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A B S T R A C T   

Alkali-activated concrete (AAC) is regarded as a promising alternative construction material to reduce the CO2 
emission induced by Portland cement (PC) concrete. Due to the diversity in raw materials and complexity of 
reaction mechanisms, a commonly applied design code is still absent to date. This study attempts to directly 
correlate the AAC mix design parameters to their performances through an artificial intelligence approach. To be 
specific, 145 fresh property data and 193 mechanical strength data were collected from laboratory tests on 52 
AAC mixtures, which were used as inputs for the machine learning algorithm. Five independent random forest 
(RF) models were established, which are able to predict fresh and hardened properties (in terms of compressive 
strength, slump values, static/dynamic yield stress, and plastic viscosity) of AAC with equivalent accuracy re-
ported in the literature. Moreover, an inverse optimization was performed on the RF model obtained to reduce 
the sodium silicate dosages, which may further mitigate the environmental impact of producing AAC. The 
present RF model gives practical information on AAC mix design cases.   

1. Introduction 

Concrete is the most used construction material in view of the ad-
vantages in availability, cost, and many other aspects [1]. However, the 
growing demand for concrete brings great environmental impact due to 
rapid urbanization in recent years, and it has become a major concern 
worldwide. As the primary binder applied in concrete materials, the 
production of Portland cement (PC) is accompanied with heavy energy 
consumptions. It has been reported that the PC clinker production 
accounted for 5–8% of global CO2 emissions [2], causing intense pres-
sure to meet carbon–neutral by 2050. 

Alkali-activated material (AAMs), which was developed as a low- 
carbon binder, has been regarded as one of the most promising alter-
natives to replace PC materials in concrete. Instead of the hydration in 
PC materials, the alkali-activation reaction takes place due to the 
continuous dissolution of aluminosilicate precursors in alkaline media 
[3]. The dissolved Al and Si tetrahedrons are connected to each other as 
the backbone through polymerizations, and further incorporated with 
the alkali/alkali-earth cations to reassemble highly ordered structures 
[4,5,6]. It is indicated that the microstructure of reaction products is 

greatly dependent on the availability of calcium content in the pre-
cursors [7]. 

In reality, however, precursors are insufficiently reactive, in partic-
ular those derived from different waste streams. In that case, alkaline 
activators are applied to promote the dissolution [8], which introduces 
more complex interactions into the AAM system as compared to PC 
materials. With the intention to make use of industrial wastes and by- 
products as much as possible, various types of precursors and alkaline 
substances could be utilized in AAMs. The diversity of raw materials 
may provide numerous possible mixture combinations. However, vari-
ations in material properties on the other hand pose great challenges 
towards developing a standardized design code, and more insights into 
the reaction mechanisms are needed to provide desirable AAM mix de-
signs in a predictable and reliable way [9]. Even though there exist 
several types of commercialized alkali-activated concrete (AAC) prod-
ucts in many regions of the world, the construction with AAC is still 
limited to a few demonstration structures due to the lack of mature 
design regulations [10]. In practical applications, parallel PC concretes 
are recommended to be tested as a reference in the existing design codes 
dedicated for AAC (the Australian guideline CIA Z16-2011 and the 
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British standard PAS 8820:2016), through which at least an equivalent 
performance to meet the requirement of PC concrete can be ensured. 
Whilst such procedures might lead to extensive extra workloads in the 
pre-design phase to produce AACs. 

With the development of machine learning (ML) algorithms, an 
artificial intelligence (AI) approach is established to capture the features 
of diverse and complex systems [11,12]. Previous studies have well- 
illustrated the feasibility of predicting the performances of PC con-
cretes by using ML algorithms, including artificial neural network 
(ANN), random forest (RF), support vectors machine (SVM), gradient 
boosting (GB), etc. [13,14,15,16,17,18,19]. Considering the diversity 
and complexity of AACs, the development of ML algorithms has created 
a shortcut for making performance predictions based on the data 
collected from experiments [20,21,22,23]. It is noticed that the majority 
of existing AAC models focus more on mechanical properties. For 
instance, Ramagiri et al. [24] compared the accuracy of 5 RF models 
with different configurations to predict the strength of AAC concrete. 
Toufigh and Jafari [25] proposed a prediction model to estimate the 

compressive strength of fly ash (FA)-based AAC out of the 162 mixtures 
collected from the papers published. Peng and Unluer [26] achieved ±
20% accuracy to predict the compressive strength of FA-based AAC, 
which was done through ANN, SVM, and extreme learning machine 
(ELM) algorithms. Gomaa et al. [27] performed numerous experiments 
to derive predictive models for compressive strength and initial slump 
flow of AAC (made of class C fly ashes). Nevertheless, the relevant data 
and models on the workability and rheological behaviors of AAC are still 
very limited. 

In this research, results of lab tests on 52 AAC mixtures (193 and 145 
data of strength and fresh properties, respectively) were collected as 
input. Five RF models are established for predicting the fresh and 
hardened behaviors of AAC (in terms of compressive strength, slump 
values, and rheological parameters). Moreover, an inverse application 
has been proposed based on the RF model, which assists to optimize the 
mix design parameter and further reduces the environmental impact of 
AAC. The regression models developed may provide guidance infor-
mation on the mix design of AAC, while the strength and fresh properties 
collected can be served as a supplement to expand the current AAC 
database. 

2. Methodology 

2.1. Materials 

In this study, ground granulated blast furnace slag (BFS) and coal fly 
ash (FA) were used as precursors to prepare the AAC. BFS was provided 
by Ecocem Benelux B.V., with a density of 2890 kg/m3, and FA (Class F, 
2300 ± 200 kg/m3) was produced as type II filler in cementitious ma-
terials according to NEN-EN 450–1: 2012 by Vliegasunie B.V.. The 
particle size distribution of precursors was measured by laser diffraction, 
as shown in Fig. 1. It’s been observed that BFS and FA have very similar 
particle sizes, with d50 values of 8.28 and 8,48 μm, respectively. The 
particle morphology of precursor grains was observed with a scanning 
electron microscope (SEM), as shown in Fig. 2. BFS showed angular 
particles with irregular shapes, while spherical particles have been 
observed in FA samples. Furthermore, their compositions were deter-
mined by X-ray fluorescence (XRF) and loss on ignition (LOI), as pre-
sented in Table 1. 

Sodium hydroxide and sodium silicate were used to prepare the 
alkaline activators in this study. Reagent-grade sodium hydroxide 
anhydrous pearls (>99 %) were provided by Brenntag N.V., and the 
sodium silicate solution (15% Na2O, 30% SiO2, and 55% water) was 

Fig. 1. Particle size distribution curves of precursors.  

Fig. 2. Morphology by SEM (1000 × magnification) (a) BFS particles; (b) FA particles.  
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provided by PQ Corporation. The activator solutions were prepared by 
dissolving sodium hydroxide and sodium silicate in tap water 1 day 
before mixing. 

River sand and gravel were used as the aggregate to prepare the 
concrete mixtures. Their physical properties including specific gravity 
and water absorption are summarized in Table 2, and they were air- 
dried before producing AAC. 

2.2. Mixture proportions 

In this study, 52 groups of AAC mixtures were investigated. As shown 
in Table 3, 7 design parameters were presented to describe the mixture 
proportions of AAC, which will be later converted into predictor vari-
ables to build up the RF model. It is noteworthy that the parameters 
selected here are independent, and as much less relevant as possible 
from each other. Other parameters, partially repeated, or can be calcu-
lated from existing candidates (e.g. the water to binder ratio is deter-
mined from the mass ratio between total water content and solid 
binders) were not considered, and this will be further illustrated in 
Section 3.1. 

From the mix design point of view, multiple design factors have been 
varied within a certain range to evaluate their effects on the fresh 
properties and strength development of AACs. Aggregates from 0 to 4, 
2–8, and 8–16 mm fractions were applied, and the packing was designed 
to reach between A16 and B16 curves indicated in DIN 1045–2 among 
all mixtures. The air content in AAC was estimated to be 1% [28]. 
Ranges of design parameters in AAC mixture proportions assessed in this 
study are summarized in Table 3. More details regarding the concrete 
mixture proportions and statistics of each design parameter are provided 
in the appendix (Table 8 and Fig. 11). 

The concrete mixtures were prepared by a Gustav Eirich SKG1 
planetary mixture. Solid precursor and aggregates were first dry- 
blended for 2 min. Afterwards, the activator solution was gradually 
added into the mixer (in 30 s), while the mixing was continued for 

another 3 min ever since the wetting of solid components to derive the 
fresh AAC mixtures. 

2.3. Fresh properties and strength of AACs 

The fresh properties of AACs were characterized by slump and 
rheological parameters as a function of time, which were determined at 
5, 20, 35, 50, and 65 min after the first contact between solid ingredients 
and the liquid alkaline activators, respectively. Slump tests were con-
ducted with an Abrams cone according to EN 12350–2. The rheological 
behavior of AACs was measured with an ICAR Plus rheometer fitted with 
a 4-blade vane (130 mm diameter and 130 mm height). For each test, 
about 20 L of fresh concrete was filled into a cylindrical container (390 
mm height and 286 mm inner diameter). The rheometer vane was then 
inserted into the fresh concrete mixture to perform stress growth and 
flow curve tests. The static yield stress was expressed as the maximum 
shear stress reached during the 1-min stress growth test, while the dy-
namic rheological parameters (dynamic yield stress and plastic viscos-
ity) were obtained through the Reiner-Riwlin equation [29] by applying 
Bingham model to ramp-down flow curves. After each group test, the 
concrete was recollected and left at rest until the next testing age, during 
which a plastic sheet was applied to prevent moist evaporation. In 
addition, a 1-min remixing was carried out on the concrete mixtures 
before each group of tests [30]. 

AAC after tests on fresh properties was cast into 100 mm3 cubes to 
determine the compressive strength. Hardened concrete samples were 
demolded after 24 h and sealed in plastic bags, and they were cured in 
the moist chamber (20℃ with 95% relative humidity) until the target 
age. Compressive strength tests were conducted at 1, 7, 28, and 91 days 
according to EN 12390–3. The compressive strength is presented as the 
average value of 3 replicate samples. 

Tests on the fresh and hardened properties of AAC were performed 
on the same batches of mixtures. However, due to the rapid loss of 
workability, it was no longer possible to test the fresh properties at later 
ages in several mixtures. Thereby, in total 193 pieces of compressive 
strength data and 145 pieces of fresh property data (in terms of slump 
value, static yield stress, dynamic yield stress, and plastic viscosity) were 
collected to establish the RF model in this study. Data structures are 
presented in Table 4. In addition, two groups of mixtures were prepared 
to validate the properties of the AAC mix design obtained through the 
grid search optimization. 

Table 1 
Chemical composition of BFS/FA measured by XRF and LOI (mass %).  

Precursor CaO SiO2 Al2O3 MgO SO3 TiO2 K2O Fe2O3 MnO ZrO2 Other LOI a 

BFS  40.9  31.1  13.7  9.16  2.31  1.26  0.69  0.40  0.31  0.12  0.05  0.10 
FA  3.74  56.7  24.0  1.75  1.04  1.16  2.30  6.34  0.06  0.10  2.81  2.86 

a LOI measured by TG analysis at 950℃. 

Table 2 
Physical properties of aggregates.  

Aggregate Sand 0–4 mm Coarse 2–8 mm Coarse 8–16 mm 

Specific gravity  2.65  2.64  2.67 
Water absorption (%)  0.33  0.65  0.55  

Table 3 
Ranges of design parameters in AAC mixture proportions assessed in this study.  

Data set Precursor content BFS ratio Na2O content Ms Water content Fine aggregate Coarse aggregate 

Unit kg/m3 % kg/m3 – kg/m3 kg/m3 kg/m3 

Min 320 50 8.04 0 151 630 944 
Max 488 100 21.33 1.25 195 755 1131  

Table 4 
Data structures of AAC fresh and hardened properties assessed in this study.  

Data set Curing age for strength test Testing age for fresh properties Compressive strength Slump Static yield stress Dynamic yield stress Plastic viscosity 

Unit Days Minutes MPa mm Pa Pa Pa⋅s 
Min 1 5 0.3 5 114.1 6.2 37.3 
Max 91 65 75.9 275 8442.9 1046.5 372.9  

Y. Sun et al.                                                                                                                                                                                                                                      
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Fig. 3. Diagram of workflows to establish the RF model.  

Fig. 4. Hyperparameter tuning for RF model to predict the compressive strength. (a) R2; (b) MAE; (c) MAPE; (d) RMSE; (e) Running time.  
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2.4. Machine learning model 

Random forest is an ensemble machine learning algorithm with a 
well-known high accuracy in classification and regression [31]. This 
algorithm consists of several decision trees (DT) that are constructed 
based on the randomly selected subsets using bootstrap aggregating 
(bagging) [32], which takes advantage to mitigate the overfitting 
problems compared with other ML approaches [31]. Considering the 
regression problems to be solved in this study, the classification and 
regression tree (CART), which adopts Gini coefficients to evaluate the 
impurity, is used as the single decision tree in the forest [33]. The 
randomness of the RF algorithm origins from the following aspects: 1) 
randomly selecting samples while training single DT, and 2) randomly 
selecting features while node splitting. By repeating the above steps, the 
RF model can be constructed based on training sets, and the output of 
the regression RF is the average value of predictions from each DT, as 
shown in Fig. 3. 

To develop the RF model, results of compressive strength and fresh 
properties derived from experiments were randomly divided into 
training and testing datasets, consisting of 80% and 20% data, respec-
tively. The commonly applied 80%/20% split for training and testing 
sets [34,35] allows the model to be trained in a large enough dataset, 
while its predictive performance is validated through the remaining 
testing data, which is hidden from the training process. To ensure the 
reliability of the regressor and error estimation [36], 10-fold cross- 
validation [37,38] was applied so that the contribution from each sin-
gle data point is considered through successive iterations [39], as 
schematically illustrated in Fig. 3. 

3. Results and discussions 

3.1. Hyperparameters tuning 

The RF algorithm contains several hyperparameters, which will in-
fluence the structure and performance of the RF model [40,41]. In this 
study, two hyperparameters, mtry and ntree, were tuned to reach an 
optimal compromise between the predictive performance and compu-
tational cost. 

The RF algorithm defines mtry as the number of drawn candidate 
variables in each split [42]. In many RF packages, mtry is set to p1/2 for 
classification and p/3 for regression as default values [40], where p is the 
number of predictor variables. Lower mtry values not only save 
computational time [43], but also result in less correlated trees with 
better robusticity while aggregating [40]. However, an optimal mtry 
value might be strongly affected by the degree of correlation among 
predictor variables. Considering a large mtry with many relevant pre-
dictor variables, the less influential variables could be ‘masked’ by 
stronger candidates and seldomly contribute to the prediction [44]. 
Instead, mtry should be set high if the variables are less relevant [45], so 
that more influencing factors are considered while constructing the 
decision tree. Therefore, as announced in previous paragraphs, less 
relevant design parameters were selected to describe the mixture pro-
portions of AACs, ensuring the simplicity and efficiency of the RF model. 
On the other hand, ntree indicates the number of trees to grow in the 
forest. It’s been suggested that ntree should be set sufficiently high 
[46,47], and more trees always give better predictive performance [48]. 
In the case of less correlated predictor variables, more trees are expected 
to build up precise predictions for each observation and obtain good 
convergence [41]. However, there is also a trade-off between accuracy 
and computational time, which should be taken into consideration while 
tuning this hyperparameter. 

Fig. 5. Hyperparameter tuning for RF model to predict fresh properties (represented by slump predictions). (a) R2; (b) MAE; (c) MAPE; (d) RMSE; (e) Running time.  
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Given the number of input design parameters in the AAC dataset, 
mtry was set to range between 1 and 8 (the age of concrete to be tested is 
also considered here). While an exponential sweep was performed on 
ntree, which was varied from 20 to 215. Grid search optimization [49,50] 
was employed for the tuning process, through which both hyper-
parameters were assessed in pairs until an optimal combination. 

Statistical metrics were applied to evaluate the predictive perfor-
mance of RF models, including the coefficient of determination (R2), 
mean absolute error (MAE), mean absolute percentage error (MAPE), 
and root mean square error (RMSE) [51,52,27] as follows: 

R2 = 1 −
∑m

i=1(Yi − Ŷ i)
2

∑m
i=1(Yi − Y)2 (1)  

MAE =
1
m

∑m

i=1
|Yi − Ŷ i| (2)  

MAPE =
1
m

∑m

i=1

⃒
⃒
⃒
⃒
Yi − Ŷ i

Yi

⃒
⃒
⃒
⃒× 100 (3)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
m

∑m

i=1
(Yi − Ŷ i)

2

√

(4) 

where: 
m is the size of the dataset, 
Yi is the individual observed value, 
Ŷ i is the predicted output, 
Y is the mean value of the dataset. 
R2 quantitively describes the accuracy of the predictive model along 

with the variations of the observed values. An R2 close to 1 indicates the 
predictions fit well with the observed data. MAE and RMSE are defined 
as parameters to assess the predictive performance in terms of error 
accumulation, while MAPE represents the relative error between pre-
dicted and observed values. Thereby smaller MAE, MAPE, and RMSE 
values suggest a better predictive performance. Apart from that, the 
running time of each model was also counted to evaluate the compu-
tational cost, considering future applications based on an enlarging 
database. 

Statistical metrics obtained by varying the hyperparameters are 
presented in Fig. 4 and Fig. 5, with similar results in the strength and 
slump datasets. It is indicated that more accurate predictions were ob-
tained with increases in both mtry and ntree parameters. However, while 

Fig. 6. Regression plot of predicted versus observed values. (a) Compressive strength; (b) Slump; (c) Static yield stress; (d) Dynamic yield stress; (e) Plastic viscosity. 
(Note: a 20% bound of “y = x” is represented by the dashed lines.). 

Table 5 
Statistical metrics of RF models.  

Statistical metrics R2 MAE MAPE RMSE 

Compressive 
strength 

Training 
set  

0.96 2.45 MPa  9.21% 3.22 MPa 

Testing set  0.92 4.48 MPa  15.98% 5.43 MPa 
Slump Training 

set  
0.93 11.92 

mm  
26.59% 16.18 mm 

Testing set  0.89 19.11 
mm  

31.16% 23.88 mm 

Static yield stress Training 
set  

0.92 188.11 Pa  16.53% 285.65 Pa 

Testing set  0.90 184.36 Pa  25.95% 268.93 Pa 
Dynamic yield stress Training 

set  
0.93 38.80 Pa  20.56% 68.81 Pa 

Testing set  0.91 37.00 Pa  20.21% 66.10 Pa 
Plastic viscosity Training 

set  
0.95 7.58 Pa⋅s  7.43% 17.09 

Pa⋅s 
Testing set  0.94 9.96 Pa⋅s  6.12% 17.12 

Pa⋅s  

Y. Sun et al.                                                                                                                                                                                                                                      
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further increasing ntree values above 210, all statistical metrics main-
tained relatively stable but a steep increase in running time occurred. 
Therefore, an optimal hyperparameter set with mtry = 8 and ntree = 210 

was applied in this study considering both the accuracy and computa-
tional cost. 

3.2. Performance of the RF model 

By applying hyperparameters determined from the previous chapter, 
five RF models were trained for compressive strength, slump, static/ 
dynamic yield stresses, and plastic viscosity predictions. Afterwards, the 
predictive models were further validated with the testing dataset. It is 
noteworthy that overfitting and underfitting should be avoided in a 
practical model [53,54]. The former issue appears when the model fits 

the training data set so well that it has memorized the noise and the 
peculiarities of the training data, thus cannot reflect the underlying re-
lationships of the testing set. On the contrary, underfitting refers to a 
model which is too simple and insufficient to capture the trend in both 
training and testing sets. 

The predictive results of each model, including both training and 
testing sets, are shown in Fig. 6. It is observed that the vast majority of 
predictions are fallen into a ± 20% error band deviated from experi-
mental results (y = x), indicating a promising predictive performance. 
Furthermore, the data points of training and testing sets are mainly 
distributed in the error band, without severe gathering or scattering, 
which suggests that no obvious underfitting or overfitting occurred in 
the predictive models. 

Statistical metrics of RF each model are summarized in Table 5. The 

Fig. 7. Predictive performance of the RF model. (a) Compressive strength; (b) Slump; (c) Static yield stress; (d) Dynamic yield stress; (e) Plastic viscosity.  

Fig. 8. Importance of predictor variables in RF models. (Note: the importance of each variable is reported as a normalized value of unitless scores).  

Y. Sun et al.                                                                                                                                                                                                                                      
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Table 6 
Ms optimization on AAC mixtures.  

Mix Precursor Activator Water (kg/m3) c Aggregate (kg/m3) d Optimized Ms e 

Precursor content (kg/m3) BFS ratio a Na2O (kg/m3) Ms b Fine Coarse Target 1f Target 2 g Target 3 h Optimal Ms i 

Opt1 365 100%  10.94 1.25 176 726 1089 N.A.  0.7 0.5 N.A. 
Opt2 357 100%  17.86 0.75 176 726 1089 0.4  0.5 0.1 0.5 
Opt3 380 100%  15.19 0.75 164 733 1099 0  0.4 N.A. N.A. 
Opt4 367 100%  11.01 1 176 726 1089 N.A.  0.9 0.5 N.A. 
Opt5 363 100%  14.52 0.75 176 726 1089 0.2  0.6 0.3 0.6 

a Defined as the mass proportion of BFS in precursors 
b Defined as the molar ratio between SiO2 and Na2O in the activator 
c Including the water content in aqueous sodium silicate and the extra water added 
d The aggregate packing was designed to reach between A16 and B16 curves indicated in DIN 1045–2 
e Optimized Ms derived from grid search optimization on RF models 
f Target 1: 1-day compressive strength > 10 MPa 
g Target 2: 28-day compressive strength > 50 MPa 
h Target 3: S4 + Slump class (>160 mm) 
i Defined as minimum Ms which can meet all targets defined in the AACs 
N.A. = not applicable, which means the target cannot be achieved throughout the Ms range used in this study. 

Table 7 
Fresh and hardened properties of optimized AACs.  

Mix Compressive strength (MPa) Initial slump (mm) Target: 160 

1-day Target: 10 28-day Target: 50 

Original Optimized Original Optimized Original Optimized 

Opt2  24.8  23.8  60.4  54.4 225 215 
Opt5  11.8  10.1  57.8  53.5 260 205  

Fig. 9. Grid search optimization on Ms through RF models. (a) 1-day compressive strength; (b) 28-day compressive strength; (c) Slump values.  
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R2 values of predictive models were determined as 0.96, 0.93, 0.92, 
0.93, and 0.95 in the training set, while slightly dropped to 0.92, 0.89, 
0.90, 0.91, and 0.94 by using the testing set, respectively. Similar trends 
have been detected in other statistical parameters in terms of MAE, 
MAPE, and RMSE. The results denote a good fitting between the obser-
vation and predictions. It is indicated that the RF models established in 
the current study, in particular the strength predictions, are able to 
provide equivalent or even superior performance as compared to the 
existing models developed for PC concrete [13,14,15,16,17] and AAC 
[27,20,21,22,23] based on AI algorithms. 

However, predictions of the fresh properties exhibited less accuracy 
than those of the compressive strength, which is attributed to the 
inherent complexity [27]. The fresh property was determined from AAC 
under dynamic flowing states, which is extremely complicated due to 
colloidal interactions, Brownian motions, multi-body hydrodynamic 
interactions, and temporal/spatial correlation of particle positions in a 
flow field [55,56]. The various interactions are strongly affected by the 
properties of multiple phases involved in the system, for example, the 
chemical reactivity of precursors [57], the shape of aggregates 
[58,59,60], the viscosity of activator solutions [61,62], and the amount 
of liquid available to fill interstitial spaces [63], etc. Moreover, these 
interactions are evolving very rapidly due to the strong early reactivities 
in an AAC system [64,65]. Further, the slump test was manually con-
ducted including the compacting and lifting operations, which might 
bring uncertainties to the initial flow conditions. For instance, the speed 
at which the cone was lifted can introduce different kinetic energy to the 
mixture, leading to different flow conditions and sample shapes at 
stoppage [66]. Thereby, slightly lower accuracy was detected in slump 
values as compared to the other predictive models. On the other hand, 
strength data were determined from hardened AACs, where different 
particles are tightly packed in a stable matrix with fixed spatial ar-
rangements. At this stage, the microstructure evolution in AACs slowly 
progressed with dynamic equilibrium in chemical reactions [67], 
resulting in smaller errors in compressive strength. 

It has been observed that all testing sets yielded slight reductions in 
accuracy as compared to those derived from training sets. The results 
imply that the predictive models obtained might be less robust while 
being exposed to a fresh dataset. It might be attributed to the fact that 
the sample size is not big enough, and the observations used for training 
are insufficient to capture the trends in a few specific mix design cases. 

In addition, current predictor variables might be unable to cover all 
influential factors to achieve more accurate predictions [27]. For 
instance, previous studies have suggested that the temperature effects 
[68,69,70], as well as the mixing energy applied [64,71], may lead to a 
certain impact on both rheology and strength development in AACs. 
However, such parameters were not considered as key factors in an AAC 
mix design, thereby excluded from predictor variables in the present 
models to ensure efficiency and simplicity. Nevertheless, the issues of RF 
models enumerated above could be gradually resolved with an enlarging 
database, which covers not only performances of AACs with more var-
iations in mixture proportions, but also predictor variables that better 
express the influential factors. Accordingly, more follow-up work is 
expected as a supplement to the current models. 

As presented in Fig. 7, the predicted values are plotted against the 
observed data to assess the global performance of the AAC predictive 
models. The results reveal that all models showed good accuracy of 
predictions that the relative errors between predictions and observations 
are distributed around 0. 

3.3. Importance of features 

The importance of predictor variables was assessed through mean 
decrease accuracy computed from permuting out-of-bag (OOB) data in 
the RF algorithm [31,72]. Normalized importance factors are plotted in 
the heatmap as present in Fig. 8, where the features with a stronger 
effect are indicated with light colors. Regarding the compressive 
strength of AACs, the greatest influence comes from the testing age, in 
agreement with the results reported by Zhang et al [21]. Apart from that, 
Ms ranked the top among all AAC design factors, due to the numerous 
nucleation sites provided by the sodium silicate in the pore solution, 
which is directly correlated to denser microstructures and higher 
strength in AACs [73,74]. Slump and static yield stress, which are 
associated with the initiation of flow from a static state, showed very 
similar distributions of importance. In both cases, the water content and 
Ms took the first and second places, respectively. The interstitial water 
and silicate content may provide fluidizing effects to disperse the solid 
grains [75,71], thus the interparticle interactions are reduced and less 
energy is required to initiate the flow. Finally, the rheological conditions 
to maintain a steady flow are described by dynamic yield stress and 
plastic viscosity, where the precursor content has the most significant 
impact. According to the film thickness theory [76], the paste fraction 
fills the interparticle voids and provides a coating layer on individual 
aggregates to lubricate the concrete mix. Thereby the interactions 
induced by precursor grains in the paste are predominant under flowing 
states. Besides, all the rest variables showed less decisive correlations to 
the dynamic rheological parameters, with the BFS ratio slightly higher 
than the others. It is indicated that FA as a substitute material for BFS in 
this study somewhat improved the dynamic flow of AACs through ball- 
bearing effects [77]. 

3.4. Inverse application: Mix optimization 

As is well-known that AAC is developed as an alternative green 
concrete, with lower carbon footprints than PC materials [78,79,80]. It 
is remarkable that this statement is sometimes controversial since the 
usage of highly concentrated alkaline activators in AACs on the other 
hand causes another significant environmental impact, depending on 
the type and dosage of activators applied though. Sodium silicate is one 
of the most commonly used alkaline activators to promote the activation 
reaction, which benefits AACs in both fresh and hardened states [71,73]. 
However, its manufacturing process is associated with heavy energy 
consumption and CO2 emission because of the high temperature and 
pressure required [79,81]. Due to the lack of standardized design reg-
ulations, it might be the case that some AAC mixtures are over-designed 
by using an excessive amount of sodium silicate while exceeding the 
practical demands. Therefore, this study further attempts to optimize 

Fig. 10. CO2 emission from activator solutions for producing per cubic 
meter AAC. 
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Table 8 
Mixture proportions and compressive strength data of AAM concretes tested in this study.  

Data point Precursor Activator Water (kg/m3) c Aggregate (kg/m3) d Curing time (day) Compressive strength (MPa) 

Precursor content (kg/m3) BFS ratio a NaOH (kg/m3) Ms b 

1 375 100%  15.00 0.45 153 1822 1  28.9 
2 375 100%  15.00 0.45 153 1822 7  42.7 
3 375 100%  15.00 0.45 153 1822 28  62.0 
4 375 100%  15.00 0.45 153 1822 91  70.2 
5 375 100%  19.34 0 151 1819 1  15.2 
6 375 100%  19.34 0 151 1819 7  23.9 
7 375 100%  19.34 0 151 1819 28  36.2 
8 375 100%  19.34 0 151 1819 91  40.6 
9 386 100%  17.42 0.25 164 1832 1  15.8 
10 386 100%  17.42 0.25 164 1832 7  32.8 
11 386 100%  17.42 0.25 164 1832 28  45.2 
12 386 100%  17.42 0.25 164 1832 91  53.0 
13 354 100%  15.97 0.25 187 1800 1  9.6 
14 354 100%  15.97 0.25 187 1800 7  21.8 
15 354 100%  15.97 0.25 187 1800 28  31.9 
16 354 100%  15.97 0.25 187 1800 91  37.6 
17 383 100%  14.81 0.5 164 1832 1  24.7 
18 383 100%  14.81 0.5 164 1832 7  43.3 
19 383 100%  14.81 0.5 164 1832 28  63.3 
20 383 100%  14.81 0.5 164 1832 91  64.5 
21 350 100%  13.57 0.5 187 1800 1  14.3 
22 350 100%  13.57 0.5 187 1800 7  28.3 
23 350 100%  13.57 0.5 187 1800 28  37.5 
24 350 100%  13.57 0.5 187 1800 91  38.6 
25 380 100%  12.25 0.75 164 1832 1  27.3 
26 380 100%  12.25 0.75 164 1832 7  58.1 
27 380 100%  12.25 0.75 164 1832 28  70.4 
28 380 100%  12.25 0.75 164 1832 91  75.9 
29 363 100%  11.71 0.75 176 1815 1  11.8 
30 363 100%  11.71 0.75 176 1815 7  44.9 
31 363 100%  11.71 0.75 176 1815 28  57.8 
32 363 100%  11.71 0.75 176 1815 91  62.1 
33 348 100%  11.22 0.75 187 1800 1  9.6 
34 348 100%  11.22 0.75 187 1800 7  36.0 
35 348 100%  11.22 0.75 187 1800 28  47.0 
36 348 100%  11.22 0.75 187 1800 91  54.4 
37 374 100%  12.66 0.25 176 1815 1  12.4 
38 374 100%  12.66 0.25 176 1815 7  23.6 
39 374 100%  12.66 0.25 176 1815 28  33.5 
40 374 100%  12.66 0.25 176 1815 91  38.9 
41 371 100%  10.78 0.5 176 1815 1  13.2 
42 371 100%  10.78 0.5 176 1815 7  25.3 
43 371 100%  10.78 0.5 176 1815 28  37.2 
44 371 100%  10.78 0.5 176 1815 91  42.3 
45 369 100%  8.93 0.75 176 1815 1  6.1 
46 369 100%  8.93 0.75 176 1815 7  32.8 
47 369 100%  8.93 0.75 176 1815 28  45.2 
48 369 100%  8.93 0.75 176 1815 91  52.3 
49 367 100%  7.10 1 176 1815 1  2.1 
50 367 100%  7.10 1 176 1815 7  37.9 
51 367 100%  7.10 1 176 1815 28  53.1 
52 367 100%  7.10 1 176 1815 91  61.5 
53 365 100%  5.29 1.25 176 1815 1  0.2 
54 365 100%  5.29 1.25 176 1815 7  41.2 
55 365 100%  5.29 1.25 176 1815 28  57.4 
56 365 100%  5.29 1.25 176 1815 91  67.3 
57 363 100%  11.71 0.75 176 1815 1  11.8 
58 363 100%  11.71 0.75 176 1815 7  44.9 
59 363 100%  11.71 0.75 176 1815 28  57.8 
60 363 100%  11.71 0.75 176 1815 91  62.1 
61 361 100%  17.45 0.5 176 1815 1  19.5 
62 361 100%  17.45 0.5 176 1815 7  36.8 
63 361 100%  17.45 0.5 176 1815 28  47.5 
64 361 100%  17.45 0.5 176 1815 91  55.9 
65 357 100%  14.40 0.75 176 1815 1  24.8 
66 357 100%  14.40 0.75 176 1815 7  50.9 
67 357 100%  14.40 0.75 176 1815 28  60.4 
68 357 100%  14.40 0.75 176 1815 91  67.9 
69 356 100%  20.64 0.5 176 1815 1  24.0 
70 356 100%  20.64 0.5 176 1815 7  39.8 
71 356 100%  20.64 0.5 176 1815 28  52.8 
72 356 100%  20.64 0.5 176 1815 91  62.1 
73 369 100%  16.66 0.25 176 1815 1  12.5 

(continued on next page) 
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Table 8 (continued ) 

Data point Precursor Activator Water (kg/m3) c Aggregate (kg/m3) d Curing time (day) Compressive strength (MPa) 

Precursor content (kg/m3) BFS ratio a NaOH (kg/m3) Ms b 

74 369 100%  16.66 0.25 176 1815 7  27.4 
75 369 100%  16.66 0.25 176 1815 28  38.9 
76 369 100%  16.66 0.25 176 1815 91  44.0 
77 369 90%  16.66 0.25 176 1815 1  12.0 
78 369 90%  16.66 0.25 176 1815 7  21.8 
79 369 90%  16.66 0.25 176 1815 28  30.9 
80 369 90%  16.66 0.25 176 1815 91  37.7 
81 369 80%  16.66 0.25 176 1815 1  11.0 
82 369 80%  16.66 0.25 176 1815 7  21.4 
83 369 80%  16.66 0.25 176 1815 28  27.6 
84 369 80%  16.66 0.25 176 1815 91  35.3 
85 369 60%  16.66 0.25 176 1815 1  7.3 
86 369 60%  16.66 0.25 176 1815 7  16.5 
87 369 60%  16.66 0.25 176 1815 28  23.1 
88 369 60%  16.66 0.25 176 1815 91  27.5 
89 366 100%  14.17 0.5 176 1815 1  19.5 
90 366 100%  14.17 0.5 176 1815 7  33.9 
91 366 100%  14.17 0.5 176 1815 28  45.8 
92 366 100%  14.17 0.5 176 1815 91  48.3 
93 366 90%  14.17 0.5 176 1815 1  14.6 
94 366 90%  14.17 0.5 176 1815 7  40.3 
95 366 90%  14.17 0.5 176 1815 28  51.7 
96 366 90%  14.17 0.5 176 1815 91  62.3 
97 366 80%  14.17 0.5 176 1815 1  10.2 
98 366 80%  14.17 0.5 176 1815 7  30.8 
99 366 80%  14.17 0.5 176 1815 28  40.5 
100 366 80%  14.17 0.5 176 1815 91  49.1 
101 366 60%  14.17 0.5 176 1815 1  9.0 
102 366 60%  14.17 0.5 176 1815 7  29.1 
103 366 60%  14.17 0.5 176 1815 28  38.8 
104 366 60%  14.17 0.5 176 1815 91  44.6 
105 400 100%  20.65 0 160 1811 1  15.7 
106 400 100%  20.65 0 160 1811 7  22.2 
107 400 100%  20.65 0 160 1811 28  32.2 
108 400 100%  20.65 0 160 1811 91  43.2 
109 450 100%  23.23 0 180 1710 1  13.1 
110 450 100%  23.23 0 180 1710 7  19.7 
111 450 100%  23.23 0 180 1710 28  33.5 
112 450 100%  23.23 0 180 1710 91  38.4 
113 487.5 100%  25.16 0 195 1634 1  16.0 
114 487.5 100%  25.16 0 195 1634 7  23.1 
115 487.5 100%  25.16 0 195 1634 28  31.0 
116 487.5 100%  25.16 0 195 1634 91  40.2 
117 320 100%  14.06 0.5 160 1886 1  23.3 
118 320 100%  14.06 0.5 160 1886 7  49.0 
119 320 100%  14.06 0.5 160 1886 28  52.2 
120 320 100%  14.06 0.5 160 1886 91  71.6 
121 360 100%  15.82 0.5 180 1794 1  24.7 
122 360 100%  15.82 0.5 180 1794 7  45.5 
123 360 100%  15.82 0.5 180 1794 28  43.6 
124 360 100%  15.82 0.5 180 1794 91  68.8 
125 390 100%  17.14 0.5 195 1726 1  25.8 
126 390 100%  17.14 0.5 195 1726 7  46.1 
127 390 100%  17.14 0.5 195 1726 28  53.2 
128 390 100%  17.14 0.5 195 1726 91  74.4 
129 400 100%  17.58 0.5 160 1808 1  16.8 
130 400 100%  17.58 0.5 160 1808 7  31.2 
131 400 100%  17.58 0.5 160 1808 28  40.8 
132 400 100%  17.58 0.5 160 1808 91  54.7 
133 450 100%  19.77 0.5 180 1706 1  17.0 
134 450 100%  19.77 0.5 180 1706 7  29.8 
135 450 100%  19.77 0.5 180 1706 28  40.8 
136 450 100%  19.77 0.5 180 1706 91  55.2 
137 487.5 100%  21.42 0.5 195 1630 1  19.0 
138 487.5 100%  21.42 0.5 195 1630 7  31.1 
139 487.5 100%  21.42 0.5 195 1630 28  36.7 
140 487.5 100%  21.42 0.5 195 1630 91  55.6 
141 400 100%  19.11 0.25 160 1809 1  12.8 
142 400 100%  19.11 0.25 160 1809 7  33.8 
143 400 100%  19.11 0.25 160 1809 91  58.4 
144 450 100%  21.50 0.25 180 1708 1  14.3 
145 450 100%  21.50 0.25 180 1708 7  35.2 
146 450 100%  21.50 0.25 180 1708 91  57.7 
147 487.5 100%  23.29 0.25 195 1632 1  11.8 

(continued on next page) 
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AAC mix designs with lower environmental impact, which is achieved 
by reducing the sodium silicate dosage as much as possible while 
meeting the target strength and slump values. An optimal Ms is derived 
through the grid search optimization on established RF models, until the 
lowest Ms meeting all target predictions occurred. 

To showcase the optimization process, five mixtures with the highest 
sodium silicate dosages per cubic meter of AAC were selected from the 
database, as listed in Table 6, where Ms was defined as the optimization 
objective. Three explicit targets have been made, as an example here, 
that the AAC was expected to achieve 10 MPa 1-day strength, 50 MPa 
28-day strength, and the initial slump should reach S4 class (>160 mm 
according to EN 206). Further, they were set as threshold values to 
assess the grid search optimization results, as indicated by the dashed 
lines in Fig. 9. 

As shown in Fig. 9 (a), a declined 1-day strength in Opt1 and Opt4 
with higher Ms has been captured by the strength predictive model. 
However, it has been observed that neither of them achieved the target 
throughout the Ms range used in this study. This is attributed to their low 

sodium concentration and high Ms in the original mixtures. Both factors 
may slow down the dissolution of precursors [4,82–84], while high Ms 
further results in a long induction period, thereby inhibiting the early- 
strength development [85,86]. On the contrary, this target could be 
achieved with lower Ms values in the other mixtures, where the high 
Na2O content ensures a more rapid strength development at early ages. 
Moreover, the results indicate that higher slump and 28-day strength 
values could be obtained by increasing the silicate dosage in alkaline 
activators. This is in agreement with and can be well-explained by the 
previous studies on the effect of sodium silicates [71,73]. 

The minimum Ms which fulfills all designated targets was deter-
mined as the optimal value, as indicated in Table 6, which can poten-
tially reduce the sodium silicate content in AAC mixtures. The strength 
and slump values of optimized mixtures with reduced Ms were further 
validated by trial mixes. It is noticed that the maximum slump that 
might be achieved with Ms traverse in Opt4 was less than 100 mm, and it 
was then excluded from the optimization set in addition to Opt1 and 
Opt3. Eventually, it was determined to reduce the silicate dosage in 

Table 8 (continued ) 

Data point Precursor Activator Water (kg/m3) c Aggregate (kg/m3) d Curing time (day) Compressive strength (MPa) 

Precursor content (kg/m3) BFS ratio a NaOH (kg/m3) Ms b 

148 487.5 100%  23.29 0.25 195 1632 7  34.9 
149 487.5 100%  23.29 0.25 195 1632 91  56.4 
150 400 100%  8.79 0.5 160 1822 1  2.6 
151 400 100%  8.79 0.5 160 1822 7  25.3 
152 400 100%  8.79 0.5 160 1822 91  49.7 
153 450 100%  9.89 0.5 180 1722 1  4.5 
154 450 100%  9.89 0.5 180 1722 7  25.7 
155 450 100%  9.89 0.5 180 1722 91  49.2 
156 487.5 100%  10.71 0.5 195 1648 1  5.9 
157 487.5 100%  10.71 0.5 195 1648 7  24.0 
158 487.5 100%  10.71 0.5 195 1648 91  49.9 
159 400 50%  20.65 0 160 1764 1  6.7 
160 400 50%  20.65 0 160 1764 7  14.9 
161 400 50%  20.65 0 160 1764 91  30.0 
162 450 50%  23.23 0 180 1658 1  7.2 
163 450 50%  23.23 0 180 1658 7  15.5 
164 450 50%  23.23 0 180 1658 91  27.8 
165 487.5 50%  25.16 0 195 1577 1  7.5 
166 487.5 50%  25.16 0 195 1577 7  13.8 
167 487.5 50%  25.16 0 195 1577 91  26.4 
168 400 50%  17.58 0.5 160 1761 1  8.5 
169 400 50%  17.58 0.5 160 1761 7  35.5 
170 400 50%  17.58 0.5 160 1761 28  47.6 
171 400 50%  17.58 0.5 160 1761 91  58.3 
172 450 50%  19.77 0.5 180 1654 1  7.7 
173 450 50%  19.77 0.5 180 1654 7  35.9 
174 450 50%  19.77 0.5 180 1654 28  45.1 
175 450 50%  19.77 0.5 180 1654 91  57.8 
176 487.5 50%  21.42 0.5 195 1574 91  6.9 
177 487.5 50%  21.42 0.5 195 1574 1  33.6 
178 487.5 50%  21.42 0.5 195 1574 7  47.2 
179 487.5 50%  21.42 0.5 195 1574 91  57.2 
180 400 75%  20.65 0 160 1788 1  11.2 
181 400 75%  20.65 0 160 1788 7  20.2 
182 400 75%  20.65 0 160 1788 91  38.9 
183 450 75%  23.23 0 180 1684 1  11.6 
184 450 75%  23.23 0 180 1684 7  21.1 
185 450 75%  23.23 0 180 1684 91  36.8 
186 487.5 75%  25.16 0 195 1606 1  10.8 
187 487.5 75%  25.16 0 195 1606 7  21.6 
188 487.5 75%  25.16 0 195 1606 91  36.6 
189 400 75%  17.58 0.5 160 1785 1  14.0 
190 400 75%  17.58 0.5 160 1785 7  38.2 
191 400 75%  17.58 0.5 160 1785 91  69.8 
192 450 75%  19.77 0.5 180 1680 1  15.4 
193 450 75%  19.77 0.5 180 1680 7  36.5 

a Defined as the mass proportion of BFS in precursors 
b Defined as the mass ratio between SiO2 and Na2O in the activator 
c Including the water content in aqueous sodium silicate and the extra water added 
d Including the particle fractions of 0–4, 2–8, and 8–16 mm, with a mass ratio of 1:0.69:0.81. The aggregate packing was designed to reach between A16 and B16 curves 
indicated in DIN 1045–2. 
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Table 9 
Mixture proportions and fresh properties data of AAM concretes tested in this study.  

Data 
point 

Precursor Activator Water 
(kg/m3) c 

Aggregate 
(kg/m3) d 

Testing age 
(min) 

Slump 
(mm) 

Static yield 
stress (Pa) 

Dynamic yield 
stress (Pa) 

Plastic 
viscosity 
(Pa⋅s) Precursor 

content (kg/m3) 
BFS 
ratio a 

NaOH 
(kg/m3) 

Ms b 

1 375 100%  15.00 0.45 153 1822 5 175  943.24  164.12  129.49 
2 375 100%  15.00 0.45 153 1822 20 125  1315.95  190.22  122.69 
3 375 100%  15.00 0.45 153 1822 35 90  1743.38  181.83  132.32 
4 375 100%  15.00 0.45 153 1822 50 80  2239.17  196.64  125.31 
5 375 100%  15.00 0.45 153 1822 65 75  2966.29  197.75  137.10 
6 375 100%  19.34 0 151 1819 5 70  3311.05  361.97  180.50 
7 375 100%  19.34 0 151 1819 20 60  3775.43  374.47  197.72 
8 375 100%  19.34 0 151 1819 35 40  4762.77  475.02  197.62 
9 375 100%  19.34 0 151 1819 50 10  8442.93  948.90  201.69 
10 386 100%  17.42 0.25 164 1832 5 10  5137.19  622.52  309.09 
11 354 100%  15.97 0.25 187 1800 5 190  507.33  128.09  55.20 
12 354 100%  15.97 0.25 187 1800 20 175  643.52  173.38  52.43 
13 354 100%  15.97 0.25 187 1800 35 145  756.31  219.09  55.23 
14 354 100%  15.97 0.25 187 1800 50 110  906.38  247.57  56.45 
15 354 100%  15.97 0.25 187 1800 65 40  1103.81  290.93  57.58 
16 383 100%  14.81 0.5 164 1832 5 60  2378.39  532.70  285.24 
17 383 100%  14.81 0.5 164 1832 20 25  2912.92  720.04  294.84 
18 383 100%  14.81 0.5 164 1832 35 5  4306.58  1046.50  309.32 
19 350 100%  13.57 0.5 187 1800 5 240  261.40  68.78  49.60 
20 350 100%  13.57 0.5 187 1800 20 225  282.67  88.99  47.52 
21 350 100%  13.57 0.5 187 1800 35 205  303.22  97.12  48.98 
22 350 100%  13.57 0.5 187 1800 50 190  350.60  106.80  51.51 
23 350 100%  13.57 0.5 187 1800 65 165  354.03  101.13  52.28 
24 380 100%  12.25 0.75 164 1832 5 95  1691.35  444.90  271.74 
25 380 100%  12.25 0.75 164 1832 20 75  1914.51  581.99  275.41 
26 380 100%  12.25 0.75 164 1832 35 55  2456.19  697.82  280.10 
27 380 100%  12.25 0.75 164 1832 50 30  2944.04  834.42  290.02 
28 380 100%  12.25 0.75 164 1832 65 10  3619.55  981.16  320.38 
29 363 100%  11.71 0.75 176 1815 5 200  501.87  106.68  98.00 
30 363 100%  11.71 0.75 176 1815 20 160  636.78  124.15  96.52 
31 363 100%  11.71 0.75 176 1815 35 125  653.78  136.79  100.25 
32 363 100%  11.71 0.75 176 1815 50 100  680.54  157.26  103.93 
33 363 100%  11.71 0.75 176 1815 65 85  718.57  161.20  103.34 
34 348 100%  11.22 0.75 187 1800 5 260  172.15  30.09  39.13 
35 348 100%  11.22 0.75 187 1800 20 240  197.49  48.71  37.50 
36 348 100%  11.22 0.75 187 1800 35 225  218.64  52.96  37.78 
37 348 100%  11.22 0.75 187 1800 50 200  236.71  58.23  38.92 
38 348 100%  11.22 0.75 187 1800 65 185  263.92  60.70  38.45 
39 374 100%  12.66 0.25 176 1815 5 95  1289.34  346.71  129.53 
40 374 100%  12.66 0.25 176 1815 20 70  1784.57  438.33  135.91 
41 374 100%  12.66 0.25 176 1815 35 10  2361.46  670.99  156.00 
42 371 100%  10.78 0.5 176 1815 5 105  1033.52  153.74  119.70 
43 371 100%  10.78 0.5 176 1815 20 95  1240.58  168.82  121.43 
44 371 100%  10.78 0.5 176 1815 35 55  1672.74  195.35  123.29 
45 371 100%  10.78 0.5 176 1815 50 40  1878.46  204.40  129.36 
46 371 100%  10.78 0.5 176 1815 65 25  2135.90  227.58  130.85 
47 369 100%  8.93 0.75 176 1815 5 150  754.62  120.73  101.03 
48 369 100%  8.93 0.75 176 1815 20 135  878.51  146.49  98.18 
49 369 100%  8.93 0.75 176 1815 35 90  1064.59  164.52  103.56 
50 369 100%  8.93 0.75 176 1815 50 70  1267.21  176.49  106.78 
51 369 100%  8.93 0.75 176 1815 65 50  1589.00  190.52  99.29 
52 367 100%  7.10 1 176 1815 5 210  507.59  95.33  90.14 
53 367 100%  7.10 1 176 1815 20 160  634.71  137.45  95.28 
54 367 100%  7.10 1 176 1815 35 155  687.59  149.38  87.56 
55 367 100%  7.10 1 176 1815 50 150  797.68  151.92  90.11 
56 367 100%  7.10 1 176 1815 65 130  902.54  160.78  88.49 
57 365 100%  5.29 1.25 176 1815 5 190  685.37  92.96  92.38 
58 365 100%  5.29 1.25 176 1815 20 135  1020.33  140.10  86.12 
59 365 100%  5.29 1.25 176 1815 35 120  1179.24  153.19  89.38 
60 365 100%  5.29 1.25 176 1815 50 110  1249.65  180.89  85.02 
61 365 100%  5.29 1.25 176 1815 65 100  1454.27  195.85  86.28 
62 363 100%  11.71 0.75 176 1815 5 200  501.87  106.68  98.00 
63 363 100%  11.71 0.75 176 1815 20 160  680.54  124.15  96.52 
64 363 100%  11.71 0.75 176 1815 35 125  718.57  136.79  100.25 
65 363 100%  11.71 0.75 176 1815 50 100  636.78  157.26  103.93 
66 363 100%  11.71 0.75 176 1815 65 85  653.78  161.20  103.34 
67 361 100%  17.45 0.5 176 1815 5 215  422.44  63.82  90.24 
68 361 100%  17.45 0.5 176 1815 20 200  457.92  108.94  97.65 
69 361 100%  17.45 0.5 176 1815 35 190  496.40  109.86  93.97 
70 361 100%  17.45 0.5 176 1815 50 170  500.62  117.30  90.06 
71 361 100%  17.45 0.5 176 1815 65 160  607.52  118.87  96.92 
72 357 100%  14.40 0.75 176 1815 5 225  354.61  18.78  80.69 

(continued on next page) 
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Table 9 (continued ) 

Data 
point 

Precursor Activator Water 
(kg/m3) c 

Aggregate 
(kg/m3) d 

Testing age 
(min) 

Slump 
(mm) 

Static yield 
stress (Pa) 

Dynamic yield 
stress (Pa) 

Plastic 
viscosity 
(Pa⋅s) Precursor 

content (kg/m3) 
BFS 
ratio a 

NaOH 
(kg/m3) 

Ms b 

73 357 100%  14.40 0.75 176 1815 20 210  452.06  28.55  78.26 
74 357 100%  14.40 0.75 176 1815 35 195  519.22  41.03  75.21 
75 357 100%  14.40 0.75 176 1815 50 180  569.96  74.22  80.54 
76 357 100%  14.40 0.75 176 1815 65 175  676.06  94.91  81.71 
77 356 100%  20.64 0.5 176 1815 5 245  245.35  6.25  89.59 
78 356 100%  20.64 0.5 176 1815 20 225  463.87  61.80  90.23 
79 356 100%  20.64 0.5 176 1815 35 220  511.13  88.09  87.19 
80 356 100%  20.64 0.5 176 1815 50 210  543.66  96.41  91.83 
81 356 100%  20.64 0.5 176 1815 65 205  627.88  105.87  91.27 
82 369 100%  16.66 0.25 176 1815 5 110  1014.24  241.05  116.04 
83 369 100%  16.66 0.25 176 1815 20 85  1515.49  385.00  123.67 
84 369 100%  16.66 0.25 176 1815 35 60  2038.99  467.56  135.33 
85 369 100%  16.66 0.25 176 1815 50 5  2749.57  631.92  145.38 
86 369 90%  16.66 0.25 176 1815 5 150  714.63  191.79  109.03 
87 369 90%  16.66 0.25 176 1815 20 125  1047.45  282.39  112.36 
88 369 90%  16.66 0.25 176 1815 35 95  1657.91  351.33  115.24 
89 369 90%  16.66 0.25 176 1815 50 50  2010.98  448.71  116.69 
90 369 90%  16.66 0.25 176 1815 65 10  2436.87  505.38  120.75 
91 369 80%  16.66 0.25 176 1815 5 190  552.67  133.16  96.34 
92 369 80%  16.66 0.25 176 1815 20 177.5  746.25  178.65  99.68 
93 369 80%  16.66 0.25 176 1815 35 140  1098.02  217.53  107.08 
94 369 80%  16.66 0.25 176 1815 50 120  1225.65  268.85  107.48 
95 369 80%  16.66 0.25 176 1815 65 90  1424.64  299.47  105.29 
96 369 60%  16.66 0.25 176 1815 5 245  305.01  92.79  61.13 
97 369 60%  16.66 0.25 176 1815 20 230  360.14  132.29  56.98 
98 369 60%  16.66 0.25 176 1815 35 220  490.74  180.78  55.40 
99 369 60%  16.66 0.25 176 1815 50 215  568.44  187.81  59.32 
100 369 60%  16.66 0.25 176 1815 65 190  624.97  206.02  61.03 
101 366 100%  14.17 0.5 176 1815 5 175  690.48  112.17  110.74 
102 366 100%  14.17 0.5 176 1815 20 140  773.00  144.79  115.18 
103 366 100%  14.17 0.5 176 1815 35 100  871.47  159.65  113.42 
104 366 100%  14.17 0.5 176 1815 50 70  888.24  177.62  114.06 
105 366 100%  14.17 0.5 176 1815 65 55  1011.13  190.99  116.59 
106 366 90%  14.17 0.5 176 1815 5 240  323.28  86.92  76.18 
107 366 90%  14.17 0.5 176 1815 20 225  513.93  92.33  76.54 
108 366 90%  14.17 0.5 176 1815 35 215  524.70  100.95  79.50 
109 366 90%  14.17 0.5 176 1815 50 210  590.48  123.38  83.92 
110 366 90%  14.17 0.5 176 1815 65 200  618.99  150.86  79.85 
111 366 80%  14.17 0.5 176 1815 5 260  204.65  66.85  63.29 
112 366 80%  14.17 0.5 176 1815 20 245  212.74  81.92  62.51 
113 366 80%  14.17 0.5 176 1815 35 235  278.58  86.95  65.63 
114 366 80%  14.17 0.5 176 1815 50 225  323.43  97.93  63.46 
115 366 80%  14.17 0.5 176 1815 65 215  396.57  103.79  61.90 
116 366 60%  14.17 0.5 176 1815 5 270  147.43  45.83  55.74 
117 366 60%  14.17 0.5 176 1815 20 255  148.85  62.92  55.16 
118 366 60%  14.17 0.5 176 1815 35 240  215.93  67.65  54.61 
119 366 60%  14.17 0.5 176 1815 50 235  230.19  68.13  55.20 
120 366 60%  14.17 0.5 176 1815 65 230  356.68  85.88  56.11 
121 450 100%  23.23 0 180 1710 5 60  3136.38  711.27  191.91 
122 487.5 100%  25.16 0 195 1634 5 105  2190.03  536.20  184.94 
123 320 100%  14.06 0.5 160 1886 5 150  1505.49  425.06  141.95 
124 360 100%  15.82 0.5 180 1794 5 230  852.11  467.29  52.97 
125 390 100%  17.14 0.5 195 1726 5 260  188.61  83.92  37.28 
126 400 100%  17.58 0.5 160 1808 5 120  4157.40  1042.94  366.77 
127 450 100%  19.77 0.5 180 1706 5 205  1731.26  321.60  372.88 
128 487.5 100%  21.42 0.5 195 1630 5 230  962.08  169.73  274.00 
129 400 100%  19.11 0.25 160 1809 5 22.5  3463.26  707.30  291.69 
130 450 100%  21.50 0.25 180 1708 5 55  1918.70  372.45  311.77 
131 487.5 100%  23.29 0.25 195 1632 5 90  1690.79  225.56  272.31 
132 450 100%  9.89 0.5 180 1722 5 50  3789.39  618.89  313.26 
133 487.5 100%  10.71 0.5 195 1648 5 110  2233.50  436.24  303.65 
134 400 50%  20.65 0 160 1764 5 70  2222.55  703.86  144.96 
135 450 50%  23.23 0 180 1658 5 195  1192.81  547.01  93.64 
136 487.5 50%  25.16 0 195 1577 5 205  545.89  226.64  68.86 
137 400 50%  17.58 0.5 160 1761 5 230  873.56  412.71  184.56 
138 450 50%  19.77 0.5 180 1654 5 270  577.26  302.45  86.22 
139 487.5 50%  21.42 0.5 195 1574 5 275  114.12  41.28  63.58 
140 400 75%  20.65 0 160 1788 5 40  4131.87  1026.10  158.41 
141 450 75%  23.23 0 180 1684 5 125  1484.57  743.83  133.21 
142 487.5 75%  25.16 0 195 1606 5 165  1261.67  559.68  154.81 
143 400 75%  17.58 0.5 160 1785 5 150  1271.30  250.23  282.88 
144 450 75%  19.77 0.5 180 1680 5 230  908.02  405.32  175.82 
145 487.5 75%  21.42 0.5 195 1602 5 245  535.50  258.97  110.70 
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Opt2 and Opt5, while the slight variations per unit volume of AAC were 
compensated by the aggregate content. Finally, the optimized mixtures 
were produced to assess their actual performances. 

As presented in Table 7, all optimized AAC mixtures have exceeded 
the pre-defined demands in both slump and strength values. Neverthe-
less, it’s been observed in all models that the predictive performance of 
AACs tends to reach a plateau in high Ms ranges. It is likely that their 
properties are correlated to multiple design factors, while further in-
creases in Ms may not improve the strength and workability. The most 
reasonable explanation would be that the observed data with higher Ms 

values involved in this study is limited, since the excessive silicate in the 
activators resulted in very rapid workability loss of AACs (i.e. the ‘flash 
setting’ occurred) [64] in trial mixes. Thereby, more data is expected to 
improve the RF models towards making more precise predictions in this 
region. 

In general, the results illustrate that a proper design in Ms may 
contribute to the reduction in environmental impacts induced by AACs. 
With specified demands, the optimization process provides the possi-
bility to mitigate the overdesign in terms of high silicate dosages. Ac-
cording to the relevant emissions reported in [87], as shown in Fig. 10, it 

a Defined as the mass proportion of BFS in precursors 
b Defined as the mass ratio between SiO2 and Na2O in the activator 
c Including the water content in aqueous sodium silicate and the extra water added 
d Including the particle fractions of 0–4, 2–8, and 8–16 mm, with a mass ratio of 1:0.69:0.81. The aggregate packing was designed to reach between A16 and B16 curves 
indicated in DIN 1045–2. 

Fig. 11. Statistics of AAC mixtures in this study.  
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is expected that the optimized mix design saves approximately 33% and 
20% of CO2 from the activator phases for producing per cubic meter of 
Opt2 and Opt5, respectively. It can be deduced that the mixture opti-
mization approach present in this study is capable of future applications 
to produce ‘greener’ AACs by using an appropriate sodium silicate 
dosage. 

3.5. Discussions and future perspectives 

Due to the limited raw materials involved in this study, concerns 
might arise that the RF model developed is only capable of local appli-
cations. It is expected that the current model could be progressively 
optimized with more supplementary results from various AAC mixtures. 
However, the data collecting work is struggling in the current situation, 
due to the absence of commonly applied design codes and parameters in 
AACs. Data conversion has to be done at first while comparing or inte-
grating the results from different literature, and sometimes the key in-
formation is unfortunately missing by using different expressions to 
describe the mix design. 

In PC systems, the binder is classified into different cement types, 
where the inherent material properties (e.g. composition, reactivity, 
grinding fineness, etc.) are revealed by the strength development fea-
tures in standard mixtures. By contrast, the classification system of AAM 
binders is still underdeveloped, which is once again ascribed to the di-
versity in raw materials and complexity of reaction mechanisms. In 
many studies, solid activators are considered as part of the binder in 
AAMs [28], and the effect of binder chemistry on activation reactions 
has been thoroughly elaborated [88,89,90,4,91]. A few recent research 
further well progressed to establish a composition-performance rela-
tionship in AAMs by analyzing the big data collected from literature 
[21,20]. Apart from that, however, it should be noticed that the reac-
tivity in AACs could be affected by other factors such as the amorphous 
content and particle fineness of precursors, as well as the complex in-
teractions between various precursors and activators. Hence, a system-
atic classification of AAM binders is in urgent demand to assist global 
data integrations from the literature with locally available raw mate-
rials, which promotes the development of more reliable predictive 
models and design codes. In view of the application of PC and one-part 
AAMs (‘just add water’ like PC materials) [91], the classification could 
be potentially achieved by assessing combinations of precursors and 
activators in standard mixtures. 

The AI concrete mix optimization based on ML algorithms has 
attracted attention in recent years [92], which saves laboratory works 
from trial mixes as compared to the conventional optimization 
approach. With the development of multi-objective optimization algo-
rithms [93], the variations in concrete performances in terms of 
strength, workability, cost, carbon footprint, etc. could be more easily 
evaluated [94]. This study further provided an inverse single-objective 
mix optimization on AACs through grid searching, which gives the 
optimal predictor variables by specifying demands of concrete perfor-
mance. However, it might be time-consuming and even unrealistic to 
provide global mix design optimizations simultaneously with multiple 
design parameters in a complex AAC system by using grid search. This 
issue might be solved with more advanced multi-objective optimization 
algorithms [95], which could be potentially applied as an AAC mix 
design tool to inversely output design parameters based on a reliable 
predictive model. More relevant research in the field is expected to 
facilitate the development of AI concrete mix design and optimization 
approaches. 

4. Conclusions 

This study dedicates to establishing random forest (RF) predictive 
models for the strength and fresh properties of alkali-activated concrete 
(AAC), which is made of blast furnace slag (BFS) and coal fly ash (FA). 
From laboratory tests, 193 compressive strength data and 145 

workability data (in terms of slump, static/dynamic yield stress, and 
plastic viscosity) were collected for training and validation. Results 
show that the performance of AACs could be well-predicted with 
equivalent or even superior accuracy as compared to other predictive 
models based on machine learning algorithms. Multiple mix design 
parameters were assessed through the importance analysis integrated 
with the model. The compressive strength is indicated to be most rele-
vant to the curing age and silicate modulus (Ms) applied, while the water 
content is predominant in slump values and static yield stress of AACs. 

Furthermore, an inverse single-objective optimization in Ms has been 
conducted based on the RF models obtained, as the sodium silicate in 
activators is one of the primary sources of CO2 emissions in AACs. With 
specified workability and strength demands, a minimum Ms meeting all 
target values is derived through optimization. The results indicate that 
the environmental impact of AACs could be further reduced with an 
appropriate silicate dosage obtained from the mix optimization 
approach proposed. However, multi-objective optimization of AAC 
design parameters is still problematic. A comprehensive AAC mix design 
tool can be expected with the development of more advanced multi- 
objective optimization algorithms and reliable predictive models. 
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