the expectation, we can write

F [·] = DKL [Q(π)||P (π)] + EQ(π) [F (π) [Q(s̄|π)]] (27)

where

F (π) [Q(s̄|π)] = EQ(s̄|π)

[T∑
τ=1

lnQ(sτ |π)

−
T∑

τ=1

lnP (sτ |st−τ , π)−
T∑

τ=1

lnP (oτ |sτ)
]
. (28)

One can notice that F (π) is accumulated over time, or in other
words, it is the sum of free energies over time and plans

F (π) =
T∑

τ=1

F (π, τ). (29)

Substituting the agent’s belief about the current state at time τ
given π with sπτ , we obtain a matrix form for F (π, τ) that we
can compute given the generative model

F (π) =

T∑
τ=1

sπ�τ

[
ln sπτ − ln (Baτ−1s

π
τ−1)− ln (A�oτ)

]
.

(30)

Given a plan π, the probability of state transition P (sτ |sτ−1, π)
is given by the transition matrix under planπ at time τ , multiplied
by the probability of the state at the previous time step. In the
special case of τ = 1, we can write

F (π, 1) = sπ�1
[
ln sπ1 − lnD − ln (A�o1)

]
. (31)

Finally, we can compute the expectation of the plan-dependant
variational free-energy F (π) as EQ(π)[F (π)] = π�F π . We in-
dicate F π = (F (π1), F (π2). . .)

� for every allowable plan. To
derive state and plan updates that minimize free-energy, F in
(27) is partially differentiated and set to zero, as we will see in
the following appendixes.

APPENDIX C

STATE ESTIMATION

We differentiate F with respect to the sufficient statistics of
the probability distribution of the states. Note that the only part
of F dependent on the states is F (π). Then
∂F

∂sπτ
=

∂F

∂F (π)

∂F (π)

∂sπτ
= π�

[
1+ ln sπτ − ln (Baτ−1s

π
τ−1)

− ln (B�aτ
sπτ+1)− ln (A�oτ)

]
. (32)

Setting the gradient to zero and using the softmax function for
normalization

sπτ = σ(ln (Baτ−1s
π
τ−1) + ln (B�aτ

sπτ+1) + ln (A�oτ)).
(33)

Note that the softmax function is insensitive to the constant 1.
Also, for τ = 1 the term ln (Baτ−1s

π
τ−1) is replaced by D. Fi-

nally, ln (A�oτ) contributes only to past and present time steps,
so for this term is null for t < τ ≤ T since those observations
are still to be received.

Authorized licensed use limited to: TU Delft Library. Downloaded on May 02,2023 at 06:42:39 UTC from IEEE Xplore. Restrictions apply.

1068 IEEE TRANSACTIONS ON ROBOTICS, VOL. 39, NO. 2, APRIL 2023

APPENDIX D

EXPECTED FREE-ENERGY

We indicate withG(π) the expected free-energy obtained over
future time steps until the time horizon T while following a
plan π. Basically, this is the variational free-energy of future
trajectories which measures the plausibility of plans according
to future predicted observations [21]. To compute it we take
the expectation of variational free-energy under the posterior
predictive distribution P (oτ |sτ). Following [21] we can write

G(π) =
T∑

τ=t+1

G(π, τ) (34)

then

G(π, τ) = EQ̃ [lnQ(sτ |π)− lnP (oτ , sτ |sτ−1)]
= EQ̃ [lnQ(sτ |π)− lnP (sτ |oτ , sτ−1)− lnP (oτ)]

(35)

where Q̃ = P (oτ |sτ)Q(sτ |π). The expected free-energy is

G(π, τ)≥EQ̃ [lnQ(sτ |π)− lnQ(sτ |oτ , sτ−1, π)−lnP (oτ)] .
(36)

Equivalently, we can express the expected free-energy in terms
of preferred observations [33]

G(π, τ)=EQ̃ [lnQ(oτ |π)− lnQ(oτ |sτ , sτ−1, π)−lnP (oτ)] .
(37)

Making use of Q(oτ |sτ , π) = P (oτ |sτ) since the predicted
observations in the future are only based on A which is plan
independent given sτ , we have

G(π, τ) = DKL [Q(oτ |π)||P (oτ)]︸ ︷︷ ︸
Expected cost

+EQ(sτ |π) [H(P (oτ |sτ))]︸ ︷︷ ︸
Entropy

(38)
where H[P (oτ |sτ)] = EP (oτ |sτ)[− lnP (oτ |sτ)] is the entropy.
We are now ready to express the expected free-energy in matrix
form, such that we can compute it. From the previous equation,
one can notice that plan selection aims at minimizing the ex-
pected cost and ambiguity. The latter relates to the uncertainty
about future observations given hidden states. In a sense, plans
tend to bring the agent to future states that generate unambiguous
information over states. On the other hand, the cost is the differ-
ence between predicted and prior beliefs about final states. Plans
are more likely if they minimize cost, and lead to observations
that match prior desires. Minimizing G leads to both exploita-
tive (cost minimizing) and explorative (ambiguity minimizing)
behavior. This results in a balance between goal-oriented and
novelty-seeking behaviors

Substituting the sufficient statistics in (38), and recalling that
the generative model specifies P (oτ) = C, one obtains [34]

G(π, τ) = oπ�
τ [lnoπ

τ − lnC]︸ ︷︷ ︸
Reward seeking

−diag(A� lnA)�sπτ︸ ︷︷ ︸
Information seeking

. (39)

Note that prior preferences are passed through the softmax
function before computing the logarithm.

APPENDIX E

UPDATING PLAN DISTRIBUTION

The update rule for the distribution over possible plans follows
directly from the variational free-energy

F [·] = DKL [Q(π)||P (π)] + π�F π. (40)

The first term of the equation above can be written as

DKL [Q(π)||P (π)] = EQ(π) [lnQ(π)− lnP (π)] . (41)

Recalling that the approximate posterior over policies is a soft-
max function of the expected free-energy Q(π) = σ(−G(π))
[20], [33], and taking the gradient with respect to π it results

∂F

∂π
= lnπ +Gπ + F π + 1 (42)

where Gπ = (G(π1), G(π2), . . .)
�. Finally, setting the gradient

to zero and normalizing through softmax, the posterior distribu-
tion over plans is obtained

π = σ(−Gπ − F π). (43)

The plan that an agent should pursue is the most likely one.

REFERENCES

[1] M. Ghallab, D. Nau, and P. Traverso, “The actor’s view of automated
planning and acting: A position paper,” Artif. Intell., vol. 208, pp. 1–17,
2014.

[2] D. S. Nau, M. Ghallab, and P. Traverso, “Blended planning and acting:
Preliminary approach, research challenges,” in Proc. 29th AAAI Conf. Artif.
Intell., 2015, pp. 4047–4051.

[3] M. Colledanchise and P. Ogren, “How behavior trees modularize hybrid
control systems and generalize sequential behavior compositions, the
subsumption architecture, and decision trees,” IEEE Trans. Robot., vol. 33,
no. 2, pp. 372–389, Apr. 2017.

[4] M. Colledanchise, D. Almeida, and P. Ögren, “Towards blended reactive
planning and acting using behavior tree,” in Proc. IEEE Int. Conf. Robot.
Automat., 2019, pp. 8839–8845.

[5] E. Safronov, M. Colledanchise, and L. Natale, “Task planning with belief
behavior trees,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2020,
pp. 6870–6877.

[6] C. Paxton, N. Ratliff, C. Eppner, and D. Fox, “Representing robot task
plans as robust logical-dynamical systems,” in Proc. IEEE/RSJ Int. Conf.
Intell. Robots Syst., 2019, pp. 5588–5595.

[7] C. R. Garrett, C. Paxton, T. Lozano-Pérez, L. P. Kaelbling, and D.
Fox, “Online replanning in belief space for partially observable task
and motion problems,” in Proc. IEEE Int. Conf. Robot. Automat., 2020,
pp. 5678–5684.

[8] A. Meera and M. Wisse, “Free energy principle based state and input
observer design for linear systems with colored noise,” in Proc. Amer.
Control Conf., 2020, pp. 5052–5058.

[9] M. Baioumy, P. Duckworth, B. Lacerda, and N. Hawes, “Active inference
for integrated state-estimation, control, and learning,” in Proc. Int. Conf.
Robot. Automat., 2021, pp. 4665–4671.

[10] C. Pezzato, M. Baioumy, C. H. Corbato, N. Hawes, M. Wisse, and R.
Ferrari, “Active inference for fault tolerant control of robot manipulators
with sensory faults,” in Proc. Int. Workshop Act. Inference, 2020, pp. 20–
27.

[11] M. Baioumy, C. Pezzato, R. Ferrari, C. H. Corbato, and N. Hawes, “Fault-
tolerant control of robot manipulators with sensory faults using unbiased
active inference,” in Proc. Eur. Control Conf., 2021, pp. 1119–1125.

[12] C. Pezzato, R. Ferrari, and C. H. Corbato, “A novel adaptive controller
for robot manipulators based on active inference,” IEEE Robot. Automat.
Lett., vol. 5, no. 2, pp. 2973–2980, Apr. 2020.

[13] G. Oliver, P. Lanillos, and G. Cheng, “An empirical study of active
inference on a humanoid robot,” IEEE Trans. Cogn. Devel. Syst., vol. 14,
no. 2, pp. 462–471, Jun. 2022.

[14] K. J. Friston, “The free-energy principle: A unified brain theory?,” Nature
Rev. Neurosci., vol. 11, no. 2, pp. 27–138, 2010.

Authorized licensed use limited to: TU Delft Library. Downloaded on May 02,2023 at 06:42:39 UTC from IEEE Xplore. Restrictions apply.

PEZZATO et al.: ACTIVE INFERENCE AND BEHAVIOR TREES FOR REACTIVE ACTION PLANNING AND EXECUTION IN ROBOTICS 1069

[15] C. Buckley, C. Kim, S. McGregor, and A. Seth, “The free energy principle
for action and perception: A mathematical review,” J. Math. Psychol.,
vol. 81, pp. 55–79, 2017.

[16] R. Bogacz, “A tutorial on the free-energy framework for modelling per-
ception and learning,” J. Math. Psychol., vol. 76, pp. 198–211, 2017.

[17] K. J. Friston, J. Mattout, and J. Kilner, “Action understanding and active
inference,” Biol. Cybern., vol. 104, no. 1/2, pp. 137–160, 2011.

[18] K. J. Friston, J. Daunizeau, and S. Kiebel, “Action and behavior: A free-
energy formulation,” Biol. Cybern., vol. 102, pp. 227–260, 2010.

[19] K. Friston, S. Samothrakis, and R. Montague, “Active inference and
agency: Optimal control without cost functions,” Biol. Cybern., vol. 106,
no. 8/9, pp. 523–541, 2012.

[20] K. Friston, T. FitzGerald, F. Rigoli, P. Schwartenbeck, and G. Pezzulo,
“Active inference: A process theory,” Neural Computation, vol. 29, no. 1,
pp. 1–49, 2017.

[21] N. Sajid, P. J. Ball, T. Parr, and K. J. Friston, “Active inference: Demystified
and compared,” Neural Computation, vol. 33, no. 3, pp. 674–712, 2021.

[22] P. Schwartenbeck, J. Passecker, T. U. Hauser, T. H. FitzGer-
ald, M. Kronbichler, and K. J. Friston, “Computational mecha-
nisms of curiosity and goal-directed exploration,” Elife, vol. 8,
2019, Art. no. e41703.

[23] R. Kaplan and K. J. Friston, “Planning and navigation as active inference,”
Biol. Cybern., vol. 112, no. 4, pp. 323–343, 2018.

[24] M. Colledanchise and P. Ögren, Behavior Trees in Robotics
and AI: An Introduction. Boca Raton, FL, USA: CRC Press,
2018.

[25] S. Macenski, F. Martín, R. White, and J. G. Clavero, “The marathon 2:
A navigation system,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst.,
2020, pp. 2718–2725.

[26] J. Orkin, “Applying goal-oriented action planning to games,” AI Game
Program. Wisdom, vol. 2, pp. 217–228, 2003.

[27] J. Orkin, “Three states and a plan: The AI of FEAR,” in Proc. Game
Developers Conf., 2006, pp. 1–18.

[28] L. P. Kaelbling and T. Lozano-Pérez, “Hierarchical task and motion
planning in the now,” in Proc. IEEE Int. Conf. Robot. Automat., 2011,
pp. 1470–1477.

[29] L. P. Kaelbling and T. Lozano-Pérez, “Integrated task and motion planning
in belief space,” Int. J. Robot. Res., vol. 32, pp. 1194–1227, 2013.

[30] M. Levihn, L. P. Kaelbling, T. Lozano-Pérez, and M. Stilman, “Foresight
and reconsideration in hierarchical planning and execution,” in Proc. IEEE
Int. Conf. Intell. Robots Syst., 2013, pp. 224–231.

[31] K. Erol, J. Hendler, and D. S. Nau, “HTN planning: Complexity and
expressivity,” in Proc. 12th Nat. Conf. Artif. Intell., 1994, pp. 1123–1128.

[32] M. Ghallab, D. Nau, and P. Traverso, Automated Planning and Acting.
Cambridge, U.K.: Cambridge Univ. Press, 2016.

[33] L. Da Costa, T. Parr, N. Sajid, S. Veselic, V. Neacsu, and K. Friston, “Active
inference on discrete state-spaces: A synthesis,” J. Math. Psychol., vol. 99,
2020, Art. no. 102447.

[34] R. Smith, K. J. Friston, and C. J. Whyte, “A step-by-step tutorial on active
inference and its application to empirical data,” J. Math. Psychol., vol. 107,
2022, Art. no. 102632. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S0022249621000973

[35] C. Hesp, R. Smith, T. Parr, M. Allen, K. J. Friston, and M. J.
Ramstead, “Deeply felt affect: The emergence of valence in deep
active inference,” Neural Computation, vol. 33, no. 2, pp. 398–446,
2021.

[36] C. Heins et al., “pymdp: A Python library for active inference in discrete
state spaces,” J. Open Source Softw., vol. 7, no. 73, 2022, Art. no. 4098.

[37] D. Faconti, “BehaviorTree.CPP.” [Online]. Available: https://www.
behaviortree.dev/

[38] K. Friston, T. FitzGerald, F. Rigoli, P. Schwartenbeck, J. O’Doherty, and
G. Pezzulo, “Active inference and learning,” Neurosci. Biobehavioral Rev.,
vol. 68, pp. 862–879, 2016.

[39] R. R. Burridge, A. A. Rizzi, and D. E. Koditschek, “Sequential composition
of dynamically dexterous robot behaviors,” Int. J. Robot. Res., vol. 18,
no. 6, pp. 534–555, 1999.

[40] E. Najafi, R. Babužka, and G. A. Lopes, “An application of sequential
composition control to cooperative systems,” in Proc. 10th Int. Workshop
Robot Motion Control, 2015, pp. 15–20.

[41] M. Cashmore et al., “ROSPlan: Planning in the robot operating system,”
in Proc. Int. Conf. Automated Plan. Scheduling, 2015, pp. 333–341.

[42] F. Martín, M. Morelli, H. Espinoza, F. J. Lera, and V. Matellán, “Optimized
execution of PDDL plans using behavior trees,” in Proc. 20th Int. Conf.
Auton. Agents MultiAgent Syst., 2021, pp. 1596–1598.

[43] M. Baioumy, B. Lacerda, P. Duckworth, and N. Hawes, “On solving a
stochastic shortest-path Markov decision process as probabilistic infer-
ence,” in Proc. Joint Eur. Conf. Mach. Learn. Knowl. Discov. Databases,
2021, pp. 819–829.

[44] S. Paquet, L. Tobin, and B. Chaib-Draa, “An online POMDP algorithm
for complex multiagent environments,” in Proc. 4th Int. Joint Conf. Auton.
Agents Multiagent Syst., 2005, pp. 970–977.

[45] N. Ye, A. Somani, D. Hsu, and W. S. Lee, “DESPOT: Online POMDP
planning with regularization,” J. Artif. Intell. Res., vol. 58, pp. 231–266,
2017.

[46] M. Baioumy, C. Pezzato, C. H. Corbato, N. Hawes, and R. Ferrari,
“Towards stochastic fault-tolerant control using precision learning and
active inference,” in Proc. Joint Eur. Conf. Mach. Learn. Knowl. Discov.
Databases, 2021, pp. 681–691.

[47] S. Schwöbel, S. Kiebel, and D. Marković, “Active inference, belief propa-
gation, and the Bethe approximation,” Neural Computation, vol. 30, no. 9,
pp. 2530–2567, 2018.

Corrado Pezzato received the B.Sc. degree (with
hons.) in automation engineering with the Alma
Mater Studiorum, Bologna, Italy, in 2017, the M.Sc.
degree in systems and control (with hons.), in 2019,
with the Delft University of Technology, Delft,
Netherlands, where he is currently working toward
the Ph.D. degree in robotics.

He is currently with AIRLab, the AI for Retail
Lab in Delft. His research interests include low-
level control, high-level decision-making, and their
interconnection, with a strong focus on robotics
and active inference.

Carlos Hernández Corbato received the graduate
degree (with hons.) in industrial engineering and the
M.Sc. and Ph.D. degrees in automation and robotics
from the Universidad Politécnica de Madrid, Madrid,
Spain, in 2006, 2008, and 2013, respectively.

He is currently an Assistant Professor of Cognitive
Robotics with the Delft University of Technology,
Delft, the Netherlands. He has coordinated and partic-
ipated in European projects on cognitive robotics and
factories of the future. His research interests include
self-adaptive systems, knowledge representation and

reasoning, model-based system engineering.

Stefan Bonhof is born in Rotterdam, The Netherlands
in 1996. He received the B.Sc. degree in mechanical
engineering and the M.Sc. degree (with hons.) in
vehicle engineering (specializing in autonomy) from
the Delft University of Technology, Delft, the Nether-
lands, in 2018 and 2020, respectively.

He is currently the Team Lead for students follow-
ing the M.Sc. Robotics program doing their thesis
at AIRLab Delft, as well as technical support and
robotics engineer for the whole lab.

Martijn Wisse received the M.Sc. and Ph.D. degrees
in mechanical engineering from the Delft University
of Technology, Delft, The Netherlands, in 2000 and
2004, respectively.

He is currently a Professor with the Delft Univer-
sity of Technology. His previous research focused on
passive dynamic walking robots and passive stability
in the field of robot manipulators. He worked on un-
deractuated grasping, open-loop stable manipulator
control, design of robotic systems, and the creation
of startups in this field. His research interests focus

on the neuroscientific principle of active inference and its application and
advancements in robotics.

Authorized licensed use limited to: TU Delft Library. Downloaded on May 02,2023 at 06:42:39 UTC from IEEE Xplore. Restrictions apply.

https://www.sciencedirect.com/science/article/pii/S0022249621000973
https://www.sciencedirect.com/science/article/pii/S0022249621000973
https://www.behaviortree.dev/
https://www.behaviortree.dev/

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

