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NOTATION

List of Abbreviations

ACC Accuracy

Adam Adaptive moment estimation

AE Autoencoder

am Anomaly magnitude

AUC Area under the curve

BDD Bad data detection

CET Central European time

(C)GAN (Conditional) Generative adversarial network

CNN Convolutional neural network

(C)VAE (Conditional) Variational autoencoder

EENS Expected energy not served

EM Expectation-maximization

EMS Energy management system

FN False negative

FP False positive

GMM Gaussian mixture model

ICS Industrial control system

ICT Information and communication technology

IS Importance sampling

K -NN K -nearest neighbor

K-S Kolmogorov-Smirnov

LOF Local outlier factor

LOLE Loss of load expectation

MC Monte Carlo

MILP Mixed integer linear program
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OCR Ordinal consistency rate

OVAE Oriented variational autoencoder

PCA Principal component analysis

PINN Physics-informed neural network

PLC Programmable logic controller

PPV Precision

RMS Root mean square

RNN Recurrent neural network

ROC Receiver operating characteristic curve

SCADA Supervisory control and data acquisition

SVM Support vector machine

TN True negative

TP True positive

UTC Coordinated universal time

WLS Weighted least squares
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SUMMARY

The scale of the power system has been significantly expanded in recent decades. To

gain real-time insights into the power system, an increasing number of sensors have

been deployed to monitor grid states, resulting in a rapidly growing number of measure-

ment points. Simultaneously, there has also been a rise in the penetration of renewable

energy generation, with energy production that is highly variable and exhibits strong

interdependence between different production locations. Such interdependence also

applies to electricity demand at various network positions. Furthermore, new demand-

side response strategies and policies enhance the flexibility of the power system, leading

to changes in load profiles. These developments, combined with the structure of the

network itself, mean that measurements in the power system generally exhibit strong

dependencies. This dependency means that if you know one or more values, you can

infer information about others. This applies to time series with measurements that

follow each other chronologically as well as to snapshots that show different states of

the system at a particular moment in time. A large collection of such time series and

snapshots can be represented as a probability distribution in a multidimensional data

space. While larger numbers of measurements enable smarter grid operations, high-

dimensional stochastic variables with complex univariate and multivariate distributions

could also complicate tasks in modeling power system data.

For some power system tasks, it is critical to model the distribution of measure-

ments. Two examples are power system anomaly detection and synthetic data gener-

ation. Anomaly detection is vital for power system stability and economic dispatching.

This thesis focuses on detecting anomalous measurements that physically make sense

but represent uncommon states. Specifically, we aim to detect intentional anomalies in

the form of stealthy power system data integrity attacks. Efforts have also been made

to detect more general unintentional anomalies in renewable energy systems, such as

mild reductions in the power output of wind turbines. The main challenge in detecting

anomalies is that their rarity in historical data makes it difficult to explicitly model the

pattern of anomalies. And even if anomaly patterns are well modeled, the detector only

xiii
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learns to detect known anomalies, which is a significant weakness for novel anomalies.

A second challenge is that the probability distributions of energy demand and renew-

able generation cannot easily be captured in a mathematical equation. This also poses

a problem for the planning of power systems and calibration of operational tools, where

generating synthetic measurement data is essential to analyze system performance in a

large range of representative scenarios, especially when the available historical data is

limited. To explore potential solutions, this thesis investigates the generation of electric

energy demand at the national level and load profiles of individual customers. The chal-

lenge in generating data lies in reproducing both marginal distributions and multivariate

dependencies from historical data. In addition, it is useful if a data generator is able to

generate data with user-defined characteristics. Moreover, with existing data generators,

validation of the quality of generated data is often limited to visual comparisons, which

is not intuitive for power system data in a non-pictorial form.

Motivated by these challenges, this thesis contributes to power system anomaly de-

tection and synthetic data generation by proposing an enhanced anomaly detector and

novel data generator based on an autoencoder neural network and the related varia-

tional autoencoder.

First, for the detection of power system data attacks in high dimensional space with

a highly unbalanced historical data set, an autoencoder neural network-based anomaly

detector is proposed to reduce the dimension of power system measurements and learn

data patterns. The detector considers anomaly detection as a one-class classification

task by acquiring the dependencies intrinsic in ‘normal’ operation data only. Rare anoma-

lies which deviate from patterns learned from normal states are then detected. By fo-

cusing on ‘normal’ operating conditions, it effectively overcomes the challenge of un-

balanced training data that is inherent in power system attack detection and could be

prepared for novel data attacks conducted by resourceful attackers. The performance of

the proposed detector is validated using case studies based on the IEEE 118-bus system.

The experiments demonstrate that the mechanism is able to robustly detect stealthy

anomalies under a variety of attack scenarios. To guide other researchers to implement

an autoencoder-based anomaly detector, the influence of the hyperparameter selection

on the training and anomaly detection performance is investigated. The experimental

results demonstrate that under proper configurations, the mechanism can demonstrate

satisfactory learning efficiency and attack detection performance. Based on those re-

sults, preliminary hyperparameter selection and tuning strategies are put forward.
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Second, the autoencoder neural network-based anomaly detector is improved to de-

tect more general anomalies in renewable energy scenarios. Specifically, autoencoder

neural networks are a powerful tool for the detection of unknown anomalies. A threshold

for the (Euclidean) length of the residuals is typically used to identify anomalous states

of a system. Correlation between residuals is identified as a source of misclassification.

Thus, to accurately detect and localize the source of anomalies, whitening transforma-

tions that decorrelate input features and/or residuals are implemented. For a use case

of distributed wind power generation, the performance of various data processing com-

binations is quantified. Whitening of the input data is found to be most beneficial for

accurate detection, with a slight benefit for the combined whitening of inputs and resid-

uals. For localization of anomalies, three anomaly localization metrics are proposed to

quantify the dependability of the anomaly detector, measuring the degree of standout of

anomalous dimensions and their difference from normal dimensions. It is found that the

whitening of residuals is preferred for anomaly localization, and the best performance

is obtained using standardization of the input data and whitening of the residuals using

the ZCA or ZCA-cor whitening matrix with a small additional offset.

Third, this thesis moves one step further to investigate the performance of condi-

tional variational autoencoder (CVAE)- and variational autoencoder (VAE)-based mod-

els (variants of the regular autoencoder) to generate multivariate load states. Going be-

yond common (C)VAE implementations, the model includes a stochastic variation of

output samples under given latent vectors and co-optimizes the parameters for this out-

put variability. The generation performance is evaluated using univariate and multivari-

ate performance metrics. It is shown that the inclusion of output variation improves the

statistical properties of the generated data. A Monte Carlo generation adequacy study

on the European network is implemented to illustrate the models’ ability to generate

a realistic tail distribution of country-level load states. The experiments demonstrate

that the proposed generator outperforms other data generation mechanisms on at least

one statistical test and is competitive on all others. In addition to generating snap-

shots of country-level load states with limited diversity and variability, the models’ ca-

pacity is also validated by generating synthetic load profiles representing a large variety

of individual users, where the loads are at a lower aggregation level and therefore more

stochastic. The experimental results demonstrate the CVAE model can capture temporal

features of historical load profiles and generate ‘realistic’ data with satisfying univariate

distributions and multivariate dependencies.
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In the end, a novel oriented variational autoencoder (OVAE)-based generative model

is proposed. Concretely, for many use cases, not just a data generator is needed, but also

an ability to steer the type of samples that are generated. To do so, a connection could

be established between the latent space code (where the data is sampled) and the gen-

erated data. Nevertheless, for a basic VAE model, the relation between the compressed

latent space code and generated data is unconstrained, and thus it is difficult to infer

properties of generated data by using specific sampled latent space codes. The unbiased

generation of data could result in many redundant samples being generated and poten-

tially in a time-consuming and non-trivial follow-up task to label and sieve generated

data for particular applications. Given this, the OVAE model is proposed to establish

a connection between latent space codes and generated data. The effectiveness of the

OVAE model is evaluated at both the training and generation stages in a visual and sta-

tistical manner. Experimental results demonstrate that the efficiency of generating tar-

geted samples is significantly improved by using an OVAE-based generator. Moreover,

in order to lay the groundwork for dealing with situations where the analysis of certain

data labels is time-consuming, e.g., risk labels of load states analyzed by Monte Carlo

simulations, a semi-supervised learning scheme is proposed to train the OVAE model

with incomplete labels. It is shown that even trained with incomplete data labels, the

generative model is able to generate data with properties of interest that are correlated

to latent space codes.
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De schaal van het energiesysteem is de laatste decennia aanzienlijk uitgebreid. Om real-

time inzicht te krijgen in het energiesysteem zijn er steeds meer sensoren ingezet om de

toestand van het net te bewaken, waardoor het aantal meetpunten snel groeit. Tegelij-

kertijd neemt de penetratie van hernieuwbare energiebronnen toe, met een energiepro-

ductie die zeer variabel is en een sterke afhankelijkheid vertoont tussen verschillende

productielocaties. Een dergelijke afhankelijkheid geldt ook voor de elektriciteitsvraag

op verschillende netwerklocaties. Tenslotte vergroten nieuwe vraagsturingsmechanis-

men de flexibiliteit van het elektriciteitssysteem, wat direct leidt tot veranderingen in

belastingprofielen.

Deze ontwikkelingen, tezamen met de structuur van het netwerk zelf, beteken dat

metingen in het energiesysteem over het algemeen sterke afhankelijkheden tussen meet-

waardes vertonen. Deze afhankelijkheid betekent dat als je één of meerdere waardes

kent, je informatie over andere waardes kunt afleiden. Dit geldt voor tijdreeksen met

meetwaarden die chronologisch op elkaar volgen of voor momentopnamen die verschil-

lende aspecten van het systeem op een bepaald moment in de tijd weergeven. Collectief

kan een grote verzameling van dergelijke tijdreeksen en momentopnamen worden ge-

representeerd als een kansverdeling in een multidimensionale gegevensruimte. Hoewel

grotere aantallen metingen slimmere netwerkoperaties mogelijk maken, worden de ver-

delingen van de bijbehorende kansverdelingen ook steeds complexer.

Voor sommige energiesysteemtaken is het van cruciaal belang de verdeling van de

metingen te modelleren. Twee voorbeelden zijn het opsporen van anomalieën en het

genereren van synthetische gegevens. Anomaliedetectie is van vitaal belang voor de sta-

biliteit van het energiesysteem en het efficiënt gebruik ervan. Dit proefschrift richt zich

op het detecteren van afwijkende metingen die op technische grond weliswaar accepta-

bel zijn, maar (zeer) ongewone toestanden vertegenwoordigen. In het bijzonder willen

we opzettelijke anomalieën detecteren in de vorm van verborgen aanvallen op de gege-

vensintegriteit van het energiesysteem. Daarnaast zijn de methodes ook toegepast om

onopzettelijke anomalieën in hernieuwbare energiesystemen te detecteren, zoals een

xvii
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lichte vermindering van de stroomproductie van windturbines. De belangrijkste uitda-

ging bij het opsporen van anomalieën is dat de zeldzaamheid ervan in historische gege-

vens het moeilijk maakt het patroon van anomalieën expliciet te modelleren. En zelfs als

anomaliepatronen goed gemodelleerd zijn, leert de detector alleen bekende anomalieën

te detecteren, wat een belangrijke zwakte is voor afwijkende anomalieën.

Een tweede uitdaging is dat de kansverdelingen van de energievraag en hernieuw-

bare opwek niet eenvoudig in een wiskundige vergelijking te vatten zijn. Dit is bijvoor-

beeld problematisch voor de planning van energiesystemen en de kalibratie van opera-

tionele software, waarbij het genereren van synthetische meetgegevens essentieel is om

de systeemprestaties in een groot aantal representatieve scenario’s te analyseren, vooral

wanneer historische gegevens niet toereikend zijn. In dit proefschrift wordt het gene-

reren van de elektrische energievraag op landniveau en van belastingprofielen van in-

dividuele klanten onderzocht. De uitdaging bij het genereren van gegevens is dat een

generator zowel marginale verdelingen als multivariate afhankelijkheden van histori-

sche gegevens moet reproduceren. Bovendien is het nuttig als een gegevensgenerator

gegevens kan genereren met door de gebruiker gedefinieerde kenmerken. Bij bestaande

data-generatoren blijft de validatie van de kwaliteit van gegenereerde gegevens vaak be-

perkt tot visuele vergelijkingen, wat minder goed toepasbaar is op gegevens uit elektrici-

teitsnetwerken.

Gemotiveerd door deze uitdagingen draagt dit proefschrift bij aan de opsporing van

anomalieën in elektriciteitssystemen en het genereren van synthetische meetgegevens,

daarbij gebruik makend van een autoencoder neuraal netwerk en de verwante variatio-

nele autoencoder.

De anomaliedetector op basis van een autoencoder neuraal netwerk is in staat om

de dimensie van energiesysteemmetingen te reduceren en datapatronen te leren. Deze

wordt eerst gebruikt voor de detectie van aanvallen op energiesysteemgegevens met een

zeer onevenwichtige historische dataset. De detector beschouwt anomaliedetectie als

een classificatietaak van één klasse door alleen de afhankelijkheden te leren die inherent

zijn aan ‘normale’ gegevens. Toestanden die afwijken van patronen die behoren bij nor-

male toestanden worden dan geclassificeerd als anomalie. Hierdoor wordt de uitdaging

van onevenwichtige trainingsgegevens, die inherent is aan de detectie van aanvallen op

het energiesysteem, effectief overwonnen en is het systeem voorbereid op onbekende

aanvallen door vindingrijke aanvallers. De prestaties van de voorgestelde detector wor-

den gevalideerd aan de hand van het IEEE 118-bussysteem. De experimenten tonen



SAMENVATTING xix

aan dat het mechanisme in staat is om op robuuste wijze verborgen aanvallen te de-

tecteren onder verscheidene aanvalsscenario’s. Om andere onderzoekers te helpen bij

het implementeren van deze anomaliedetector, wordt ook de invloed van de hyperpara-

meterselectie op het trainingsproces en de detectieprestaties onderzocht. Op basis van

deze resultaten worden voorlopige hyperparameterselectie- en afstemstrategieën voor-

gesteld.

Ten tweede wordt de anomaliedetector verbeterd om meer algemene anomalieën in

duurzame energiescenario’s te detecteren. Gewoonlijk wordt een drempelwaarde voor

de (Euclidische) lengte van de residuen gebruikt om een toestand als al dan niet afwij-

kend te classificeren. We laten zien dat correlatie tussen elementen van residuen een

belangrijke bron van misclassificatie is. Om anomalieën nauwkeuriger te detecteren en

de bron ervan te lokaliseren, worden witmakende (whitening) transformaties toegepast

die inputkenmerken en/of residuen decorreleren. Voor een specifiek voorbeen van ge-

distribueerde windenergieopwekking worden de prestaties van verschillende detector-

configuraties gekwantificeerd. Whitening van de inputgegevens blijkt het gunstigst voor

nauwkeurige detectie, met een gering voordeel voor de gecombineerde whitening van

input en residuen. Voor de lokalisatie van anomalieën worden drie indicatoren voor

anomalielokalisatie voorgesteld om de bruikbaarheid van de anomaliedetector voor dit

doel te kwantificeren. De beste prestaties worden verkregen door standaardisatie van de

invoergegevens en whitening van de residuen met behulp van de ZCA of ZCA-cor me-

thodes met een kleine extra compensatie.

Ten derde gaat dit proefschrift een stap verder en onderzoekt de prestaties van mo-

dellen op basis van de conditionele variationele autoencoder (CVAE) en de variationele

autoencoder (VAE) (varianten van de gewone autoencoder) om multivariate moment-

opnames van de elektriciteitsvraag te genereren. In toevoeging op gebruikelijke (C)VAE-

implementaties injecteert dit model ruis in de gegenereerde data, op basis van mede-

geoptimaliseerde parameters. De prestaties worden geëvalueerd met indicatoren voor

de kwaliteit van univariate en multivariate gelijkenis met de trainingsdata. Aangetoond

wordt dat het opnemen van ruis de statistische eigenschappen van de gegenereerde data

verbetert. Een Monte Carlo-studie naar de leveringszekerheid van het Europese net-

werk wordt uitgevoerd om te illustreren dat de modellen in staat zijn om ook de staart

van kansverdelingen accuraat te modelleren. De experimenten tonen aan dat de voor-

gestelde datagenerator op ten minste één statistische test beter presteert dan andere

mechanismen voor het genereren van gegevens en op alle andere tests concurrerend
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is. Naast het genereren van momentopnames van vraagtoestanden op landniveau met

relatief beperkte diversiteit en variabiliteit, wordt de brede inzetbaarheid van de me-

thode ook gevalideerd door het genereren van synthetische belastingprofielen die een

grote verscheidenheid aan individuele gebruikers vertegenwoordigen. Deze meetgege-

vens hebben een lager aggregatieniveau en hebben daarom een inherent grotere variatie.

De experimentele resultaten tonen aan dat het CVAE-model temporele kenmerken van

historische belastingprofielen kan vastleggen en ‘realistische’ gegevens kan genereren

met bevredigende univariate verdelingen en multivariate afhankelijkheden.

Tot slot wordt een nieuw generatief model geïntroduceerd, in de vorm van de geori-

ënteerde variationele autoencoder (OVAE). Aanleiding hiervoor is dat voor veel toepas-

singen niet alleen een gegevensgenerator nodig is, maar ook de mogelijkheid om sturing

te geven aan de kenmerken van gegenereerde metingen. Dat is in principe al mogelijk bij

een standaard VAE-model, maar daarvoor is het nodig om een verband te leren tussen

de latente code (waaruit de synthetische metingen worden gegenereerd) en de eigen-

schappen van de synthetische data – en dit verband kan zeer complex zijn. Een andere

mogelijkheid is het genereren van aspecifieke synthetische data en het filteren daarvan

op basis van de gewenste kenmerken. Het nadeel hiervan is dat dit een tijdrovende en

niet-triviale taak kan zijn. Het OVAE-model maakt het mogelijk om al tijdens de trai-

ning een verband te leggen tussen latente ruimtecodes en gegenereerde gegevens en

zodoende op eenvoudige wijze de gewenste gegevens te genereren. De doeltreffendheid

van het OVAE-model wordt zowel in de trainingsfase als in de generatiefase op visuele en

statistische wijze geëvalueerd. Experimentele resultaten tonen aan dat de efficiëntie van

het genereren van gerichte monsters aanzienlijk wordt verbeterd door het gebruik van

een op OVAE gebaseerde generator. Om dit model ook effectief in te zetten voor situaties

waarin de berekening van de kenmerkende labels tijdrovend is, zoals voor risicolabels

op basis van Monte Carlo-simulaties, wordt bovendien een semi-gesuperviseerd leer-

schema voorgesteld om het OVAE-model te trainen met onvolledige labels. Aangetoond

wordt dat het generatieve model, zelfs getraind met onvolledige gegevenslabels, in staat

is om gegevens te genereren met specifieke eigenschappen die gecorreleerd zijn met la-

tente codes.
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INTRODUCTION

This chapter introduces the subjects of power system anomaly detection and data gen-

eration. Research motivation and background information are first stated, followed by

two research focuses. For each research focus, research challenges and associated research

questions are described and proposed, respectively. In the end, the contributions of this

research are summarized and the structure of this thesis is given.

1
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1.1. RESEARCH BACKGROUND AND FOCUS

1.1.1. DATA-DRIVEN POWER SYSTEM OPERATIONS

The scale of the power system has been significantly expanded during the last decades.

For example, global electricity consumption increased from 18,695 TWh to 23,774 TWh

between 2010 to 2019 [1]. Meanwhile, the installed generation capacity grew by 44.49%

from 5.08 TW to 7.34 TW [2]. To have real-time insight into the power system, more and

more meters have been deployed to monitor grid states, making measurements more

numerous. It is reported that more than 653.30 million smart electricity meters were

deployed in Asia at the end of 2019 [3].

The penetration of renewable energy generation is increasing. According to [2], from

2010 to 2019, the renewable electricity capacity increased by 109.77%, reaching 2.49 TW.

This is equivalent to more than half of the global generation capacity of nuclear power

(0.37 TW) and fossil fuels (4.38 TW). Solar and wind are two primary renewable energy

resources. However, these resources are variable, making the power generated by solar

panels and wind turbines highly unpredictable. In addition, wind speed and solar irra-

diance at different locations and times have spatial and temporal dependencies.

Also, from the perspective of power demand, loads have dependencies. An exam-

ple is shown in Fig. 1.1, which was the active loads of five nodes in the French power

system in 2012 [4]. The diagonal histograms and scatter plots demonstrate highly non-

standard marginal distributions and non-linear correlations of load data. Moreover, load

profiles vary with the application of new technologies and policies. With the popularity

of EVs (electric vehicles), research has been conducted to orchestrate car charging be-

haviors [5]; different electricity tariffs are offered to impact customers’ electricity usage

[6]. These demand side response strategies enhance the flexibility of the power system,

but they also lead to changes in the load profile.

1.1.2. RESEARCH FOCUS: ANOMALY DETECTION AND DATA GENERATION

If we look at power system measurements, whether they are time series or snapshots,

they generally have dependencies. This dependency means that if you know one or more

values, then you can infer information about others. Specifically, time series data repre-

sent a series of data points indexed in chronological order, while snapshots indicate data

points at particular moments in time. A collection of many such time series and snap-

shots can be considered a distribution. In an extensive power system, measurements
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Figure 1.1: Marginals and bivariate distributions of active loads (MW) for five randomly selected buses in

France in 2012 [4].

from large amounts of sensors generate multi-dimensional dependent data points, and

the collection of those data points further constitutes a multi-dimensional data space

with a specific data distribution. Although higher numbers of measurements enable

smarter grid operations, high-dimensional stochastic variables with complex univariate

and multivariate distributions could also complicate tasks in modeling power system

data. For some power system tasks, it is critical to model the distribution of measure-

ments. Two examples are power system anomaly detection and synthetic data genera-

tion. These two tasks are interlinked due to the common ground of first capturing the

distribution of the historical data set. Concretely, the anomaly detectors can be con-

sidered discriminative models, which are vital for power system stability and economic

dispatching [7], [8]. Data generation is based on generative models and is essential for

system performance assessment [9], [10] when data are insufficient for specific appli-

cations. More detailed information on anomaly detection and data generation in the

research is elaborated as follows.

PART I: POWER SYSTEM ANOMALY DETECTION

Definition of Anomaly. Among different definitions of the anomaly, a widely accepted

one is that "anomalies are patterns in data that do not conform to a well-defined notion of

normal behavior. Anomaly detection refers to the problem of finding patterns in data that

do not conform to expected behavior [11]." The definitions of anomalies and outliers are

sometimes interchangeable. Therefore, another widely accepted definition of anomalies

is based on the word "outlier." It is defined by Hawkins as follows: "An outlier is an obser-

vation which deviates so much from the other observations as to arouse suspicions that it
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was generated by a different mechanism." [12] The ‘degree of deviation’ needs to be quan-

tified based on modeling ‘other observations,’ but the definition of other observations is

not explicit, especially for collective outliers [13]. An example is shown in Fig. 1.2. The

two-dimensional data set has two normal areas, N1 and N2. Intuitively, points that do

not lie in those regions, such as a1 and a2, are anomalies. However, according to the def-

inition, a1 and a2 do not ‘deviate significantly from other observations’ a3 - a6, so they

are considered normal. This conclusion may be contrary to intuition. In this research,

we prefer to use the first definition that an anomaly is defined as an observation that

does not match the patterns inferred from data that are considered normal.

Feature A

F
e
a
tu

re
 B

N2

N1

a1 a4

a3

a6
a5

a2

Figure 1.2: A simple example of anomalies in a two-dimensional data set.

Motivating Examples. There have been examples of supervisory control and data ac-

quisition (SCADA) network disruptions caused by cyber attacks. It is known that spe-

cific malware, targeting industrial control systems (ICS) and using detailed knowledge

of computer systems and programmable logic controllers (PLC), can carry out deliber-

ate attacks to manipulate sensor measurements, application servers (e.g., energy man-

agement systems (EMS)) in SCADA systems without being detected (Stuxnet [14]). In

addition, more recently, the world’s first known Hacker-caused blackout happened in

Ukraine on December 23rd, 2015. The hackers invaded three energy distribution com-

panies’ information systems and shut down 30 substations. This event resulted in more

than 200,000 customers living without electricity for 1-6 hours [15]. To learn system

knowledge and environment, the attackers performed a long-term reconnaissance of

the target network and ultimately conducted multi-site attacks with high synchroniza-

tion [16]. Those abundant resources, extensive knowledge, elaborate malware design,
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and attack experience contribute to the feasibility of conducting well-designed data at-

tacks by corrupting measurements in a coordinated manner as well as keeping stealthy.

Power System Anomalies. Anomaly detection is of considerable significance for secure

power system operation and control as well as economic dispatch. This thesis focuses on

detecting anomalous measurements, particularly the ones that physically make sense

but represent uncommon states. The criteria for "physically make sense" include, but

are not limited to 1) Satisfy the design constraints of the power system; 2) Conform to

Kirchhoff’s law of voltage and current. Such anomalous system states are plausible on

technical grounds and do not easily arouse the suspicion of the system operators. Power

system anomalies can be broadly classified into two categories: 1) intentional anoma-

lies, such as deliberate attacks, and 2) unintentional anomalies, such as instrument mal-

function. Specifically, in the research, we aim to detect intentional anomalies of stealthy

power system data integrity attacks [17]. Efforts will also be paid to detect more gen-

eral unintentional anomalies in renewable energy systems, such as mild reductions in

the power output of wind turbines. This may reveal the potential wind turbine compo-

nent malfunctions. Accurate detection of the above anomalies depends on the precise

modeling of historical data sets.

PART II: POWER SYSTEM DATA GENERATION

As mentioned at the beginning of Section 1.1.2, data generation (synthesis or augmen-

tation), another part of this thesis, is also a task that is based on gaining insight into

available data. For modern power systems, indeed, more meters and higher measuring

frequency result in higher-dimensional data sets with a larger volume. However, some-

times the available data set or the data that researchers are interested in is still too small

for desired applications, such as power system risk assessment [18], security analysis

[19], and system planning [20]. These applications need abundant but nonrepeating

scenarios to comprehensively evaluate system performance, and then gain insight for

the next step of power system operation and investment. Moreover, generating data

with specific properties is sometimes computationally expensive, especially for prop-

erties that are rare, such as in risk assessment applications [21]. In this view, a generative

model is needed to efficiently synthesize data with targeted labels. The sparse historical

data set is interpolated by a synthetic set to form a new data set with better coverage in

multi-dimensional data space. This enriches the data scenarios and could also help to

solve data insufficiency challenges of downstream analytical tasks or machine learning-
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based applications.

Compared with anomaly detectors that draw boundaries in a data set and predict la-

bels (non-/anomalous) of the data, data-driven data generators try to model how data is

placed throughout the space and then generate data on that basis. From the perspective

of applications, anomaly detection is used to recognize existing abnormal phenomena,

while the generative models can be used in synthesizing representative system scenarios

and then simulating potential power system risks.

In power system data generation research, efforts have been made to generate load

profiles for electricity theft detection [22] and electric vehicle charging behavior model-

ing [23]. This thesis explores the generation of load profiles to further estimate the risk

of power systems, which will benefit system operations. This involves the consideration

of generator, transmission network capacities, and the negative impact caused by high

load demands and limited capacities.

1.2. CHALLENGES AND RESEARCH QUESTIONS

This thesis focuses on anomaly detection and synthetic data generation for power sys-

tems. The specific challenges and corresponding research questions are elaborated in

this section.

Data is useful and happens to have complex and high-dimensional dependencies.

This enables more intelligent grid operations, which, in turn, widen the attack surface

and increase the possibility of keeping stealthy [24]. The attackers can define a pertur-

bation that is applied to one or a few measurements of a high-dimensional data vector,

actively making the attack be covered up in high-dimensional space and thus resulting

in the model misclassifying the perturbed data. The detection of such anomalies re-

quires not only accurately capturing the features of historical data, but also addressing

the curse of dimensionality [25]. For the anomaly detection algorithm based on proba-

bility and statistics, such as the Gaussian Mixture [26] and Histogram models [27], when

the high-dimensional data does not directly meet a specific distribution, the data needs

to be divided into different blocks and regarded as a mixture of multiple distributions.

However, with the increase of dimension, it becomes more and more difficult to divide

the data, and will be easy to overfit, making these algorithms less applicable to high di-

mensional data sets. Moreover, the widely used distance or density-based detection al-

gorithms, for example, K -nearest neighbors (K-NN) [28] and Local Outlier Factor (LOF)
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[29], need to calculate the proximity between the given point and other points in the data

set. However, in the high-dimensional data set, points become sparse, and manipulated

measurements may be masked by the noise of irrelevant dimensions [25]. And for a large

volume data set, the proximity calculation between a data point and other points could

be another challenge to computational efficiency. In addition, the infrequent occurrence

of anomalies in the historical data makes it difficult to explicitly model the pattern of

anomalies. Even though the patterns of anomalies are well modeled, the detector only

learns to detect known anomalies, which is a significant weakness in novel anomalies.

Thus, a feasible detector that is suitable for detecting variable anomalies using an un-

balanced data set is needed. Thus, firstly, this thesis focuses on answering the following

questions:

Q1 Power system anomaly detection: How to detect anomalies in power systems, es-

pecially for anomalies that physically make sense but are uncommon, such as data

attacks? How to deal with unbalanced power system data sets due to the rarity of

anomaly data? How to tackle the challenges arising from novel anomaly patterns?

After investigating the research question proposed in Q1, the autoencoder (AE) neu-

ral network [24] is identified as a promising framework for anomaly detection. With

the goal of achieving minimal average reconstruction error, the autoencoder network is

trained to replicate inputs at the output side. An anomaly detection boundary is then set

according to the distribution of residuals generated from the replication process. How-

ever, power system measurements are spatially and temporally dependent. For exam-

ple, solar or wind power generation within a given region is dependent because of the

spatially correlated solar irradiance and wind speed. The dependencies of power sys-

tem measurements at the input side may also lead to correlated residuals. Neverthe-

less, when calculating reconstruction errors, traditional Euclidean norm-based calcula-

tion schemes [24], [30] don’t consider this correlation, which may result in the anomaly

detection boundary not fitting the distribution of the correlated residuals. Apart from

detecting anomalies, the localization of anomalous data is also of great significance for

follow-up anomaly isolation and recovery. In view of this, this thesis also focuses on

bridging the gap by answering the following questions:

Q2 Anomaly detector Enhancement: How to deal with the challenge of highly cor-

related stochastic data when detecting anomalies? Is it possible to enhance the
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anomaly detection and localization performance of the AE-based detector proposed

in the solution of Q1 by taking the correlation of the data into account? What met-

rics can be used for anomaly localization? Are the anomaly detection and localiza-

tion improvement strategies the same?

Anomaly detection is applied to identify abnormal data, while data generation can be

used to synthesize data and then analyze potential risks based on the synthesized data.

The former can be considered as a discriminative task, i.e., calculating the conditional

probability that a given measurement will occur and then determining whether the data

is normal or abnormal. The latter is a generative model that considers the joint proba-

bility of the measurements. Mathematically, for a given data set X and its corresponding

labels Y (non-/anomalous), the discriminative model is trained to achieve a satisfac-

tory conditional probability P (Y |X ) (i.e., predict the labels Y with the high true positive

and low false positive rate when given X ). In contrast, the generative model focuses on

generating a new data set that follows the probability of P (X ) itself. Both applications

essentially require accurate modeling of historical power system data X . For power sys-

tem risk assessment, it is essential to utilize abundant representative scenarios to assess

system performance [19], [20]. Data generation is necessary when data is insufficient

for specific applications. However, historical measurements in the data set X are usually

high-dimensional. The challenge of generating data based on X is that a generator needs

to capture both marginal distributions and multi-variate dependencies of the historical

data. The commonly used Gaussian Copula model is constructed from a multivariate

Gaussian distribution by using the probability integral transform [31]. This model fo-

cuses more on fitting the marginal distribution of generative data to historical data. On

the contrary, the Generative adversarial network (GAN) [32] is powerful in generating

data with similar multivariate dependencies to historical data. Moreover, the generated

data are new but should be similar to the historical data. The quality of the generations

depends on the measuring of this similarity. Visual comparisons can be used for qual-

ity validation when data are in the form of figures (e.g., face photos). However, this is

not intuitive for power system data in the non-pictorial form. In addition, some power

system data have very limited diversity and variability, such as country-level load data,

whereas load profiles of individual customers are more stochastic. Generating repre-

sentative load profiles from a large number of individual users can be more challenging.

More importantly, the practicality of generative models should be validated in near-real
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case studies. This thesis aims to address the above challenges by answering the following

research question:

Q3 Power system data generation: How to generate power system data by considering

both univariate distribution and multivariate correlations? How to evaluate the

quality of the generated data? How can the generated data be used practically in

risk assessment tasks? Is the proposed generative model capable of synthesizing data

with different aggregation levels?

By answering research questions proposed in Q3, a (conditional) variational autoen-

coder ((C)VAE) is demonstrated to be a data generator that embeds both marginal data

distribution and multi-variate data dependencies. Compared with an autoencoder neu-

ral network, the inputs of a (C)VAE are compressed to latent space codes with an extra

constraint that the codes follow a specific distribution. However, from the perspective

of users, not just a data generator is needed, but also a generator that can create data

with specific characteristics. Ideally, these characteristics can be inferred from the latent

space code. Then, the sampling process will be more targeted, and the data generation

process will be more controllable. However, for the (C)VAE model, the location of codes

that correspond to specific properties is not known. This would not enable a generation

process using user-defined goals. On top of that, the generation of data with specific

characteristics requires data with corresponding labels (related to target characteristics)

fed into the generative model for training. However, the analysis of some labels is time-

consuming. For example, labeling a power system state with a particular adequacy met-

ric, Loss Of Load Expectation (LOLE [h/year]) [33], involves extensive simulations. Thus,

only a small proportion of data sets may be labeled. In order to lay the groundwork for

training generators using data sets incompletely labeled with hard-to-get information,

it may be necessary to validate the feasibility of training generative models in a semi-

supervised manner. Therefore, as the last part of this thesis, it focuses on addressing the

following challenges:

Q4 Controllable data generator: Based on the generator proposed for tackling Q3,

how to improve the VAE-based generative model to make the data generation a con-

trollable process that synthetic data with specific user-defined goals? Is it possible to

train a generative model with an incompletely labeled data set?
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1.3. CONTRIBUTIONS AND THESIS OUTLINE

As the first part of this thesis, Chapter 2 and Chapter 3 develop anomaly detection ap-

proaches. Chapter 4 and Chapter 5, the second part of this thesis, focus on providing

a generative model to synthesize snapshots of load states and time-series load profiles.

The structure of this thesis is depicted in Fig.1.3. The outline of the research work is

as follows. Chapter 2 proposes an autoencoder-based anomaly detector to detect false

data injection attacks where the labeled anomalous data is insufficient for supervised

learning methods. To enhance the detection and localization performance, Chapter 3

moves one step further to revise the model proposed in chapter 2 by using whitening

transformation schemes. In Chapter 4, a conditional variational autoencoder (CVAE) is

implemented to generate both country-level load states and individual customers’ load

profiles. It is a variation of the autoencoder neural network with an extra constraint of

latent sampling. On the basis of Chapter 4, Chapter 5 proposes an oriented variational

autoencoder-based generative model to make the data generation process more con-

trollable. Eventually, Chapter 6 concludes the thesis and proposes future research direc-

tions.
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Figure 1.3: Outline of this thesis.

The contributions of this thesis consist of the detection algorithm implementation,

novel data processing scheme, detection and data generation quantifying metrics, and

new generative model design, which are summarized as follows:

• Chapter 2 This chapter contributes to addressing Q1 by detecting power system

data attacks in high dimensional space using a highly unbalanced historical data
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set. It proposes an autoencoder neural network-based anomaly detector to re-

duce the dimension of power system measurements as well as learn their patterns.

The detector considers anomaly detection as a one-class classification task by ac-

quiring the patterns of enormous normal historical operation states only. Rare

anomalies which deviate from patterns learned from normal states are then de-

tected. By only focusing on what is normal, it could be prepared for novel data

attacks conducted by resourceful attackers. To guide other researchers to imple-

ment an autoencoder-based anomaly detector, this chapter also investigates the

influence of the hyperparameter selection on the training and anomaly detection

performance.

• Chapter 3 To answer Q2, this chapter extends the work of Chapter 2 to improve

the detection performance of the autoencoder-based anomaly detector and start

investigating the anomaly localization performance. The detection and localiza-

tion performance is demonstrated using a case study of renewable energy genera-

tion patterns. The anomaly detection model is revised by implementing novel data

whitening transformation scheme for input data and/or residuals. Three anomaly

localization metrics are proposed to quantify the dependability of the anomaly

detector, measuring the degree of standout of anomalous dimensions and their

difference from normal dimensions. It is shown that different whitening matrices

and whitening timing vary the detection and localization performance. Based on

quantitative experimental results, it is found to be most beneficial to use whitening

transformations in both input and residual processing stages to enhance anomaly

detection performance. For anomaly localization, only whitening data in the latter

stage is recommended.

• Chapter 4 The work of this chapter shows how to implement a conditional vari-

ational autoencoder (CVAE) neural network-based generative model to generate

multivariate load states and profiles. This CVAE implementation goes beyond

common implementation by including stochastic variations of the output sam-

ples and co-optimizing the parameters for the output variability. Subsequently,

this chapter continues to tackle Q3 by proposing to use 3 quantifying metrics to

statistically evaluate the quality of generated country-level load states. The eval-

uation results show a satisfactory generation capacity of the CVAE-based model

to embody both univariate distribution and multivariate correlations. A simple
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multi-area adequacy assessment model is introduced to demonstrate the practi-

cability of the generative model to assess power system risk. After laying this basis,

this chapter proposes 3 data processing strategies that are useful when synthesiz-

ing load profiles of individual electricity customers.

• Chapter 5 On the basis of chapter 4, this chapter continues to solve the questions

proposed in Q4. A novel oriented variational autoencoder (OVAE)-based gener-

ative model is proposed to correlate the latent space code and user-analyzed la-

bels. This would result in a more controllable load state sampling process com-

pared to the naive VAE-based generative model. Additionally, the targeted data

sampling process is sped up with well-defined importance weights. The effective-

ness of the OVAE model is evaluated at both training and generation stages in vi-

sual and statistical manners. Moreover, in order to lay the groundwork for dealing

with situations where the analysis of certain data labels is time-consuming, e.g.,

risk labels of load states analyzed by Monte Carlo simulations, a semi-supervised

learning scheme is proposed to train the OVAE model with incomplete labels. It is

shown that even trained with incomplete data labels, the generative model is able

to speed up the targeted data sampling process with well-specified importance

weights.

The contributions of this thesis are completely based on papers published and sub-

mitted during my Ph.D. research. The papers related to each part of this thesis are listed

as follows:

Anomaly Detection

C. Wang, S. Tindemans, K. Pan, and P. Palensky, “Detection of false data injec-

tion attacks using the autoencoder approach”, in 2020 International Conference

on Probabilistic Methods Applied to Power Systems (PMAPS), IEEE, Liege, Belgium,

2020, pp. 1–6. DOI: 10.1109/PMAPS47429.2020.9183526

C. Wang, K. Pan, S. Tindemans, and P. Palensky, “Training strategies for autoencoder-

based detection of false data injection attacks”, in 2020 IEEE PES Innovative Smart

Grid Technologies Europe (ISGT-Europe), IEEE, Den Haag, the Netherlands, 2020,

pp. 1–5. DOI: 10.1109/ISGT-Europe47291.2020.9248894

C. Wang, S. Tindemans, and P. Palensky, “Improved Anomaly Detection and Local-

ization Using Whitening-Enhanced Autoencoders”, IEEE Transactions on Indus-



1.3. CONTRIBUTIONS AND THESIS OUTLINE

1

13

trial Informatics, Accepted. DOI: 10.1109/TII.2023.3268685

Data Generation

C. Wang, E. Sharifnia, Z. Gao, S. H. Tindemans, and P. Palensky, “Generating multi-

variate load states using a conditional variational autoencoder”, presented in XXII

Power Systems Computation Conference (PSCC 2022), Porto, Portugal, 2022 and

published in Electric Power Systems Research, vol. 213, p. 108603, 2022.

C. Wang, S. H. Tindemans, and P. Palensky, “Generating contextual load profiles

using a conditional variational autoencoder”, in 2022 IEEE PES Innovative Smart

Grid Technologies Europe (ISGT-Europe), IEEE, Novi Sad, Serbia, 2022, pp. 1–6.

DOI: 10.1109/ISGT-Europe54678.2022.9960309

C. Wang, E. Sharifnia, S. Tindemans, and P. Palensky, “Targeted Analysis of High-

risk States Using an Oriented Variational Autoencoder”, IEEE Transactions on Power

System, Submitted.





2
AUTOENCODER-BASED ANOMALY

DETECTION

State estimation is of considerable significance for the power system operation and control.

Well-designed false data injection attacks can utilize blind spots in conventional residual-

based bad data detection methods to manipulate measurements in a coordinated man-

ner and thus affect the secure operation and economic dispatch of grids. In this chapter,

we propose a detection approach based on an autoencoder neural network. By training

the network on the dependencies intrinsic in ‘normal’ operation data, it effectively over-

comes the challenge of unbalanced training data that is inherent in power system attack

detection. To evaluate the detection performance of the proposed mechanism, a series of

experiments on the IEEE 118-bus power system are conducted. Further, the impact of hy-

This chapter is based on the following published work:

[24] C. Wang, S. Tindemans, K. Pan, and P. Palensky, “Detection of false data injection attacks using the autoen-

coder approach”, in 2020 International Conference on Probabilistic Methods Applied to Power Systems (PMAPS),

IEEE, Liege, Belgium, 2020, pp. 1–6. DOI: 10.1109/PMAPS47429.2020.9183526

[30] C. Wang, K. Pan, S. Tindemans, and P. Palensky, “Training strategies for autoencoder-based detection of

false data injection attacks”, in 2020 IEEE PES Innovative Smart Grid Technologies Europe (ISGT-Europe), IEEE,

Den Haag, the Netherlands, 2020, pp. 1–5. DOI: 10.1109/ISGT-Europe47291.2020.9248894

The conventional bad data detector in Section 2.4.2 was developed by Kaikai Pan.

15



2

16 2. AUTOENCODER-BASED ANOMALY DETECTION

perparameters on the detection performance for false data injection attacks that target

power flows is investigated. The experiments demonstrate that the proposed autoencoder

detector displays robust detection performance under a variety of attack scenarios.
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2.1. INTRODUCTION

2.1.1. STATE OF THE ART OF ANOMALY DETECTION

The power system is increasingly equipped with sensors and communication infrastruc-

tures. This enables smarter grid operations, but also increases the likelihood of inaccu-

rate measurements. More worryingly, it also enables novel cyber attack scenarios that

manipulate power system measurements instead of directly disrupting information and

communication technology (ICT) infrastructure or stealing valuable data. Although the

typical bad data detection (BDD) within state estimation (SE) can detect erroneous mea-

surements and some basic attacks, well-designed attacks can remain stealthy and bypass

the BDD, such as the stealthy false data injection attacks (FDIAs) [34]. These stealthy

measurement manipulation attacks severely threaten both the economic dispatching

and security control of the power system [7], [8].

There are several common universal anomaly detection methods, which can be di-

vided into a few categories: probabilistic and statistical-based, proximity-based, and di-

mension reduction and reconstruction-based [13]. They are elaborated as follows.

Probabilistic and statistical-based: The basic idea of the probabilistic and statistical-

based anomaly detection methods is assuming the data follows a given parametric distri-

bution, such as the Gaussian distribution, and then calculate the occurrence probability

of the measurements. If the probability is lower than the set threshold, the data point is

considered an anomaly.

Proximity-based: Anomaly detection methods based on proximity generally belong

to 3 categories: distance-based, density-based, and cluster-based. These methods are

similar and related to each other with small differences. The definitions of these meth-

ods are briefly introduced below.

• Distance-based: Distance-based anomaly detection measures the distance be-

tween the given data point and its adjacent data points. An example of a distance-

based anomaly detection method is the K -nearest neighbors (K -NN) algorithm

[28]. Concretely, the distance of the given point to its k th nearest neighbor is re-

garded as the anomaly score. If the distance (anomaly score) is above a threshold,

the data point is considered an anomaly.

• Density-based: Density-based anomaly detection defines an anomaly as data

that lies in the sparse region. The amount of data points in a specific region is used
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to define the density, which can be converted to the anomaly score. If the anomaly

score (density) is higher (lower) than a certain threshold, the given data point is an

anomaly. The Local Outlier Factor (LOF) [29] is a commonly used density-based

anomaly detector.

• Cluster-based: For clustering-based anomaly detection, data is first clustered.

Then, if a data point does not belong to any clusters or belongs to a small cluster,

this data point can be considered an anomaly. The well-known K -means cluster-

ing [35] is a representative algorithm that observes data points and clusters sim-

ilar ones into a predetermined number of K groups. However, it is worth noting

that the major difference between density and clustering-based methods is that

density-based methods segment the data space, whereas clustering methods seg-

ment the data points.

Dimension reduction and reconstruction-based: The dimension reduction and

reconstruction-based anomaly detection is a method of extracting features to the latent

space with lower dimensions and then reconstructing latent space codes to the origi-

nal high-dimensional data (the latter can be omitted). There are two fundamental ways

to reduce the dimensions, i.e., linear-based and non-linear-based. The corresponding

typical algorithms are principal component analysis (PCA) [36] and autoencoder [37],

respectively. The difference between the reconstructed and original data is denoted as

the reconstruction error, which can then be used to determine the detection threshold.

Ultimately, data points with reconstruction errors higher than the threshold are consid-

ered anomalies.

Based on different categories of universal anomaly detection principles, several tech-

niques have been proposed to deal with stealthy FDIAs. In [38], the authors have pro-

posed a Kalman filter estimator together with a chi-square detector. Other statistical

methods, such as sequential detection using Cumulative Sum (CUSUM)-type algorithms,

were designed in [39]. The recent work [40] has proposed a detector utilizing the statisti-

cal consistency of measurements, presuming that the system is observable by a minimal

set of secure phasor measurement units. These methods, however, can be limited by the

prior assumption that measurements fit specific distributions, or by restrictions on the

number of manipulated measurements [41].

Moreover, it is increasingly recognized that the distribution of normal power system

states is not easily characterized using standard parametric distributions [4]. The need to
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operate in a complex stochastic environment has led to the deployment of data-driven

methods. Distance-based algorithms like k-NN were used to cluster normal and cor-

rupted measurement states [42]. Nevertheless, the very high dimensionality of measure-

ments (from the physical, cyber, and market domains) results in data sparsity, where ma-

nipulated measurements may be masked by the noise of multiple irrelevant dimensions.

This can make detection using a high-dimensional distance-based algorithm computa-

tionally inefficient or even invalid [25].

Alternative data-driven approaches to FDIA detection have been proposed in the

form of support vector machine (SVM)-based classifiers [43] and deep neural network-

based classifiers [44]. Both are supervised machine learning algorithms that classify

measurements into normal and manipulated data on the basis of labeled training data.

However, due to the infrequent occurrence (or more likely: absence) of FDIAs in histor-

ical data, the training data set is highly unbalanced, so that it must be augmented by

simulated training data. Moreover, in this way, the detector only learns to detect known

attacks, which is a significant weakness in a fast-evolving field with resourceful and po-

tentially well-equipped attackers.

2.1.2. CONTRIBUTION AND OUTLINE

This chapter bridges the identified gap by proposing a detection approach based on an

autoencoder neural network. The main contributions of this chapter are listed below:

1) We propose an autoencoder-based detection approach for FDIAs. It learns to iden-

tify anomalous system states (and therefore possible attacks) using only SCADA-

type power flow measurements for a large range of normal operating conditions.

Therefore it is well-suited to the inherent data imbalance in FDIA detection appli-

cations.

2) We define a case study on the IEEE 118-bus system, including a model to generate

‘normal’ data. We formulate two FDIA scenarios by considering comprehensive

factors of the adversaries’ purpose, capacity, and knowledge and utilize indicators

to evaluate the FDIA detection performance of our proposed mechanism. The ex-

perimental results demonstrate the mechanism has satisfactory detection accu-

racy.

3) We describe an autoencoder-based detection approach for FDIAs and investigate
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the influence of the hyperparameter selection on the training and FDIA detec-

tion performance of the proposed mechanism. Experimental results show that

the mechanism has the ability to achieve good learning efficiency and detection

accuracy.

The outline of this chapter is as follows. Section 2.2 briefly reviews the state esti-

mation and the bad data detection technique, followed by the formulation of the false

data injection problem. Section 2.3 proposes an FDIA detection mechanism based on

the autoencoder neural network. The attack detection theory, training, and detection

processes of the detector are elaborated. Section 2.4 utilizes the IEEE 118-bus system to

assess the detection performance of the proposed autoencoder-based attack detector in

load-targeted attack scenarios for economic profit. Section 2.5 investigates the influence

of hyperparameters on the training and detection performance of the detector.

2.2. ANOMALOUS DATA ATTACK SCENARIOS

A well-designed false data injection attack can bypass the traditional bad data detection

scheme and mislead the state estimate process. To formulate the false data injection

problem, the background information of the power system state estimation process and

bad data detection techniques are introduced.

2.2.1. POWER SYSTEM STATE ESTIMATION

The power system we consider has nb buses and nt transmission lines. The vector θ =
[θ1, θ2, . . . , θnb ]T represents nb phase angles, excluding the angle of the reference bus.

In this section, a DC power flow model is assumed, in which the reactive power is ne-

glected and bus voltages are assumed to be 1 (p.u.). The vector P I ∈ Rnb of active power

injections is related to the angle vector θ,

P I = AP F = AR−1 AT θ, (2.1)

where P F ∈ Rnt is the branch active power flow vector, R ∈ Rnt×nt is a diagonal matrix of

transmission line reactance and A ∈Rnb×nt is the branch-to-node incidence matrix [45].

In the following, we use the power injection vector P I as the system state x ∈ Rnb . It is

functionally equivalent to the more commonly used phase angle vector θ, but it allows

for the more elegant generation and detection of FDIAs.
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We consider a system where the active power injections and line flows are measured

with some error. Thus the system model H ∈R(nb+nt )×nb for measurement and state can

be written by

z =
[

I

H F

]
x +e = H x +e, (2.2)

where the measurement noise vector e ∼N (0, D) denotes m=nb+nt independent zero-

mean Gaussian variables with the covariance matrix D = diag(δ2
1, . . . , δ2

m) (measurement

noise are assumed to be independent). The measurement vector z ∈ Rm indicates mea-

sured power injection and line power flow with noise. Identity matrix I ∈ Rnb×nb and

distribution factor matrix H F ∈ Rnt×nb are parts in H corresponding to the power injec-

tion and line power flow, respectively. According to (2.1), the distribution factor matrix

can be described as H F = R−1 AT (AR−1 AT )−1. Given the observation of the measure-

ments z, the state estimate x̂ is solved by the weighted least squares (WLS) approach

[46] as

x̂ = (H T D−1H)−1H T D−1z := K z. (2.3)

2.2.2. STEALTH FALSE DATA INJECTION ATTACKS

The vector x̂ is then utilized to estimate the power injection and line power flow mea-

surements by ẑ = H x̂. In bad data detection, a residual is defined to describe the dif-

ference between the actual and the estimated measurements, namely ro = z − ẑ. This

naturally gives rise to a BDD scheme that identifies bad data by comparing the 2-norm

of ro with a certain threshold τ, i.e. an alarm is triggered if ∥ro∥2 > τ.

We denote a ∈ Rm as the non-zero false data vector injected into measurement vec-

tor z. The manipulated measurement vector can be described as za = z + a. Here the

vector c is defined as the deviation of the estimated state before and after the attack. The

corrupted system state can be denoted as x̂a = x̂+c. According to (2.3), the falsified state

estimate x̂a can be written by

x̂a = (H T D−1H)−1H T D−1za

= (H T D−1H)−1H T D−1(z +a) (2.4)

= x̂ + c,
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and the corresponding ra after the attack can be expressed as

ra = za −H x̂a = z +a −H(x̂ + c)

= ro + (a −Hc).
(2.5)

If a = Hc, then the manipulated residual ra equals the original residual ro . Thus the

attacker manipulates the measurements with the residual unchanged and keeps stealthy

with respect to this physics-based BDD scheme. This remains true if a ̸= Hc, as long as

∥ra∥2 ≤ τ is still satisfied.

For our FDIA detection study, we consider attack scenarios from the perspective of

an adversary that manipulates load patterns [8], for example in order to hide excessive

power consumption or to reduce apparent power consumption for economic motives.

The adversary needs to corrupt the power generation and power flow accordingly to

avoid detection by BDD. The real state (and therefore ideal estimation) of the power sys-

tem is x̂. After injecting the attack vector a, the measurements and state estimation

change to z+a and x̂ +c, respectively. The attack scenario will be detailed in Section 2.4.

2.3. AUTOENCODER-BASED ANOMALY DETECTORS

To address the challenge of the detection of false data injection attacks with a highly un-

balanced data set and the possible variation of novel data attacks, an autoencoder neural

network-based detector is proposed. The specific characteristics and advantages of the

method for identifying FDIAs in the context of the power system are first analyzed. Then,

the attack detection principle of the autoencoder-based mechanism is explained in de-

tail. Finally, the complete training and detection processes of the proposed mechanism

are described.

2.3.1. DETECTOR SCHEMATIC

FDIA detection is essentially a classification problem with the objective of distinguishing

false data from data that is considered ‘normal’. What the SVM-based [43] and deep

neural network-based classifiers [44] have in common is to treat FDIA detection as a

supervised learning task. However, supervised learning requires a training data set with

representative examples of normal system operations and attacks. Such data sets are in

short supply, because of the rarity of attacks, unwillingness to share data, and evolving

attacks. As a result, it is difficult to learn a satisfactory discriminator of ‘normal’ and

‘attack’ scenarios on this basis [47].
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Figure 2.1: The schematic of the Autoencoder.

Instead, we propose to approach FDIA detection as a one-class classification prob-

lem, where the detector is trained on examples of only ‘normal’ operation data. Obser-

vations with features that deviate substantially from those in the training data will be

considered anomalies, in this case as ‘potential attacks’. There are two main advantages

to this approach. First, the autoencoder-based mechanism avoids the need to gather

or generate attack data to create balanced data sets for training the classifiers. Second,

by focusing on what is normal only, the proposed mechanism is naturally prepared for

unknown attack patterns.

Autoencoders learn the most important features of the training data (i.e. normal

power system measurements) by sending the measurements through an information

bottleneck while attempting to reconstruct the training data with minimal error [37].

The structure of the autoencoder algorithm is depicted in Fig. 2.1. The dimension re-

duction process of mapping the d0-dimensional input data to the code in the bottleneck

layer B through hidden layers H1 to Hn is named the encoder. Afterwards, the decoder

decompresses the code to d0-dimensional output data. Weight matrices W and bias

vectors b are utilized in the encoding and decoding process as

Y =σ(W e
n (. . .σ(W e

0 Z +be
0) . . .)+be

n) , (2.6a)

Ẑ =σ(W d
n (. . .σ(W d

0 Y +bd
0 ) . . .)+bd

n ) , (2.6b)

where W e
n and W d

n denote weight matrices for encoding and decoding process respec-

tively, be
n and bd

n are bias vectors, and σ represents a nonlinear element-wise activation
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Figure 2.2: The proposed training and FDIA detection mechanism.

function. Z refers to the input data vector, Y is the data in the bottleneck layer and vector

Ẑ stands for the output data.

2.3.2. ANOMALY DETECTION MECHANISM

The residual associated with a training observation Z j is given by r j = Z j − Ẑ j . The re-

construction error R j is expressed as ∥r j ∥2/d0. The objective of the training process is to

minimize the sum of all reconstruction errors R j as

min
W,b

{
J := 1

S

S∑
j=1

(∥r j ∥2/d0)
}

, (2.7)

where S denotes the total number of observations used for training. By training the au-

toencoder on training data that is considered normal, it learns to efficiently encode the

features of this data in the bottleneck layer B . Data that deviates from the training data

in a structural way is therefore highly likely to have a larger reconstruction error.

The training and FDIA detection process of the proposed mechanism is depicted in

Fig. 2.2. In the training stage, the algorithm iteratively updates the value of weight ma-

trices W and bias vectors b until the function J converges. At the end of the training

process, the reconstruction errors R j for the validation set are sorted in ascending order.

A threshold τα equals to theαth percentile is then chosen, for example at the value where

an ‘inflection point’ occurs in the error distribution. A possible FDIA is detected when,

for a measurement Z j in the test set, the reconstruction error R j exceeds the threshold

τα.
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2.4. DATA ATTACK DETECTION USING AUTOENCODER

This section focuses on evaluating the detection performance of the proposed mech-

anism using a case study on the IEEE 118-bus system. First, we describe the process

of modeling normal operating conditions and explain how to create anomalous attack

scenarios. Then, we describe and analyze the load-targeted attack scenario. For this sce-

nario, we will first quantify the detection performance of our proposed detection mech-

anism. Specifically, the detection probability, false positive rate, and false negative rate

are tested. Next, the detection performance of our detector will be compared with a con-

ventional BDD detector. To do so, we introduce “knowledge limited” attacks that both

detectors can potentially detect. Notably, the “knowledge-limited” attacks are more of

interest in reality as the attacker may have an inaccurate (e.g. outdated or estimated)

system model.

2.4.1. TEST SYSTEM MODELING

MODELING NORMAL OPERATING CONDITIONS

With the long-term secure and stable operation, the power system has a large number

of normal operating conditions which involve a significant volume of loads, power gen-

erations, and power flows data set. Trained by these data, the proposed mechanism will

acquire the data pattern which represents the model of normal system operating condi-

tions.

In the IEEE 118-bus system, electricity is supplied by M = 54 generators, transmitted

via Q = 186 branches and ultimately consumed by N = 99 loads. We generated ‘normal’

(i.e. physically feasible and economically reasonable) power system states and corre-

sponding measurements by using optimal power flow solutions.

Second-order polynomial cost functions were assumed for generators, i.e., f (PG
g ) =

Cg ,2(PG
g )2 +Cg ,1PG

g . Hence the economic dispatch PG∗
was solved with the objective to

minimize the total generation cost. The solutions were implicitly parameterized by the

nodal load P L
l and generation cost parameter as

PG∗ = argmin
PG

M∑
g=1

Cg ,2(PG
g )2 +Cg ,1PG

g (2.8)

s.t.
M∑

g=1
PG

g −
N∑

l=1
P L

l = 0,

where the injection P I = P I (PG ,P L) was determined by the mapping of load P L and
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generation PG onto the nodes.

Normal operating conditions were generated using a data set that contains a total

of 43,717 historical hourly loads from 32 European countries between 2013 and 2017

[48]. These time series were used to generate a 99 load point time series as follows. The

national load time series were first divided by 1000, to obtain reasonable magnitudes for

individual buses. Then each load point was assigned a random linear combination of

the 32 sources by sampling from the Dirichlet distribution with vector valued parameter

(1, . . . ,1)T , which generated a uniform distribution on the 31-simplex. Additionally, a

normally distributed variation with a standard deviation of ±5% of the measured value

was added to each measurement.

An additional source of randomness was created by randomly sampling the generat-

ing cost coefficients of the 54 generators as follows. Coefficients Cg ,2 were sampled uni-

formly in the range [0.085, 0.1225] $/MW2h and Cg ,1 uniformly in the range [1,5] $/MWh.

These values span the range of generators included in the IEEE 9-bus system supplied

with Matpower [49].

The procedure above was used to generate snapshot injections P I = P I (PG∗
,P L),

which were converted into line flow measurements using P F = H F P I . In this investi-

gation, line transmission limits and generator capacities were not enforced, as the focus

of this work was on the recognition of load, generation and power flow patterns. This

resulted in a 339-dimensional measurement vector for training, containing 99, 54, and

186-dimensional data of loads, power generations, and line power flows, respectively.

Independent measurement noise e was added using a truncated Gaussian distribution

with zero mean, a standard deviation of 0.33%, and an absolute value less than 1% of the

original value [50]. The generated data set T ∈ R43717×339 was divided into a training set

Tr ∈ R26197×339, a validation set Tv ∈ R8760×339 and test set Te ∈ R8760×339 with the ratio

3:1:1.

In this section, the autoencoder network contains 4 hidden layers in the encoder with

dimensions of 339, 256, 128, and 64, respectively. The bottleneck layer has 32 nodes, and

the decoder maps the 32-dimensional data to a 339-dimensional output through 3 hid-

den layers with the same dimensions as the encoder. We used the sigmoid activation

function between the second and penultimate hidden layer, and the Adam Optimizer

[51] was utilized with default settings to iteratively optimize the value of weight matrices

W and bias vectors b. The batch size and learning rate for training were 256 and 10−5 re-

spectively, and 2,000 training epochs were used. Training and testing of the autoencoder
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were conducted using tensorflow on the Google Colab environment using the GPU op-

tion. Initial performance analysis of hyperparameter settings for the autoencoder-based

FDIA detector is available in [52].

CREATING ATTACK SCENARIOS

We developed feasible FDIAs from the perspective of the adversaries by adding an offset

to the normal operating conditions created in the previous section. To gain economic

profit, attackers inject false data into the grid by using the acquired knowledge of the

targeted power system. In the context of this section, this knowledge is represented by

the incidence matrix A (topology) and the reactance matrix R of the transmission lines.

Moreover, we assumed that the capacity of an attacker was limited by the attackable

measurement set [34] and the maximum number of the measurements that the attacker

can corrupt simultaneously.

In the following, we quantified the factors described above. According to the attack

capacity, the adversary selects a set of attacked loads L A ⊆ L . The attacker then de-

termines the modification factor βl of each selected load and calculates the total load

change
∑

l∈L A βl P L
l , in which βl P L

l equals the change ∆P L
l of each load. Similarly, the

attack selects a set of attacked generators G A ⊆ G . Next, the attacker determines ratios

of the power generators’ change amount λ1 : λ2 : . . . : λ|G A | and normalizes the ratios to

get each generator’s change ∆PG
g . Here |G A | represents the cardinality of G A .

∆PG
g =

[ ∑
l∈L A

βl P L
l

]
× λg∑

g ′∈G A λg ′
(2.9a)

All load changes ∆P L
l and generation changes ∆PG

g , together with zeros that denote

buses with unchanged injection make up the power injection change vector ∆P I
A ∈R118.

Besides, similar to (2.2), the attacker then utilizes the knowledge of the topology and grid

parameters to coordinately calculate power flows change vector ∆P F
A ∈R186.

∆P F
A = H F ·∆P I

A , (2.9b)

Afterwards, the attack vector a consists of the change vector of loads, power generations

and line power flows.

The FDIA manipulates the original data of loads, power generations, and line power

flows. The pattern of the corrupted data may deviate from that of normal operating con-

ditions, which enables it to be detected by the autoencoder if the reconstruction error

R j exceeds τα.
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Figure 2.3: Detection effectiveness validation by launching an FDIA.

2.4.2. DETECTION PERFORMANCE ANALYSIS

DETECTION EFFECTIVENESS VALIDATION

We first validated the effectiveness of the trained detector. In this experiment, we ob-

served the change of the reconstruction error R j before and after a false data injection

attack and compare it with the threshold τα. A common scenario for an attack hap-

pens when the adversary gets the data of a local area and utilizes it to manipulate the

neighboring measurements. Here, we selected 12 hours’ operating data from 9:00 to

20:00 on December 31st, 2017 as an example. At 14:00, to gain economic profit, an at-

tacker modified three loads profiles of bus 108, 109, and 110, by injecting false data to

decrease the power demand of the loads by 10% as −7.48MW, −5.69MW and −6.28MW

respectively. Accordingly, to balance the power of loads and generations, the attacker

decreased the nearby power injection of two generators connected to bus number 110

and 111 with the ratio λ1 : λ2 = 1. Based on (2.9b), the corresponding transmission line

power flows were obtained. The experiment result is depicted in Fig. 2.3. From the result,

we can observe that before the attack, the reconstruction error R j of normal operating

data is in the range of 3.10× 10−4 and 5.60× 10−4, and they are lower than the thresh-

old τ97 = 7.25× 10−4 learned in the training process shown in the Section 2.3.2. To be

specific, after observing the reconstruction error distribution of the validation data, the

threshold is set as 97th percentile due to the occurrence of the ‘inflection point’ where
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Figure 2.4: Detection probability of attacks at different times with different false load data injection magnitude.

the cumulative distribution curve of the reconstruction error flattens out from the steep

rise. After manipulation by the false data injection, the reconstruction error R j at 14:00

increases from 4.40×10−4 to 7.53×10−4, which exceeds the threshold τ97 and triggers an

alarm. The detector thus recognizes an anomaly in the corrupted measurements, which

deviate from measurements taken in normal operating conditions. This result demon-

strates that the autoencoder is capable of FDIA detection in at least some scenarios.

GENERAL DETECTION PERFORMANCE

In addition to the one-off effectiveness demonstrated above, we were also interested in

its statistical detection performance. This was tested by launching a larger number of

FDIAs at various times and with various false load data injection magnitudes. Here the

magnitude was defined as the percentage of load reduction in targeted nodes. For the

sake of comparison, the attack targets remained the same as those utilized in the last ex-

periment. In this experiment, we launched an attack at 2:00, 14:00, and 21:00 in each day

of 2017 by reducing reported loads between 1% to 30% and observing the detection per-

formance. The detection probability is the ratio of detected attacks to all the launched

attacks, namely the true positive rate. The results are shown in Fig. 2.4.

Because the load demands at 2:00, 14:00, and 21:00 differ significantly, the resulting

power system states (including flows) are also substantially different. However, the result

shows, under the same false load injection magnitude, the detection probabilities differ
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Table 2.1: Detection performance evaluation.

Normal Data Attack Data

True Negative 96.5% (8453) True Positive 93.6% (8199)

False Positive 3.5% (307) False Negetive 6.4% (561)

only slightly. This demonstrates that the autoencoder learns the intrinsic relationship

of the loads, power generations and power flows from different operating conditions,

leading to robust detection results.

In addition, we launched 8760 attacks, one for each hour of 2017, by decreasing the

power demand of the same buses by 15%. Besides, we used the hourly normal operating

data in 2017 as a control group. The result is shown in Table 2.1.

From the experiment result, we can find that the detection probability (true positive

rate) is 93.6%, which denotes a satisfactory detection performance. As mentioned in the

first experiment, the threshold τ97 was used, corresponding to a 3% misclassification

rate in the validation set. It is worth noting that the false positive rate is comparable

to the 3.5% observed in Table 2.1. This result suggests that the autoencoder has a good

generalization capability and does not overfit.

DETECTION PERFORMANCE COMPARISON

In the above experiments, our proposed autoencoder-based detector has succeeded in

generating a diagnosis signal in the presence of FDIAs which can keep stealthy from the

viewpoint of BDD. In the second experiment, we compared our detector with BDD in the

detection of ‘unstealthy’ FDIAs. Such attacks have the possibility to be detected by the

BDD while the detection ability is intimately related to the topology or parameter errors

in the construction of FDIAs by the attacker. Thus in what follows there exist knowledge

deviations in the system model acquired by the attacker in computing the attack vector

of (2.9). In particular, we explored the case that the attacker knows the exact topology of

the network but inaccurate line reactance R in (2.1). This can be described by

R̂ = R · (I R +γ), (2.10)

where I R ∈ Rnt×nt is the identity matrix and γ ∈ Rnt×nt is a diagonal matrix whose el-

ements denote the reactance deviation ratio - which we will refer to as the knowledge

deviation ratio. In this experiment, we ranged the magnitude of the deviations from 0.01
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Figure 2.5: Detection performance comparison between the proposed mechanism and the BDD scheme in a

load-targeted attack scenario.

to 0.20, with randomly sampled signs for each element. According to the explanation

of (2.2), this will lead to an erroneous distribution factor matrix H F and thus obtain in-

accurate power flow values. The BDD scheme usually checks if the weighted p-norm of

the measurement residual (called the cost function) is below some threshold τ, which is

selected based on the statistical properties of the cost function and a permissible false-

alarm rate. In this experiment, 2-norm was used, and the false-alarm rate was set as 5%.

Moreover, we kept the attack target unchanged from the previous experiments and set

the false load data injection magnitude on the selected three loads by decreasing them

by 15%. The results are shown in Fig. 2.5. As the level of knowledge deviation increases

from ±1% to ±20%, the detection probability of BDD rises from 0.038 to 0.548, but it

remains lower than the detection performance of the autoencoder.

2.5. DETECTOR TRAINING STRATEGY

The performance of a Neural network-based algorithm highly relies on the selection of

hyperparameters. In this view, further experiments were conducted on the IEEE 118-bus

system to evaluate the influence of hyperparameter selection on the training process and

anomaly detection performance.
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2.5.1. HYPERPARAMETER TUNING

We study an attack scenario from the perspective of an adversary that aims to interfere

with the secure operation of the physical grid by manipulating the power flow measure-

ments. By changing the apparent system state, the attacker can mislead the operator

into taking costly or disruptive decisions. The attacker, in general, has limited resources

while aiming to stay stealthy from the BDD. In light of this, we consider how many other

measurements need to be attacked in coordination with the targeted power flow to avoid

triggering alarms. This leads to a constrained optimization problem [53], and the com-

puted optimal value illustrates the minimum number of corrupted measurements in a

stealthy attack against the measurement i . This can be written as:

min
a,c

∥a∥0

s.t. a = Hc, ai =µ,

ap = 0, ∀p ∈P ,

(2.11)

where ∥a∥0 denotes the number of non-zero elements in attack vector a. Here µ repre-

sents the value of injected false data on measurement i . We added the constraint that

the measurements in the protected set P cannot be attacked. It is known that the above

optimization program (2.11) is non-convex and may be hard to solve in large problems.

However, it can be expressed into a mixed integer linear program (MILP) which can be

solved in an appropriate solver with acceptable computation time in an off-line manner.

We conducted experiments on the IEEE-118 bus system. The data processing meth-

ods were the same as described in Section 2.4.1. We tuned hyperparameters for the train-

ing process by using a grid search over learning rate (10−2, 10−3, 10−4, 10−5) and batch

size (64, 128, 256). Other settings of the neural network were the same as in the previous

section. The training performance under different parameters combination is shown in

Fig. 2.6.

We took a batch size of 256 as an example to illustrate the trend of average recon-

struction error r̃ (z) with the increase of training epoch. When the learning rate is set

to be 10−2, 10−3 and 10−4, the mean value of reconstruction error converges to a high

value or exhibits a fluctuation, which indicates high learning rates. However, when the

learning rate is 10−6, it makes the convergence error of reconstruction error too slow.

Therefore, 10−5 is selected as the appropriate value. Near 10−5, we looked for the appro-

priate learning rate at a higher resolution, and eventually, 10−5 and 3×10−5, were set as

candidates.
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Figure 2.6: The relationship between the training epoch and the reconstruction error. L stands for the learning

rate and B represents batch size.

Figure 2.7: Residual of one observation.

Then, we assigned three different batch sizes (64, 128, 256) to the above alternative

learning rates and compare the convergence performance. According to the results de-

picted in Fig. 2.6, in general, a high learning rate and small batch size result in a steeper

reconstruction error convergence. In addition, a too-small batch size will increase it-

erations as well as the training time for running the same training epoch. To make the

convergence fast and stable, we selected a learning rate of 3×10−5 and a batch size of

256 to train our proposed detector.

Owing to the information loss that happens during encoding and decoding, there

exists a residual between the measured data and its reconstruction value. The residuals

of one normal observation, which contains 339 measurements, are depicted in Fig. 2.7.

Statistical reconstruction errors will be investigated in the following subsections.
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Figure 2.8: Reconstruction errors of the validation data set and the corresponding distribution.

2.5.2. THRESHOLD SELECTION STRATEGY INVESTIGATION

The autoencoder network was trained for 3,000 epochs and the validation set confirmed

an absence of overfitting. The reconstruction errors of 8,743 observations were calcu-

lated from their residuals by (2.7) and depicted in Fig. 2.8. After sorting Re in ascending

order and observing the their distribution, a threshold τα equal to theαth percentile was

chosen.

In this study, we selected the branch between bus 109 and 110 to launch power flow-

targeted attacks. After solving the MILP of (2.11), the result shows the attacker needs

to coordinately manipulate the measured power injection of bus 103, 109, and 110 and

the transmission line power flow from bus 103 to 110 at least. We launched 8760 attacks

to manipulate hourly observations in the test data set Tt ∈ R8760×339 by decreasing the

power flow from bus 109 to 110 by 10%. Besides, we used the hourly uncorrupted normal

operating data in Tt as a control group. Under power flow-targeted FDIAs, the influence

of threshold selection on detection performance is shown in Table 2.2. TP, FN, TN, and

FP denote true positive, false negative, true negative, and false positive rate, respectively.

It can be observed that when α is increased from 96 to 100, the false positive rate and

true positive rate both decrease. In view of this, α should be set to a sufficiently high

value to decrease the false positive rate, but not so high that it comes at the cost of an

excessive decrease in the true positive rate. From our experiment, it might be proper

to choose an α near the inflection point where the cumulative distribution curve of re-
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Table 2.2: The influence of threshold selection on power flow-targeted FDIA detection performance.

α τα TP FN TN FP

1 96 7.67×10−4 96.16% 3.84% 92.05% 7.95%

2 97 8.53×10−4 95.62% 4.38% 92.88% 7.12%

3 98 9.89×10−4 92.88% 7.12% 94.25% 5.75%

4 99 1.26×10−3 91.78% 8.22% 96.99% 3.01%

5 99.5 1.67×10−3 89.59% 10.41% 98.08% 1.92%

6 100 1.06×10−2 67.67% 32.33% 100.0% 0.00%
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Figure 2.9: Receiver operating characteristic curves

construction errors flattens out from the steep rise. This is consistent with the general

practice in anomaly detection. In this case, the value of α is chosen as 99 to give consid-

eration to both more hits (higher true positive rate) and fewer false alarms (lower false

positive rate) as 91.78% and 3.01%, respectively.

2.5.3. THRESHOLD SELECTION STRATEGY

In this experiment, we investigated the influence of hyperparameter selection, especially

the depth and layer dimension of the proposed model on the FDIA detection perfor-

mance. We considered 3 and 4-layer models with 7 different dimension configuration

combinations as shown in Table 2.3. In 4-layer models, we only changed the dimension

of the bottleneck layer. For the 3-layer models, the difference existed in the dimension
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Table 2.3: Hyperparameter combination and its FDIAs detection performance. H : Hidden layer, B : Bottleneck

layer

4-hidden-layer models

H1 H2 H3 H4 B Avg. Rt

1 339 256 128 64 32 2.06×10−4

2 339 256 128 64 24 2.30×10−4

3 339 256 128 64 16 1.99×10−4

4 339 256 128 64 8 4.31×10−3

3-hidden-layer models

H1 H2 H3 B Avg. Rt

5 339 128 64 32 4.68×10−3

6 339 256 64 32 4.67×10−3

7 339 256 128 32 1.90×10−4

combination of the second and third hidden layers. Other training hyperparameters re-

mained the same as in Section 2.5.1 and the attack target remained unchanged from the

previous experiments in Section 2.5.2. The result is shown in Fig. 2.9 as receiver operat-

ing characteristic curves (ROC) to compare the detection sensitivity (true positive rate)

and specificity (false positive rate) under different model configurations.

In 4-layer models, as the dimension of the bottleneck layer decreases from 32 to 16,

the models still demonstrate satisfactory detection performance overall. However, if the

model is over compressed into the latent space as an 8-dimensional bottleneck layer,

it will result in the excessive loss of information during the encoding/decoding process

and thus interfere with the detection accuracy. As for the 3-layer-models, the reduction

of layers (hyperparameter combinations 5 and 6) may lead to the increase of the recon-

struction error which is shown in the last column of Table 2.3 and gives rise to the decline

of detection sensitivity and specificity. However, the model with hyperparameter com-

bination 7 still denotes comparable detection probability and false-alarm probability as

the 4-layer model. This indicates that setting the dimensions of each layer properly, in

particular, selecting wide layers helps to enhance the model’s reconstruction and detec-

tion capabilities.
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ANOMALY DETECTOR

PERFORMANCE IMPROVEMENT

Anomaly detection is of considerable significance in engineering applications, such as the

monitoring and control of large-scale energy systems. In the chapter, the autoencoder neu-

ral network-based anomaly detector developed in chapter 2 is improved to detect more

general anomalies in renewable energy scenarios. Specifically, correlations between resid-

uals are identified as a source of misclassifications. In addition, to accurately detect and

localize the source of anomalies, whitening transformations that decorrelate input fea-

tures and/or residuals are analyzed as a potential solution. In this chapter, for a use case of

distributed wind power generation, the performance of various data processing combina-

tions is quantified. Whitening of the input data is found to be most beneficial for accurate

detection, with a slight benefit for the combined whitening of inputs and residuals. For

localization of anomalies, whitening of residuals is preferred, and the best performance is

obtained using standardization of the input data and whitening of the residuals using the

ZCA or ZCA-cor whitening matrix with a small additional offset.

This chapter is based on the following work:

C. Wang, S. Tindemans, and P. Palensky, “Improved Anomaly Detection and Localization Using Whitening-

Enhanced Autoencoders”, IEEE Transactions on Industrial Informatics, Accepted. DOI: 10.1109/TII.2023.3268-

685
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3.1. INTRODUCTION

3.1.1. RELATED WORK AND MOTIVATION

Monitoring and control of large-scale engineering systems require accurate measure-

ments and dependable communication infrastructure – and methods to process that

data for operational awareness. An important example is the case of electrical power

systems that are increasingly reliant on variable renewable generation [54]. In this con-

text, it is important to detect anomalies in high-dimensional, highly variable observa-

tions from a multitude of sensors. For example, mild reductions in power generation

caused by a wind turbine component malfunction or physical disturbance. Insufficient

performance of anomaly detectors may threaten both the economic dispatch and secure

control of power systems [7].

In recent years, with the development of deep neural network-related technologies,

an unsupervised data-driven approach has been proposed in the form of an autoencoder-

based classifier [37]. It considers anomaly detection as a one-class classification task by

learning patterns of normal operating states. This is well-suited to the inherent data

imbalance in anomaly detection applications and the fast-evolving power grid [24]. On

this basis, techniques have been designed to detect anomalies in renewable energy sys-

tems using autoencoder-based detectors. For example, in [55]–[57], the authors have

proposed an autoencoder neural network to analyze anomalies of wind turbine compo-

nents using power generation or other SCADA data. However, the basic autoencoder-

based anomaly detector is based on thresholding of residuals (reconstruction errors)

using a Euclidean distance metric. This does not account for significant dependencies

between measurements, such as the spatial and temporal correlations of renewable re-

sources [58]. The mismatch between the detector design and the features of data could

have a negative impact on detection sensitivity and localization performance.

In view of this, some authors have proposed using the Mahalanobis distance to mea-

sure residuals and thus acquire more accurate classification boundaries for autoencoder-

based anomaly detectors [59]. Authors of [60]–[62] reported autoencoder-based wind

turbine fault detectors using the Mahalanobis distance. However, it has not yet been

investigated how the modified detection boundaries impact the anomaly localization

performance.

Apart from adjusting residuals, the correlated renewable generation data, which are

the input of autoencoder networks, can be decorrelated and standardized (i.e., whitened
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[63]) before fed into the autoencoder. This technique has been considered in the field of

computer vision, with a focus on image and video data sets, for example, image retrieval

[64] and object recognition [65]. However, there has been little quantitative analysis of

detection sensitivity and localization performance improvement in the context of utiliz-

ing an autoencoder-based detector with input data whitening [66]. Further, what is not

yet clear is the impact of processing the inputs and residuals together on the capacity of

a detector.

3.1.2. CONTRIBUTION AND OUTLINE

This chapter bridges these identified gaps by investigating the impact of whitening in-

put data and residuals and quantifying the improvement of detection sensitivity and lo-

calization performance using our proposed metrics. This is done in the context of a

high-dimensional renewable energy use case. The main contributions of this chapter

are listed below:

1) Comparative studies of different data processing methods, neural network config-

uration schemes, and whitening matrix selections are carried out, and their influ-

ences on anomaly detection sensitivity and localization accuracy are quantified

using a variety of metrics.

2) We propose a combined whitening of the input features and of autoencoder resid-

uals, which is shown to maximize detection sensitivity in a case study on correlated

high-dimensional renewable power generation.

3) A combination of input feature standardization and ZCA-cor- or ZCA-based resid-

ual whitening is shown to enhance the visibility of anomalies and thus achieve an

outstanding localization performance of an anomaly detector. The performance

is further enhanced by a tunable offset to the whitening transformation.

Section 3.2 first formulates the problems of detecting anomalies of dependent power

system measurements and introduces different whitening matrices for different data

processing steps. Then a data whitening scheme is proposed along with the anomaly

localization metrics. Section 3.3 utilizes wind farm power generation as the case study,

evaluating the influence of different data processing options, neural network configu-

ration schemes, and whitening matrix selections on anomaly detection and localization

performance of the autoencoder-based anomaly detector.



3

40 3. ANOMALY DETECTOR PERFORMANCE IMPROVEMENT

Figure 3.1: Illustrative two-dimensional distributions of (a) original residuals, (b) whitened original residuals,

(c) synthetic anomalous residuals obtained by shifting, and (d) anomalous residuals whitened according to the

normal data. The residuals are classified as TN (True Negatives), FP (False Positives), TP (True Positives), and

FN (False Negatives) by comparing with a 95% threshold (α=95) calculated on a validation set.

3.2. DETECTOR ENHANCEMENTS

3.2.1. PROBLEM FORMULATION

Power system measurements exhibit spatial-temporal dependencies. For example, due

to geographic factors, the scale and irradiance of renewable resources such as wind and

solar are spatially dependent within a given region [58]. Autoencoder-based neural net-

works are trained to replicate these correlated inputs on the output side with minimal

reconstruction errors.
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Dependencies in inputs may also lead to correlated residuals. An example in Fig. 3.1

shows two dimensions of the residuals obtained in the case study of Section 3.3. The

residuals of normal test data shown in Fig. 3.1 (a) are classified into true negatives (TN)

and false positives (FP) by the threshold ταv . However, the assumption of a circular ‘esti-

mated normal data zone’ is not appropriate for this ellipsoidal distribution. Fig. 3.1 (c)

illustrates this with simulated anomalous data that is obtained by shifting the residuals.

Many clearly anomalous points are within the normal circle and therefore not detected

(False Negatives, FN). This reduces the probability that an actual anomaly is identified:

the true positive rate (TPR), also known as detection sensitivity. The illustration in two

dimensions also applies to residuals in higher dimensions.

3.2.2. DATA WHITENING SCHEMES

In view of the elliptically distributed residuals and concomitant errors in anomaly de-

tection, whitening (also known as sphering) the observations is a promising approach

to improve detection performance. By removing the correlations between the residual

components, the n-ball may better describe the normal data distribution, and anoma-

lies may be detected more accurately. The potential effectiveness of this approach is

depicted in Fig. 3.1 (b,d). Whitening can be applied in three different combinations of

two approaches as:

• Whitening of the input data;

• Whitening of generated residuals;

• Combined whitening of the input data and residuals.

We first summarize the properties of the whitening transformation. Consider a ran-

dom vector Z = (z1, . . . , zn)T , with the (non-singular) covariance matrix Cov(Z , Z ) = Σ ∈
Rn×n . We define the (also non-singular) whitening transformation matrix W ∈Rn×n such

that

V = (V1, . . . ,Vn)T =W Z , (3.1)

where the elements of the random vector V are uncorrelated and have unit variance:

Cov(V ,V ) = 1. We determine constraints on W by expanding

Cov(V ,V ) = E[W Z (W Z )T ]−E[W Z ]E[(W Z )T ] (3.2)

=W
(
E[Z Z T ]−E[Z ]E[Z T ]

)
W T =WΣW T .
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This implies the constraint WΣW T = 1. As W is invertible, we multiply with W −1 and

(W T )−1 from the left and right, respectively, and find after inversion:

W T W =Σ−1. (3.3)

This does not determine the whitening matrix W uniquely. Among the infinite pos-

sible options of whitening matrices W , a few are commonly used [67]. In this chapter,

four approaches are studied: PCA, ZCA, Cholesky, and ZCA-cor [63].

The PCA whitening transformation is a widely used sphering approach due to its

close relation to principle component analysis (PCA)[68]. It can be regarded as rescal-

ing variances of all dimensions to one after a PCA procedure that omits the customary

dimension reduction. The whitening matrix is

WPC A =Λ−1/2U T , (3.4)

whereΛ ∈Rn×n is a diagonal matrix with the eigenvalues of covariance matrix Σ and the

columns of U ∈Rn×n are the corresponding eigenvectors. It is closely related to the ZCA

approach, which uses U to transfer the PCA whitened data back to the original coordi-

nate system[63]:

WZC A =UΛ−1/2U T . (3.5)

The Cholesky whitening transformation is defined as

WC hol = LT , (3.6)

where L ∈ Rn×n is a lower triangular matrix with positive diagonal entries, obtained by

Cholesky decomposition of the precision matrix (inverse covariance matrix): Σ−1 = LLT .

The final sphering approach considered in this chapter is ZCA-cor whitening transfor-

mation[63]. It uses the whitening matrix

WZC A−cor = S−1/2V −1/2, (3.7)

where V ∈ Rn×n is the diagonal variance matrix and S ∈ Rn×n denotes the correlation

matrix (so that Σ = V 1/2SV 1/2). The ZCA-cor whitening approach maximizes the corre-

lation of whitened and original components [63]. Unlike WZC A , WZC A−cor is in general

asymmetric.

In this chapter, we consider both the detection and localization performance of the

anomaly detector. As the whitening procedure is transparent to the calculation of resid-

ual vectors (the squared vector is used), the particular choice of W mostly affects the
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localization performance. It may also affect the detection performance, albeit indirectly,

if whitening is applied to the input data, thus affecting the training of the autoencoder.

INPUT WHITENING

The whitening transformation can be utilized to remove correlations from the data used

for training and testing. First, this enables the autoencoder network to learn from less re-

dundant inputs, which is generally desirable[65]. But more importantly, we hypothesize

that the reduction in the input correlation may propagate to the residuals.

We consider a whitened input data point

zw =Wz (z −µz ), (3.8)

with Wz , the z-space whitening matrix, computed from the sample covariance of the

training data z. The data is also (optionally) centered on the data mean µz . The residual

rw ∈ Rn is defined as rw = zw − ẑw , where ẑw is the reconstructed data point. Invert-

ing the whitening procedure gives ẑa = W −1
z ẑw +µz , which may be compared with the

original z. The reconstruction error of the whitened data ∥rw∥2 can be related to that of

ra = z − ẑa as:

∥rw∥2 = ∥zw − ẑw∥2 = [(z − ẑa)T W T
z Wz (z − ẑa)]1/2

= [(z − ẑa)TΣ−1
z (z − ẑa)]1/2 ≜ ∥ra∥Σ−1

z
. (3.9)

Compared with (2.7), by taking correlations of original inputs into account, we are effec-

tively measuring the Mahalanobis distance [69] between z and ẑa instead of their stan-

dard Euclidean length. Whitening of the input data thus affects both the representation

of the training data as well as the loss function used during training.

RESIDUAL WHITENING

In contrast with applying whitening transformation before feeding data into the neural

network, residual whitening reshapes the distribution of residuals for a given trained

autoencoder. Concretely, the raw residual r = [r1, . . . ,rn]T is whitened as

rs =Wr (r −µr ). (3.10)

Here, the whitening matrix Wr ∈Rn×n is computed on the sample covariance of residuals

from the validation data, because the training data set is used to train the autoencoder

itself. µr represents the mean of raw residuals in the validation set, which should be
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approximately zero if the RMSE loss function was used during training. Accordingly, the

reconstruction error is given by

∥rs∥2 = [(r −µr )TΣ−1
r (r −µr )]1/2 ≜ ∥r −µr ∥Σ−1

r
. (3.11)

Slightly different from (3.9), the reconstruction error in (3.11) denotes the Mahalanobis

distance of a residual r from a set of residuals with mean µr and covariance matrix Σr .

COMBINED DATA-RESIDUAL WHITENING

Apart from the above two intuitive manners, we propose to utilize the data and residual

whitening schemes together as a combined whitening procedure. Specifically, it further

reshapes the residuals generated from the reconstructed whitened inputs. We define rt ∈
Rn×1 to represent the residuals after implementing combined whitening transformation.

The corresponding reconstruction error is denoted as

∥rt∥2 = ∥Wrw (rw −µrw )∥2 ≜ ∥Wz r −µrw ∥Σ−1
rw

, (3.12)

where µrw ∈ Rn×1 and Σrw ∈ Rn×n refers to the mean value and covariance matrix of rw ,

respectively, and Wrw ∈ Rn×1 stands for its whitening matrix. In this way, it doesn’t only

force the autoencoder to learn important features with less redundant training data but

also spheres the residuals in case of remaining residual correlations.

3.2.3. ANOMALY LOCALIZATION METRICS

In many scenarios, when a likely anomaly has been detected, it is important to also iden-

tify which observation(s) triggered the anomaly detector. They may indicate a compo-

nent malfunction or the source of the physical disturbance. In the case study that fol-

lows, we will show that with a well-chosen whitening procedure, the values of the resid-

ual vector can be used to pinpoint the anomaly: the highest absolute residuals are the

most likely locations of anomalies.

To quantify the dependability of the localization performance, we propose three met-

rics. The first of these is the RMS Ratio, which denotes the ratio of root mean square value

of anomalous dimensions to that of normal dimensions in residual vectors. This is given

by

RMS Ratio = 1
m

m∑
l=1

{
[ 1
|A |

∑
j∈A

(r (l )
j )2

] 1
2 /

[ 1
|N |

∑
j∈N

(r (l )
j )2

] 1
2 }, (3.13)
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where r (l )
j denotes the j th element of the residual of the l -th test data point. A is the

set of anomalous dimensions (e.g., malfunctioning devices), and N is the set of non-

anomalous dimensions. Moreover, m refers to the total number of records in the test set.

The RMS Ratio can be used to estimate if the anomalous stand out on average. A second,

more stringent metric is introduced as well: Gap Ratio, which measures the average ratio

of the smallest anomalous dimension to the largest normal dimension (absolute value).

It is defined as

Gap Ratio = 1

m

m∑
l=1

{min
j∈A

|r (l )
j |/max

j∈N
|r (l )

j |}. (3.14)

The third metric, ordinal consistency rate (OCR), calculates the proportion of samples

for which the smallest absolute value of an anomalous dimension exceeds the largest

absolute value of a non-anomalous dimension:

OCR = 1

m

m∑
l=1

1min j∈A |r (l )
j |>max j∈N |r (l )

j |. (3.15)

3.2.4. DESIGN OF THE ANOMALY DETECTOR

We integrate the anomaly detection mechanism and whitening schemes to give data

processing options as well as explain which data is used in different stages. The pro-

posed data flow and its transformation processes in the autoencoder neural network-

based anomaly detector are depicted in Fig. 3.2 with the following five steps.

DATA PARTITION

Given the historical data set X , the first step is to divide observations into training, vali-

dation, and test data set as X t , Xv , and Xe with a specific ratio.

INPUT PRE-PROCESSING

In this step, statistics of the training data (mean, range, covariance) are computed, and

these values are used for input processing of training, validation, and test data according

to the selected method, e.g. input whitening shown in (10).

TRAINING AND RECONSTRUCTION

The weight matrices K and bias vectors b are updated iteratively to minimize the recon-

struction loss in (2.7). Afterwards, the trained autoencoder neural network is utilized to

reconstruct the validation and test set to X̂ ′
v and X̂ ′

e . Then, the corresponding residual

sets r ′
v and r ′

e are calculated, such as rw in (11).
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Figure 3.2: The proposed framework of data flow in the autoencoder neural network-based anomaly detector.

RESIDUAL POST-PROCESSING

If residual whitening is employed, the validation residuals are used to compute whiten-

ing transformations. After executing the residual whitening transformation shown in

(3.10), the reconstruction errors of the validation set R̃v and test set R̃e are calculated as

(3.11).

DETECTION PERFORMANCE EVALUATION

The anomaly threshold τ̃αv is obtained as a quantile of the reconstruction errors R̃v , cor-

responding to the desired true negative rate α%. The test data are classified by com-

paring reconstructions R̃e with the threshold τ̃αv . Consequently, the performance of the

anomaly detector is assessed by calculating the evaluation metrics based on the pre-
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dicted normal, anomalous states, and actual states.

3.3. DETECTION OF ANOMALOUS WIND FARM GENERATIONS

In this section, the impacts of different data processing options, neural network configu-

rations, and whitening matrix selections on anomaly detection and localization capacity

of an autoencoder-based detector are investigated. To do so, we conduct a case study on

power generation from distributed wind farms. Although introduced anomalies are syn-

thetic, the wind farm output is based on reanalysis data of historical wind speeds. This

use of maximally realistic high-dimensional data ensures that the data won’t be easily

compressed into a low-dimensional manifold by an autoencoder.

Specifically, we first describe the process of modeling normal data patterns and then

formulated anomalous scenarios. For these scenarios, we make anomaly detection per-

formance comparisons by implementing various combinations of data transformations

including whitening. Next, anomaly locating capacity evaluation is conducted by com-

paring four whitening transformations: PCA, Cholesky, ZCA, and ZCA-cor.

3.3.1. EXPERIMENT SCENARIO FORMULATION

Renewable power generation from spatially distributed wind farms is an increasingly

relevant source of energy. The power output of each wind farm is highly variable due

to variations in wind speed, but this may obscure other factors causing reduced per-

formance. Given this, experiments were conducted to test if our proposed mechanism

can detect and localize anomalies in the power output of wind farms with satisfactory

capacity. Notably, without knowing any model-related information about wind farms

and relying on the neural network-based data-driven methodology only, our proposed

anomaly detection mechanism was trained on historical operation data and tested on

both normal and anomalous scenarios. In this chapter, we generated anomalous sce-

narios as reductions in the power output of one or more wind farms. These could reflect

unexpected malfunctions, disturbances, unscheduled outages, or unreported mainte-

nance activities (from the perspective of system operators).

A realistic wind power data set was constructed as follows. We virtually placed a

100MW wind farm at each center of the 99 municipalities located in the North and South

Holland provinces of the Netherlands [70], [71]. The wind power output was simulated

on the basis of historical wind speeds at the 99 locations, obtained by MERRA-2 reanal-
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Table 3.1: Data Processing Method Combinations.

Input Pre-processing Residual Post-processing

PNN None None

PSN Standardization None

PWN Whitening None

PNW None Whitening

PSW Standardization Whitening

PWW Whitening Whitening

ysis and available from renewables.ninja [72]. After obtaining the historical wind data

[73], the associated generated power outputs were calculated as described in[74]. Ulti-

mately, the whole generated data set X ∈R99×87648, which includes 10 years’ (2009-2018)

hourly outputs of 99 wind farms, was divided into the training set X t , validation set Xv

and test set Xe in blocks of one week with the proportion of 6, 2, and 2 years.

The autoencoder encoded and decoded the 99-dimensional data from the input to

the output layer. Both the encoder and decoder had 3 hidden layers with 200 neurons,

connected to a bottleneck layer with variable size. The bottleneck size is indicated as Bn ,

where n is the number of neurons in the bottleneck layer. The ReLU activation function

was used, and the Adam Optimizer [51] was utilized with default settings to iteratively

optimize the value of weight matrices K and bias vectors b. In this research, 5 × 103

training epochs were used. The batch size and learning rate for training were 64 and

5× 10−5, respectively. Training and testing of the autoencoder were conducted using

tensorflow.

For a comparative study of anomaly detection and localization performance, in the

following subsections, we made use of different combinations of pre-processing meth-

ods for inputs and post-processing schemes for residuals. The combinations, denoted

as Px y , are listed in Table 3.1.

3.3.2. IMPACT OF WHITENING TRANSFORMATION

Fig. 3.3 depicts the correlation coefficients of the testing residuals r̃e for 9 out of the 99 di-

mensions, for a variety of data processing methods. When the input data is standardized,
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Figure 3.3: The correlation coefficient matrices of normal testing residuals r̃e when utilizing four data process-

ing combinations. The dimensions shown correspond to nine virtual wind farms (B64 is utilized).

but no whitening is performed (PSN ), high correlations among different dimensions are

visible, which implies ‘elliptically’ distributed residuals according to the analysis in Sec-

tion 3.2.1.

As expected, whitening effectively reduces these correlations. Whitening of the in-

put data (PW N ) drastically reduces correlations between the residuals. Correlations are

slightly lower still when whitening is applied directly to the residuals (PSW ). Note that the

pairwise correlations are not zero due to differences between the validation set (used to

determine the post-whitening matrix) and the test set. Finally, applying whitening on

the inputs and the outputs (PW W ) produces similarly small correlations.

3.3.3. ANOMALY DETECTION PERFORMANCE EVALUATION

Both the processing methods (Px y ) and the autoencoder configuration (Bx ) influence

the sensitivity of anomaly detection. This impact will be quantified in this section. For
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these tests, anomalies were generated by modifying the test data as follows. For each

data point, we randomly selected one wind farm out of 99 and reduced its power out-

put by a given amount (the anomaly magnitude, abbrev. am). This approach yields an

anomalous test set consisting of 17,544 non-anomalous data points and an equal num-

ber of anomalous data points.

RECEIVER OPERATING CHARACTERISTIC CURVES

Receiver Operating Characteristics (ROC) and the corresponding Area Under the Curve

(AUC) were used to quantify the sensitivity and specificity of anomaly detection, as a

function of the autoencoder structure, data processing method, and anomaly magni-

tude. ROC curves were constructed by varying the threshold ταv . For all cases, ZCA was

selected as the whitening matrix, and an anomaly magnitude of 10% was used.

For the first experiment, we used default processing PSN : standardizing the input

data and detecting anomalies from unprocessed residuals. Comparing the performance

of all layer dimension configurations Bx , we can observe in Fig. 3.4 (a) that autoencoder

networks configured as B32, B64 and B96 have better detection performance. Specifically,

at each false positive rate, the true positive rate (sensitivity) of these detectors are higher

than others’. Accordingly, they also have larger AUC. This indicates that optimal detec-

tion is achieved with fairly wide autoencoders. The configuration B64 was used for all the

following experiments.

A comparison of the anomaly detection performance of different data processing

approaches Px y is shown in Fig. 3.4(b). We can observe that, i) detectors equipped with

whitening transformation (PW N , PNW , PSW , and PW W ) have higher anomaly detection

sensitivity than the others; ii) performing whitening only on the inputs (PW N and PW W )

renders higher detection sensitivity than whitening approaches performed to the resid-

uals (PNW and PSW ); iii) the detector using combined whitening (PW W ) slightly outper-

forms the detector just utilizing input whitening (PW N ). It can be concluded that the

combined whitening approach PW W is the best choice to improve overall anomaly de-

tection sensitivity.

Moreover, we investigated the ability to detect anomalies of various magnitudes, us-

ing the selected processing strategy PW W . Fig. 3.4 (c) shows that, as the anomaly rate

increases from 1% to 30%, the ROC curves and AUC improve, reaching very high levels

from 10%.
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Figure 3.4: Test set receiver operating characteristics, using different configurations (Bx ), data processing

methods (Px y ), and anomaly magnitudes.
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Table 3.2: Detection performance comparison by multiple metrics (α = 99, anomaly magnitude = 10% and B64

is utilized).

Processing method PPV TNR ACC F1-score

PNN 98.07% 98.89% 82.30% 78.70%

PSN 97.06% 98.77% 69.68% 57.23%

PWN 98.80% 98.98% 91.52% 90.83%

PNW 98.44% 98.86% 82.82% 79.50%

PSW 98.22% 98.80% 82.66% 79.32%

PWW 98.70% 98.88% 92.01% 91.42%

DETECTION PERFORMANCE EVALUATION BY MULTIPLE METRICS

In addition to the detection sensitivity (true positive rate), we evaluated the performance

of the anomaly detector by multiple metrics, namely precision (PPV), specificity (TNR),

accuracy (ACC), and F1-score. Interested readers can refer to [75] for a detailed intro-

duction to the metrics. For all cases, we used an anomaly magnitude of 10%, α= 99, and

layer configuration B64. The experimental results are shown in Table 3.2. In all cases,

the TNR is close to 99%, by the choice of the threshold. The PPV scores are high across

all processing methods, but a closer look at the ACC and F1 metrics show that - perhaps

surprisingly - the PSN processing scheme is least dependable, by a large margin. The

schemes using whitening of input data outperform all others, with a slight edge for the

combined whitening procedure.

To investigate stability of the stochastic training process, model training was per-

formed 15 times, and the variability of the sensitivity (true positive rate) was monitored.

Whitening at the pre-processing stage resulted in higher sensitivity and a narrower range

of results. The result is shown in Fig. 3.5

3.3.4. ANOMALY LOCALIZATION PERFORMANCE EVALUATION

In addition to quantifying the ability to detect anomalies (a binary classification), we

next investigated the ability to localize the source of an anomaly, and how this depends

on the configuration of the detector.
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Figure 3.5: Distribution of true positive rates across 15 training runs (α = 99, anomaly magnitude = 10%, and

B64 is utilized).
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Figure 3.6: Illustrative example that depicts the effect of different whitening approaches on anomaly locating

capacity (anomaly magnitude = 5%; PSN , PSW , and B64 are utilized).

VISUAL COMPARISON OF LOCALIZATION PERFORMANCE

We first considered an illustrative example of anomaly localization, in which the output

of three wind farms (numbers 41, 52, and 76) was reduced by 5%. The input data is

shown in Fig. 3.6 (top panel), where the anomalous locations are indicated in yellow.

Looking at the residuals of standardized data (PSN , middle panel), it can be seen that
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Figure 3.7: Root mean square (RMS) ratios of the anomalous to normal dimensions for data process-

ing/whitening combinations (B64 is utilized).

the residuals of the three anomalous dimensions stand out. In the bottom panel, we

can observe that the four whitening approaches affect the residual signals in different

ways. PCA whitening mixes all coordinates and fully obscures the connection between

the original perturbations and residuals. As a result, it will not be considered in the

follow-up analysis. In contrast, the Cholesky, ZCA, and ZCA-cor whitened residuals all

have peaks that are consistent with the actual anomalous dimensions, but the Cholesky

method also produces residuals in non-anomalous locations (e.g., a peak at dimension

number 40).

STATISTICAL LOCALIZATION PERFORMANCE COMPARISON

For each point in the test set, we randomly selected 3 out of 99 wind farms and applied

power reductions to generate anomalous test vectors, resulting in test sets of 17544 data

points for each anomaly rate. Fig. 3.7 depicts the RMS Ratio for various data processing

schemes, as a function of anomaly magnitude, and Table 3.3 shows numerical results for

all three anomaly metrics for a fixed anomaly magnitude of 5%.

The most striking observation is that methods that perform whitening at the pre-

processing stage (PW x ) scored significantly worse on all localization metrics. Apparently,

the mixing of features before encoding helps to improve detection sensitivity (previous

section), but is detrimental to localization performance. Moreover, for any data process-

ing combination, both ZCA processing schemes scored higher than the Cholesky whiten-

ing scheme, and the best scores were obtained when the ZCA and ZCA-cor schemes are
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Table 3.3: Localization capacities of using different data processing methods (anomaly magnitude = 5% and

B64 is utilized).

Processing

method

Whitening

matrix

RMS

Ratio

Gap

Ratio
OCR

PNN / 7.32 1.60 73.18%

PSN / 8.05 1.97 78.48%

PWN Cholesky 2.98 0.37 7.17%

PWN ZCA 3.98 0.68 23.40%

PWN ZCA-cor 3.82 0.61 18.22%

PNW Cholesky 6.55 1.39 68.04%

PNW ZCA 7.81 1.65 75.98%

PNW ZCA-cor 7.81 1.65 75.74%

PSW Cholesky 8.58 1.59 71.78%

PSW ZCA 9.68 1.98 82.23%

PSW ZCA-cor 9.62 1.97 82.60%

PWW Cholesky 2.65 0.30 2.44%

PWW ZCA 3.90 0.65 20.52%

PWW ZCA-cor 3.82 0.61 18.27%

PSW ZCA - c 9.72 2.07 84.65%

PSW ZCA-cor - c 9.67 2.06 85.08%

used for post-processing, in combination with standardization for pre-processing (PSW ).

Here, ZCA scored very slightly higher on the RMS ratio and gap ratio metrics (typical sep-

aration), and ZCA-cor attained the highest scores on the OCR metric (ordering).

Finally, an additional enhancement of the method was introduced. The residual

whitening transformation (3.10) mixes signals between dimensions. This may cause a

peak (positive or negative) in one or more dimensions to affect the average value of other

dimensions. In order to better separate this signal from the background, we applied a

constant offset to the whitening matrix (3.10) as follows:

rs(c) = (Wr − c1)r. (3.16)
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Here,1 is a matrix of ones and c is a constant to be defined, so that a multiple of the sum-

of-residual values (
∑

i ri ) is subtracted from the whitened feature vector. The change of

localization performance as a function of c is shown in Fig. 3.8. An overall improvement

is obtained for values larger than zero, although RMS ratio decreases after an initial in-

crease. Results for the value c = 5 are included in Table 3.3.
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Figure 3.8: Localization performance as a function of whitening offset c.



4
DATA GENERATION USING A

CONDITIONAL VARIATIONAL

AUTOENCODER

For planning of power systems and for the calibration of operational tools, it is essential to

analyze system performance in a large range of representative scenarios. When the avail-

able historical data is limited, generative models are a promising solution. In chapter

2 and 3, we have investigated the performance of autoencoder-based anomaly detectors.

Similar to the task of anomaly detection, data generation is also an application based

on acquiring the features of historical data. However, modeling both marginal distribu-

This chapter is based on the following published work:

[76] C. Wang, E. Sharifnia, Z. Gao, S. H. Tindemans, and P. Palensky, “Generating multivariate load states using

a conditional variational autoencoder”, presented in XXII Power Systems Computation Conference (PSCC 2022),

Porto, Portugal, 2022 and published in Electric Power Systems Research, vol. 213, p. 108603, 2022.

[77] C. Wang, S. H. Tindemans, and P. Palensky, “Generating contextual load profiles using a conditional vari-

ational autoencoder”, in 2022 IEEE PES Innovative Smart Grid Technologies Europe (ISGT-Europe), IEEE, Novi

Sad, Serbia, 2022, pp. 1–6. DOI: 10.1109/ISGT-Europe54678.2022.9960309

The cGAN model shown in Section 4.3 for a comparative study is developed by Zhi Gao.

Section 4.4 is based on results from Ensieh Sharifnia.
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tions and multivariate dependencies of the historical data is challenging. In this chapter,

a multivariate load state generating model on the basis of a conditional variational au-

toencoder (CVAE) neural network is proposed. This neural network is a variant of the

autoencoder described in the previous two chapters. Going beyond common CVAE im-

plementations, the model includes a stochastic variation of output samples under given

latent vectors and co-optimizes the parameters for this output variability. It is shown that

this improves the statistical properties of the generated data. The quality of generated

multivariate loads is evaluated using univariate and multivariate performance metrics.

A generation adequacy case study on the European network is used to illustrate the model’s

ability to generate realistic tail distributions. The experiments demonstrate that the pro-

posed generator outperforms other data generating mechanisms. Moreover, in this chap-

ter, we test the generative model for load profiles of industrial and commercial customers,

which is challenging due to the highly variable nature of such profiles. The experimental

results demonstrate the CVAE model can capture temporal features of historical load pro-

files and generate ‘realistic’ data with satisfying univariate distributions and multivariate

dependencies.
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4.1. INTRODUCTION

4.1.1. STATE OF THE ART OF DATA GENERATORS

In order to plan power systems and calibrate operational tools, it is essential to analyze

system performance across a large range of representative scenarios [19], [20]. Histor-

ical data is a key source of such scenarios, but when the available data set is too small

for the desired application or when it cannot be made available for privacy reasons, it

becomes valuable to have a model that can generate relevant data in abundant quanti-

ties. The challenge is that generated scenarios should embody both univariate distribu-

tions and multivariate inter-dependencies of the historical data [78]. Compared to the

work in Chapter 2 and Chapter 3, the generative model considers the joint probability

of a given observation, while anomaly detection is essentially a discriminative task, i.e.,

estimating the conditional probability that a given observation is normal or abnormal.

However, both of them are based on capturing the features of observable variables. In

this research, efforts are paid to generate power system load data.

A common approach has been to fit parametric probabilistic models to historical

scenarios. In [79], Gaussian mixture models (GMM) have been proposed to augment

load data in distribution networks. More recently, a load generator has been designed

using time-varying queuing models [80]. Due to the curse of dimensionality, it is es-

pecially challenging to use parametric methods for the generation of high-dimensional

states [81, chapter 3]. Copula-based models are one class of generative models that do

scale to higher dimensions, either using the Gaussian copula, or by ‘stacking’ copulas

in a vine structure, possibly in combination with a dimension-reduction scheme [78].

As vine-based copula models are highly asymmetric and therefore prone to bias, it is

appealing to investigate ‘native’ high-dimensional models, such as neural networks.

The generative adversarial network (GAN) [32] and variational autoencoder (VAE)

[82] are two representative neural network-based generative models. The generator and

discriminator of GAN are trained in the form of contesting with each other. After train-

ing, new data are generated with similar statistics as the training set. GAN-based load

data generators have been provided in [83], [84]. The variational autoencoder (VAE)

[82] is an unsupervised machine learning model with an extra constraint for the lower-

dimensional latent space codes, which can be considered a variant of the autoencoder.

The introduction of unobserved auxiliary latent space codes is motivated by the thoughts

that ‘significant’ information tends to reside on a lower-dimensional manifold, and the
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known relations between latent space code and the observable high-dimensional data

can be used to simplify the generative model.

The VAE model has been successfully used in generating electricity load series, such

as theft detection [22] and electric vehicle load profiles [23]. However, the validation of

generated data often remains limited to visual comparisons, which is not straightfor-

ward for snapshots of larger and more complex electricity systems. Moreover, most VAE

implementations do not make full use [85] of the flexibility permitted by the mathemati-

cal framework in [82]. Output noise tuning and training [86], [87] has only recently been

considered, with a focus on image and video data sets. In power system related data

generation applications, the output noise parameter is usually treated as a hyperparam-

eter (i.e. a preset value that controls the learning process) [88] and noise is not actually

inserted into samples [22], [23], [89]–[91].

4.1.2. CONTRIBUTION AND OUTLINE

This chapter bridges those identified gaps by investigating the impact of output noise

and its parameterization, and by analyzing generated data using performance metrics.

This is done for the VAE and the conditional VAE (CVAE), in the context of large-scale

spatial load patterns of European countries. This lays the basis for the application of

synthesizing load generation at lower aggregation levels, where consumption patterns

are inherently more variable.

The main contributions of this chapter are:

1) We show how a sample-dependent output noise parameter can be co-optimized

in the training process and how this noise is used in the generative process.

2) We put forward a set of data quality metrics for generative models, consisting of

three statistical tests for univariate distributions and multivariate dependencies.

3) We introduce a simple multi-area adequacy assessment model that is used to test

tail distributions.

4) Through comprehensive experiments, we show the performance and practicality

of VAE- and CVAE-based load generators in comparison with Gaussian copula and

conditional generative adversarial network (cGAN) models.

5) For an application to generate load profiles of individual electricity users, we eval-

uate the performance of the CVAE model under different combinations of time of
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year and power exchange intensity conditions using an anonymized data set of

5,000 industrial and commercial customers.

Section 4.2 introduces the structure of the conditional variational autoencoder-based

generative model and describes the training and generation processes of the model. The

mathematical variations of different usage of output noise are elaborated. Section 4.3

investigates the impact of output noise, weighting factors, and generative models on the

performance of generating European country-level load data. The distribution and cor-

relation of the generated data are evaluated. Section 4.4 proposes a multi-area adequacy

assessment to show the practicability of using the CVAE-based load states generator for

assessing the potential system risk. Section 4.5 investigates the capacity of the CVAE-

based generative model to generate load profiles of individual users, of which the loads

are more variable.

4.2. DATA GENERATION MECHANISM

To generate load states similar to the univariate and multivariate interdependencies of

historical data, a representative multivariate load state generation mechanism is pro-

posed, which is based on the CVAE. The four options of whether the output noise param-

eters are co-optimized during the training process and added in the generation process

are introduced.

4.2.1. CVAE-BASED GENERATIVE MODEL

The CVAE is a neural network architecture that is trained to learn the salient features of

historical data by mapping (encoding) historical system states onto a lower-dimensional

latent space where the latent distribution is approximately normal - and transforming

latent vectors back (decoding) into a high-dimensional state space [92]. The decoder

is used in conjunction with contextual information c to generate representative states

(which can be omitted to obtain a regular VAE model). Consequently, the model is able

to generate samples with a similar distribution to the historical data, by transforming

normally distributed samples in the latent space back to the data space. We note that

the latent (i.e. hidden) representation of a data point is used solely to facilitate recon-

struction and synthesis. It does not need to be imbued with a particular meaning.

During training, the structure of the CVAE algorithm is depicted in Fig. 4.1a. The

encoder maps the d-dimensional input data x to the code z in the lower-dimensional
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Figure 4.1: Schematic of the CVAE.

latent space through k hidden layers H e
l , l = 1, . . . ,k. Weight matrices W e

l , bias vectors

be
l and the context c are utilized in the encoding process as1

(
µ

σ

)
=

(
W µ

W σ

)
(a(W e

k (. . . a(W e
1 (x,c)+be

1) . . .)+be
k ))+

(
bµ

bσ

)
, (4.1a)

z =µ+ϵ⊙σ , (4.1b)

where a represents an element-wise nonlinear activation function. Vectors µ and σ pa-

rameterize an input-dependent normal distribution in the latent space. The output z is

sampled accordingly, using ϵ, a vector that is sampled from a standard normal distribu-

tion, and the Hadamard product ⊙.

Mirroring the encoder network, the decoder maps the sampled latent space code z

to the d-dimensional output data x̂ using

(
µ′

σ′

)
=

(
W µ′

W σ′

)
(. . . a(W d

1 (z,c)+bd
1 ) . . .)+

(
bµ′

bσ′

)
, (4.2a)

x̂ =µ′+ϵ⊙σ′ , (4.2b)

where W d
l and bd

l denote weight matrices and bias vectors for decoding, respectively. µ′

and σ′ parameterize a z-dependent normal distribution in the x space.

1In contrast with Chapter 2 and Chapter 3, x are data space vectors, and z are latent space codes.
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4.2.2. TRAINING AND GENERATION PROCESS

In the training stage, weight matrices W and bias vectors b are updated in an iterative

way with the goal of minimizing the loss function [92]

L =LDK L +LRe . (4.3)

The Kullback-Leibler loss LDK L =∑
i DK L(qφ(z|xi )||p(z)) is the sum over all training data

points xi (assumed i.i.d.) of the Kullback–Leibler divergence between that point’s poste-

rior distribution qφ(z|xi ) and the prior distribution p(z) (chosen as the standard normal

distribution). The posterior distribution qφ(z|xi ) is determined by the parameters φ of

the encoder network and represents the mapping of the point xi into a normal distri-

bution in the latent space using (4.1a) and (4.1b). As the Kullback-Leibler divergence

between two normal distributions can be evaluated directly [88], the Kullback-Leibler

loss is computed as

LDK L = 1

2

n∑
i=1

d∑
j=1

(−1+σ2
i , j +µ2

i , j − logσ2
i , j ), (4.4)

where n denotes total number of observations used for training and (µi ,σi ) are evalu-

ated for data point xi and condition c using (4.1a).

The reconstruction loss LRe stands for the negative log-likelihood of reconstructing

the inputs xi via their latent space codes and the decoder that is parameterized by θ. The

reconstruction loss is thus computed as

LRe =−
n∑

i=1
EZ∼qφ(z|xi )[log pθ(xi |Z )] (4.5)

≈ 1

2

n∑
i=1

d∑
j=1

((xi , j −µ′
i , j )2/σ′2

i , j + logσ′2
i , j )+ nd

2
log2π,

where the final step involves a single-point approximation of the expectation and (µ′
i ,σ′

i )

are obtained from the randomly generated latent code z(xi ) and the condition c using

(4.2a). During training, the full-sample sum in loss functions (4.4) and (4.5) are replaced

by batch-sample averages. The constant nd
2 log2π of LRe is omitted.

After the training process, only the decoder part of the trained CVAE network is uti-

lized to generate data. Latent space codes z̃ are sampled from the standard normal dis-

tribution N (0, I ) (see Fig. 4.1b). Then, data space samples x̃ are sampled from distri-

bution N (µ′(z̃,c),σ′(z̃,c)), whose parameters are determined by z̃ and c using (4.2a).

We note that although the amount of available training data determines the information
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contained within the model, there is no limit to the amount of data that can be gener-

ated.

In this way, a complex data distribution in the x space is constructed as a continu-

ous superposition of normal distributions that are parameterised by the normally dis-

tributed coordinate z. Using the procedure above, the encoder and decoder networks

are trained to adapt any distribution to this normally distributed latent space. We note

that other distributions besides the normal distribution can be used as the prior for the

latent space coordinate z [93], [94] – selecting the best latent space representation for a

particular class of problems remains an open research problem.

4.2.3. GENERATOR OPTIMIZATION STRATEGY

NETWORK AND OUTPUT NOISE CO-OPTIMIZATION STRATEGY

It is common for CVAE implementations to generate data x̃ not by sampling from the dis-

tribution N (µ′(z̃,c),σ′(z̃,c)) via (4.2b), but by directly using the mean value µ′(z̃,c) (the

maximum likelihood sample). Moreover, the standard deviation σ′ is not co-optimized

in the training process of (4.3), but considered a hyperparameter that fixes σ′
i , j =s identi-

cally in all dimensions, so that (4.5) can be replaced by

L̃Re = 1

2

n∑
i=1

d∑
j=1

(xi , j −µ′
i , j )2

s2 . (4.6)

In contrast, we investigate the model in which the parameters σ′ of the output noise

distribution are co-optimized as a function of z during training, as was recently also (in-

dependently) proposed in [87]. In addition, we explicitly add output noise ϵ⊙σ′(z̃,c) to

the generated data. To compare the different approaches, the quality of the generated

data is evaluated under all four combinations (Table 4.1): whether σ′ is co-optimized in

the training stage (Auto σ′) or set to a fixed value (Fixed σ′); whether the noise ϵ⊙σ′(z̃,c)

is added to the outputs (Noisy) or not (Noise free).

LOSS FUNCTION WEIGHT TUNING STRATEGY

The two loss terms have opposing effects. The Kullback-Leibler loss LDK L ensures a

good fit with the prior distribution that samples are generated from, thus suppressing

spurious generated points at the expense of ‘smoothing’ the output. The reconstruction

loss LRe , on the other hand, promotes exact reconstruction of the training data. In this

section, in addition to the output noise, we also study the effect of a heuristic weight-
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Table 4.1: Overview of model permutations used in experiments

Strategy (with β) Objective function Generation

Auto σ′, Noisy βLDK L +LRe N (µ′(z̃,c),σ′(z̃,c))

Auto σ′, Noise free βLDK L +LRe µ′(z̃,c)

Fixed σ′, Noisy βLDK L +L̃Re N (µ′(z̃,c), sI )

Fixed σ′, Noise free βLDK L +L̃Re µ′(z̃,c)

ing factor β [95] for the Kullback-Leibler loss term LDK L (so-called β-VAE) on statistical

properties of the generated data. It is written as

L =βLDK L +LRe . (4.7)

All aforementioned combined strategies are explicated in Table 4.1. Their impacts

on the quality of generations will be investigated in the following sections. Particularly,

the settings of standard deviationσ′ and weight β influence the objective function in the

training process and will ultimately affect the generated data. On the other hand, the use

of output noise, ϵ⊙σ′(z̃,c), will directly impact the data generation stage.

4.3. CASE STUDY ON COUNTRY LEVEL LOAD DATA

To validate a generative model, an important aspect is to evaluate the quality of the gen-

erated data. To do so, not only visual comparison of the similarity of generations and

historical data but also statistical assessments are expected. In this section, the per-

formance of our proposed CVAE-based generative model is analyzed using a European

load data set. This is done with three data quality metrics that measure univariate dis-

tributions and multivariate dependencies. Impacts on the quality of generated data are

investigated under the experimental settings in Table 4.1, using both conditional and

regular VAEs. The model performance under different weighting factors β is tested, and

different generative models are compared.

4.3.1. DATA SOURCE AND GENERATION

Historical hourly load data for 32 European countries between 2013 and 2017 was ob-

tained from the Open Power System Data platform [48] (package version 2019-06-05).

Columns of AL (Albania), CS (Serbia and Montenegro), CY (Cyprus), GB (United King-
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dom), TR (Turkey) and UA (Ukraine) were dropped for incomplete records. The histor-

ical data were randomly split into training and test sets in blocks of one week with a

proportion of 4:1 (35,148 training and 8,569 test samples). The training set was min-max

normalized before being fed into the CVAE model and the inverse transformation was

applied to generate samples. The contextual information c is the hour of day. Both total

and hourly volumes of the generated data are the same as the training data set, in or-

der to balance them for visual and statistical analysis. However, we emphasize that the

purpose of constructing such a generative model is to have the ability to generate limit-

less non-repeating data, e.g., for reducing the risk of overfitting in downstream machine

learning tasks.

The parameters of the generative models were tuned for optimal performance, for

both the VAE and the CVAE. The network contained 2 hidden layers in the encoder with

dimensions of 24 and 16, respectively; the bottleneck layer had 8 nodes (8-dimensional

latent vector). The decoder also had 2 hidden layers with the same dimensions in reverse

order. Comparisons against 4-neuron and 16-neuron bottlenecks revealed that a smaller

bottleneck results in excessive loss, whereas a larger bottleneck insufficiently forces the

network to learn features. In the CVAE model, the hourly time-of-day was encoded cycli-

cally using sine/cosine representation.

The ReLU activation function was used, except for the generation of µ and σ lead-

ing up to the bottleneck and output layers. The adaptive moment estimation (Adam)

weight optimizer [51] was utilized with default settings to iteratively optimize the value

of weight matrices W and bias vectors b. The batch size and learning rate related param-

eter α for training was 64 and 10−4 respectively and 20,000 training iterations were used.

Training and data generation of the model was conducted in Python using tensorflow

on the Google Colab environment using the GPU option. The code used for this chapter

is available for download[96], [97].

4.3.2. DATA QUALITY METRICS

To test a generative model’s ability to reproduce the features of historical data, especially

in high dimensions, statistical tests are required. Three tests are put forward to examine

different aspects of the generated data set, in comparison with the historical data.
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KOLMOGOROV-SMIRNOV TEST FOR UNIVARIATE MARGINAL DISTRIBUTIONS

We used the two-sample Kolmogorov-Smirnov (K-S) test [98] to see whether the gener-

ated data was able to reproduce the marginal load distributions for each of the countries

in the data set. For a given output dimension (load in a single country), historical and

generated data are compared. Under the null hypothesis that historical and generated

data are drawn from the same model, the p-values should follow a uniform distribution.

In other words, when the historical data is compared against itself, the cumulative dis-

tribution of p-values should lie on the diagonal. Thus, for generative models, the closer

the cumulative distribution of p-values lies to the diagonal, the higher the similarity be-

tween the two distributions.

Clearly, the models are unlikely to exactly reproduce the historical distribution, thus

large deviations from the ideal curve will show up for large-sample tests. Nevertheless,

to analyze the degree of performance of various models, we use repeated tests on smaller

sample sets that result in clear differentiation, as in [78]. In this chapter, 0.5% of the data

set, i.e. 176 data points out of 35,148, were randomly drawn from training and generated

data set, and then a p-value was calculated accordingly. This process was repeated 5,000

times for each country and a curve was constructed from all p-values.

AUTOENCODER-BASED POINT-WISE TEST FOR MULTIVARIATE DEPENDENCIES

Autoencoder (AE) neural networks have been proven to be highly sensitive anomaly de-

tectors in Chapter 2 and Chapter 3. Unlike (C)VAE networks, AEs have no stochastic

layers and only minimize the reconstruction loss r = ∑
i∥xi − x̂i∥2/d . An AE learns to

compress and decompress the data based on properties of the training set. As a result,

data points with dependencies that deviate substantially from that in the training set

tend to have higher reconstruction errors.

An independent AE network was trained for this test, with hyperparameters equal

to that of the CVAE model, except for the stochastic layers and objective function. Re-

construction errors of all data points (historical or generated) are plotted as cumulative

distributions for easy comparison. As a test for overfitting of the autoencoder on the

training data, the autoencoder test was performed on the training and test data. The two

distributions visually overlapped, suggesting this is not a concern.

ENERGY TEST FOR MULTIVARIATE DEPENDENCIES OF POPULATION

Another two-sample test, the energy test [99], was conducted to examine whether the

multivariate dependencies of the population were well acquired from the training set.
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Figure 4.2: (a) Box plots of the original and generated load values in the Netherlands, based on 1459 data points

at 2:00. Data was generated by CVAE using ‘Fixed σ′, Noise free’ approach with different σ′. (b) Distribution

comparison of the original and generated load data in the Netherlands, based on 1459 (2:00), 1465 (10:00) and

1465 (21:00) data points, respectively. Data was generated by CVAE using ‘Fixedσ′, Noise free’ method (σ′=0.1)

and ‘Auto σ′, Noisy’ scheme.

The energy test, computed using the PyTorch library torch-two-sample [100] uses a user-

specified number of permutations (200 was used) to calculate a p-value. As for the en-

ergy test, we used random subsets of 0.5% of the generated population and historical

population. We repeated this process 1,000 times to draw a distribution of p-values

and compare it with the uniform distribution (which would be expected if the data was

drawn from the historical distribution).

4.3.3. EXPERIMENTAL RESULTS ANALYSIS

VISUAL COMPARISON OF UNIVARIATE DISTRIBUTIONS

In this first experiment, the CVAE with fixed σ′ and no output noise was used to gener-

ate 1,459 load demands, conditioned on the time 2:00. Results for the Netherlands are

shown in Fig. 4.2a, for various values of σ′. As the output noise assumed in training in-

creases, the variability of the generated points decreases (because noise is not actually

added). When σ′ = 0.1, the distribution of generations is the closest to that of historical

data. This setting will be used for all further experiments with fixed σ′.2

Fig. 4.2b further compares data generated using the ‘Fixed σ′’ and ‘Auto σ′, Noisy’

2Note that we only fix a single parameter in this case. An approximate visual match of the box plots is a neces-

sary condition for a good overall fit, justifying the choice σ′ = 0.1 for this comparison.
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Figure 4.3: (a), (b), and (c) display 10 typical ratios of 32 countries’ historical and generated data to the historical

mean values at 2:00. (d), (e) and (f) demonstrate the Pearson correlation coefficient matrices of 6 (out of 32)

countries’ historical and generated data at 2:00. The horizontal and vertical dimensions in the matrices are

Spain (ES), Croatia (HR), Iceland (IS), Italy (IT), Luxembourg (LU) and the Netherlands (NL).

schemes and the training data. Conditioning on 2:00, 10:00, and 21:00 was performed,

and results are shown for the Netherlands. Both methods are able to qualitatively repro-

duce the features of the data.

MULTIVARIATE CORRELATIONS

The top row of Fig. 4.3 shows the loads of all countries for 10 different snapshots at 2:00,

relative to the mean load in those countries at 2:00. Compared to historical data (a)

and the noisy generator (c), samples generated by the noise-free generator clearly show

higher correlations between countries. This is confirmed by the correlation analysis be-

tween six countries in the bottom row of Fig. 4.3. By omitting output noise, the noise-free

generator generated (too) highly correlated samples.

Sensitive experiments for the multivariate dependencies will be conducted in the

following sections using the autoencoder-based point-wise test. The accurate represen-

tation of multivariate dependencies will be important for the analysis of supply shortfalls

in Section 4.4.
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INFLUENCE OF NOISE GENERATION

In this experiment, the influence of the four strategies listed in Table 4.1 were tested with

β= 1. Results for the statistical tests described in Section 4.3.2 are shown in the first row

of Fig. 4.4. The K-S test results and autoencoder results show that the inclusion of out-

put noise is essential to improve marginal distributions (Fig. 4.4a) and increase output

variability to the level of the historical data (Fig. 4.4b). In addition, the autoencoder and

energy tests show that automatic tuning of the noise strength (Auto σ′) is essential to

improve the multivariate dependencies of the generated samples. Together, this experi-

ment shows that the ‘Auto σ′, Noisy’ generator outperforms the other approaches listed

in Table 4.1. This was to be expected given the mathematical theory behind the CVAE

(which includes noise), but is at odds with common implementations.

COMPARISON BETWEEN CONDITIONAL AND REGULAR VAE

In the second row of Fig. 4.4, the performance of the CVAE and VAE models (with β= 1)

is compared. The CVAE model slightly outperforms the VAE model in all categories. One

possible explanation is that the CVAE model has access to the context c (time of day),

which effectively increases the dimension of the latent space. Because of its better per-

formance, we continue using the CVAE model in subsequent experiments, but the re-

sults suggest that a VAE model delivers comparable performance, and may be preferable

when no natural conditioning variable is available.

β SENSITIVITY TEST

The third row of Fig. 4.4 shows the impact of β (values 1, 3, 10) on the performance of

the CVAE (Auto σ′, Noisy) model. As β is increased, the performance on the K-S test

(Fig. 4.4g) improves, indicating an improved ability to learn marginal distributions. On

the other hand, performance on the autoencoder test (Fig. 4.4h) worsens, suggesting

that points ‘outside’ of the training point cloud are generated for large β. Finally, the en-

ergy test (Fig. 4.4i) indicates that a moderate value of β can strike a balance between the

opposing requirements: the curve for β= 3 is closest to the desired result. Nevertheless,

depending on the application, it may be desirable to choose β larger or smaller.

COMPARISON OF GENERATIVE MODELS

In the fourth row of Fig. 4.4, the quality of data sampled from different generative mod-

els was investigated. The values of β for CVAE and VAE models (both Auto σ′, Noisy)
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Figure 4.4: Results of statistical tests. Each row denotes a set of experiments (noise generation, training con-

dition, value of β and model family). The three columns depict results for the three tests described in Sec-

tion 4.3.2.
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were tuned for optimal performance on the energy test (see previous section). In addi-

tion, Gaussian copula [31] and cGAN [101] models were included for comparison. The

basic cGAN model was modified to use Wasserstein losses[102]. Both its generator and

discriminator are deep neural networks; each has two hidden layers of 256 neurons, all

activated with LeakyReLU (α = 0.2) except in the output layers, where linear and sig-

moid activation functions are used for the generator and discriminator. Weights of the

neurons are optimized with root mean square propagation (RMSprop) available from the

python package Keras.

The K-S test shows the outstanding ability of the Gaussian copula model to repro-

duce marginal load distributions (a design feature of copula models [78]). This model

also shows competitive performance on the autoencoder and energy tests. However, it

will become clear in Section 4.4 that its multivariate tail performance is worse than that

of the (C)VAE models. The cGAN model shows the best performance on the autoen-

coder test, indicative of its ability to generate samples with realistic features. However,

the model significantly underperforms on the K-S and energy tests, which suggests that

the generated samples, though ’realistic’, are unevenly distributed through the space of

possible states. The optimized CVAE and VAE models are competitive on all three tests,

with the CVAE model slightly outperforming the VAE model.

4.4. CASE STUDY ON MULTI-AREA ADEQUACY ASSESSMENT

Evaluating the potential risk of grids through enormous generated representative sce-

narios is valuable for power system stable operation, especially when the data are not

sufficient. In this section, we investigate the performance of the load generation mech-

anisms by using it for a multi-area adequacy assessment study, based on the ENTSO-E

Mid-term Adequacy Forecast 2020 (MAF2020) [103]. Multi-area adequacy assessment

measures the sufficiency of generating capacity compared with the load on each of the

nodes in the power system under transmission constraints. This can be considered a

stress test of the generative model, as the outcomes are sensitive to high-load events

(tail distributions) and their dependencies between countries.

Loss Of Load Expectation (LOLE [h/year]) and Expected Energy Not Served (EENS

[MWh/year]) were estimated by Monte Carlo simulations. LOLE is the expected num-

ber of hours per year during which the supply does not meet demand. EENS is the ex-

pected amount of energy demand per year that cannot be supplied. Parameters from the
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MAF2020 study were used to construct a model for generating capacity and net transfer

capacities between countries. They were combined with generated and historical load

data to define a probabilistic model for the Monte Carlo simulations. We emphasize that

the model thus constructed is not meant to be an accurate representation of the Euro-

pean grid, but a stylized problem that serves as a comparative testing ground for the

generative models.

4.4.1. MULTI-AREA ADEQUACY ASSESSMENT STRUCTURE

We consider the network as a directed graph (to allow for asymmetric flow limits) where

nodes are zones, edges are connections between zones, and edge capacities are trans-

fer capacities. Each sampled state w is represented by the available generating capacity

g w
i and demand d w

i of each node i . Based on the flow constraints and dispatching pol-

icy, the consumed power pw
i and load curtailment cw

i for each node can be calculated,

related by

cw
i = max(0,d w

i −pw
i ). (4.8)

We determine cw
i (and implicitly pw

i ) by solving a quadratic problem with variables c̃i

(curtailment) and f̃i j (flows), which aims to minimize the total load curtailments and

assumes that curtailments are balanced between areas [104], relative to the demand in

that area:

c⃗w = arg min
f̃ ,c̃

∑
i∈N

1

2d w
i

c̃2
i + c̃i (4.9)

fi j ≤ f̃i j ≤ fi j , ∀(i j ) ∈L (4.10)

0 ≤ c̃i ≤ d w
i , ∀i ∈N (4.11)

d w
i − g w

i ≤ ∑
j<i

f̃ j i −
∑
j>i

f̃i j + c̃i ≤ d w
i , ∀i ∈N (4.12)

Here, L and N are the sets of connections (from i to j with i < j ) and areas respec-

tively. Constraints on power flow f̃i j from node i to node j are given in (4.10); (4.11)

limits curtailment and (4.12) enforces flow and generating power constraints. The ob-

jective function (4.9) has a positive definite structure and the constraints are linear, so

this optimization problem is strictly convex and has a unique solution. This optimiza-

tion problem was solved using the python package quadprog [105].
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sector of the disc represents the LOLE of the corresponding model (20h/y shown for scale in legend).

4.4.2. POWER SYSTEM MODEL

A European adequacy assessment model was developed, based on the target year 2025

data from the ENTSO-E MAF2020 [103]. The net transfer capacities between countries

are defined as the summation of transfer capacities between their constituent zones, as

reported in the MAF2020. Since details of generators and unit capacities are not reported

in the released dataset, we model the total generating capacity and the unit capacities in

each country as follows. The assumed generating capacity of each country is a summa-

tion of conventional generating capacity in its zone(s) plus 5% of nameplate wind power

capacity. Unit sizes are set per country as the closest value under 500MW that is a divisor

of the generating capacity; a unit availability of 83% is used. Cyprus has no connection

to other countries, so a unit capacity of 95MW is used to avoid excessive outages.

4.4.3. MULTI-AREA ADEQUACY ASSESSMENT RESULTS

To compare the CVAE, VAE, Gaussian Copula, and cGAN generators, they were trained on

historical load data from 2017 and 2018 for 35 countries, retrieved from the Open Power

System Data Platform ([48]; columns for CS, IS, and UA were omitted). Each model was
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used to generate 100,000 random load samples. The ‘Auto σ′, Noisy’ setting was utilized

for the CVAE and VAE models, and β was set to 10 for improved reproduction of the

marginal distributions. For each model, 1,000,000 Monte Carlo generation samples were

drawn and combined with random load samples to estimate the LOLE in each coun-

try. Fig. 4.5 depicts the estimated LOLE values for all generative methods and historical

data. The area of each sector of the disc represents the LOLE obtained using a particular

load states generating model. Numerical results for three countries with low (Austria,

AT), medium (The Netherlands, NL), and high (UK) risk levels are shown in Table 4.2.

Standard errors for the least significant digits are shown in parentheses. Moreover, to

investigate the beneficial effect of interconnection – and therefore the importance of ac-

curate multivariate modeling – risks for these countries are also reported in the absence

of interconnection (‘island’).

By design, the Gaussian copula reproduces the marginal distributions of the histori-

cal data. Therefore, the calculated risk for islanded systems is consistent with those for

historical data. However, the results demonstrate that this model tends to overestimate

risks for interconnected nodes (countries). The cGAN generative model tends to cause

an overestimation of risks with both islanded and interconnected nodes, sometimes very

significantly (e.g. the LOLE values for the UK and Ireland). In comparison, both the VAE

and CVAE models generate data that results in risk estimates that are closer to those

observed using historical data, although deviations exist from country to country. This

suggests both models are able to substantially represent the multivariate tail distribution

of the historical data.

The capability of generating load conditioned on hours is an additional advantage of

CVAE in comparison with VAE in the adequacy assessment context. Load curtailments

usually accrue during high load hours. So, time of day could be used as a control variable

for an importance sampling Monte Carlo scheme that preferentially samples load states

at high load hours and compensates for the resulting bias by sample re-weighting.

4.5. CASE STUDY ON LOAD DATA OF INDIVIDUAL CUSTOMERS

In section 4.3, the impact of the CVAE model’s output noise on its generative perfor-

mance has been investigated with a use case of learning and generating snapshots of

country-level load states. However, such snapshots of large load aggregations have lim-

ited diversity and variability.
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This section investigates the CVAE model’s capacity to generate synthetic load pro-

files that are representative of those from a large variety of individual users. Compared

to section 4.3, this section aims to generate consumption patterns that are temporal (in-

stead of spatial) and at a lower aggregation level, where the loads are more stochastic. To

do so, we first analyze the properties of daily load profiles of an anonymized data set of

5,000 industrial and commercial customers. Moreover, for better training and generation

performance, we introduce data split, month condition, and power exchange intensity

calculation strategies during data processing. Eventually, we evaluate the performance

of the CVAE model under different time (month) and power exchange intensity condi-

tions with both visual and statistical metrics.

4.5.1. DATA SOURCE AND GENERATION

We used the CVAE-based generative model described above to generate daily load pro-

files (24 hours) of individual network connections (i.e., users), conditioned on the month

of the year and power the user typically exchanges with the grid. The performance of

the model was analyzed using a load data set of 5,000 users. The quality of generations

was evaluated visually as a function of conditioning parameters. In addition, perfor-

mance was validated statistically by measuring univariate distributions and multivari-

ate dependencies. Moreover, an experiment was conducted to test the model capacity

of interpolation.

Anonymized historical electricity consumption/generation data of 5,000 industrial

and commercial electricity users during 2020 was obtained from Alliander NV[106], a

Dutch distribution network owner and operator. The time resolution of the data is 15

minutes. It is worth noting that the data set’s time label is UTC (Coordinated Univer-

sal Time). However, the actual local time for electricity users is CET (Central European

Time). During standard time and daylight saving time, their time differences are 1 and 2

hours, respectively. The energy data was converted from integer kWh values to average

power with multiples of 4 kW. Compared with country-level load profiles[48], the energy

consumption of individual users involves more variability and less predictability. Fig. 4.6

illustrates the large variety of daily profiles, by plotting the marginal histogram and joint

density of all historical load profiles at 10:00 and 21:00. Note the logarithmic density

used, indicating a large concentration around (relatively) small values. Moreover, data

points located in the upper-left and bottom-right quadrants stand for users that can not
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Figure 4.6: Marginal histogram and joint density of historical loads at 10:00 and 21:00 during one year.

only consume but also generate energy. All these factors above make it challenging for

the CVAE model to capture the load patterns.

The data processing scheme is shown in Fig. 4.7. The historical data were split,

scaled, and conditioned. Three data process strategies used in this study are as follows.

STRATEGY I - DATA SPLIT

The historical data were randomly split into training and test sets as blocks of one week

with a proportion of 4:1. This strikes a balance between separating individual days (sub-

sequent days are not sufficiently independent) and separating larger blocks (insufficient

coverage in the test set).

STRATEGY II - MONTH CONDITIONS

In this study, one of the conditions (contextual information) c is the month of the year.

We used the sin(·) and cos(·) values of a month as the condition of load data. For a spe-

cific month m, its condition was encoded as sin( m
12 ·2π) and cos( m

12 ·2π). This encoding

reflects the continuity and circularity of this feature.

STRATEGY III - USER INTENSITY

After inspecting historical load profiles, we noticed that some users had relatively regu-

lar load profiles, whereas others had irregular behavior with rare consumption or gen-

eration spikes. Some connections were only active during a small part of the year. To
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Figure 4.7: Data processing scheme.

construct a conditioning feature that represents the ‘size’ of electricity users, we cal-

culated the daily average power exchange by averaging over all non-zero values of the

absolute power (consumption or generation) for each user and each day. For each cus-

tomer, this value was averaged over the five days with the largest daily average power

exchange to obtain the user intensity. The intensity values were used to assign to each

customer a rank order c ∈ [0,1]. Due to the large range of power values present in the

data (see Fig. 4.6) and the relative scarcity of data with high peak exchange, we trained

the model only on profiles of customers with an intensity up to 100 kW. Ultimately, 4,049

users remained, with 1,170,110 and 307,720 load profiles in the training and test sets,

respectively. The values were scaled by 1/(100 kW ) for training.

The parameters of the generative models were tuned for optimal performance. The

input and output layers had 96 dimensions (24 hours with 15-minute resolution). Ac-

cordingly, 96-dimensional daily load profiles were used for training and generation. The

network contained 3 hidden layers in the encoder with dimensions of 800; the bottle-

neck layer had 12 nodes (12-dimensional latent vector). The decoder also had 3 hidden

layers with dimensions of 800. The contextual condition c consisted of a 2-dimensional



4

80 4. DATA GENERATION USING A CONDITIONAL VARIATIONAL AUTOENCODER

0 400 800 1200 1600 2000 2400
Epoch

(a)

3.5

4.0

4.5

5.0

5.5

Ku
llb

ac
k-

Le
ib

le
r l

os
s

DKL (Training data) DKL (Test data) Re (Training data) Re (Test data)

0 400 800 1200 1600 2000 2400
Epoch

(b)

200

160

120

80

40

Re
co

ns
tru

ct
io

n 
lo

ss

Figure 4.8: Training process and its failure. (a) Training process of Kullback-Leibler loss. (b) Training process

of reconstruction loss.

month condition and a 1-dimensional per-user power exchange intensity.

The ReLU activation function was used, except for the generation of µ (µ′) and σ (σ′)

leading up to the bottleneck and output layers. The adaptive moment estimation (Adam)

weight optimizer [51] was utilized with default settings to iteratively optimize the value

of weight matrices W and bias vectors b. The batch size and learning rate parameter

α for training were 1,280 and 10−5 respectively. The weighting factor β was set as 8.5.

Training and data generation of the model was conducted in Python using tensorflow

on the Google Colab environment using the GPU option. The training process is shown

in Fig. 4.8. The Kullback-Leibler loss rapidly stabilizes during training. However, the re-

construction loss of the test data set starts to deviate from the training loss and fluctuates

strongly after 1,000 training epochs, which indicates an overfitting of training data and

general training instability. To find a compromise between loss minimization and gener-

alization capacity of the trained model, 1,000 training epochs were used in this research.

During the generation process, the total, monthly, and per-user amounts of synthetic

data are identical to the training set.

4.5.2. EXPERIMENTAL RESULTS ANALYSIS

COMPARISON OF DAILY LOAD PROFILES

To validate the generation capacity of our proposed CVAE model, we first visually in-

spected the generated contextual load profiles. We defined the customers with the first
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Figure 4.9: 10 randomly sampled historical and generated load profiles and average daily load from customers

of various sizes in different months.

and last 30% of per-user intensities as small and large customers, respectively, and the

remaining 40% of users as medium users. In this experiment, we conditioned the gen-

eration of profiles on the months of April and July, and the ‘small’ and ‘large’ customer

classes (by random sampling of c in their respective ranges). Fig. 4.9 shows the mean

value of load profiles under each condition combination (generated versus measured),

and 10 randomly sampled load profiles alongside 10 random historical profiles. The

mean generated load under each condition combination has a similar curve shape to

the training data. Moreover, compared with historical data, the displayed load genera-

tions retain randomness and show a sense of realism, indicating that the CVAE model

captures temporal features of historical load profiles.

CLUSTERING PERFORMANCE

The following experiment compared all historical and generated daily load profiles for a

more elaborate test of the distribution of generated load profiles. We first split the train-

ing data set into 8 clusters by the K-means algorithm [107], using the squared Euclidean

distance metric. Then, we assigned the generated and test load profiles to the nearest

cluster. The mean values of training, test, and generated loads for each cluster are de-

picted in Fig. 4.10a-h, in decreasing order of training data volume. The most voluminous
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Figure 4.10: Mean value of historical and generated data in different clusters.
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Figure 4.11: Cumulative distribution comparison of historical and generated data via different time scales and

for users of various sizes.

cluster has small average load values. Note that the apparent gap in cluster I is smaller

than the resolution of the data. Some clusters correspond to larger loads and generators

(mainly solar PV). In all cases, the mean values of profiles assigned to the cluster match

well.

MARGINAL DISTRIBUTION COMPARISON

The third experiment compared the cumulative distribution of historical and generated

data via different time scales and users of various sizes. The experimental results are

shown in Fig. 4.11; note the discretization of the real measurements, visible in these

graphs. Fig. 4.11a exhibits the cumulative distribution of loads in different months. The

CVAE model is able to generate contextual load profiles that follow the monthly dis-

tribution variation of historical loads. The hourly comparison of the load depicted in

Fig. 4.11b shows that the curves of generations overlapped with the historical training

data, demonstrating quite similar hourly distributions. Moreover, the comparison re-
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Figure 4.12: (a) Kolmogorov-Smirnov test. (b) Autoencoder-test. (c) Energy test

sult shown in Fig. 4.11c stands for a good capture of load patterns of different customer

sizes. Finally, we tested the interpolation capacity of the CVAE model. Specifically, we

used a virtual month condition (11.5) to generate load profiles, and the result is shown in

Fig. 4.11d. The cumulative distribution of the load profiles with a month condition 11.5

lies between the distribution of loads in November and December. This demonstrates

that the trained CVAE model can generate data using nonexistent conditions during the

training process. Also, these profiles have features of data generated using nearby con-

ditions.

STATISTICAL TESTS

To further test the capacity of the CVAE model to generate realistic load profiles, non-

visual statistical tests are implemented to inspect different aspects of generations. Specif-

ically, in this experiment, the Kolmogorov-Smirnov test, autoencoder-based test, and

energy test were utilized to examine univariate marginal distributions, point-wise mul-

tivariate dependencies, and multivariate dependencies of population, respectively. In

addition to generated samples with noise ϵ⊙σ′(z̃,c) added (these were the data used

in previous experiments), we also tested the performance of commonly used noise free

samples µ′(z̃,c).

Evaluating the performance on the Kolmogorov-Smirnov test (Fig. 4.12a), which as-

sesses the accuracy of the marginal distributions, shows a small difference between the

training and test sets, and a similar further difference in the distribution accuracy of the

generated data. Comparing the results to those reported in [21] for country-level data,

we see a slight degradation of the noisy generator. This could be because the individ-
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ual load profiles are less smooth than the country-level snapshots, and a relatively large

amount of synthetic noise ϵ⊙σ′(z̃,c) is added to base profiles µ′(z̃,c). This can result in

the generation of extreme values, which reduces the test scores.

The autoencoder test trains a separate (regular) autoencoder on the training data.

This permits the quantification of the quality of individual load profiles. The distri-

butions of reconstruction errors obtained using real and generated data are shown in

Fig. 4.12b. The training and test patterns show similar distributions, and the ‘noisy’ CVAE

generates distributions with slightly worse reconstruction errors. However, the ‘noise-

free’ variation produces data that is significantly too smooth, resulting in reconstruction

errors that are approximately two orders of magnitude lower.

Finally, the energy test quantifies the similarities between high-dimensional distri-

butions of profiles. The results in Fig. 4.12c shows a similar performance between the

generated profiles (noisy) and the test data, suggesting good generalization performance.

Again, the generated data is a lot more realistic than when no noise is inserted in the out-

put stage (‘noise free’).





5
CONTROLLABLE GENERATOR: AN

ORIENTED VARIATIONAL

AUTOENCODER

The functionality and performance of the variational autoencoder-based generators have

been evaluated in Chapter 4, using both case studies of country-level load states and indi-

vidual customers’ load profiles. However, not only a generator is required, but generating

samples with specific properties is also expected. The link between the latent space codes

and generated data may offer the information to infer the properties of the synthetic sam-

ples. In this chapter, we propose an oriented variation autoencoder (OVAE) to constrain

this link in the form of a Spearman correlation, which provides increased control over the

data synthesis process by correlating the features of interest derived from inputs and the

data encoded in the latent space. On this basis, an importance sampling process can be

used in sampling data in the latent space. Two cases are considered for testing the perfor-

This chapter is based on the following work:

C. Wang, E. Sharifnia, S. Tindemans, and P. Palensky, “Targeted Analysis of High-risk States Using an Oriented

Variational Autoencoder”, IEEE Transactions on Power Systems, Submitted.

The importance sampling and resource adequacy models were developed by Ensieh Sharifnia.
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mance of the OVAE model: a) the data set is fully labeled with approximate information;

b) the data set is incompletely labeled but with more accurate information. The exper-

imental result shows that, in both cases, the OVAE model makes the data in the latent

space to be correlated with the generated data. In addition, the efficiency of generating

targeted samples is significantly improved.



5.1. INTRODUCTION

5

89

5.1. INTRODUCTION

5.1.1. MOTIVATION AND RELATED WORK

The analysis of power system performance across a large range of representative scenar-

ios is of great significance for power system planning and risk assessments [19], [20],

[108]. However, data scarcity, reluctance to share, and confidentiality concerns may

limit the amount of available historical data, which is a key source of representative sce-

narios. To this end, it is highly desirable to have access to generative models that pro-

duce limitless non-repeating data, reproducing both univariate distributions and inter-

dependencies observed in historical data [78].

In recent years, with the development of deep neural network-related technology,

a promising data-driven-based approach has been proposed in the form of variational

autoencoders (VAEs)[82], [88], [92]. These networks encode high-dimensional historical

data (observations) to a latent code in a lower-dimensional latent space - and reconstruct

similar observations from this code. Features of historical data are learned, so that novel

but realistic data points can be created from random codes. In recent research, the VAE

model has been successfully used in generating electricity load profiles [23]. Similarly,

Generative Adversarial Networks (GANs) have been used to generate realistic power sys-

tem states [84], [109], but such models do not provide straightforward access to latent

representations [110].

Coordinates of latent space codes of VAEs have been shown to correlate with concep-

tual features of the data [111], [112]. These coordinates can then be used to synthesize

targeted data with desired features [113] (e.g., game scenarios). Although the degree of

informativeness and orthogonality of latent space variables can be influenced by the

training process [95], the interpretation of individual latent variables and the existence

of particular concepts are not determined a priori.

For power system applications, it is often valuable to generate samples that pertain

to certain operating conditions. One use case is when performing studies for a particular

time window, geographical area, or otherwise clearly delineated set of conditions. In this

case, a generative model can be conditioned on the selection criterion of interest, using

e.g. the Conditional VAE (CVAE) instead of the regular VAE. This was done, for example,

in [76], for country-level load snapshots conditioned on the hour-of-day and in [114] for

24-hour load profiles of industrial users conditioned on the month-of-year.

A particularly important use case for targeted sampling occurs in power system risk
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assessment. As power systems are usually highly reliable, unbiased (Monte Carlo) sam-

pling of states results in excessively high sample count requirements. The accurate esti-

mation of risks can be sped up using importance sampling (IS) [115], [116], which sam-

ples high-impact states more often and compensates for the resulting bias by adjusting

sample weights. However, this combines the challenge of targeted sampling with (1)

knowing which states to target and (2) calculating the correct sample weights.

One approach is to use a bottom-up model to generate states and change its param-

eters for optimal importance sampling. This approach is used, for example, in [117],

where generator forced outage rates are modified to speed up generation adequacy as-

sessment, and the cross-entropy method is used to optimize model parameters in a

number of stages. This approach can lead to very high speedups, but it requires the avail-

ability of a bottom-up generative model and some degree of expert knowledge about

which parameters to modify.

Subset simulation represents an alternative approach, where regions of interest in

state space are identified and refined in iterations [118]. This requires learning the re-

gion of interest and generating states according to this region of interest, ideally without

resorting to a sample filtering (accept-reject) approach. A particular challenge is that, to

avoid biasing the risk estimate, it is essential that no states with a non-zero impact are

excluded from sampling. Moreover, typically no distinction is made between the likeli-

hood of sampling low-impact and high-impact states.

5.1.2. CONTRIBUTION AND OUTLINE

In this chapter, we address the challenges identified above by proposing the Oriented

Variational Autoencoder (OVAE), a data-driven generative model. Compared to the reg-

ular (C)VAE model, it provides increased control over the data synthesis process by cor-

relating the features of interest derived from inputs and the data encoded in the la-

tent space. The model can naturally be used for importance sampling, and can also

be trained on incomplete labels. The main contributions of this chapter are as follows:

1) We propose the oriented variational autoencoder (OVAE) that maximizes the Spear-

man correlation of one latent dimension with a feature of interest.

2) We demonstrate that an OVAE model can be trained in a semi-supervised man-

ner using partially labeled data, which is essential when the process of labels is

computationally expensive.



5.2. DATA GENERATION MECHANISM

5

91

3) Through comprehensive experiments, we test the performance of the OVAE-based

generator and its ability to generate calibrated biased samples.

4) The effectiveness of the OVAE model in importance sampling applications is in-

vestigated in a case study of multi-area adequacy assessment.

5.2. DATA GENERATION MECHANISM

In this section, a novel multivariate data generation mechanism is proposed, based on

the OVAE model. Importance sampling for system adequacy assessment is briefly re-

viewed in Section 5.2.1. The Oriented VAE and its use in importance sampling are ex-

plained in Sections 5.2.2 and 5.2.3, respectively.

5.2.1. IMPORTANCE SAMPLING FOR RISK ASSESSMENT

Quantitative risk assessment for power systems aims to compute one or more numerical

risk indices. Often, these are long-run expectations of an operational performance mea-

sure, i.e., r = EX [h(X )]. For example, popular metrics for system adequacy assessment

are Loss Of Load Expectation (LOLE [h/year]) and Expected Energy Not Served (EENS

[MWh/year]): LOLE (as measured per hour, also known as LOLH) is the expected num-

ber of hours per year during which the supply does not meet demand; EENS is the ex-

pected amount of energy demand per year that cannot be supplied. Monte Carlo (MC)

simulations can be used to estimate such risks by randomly selecting power system

states x (indexed by i ) according to their probability density p(x) and calculating the

average of the impact h(x) over all sampled states as

r̂MC = 1

m

m∑
i=1

h(xi ). (5.1)

However, random sampling is computationally inefficient for highly reliable systems

when only a small fraction of states contribute, i.e. when h(x) = 0 for most states x.

Importance sampling [119] changes the sampling probability distribution to pref-

erentially select samples with higher impact. This reduces the variance of the estima-

tor, and therefore estimates risk values more accurately than the regular Monte Carlo

method, for the same number of samples. When states x ′
i are sampled according to the

modified distribution q(x), the risk is estimated as

r̂ I S = 1

m

m∑
i=1

h(x ′
i )w(x ′

i ), (5.2)
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with sampling weights w(x) = p(x)
q(x) that ensure an unbiased estimate despite the biased

sampling procedure. It is easy to verify that optimal performance is attained when the

sampling distribution q(x) is chosen as

q∗(x) = h(x)p(x)

EX∼p(x)[h(X )]
= h(x)p(x)

r
. (5.3)

In fact, this choice reduces the variance to zero, and only a single sample is required. Of

course, this distribution is unattainable in practice, as it depends on the quantity-to-be-

estimated r in the denominator.

Implementing an effective importance sampling procedure requires the following

elements:

• A sufficiently flexible model that generates samples X ∼ q(x;θ), where θ represents

parameters that control the sampling distribution.

• Knowledge of the sample impact distribution h(x), so that the generative model

can be tuned accordingly.

• An expression for the likelihood ratio (sample weight) p(x)/q(x).

However, in the real world, these requirements are often not met: (1) Common para-

metric distributions may not be sufficiently flexible to capture complex data distribu-

tions. (2) The evaluation of impacts may be computationally expensive. (3) Many gener-

ative models do not have an expression for the likelihood ratio, compared to the baseline

model. In Section 5.2.3, we will demonstrate that the OVAE model, introduced below,

provides a natural framework to address all these challenges.

5.2.2. PROPOSED ORIENTED VAE-BASED GENERATIVE MODEL

For the basic VAE generative model described in Section 4.2, the distribution of latent

space codes approximately follows a multivariate standard normal distribution [92], i.e.

1

n

n∑
i=1

qφ(z|xi ) ∼
approx.

N (0,1) (5.4)

However, the relation between codes (values of z) and the corresponding states (val-

ues of x) or features of interest is otherwise unconstrained. If one aims to perform tar-

geted sampling of states, the location of interesting states in the latent space may not be

known, or such states may be distributed in ways that prohibit efficient sampling.
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Figure 5.1: Illustration of disordered latent space code.
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Figure 5.2: Illustration ordered latent space code.

In what follows, f (x) indicates a (single, continuous) feature of interest that can be

calculated from the state x. For risk assessment applications, it may be the state impact

( f (x) = h(x)) or some approximation thereof. In any case, it is assumed to be sufficient

to guide targeted sampling of x. Fig. 5.1 illustrates how four different states (x1, . . . , x4,

in order of increasing f (x)) may be mapped onto a three-dimensional latent space. In

this case, there is no easily apparent sampling strategy that preferentially targets samples

with a particular range of f (x).

Given this, we propose the oriented variational autoencoder (OVAE). The idea of

OVAE is to force one dimension of the latent space code z to correlate with f (x), while

still approximately following a standard normal distribution. In this work, we arbitrarily

align increasing values of f (x) with z1, the first coordinate of the latent space. In the ex-

ample given above, the aim is to assign z1 coordinates of samples in order of increasing

values f (xi ), as illustrated in Fig. 5.2.

The training process is designed not to disturb the overall distribution of states in the

latent space. After training, the known distribution of z1 and its known alignment with

f (x) can be used to perform targeted sampling. The remaining coordinates zl ̸=1 can

be sampled independently from standard normal distributions as for the regular VAE
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Figure 5.3: Data flow of calculating LOr i .

model. The change in the training process will be achieved by introducing an additional

orientation loss term to the training loss (4.7):

L =βLDK L +LRe +LOr i . (5.5)

The functional form of LOr i is determined as follows. Conceptually, the desired orien-

tation is achieved by considering the value f (x) as an additional feature that must be

reconstructed by the autoencoder network during training, according to the following

rules:

• The reconstructed feature (corresponding to a single latent code z) f̂ (z(xi )) ≈ f (xi )

is normally distributed, i.e. f̂ (z(xi )) ∼N (µ′
f (z(xi )),σ′

f (z(xi )).

• To ensure the desired association of z1(x) and f (x), only z1(x) (the first component

of the latent code z(x)) is used to generate µ′
f (z). Moreover, this is done using a

pre-specified decoder (explained below).

• Unlike other training data, the value f (x) is not used in the encoder, to facilitate

semi-supervised learning (explained below).

The decoding functionµ′
f (z1) is defined as the idealized monotonic mapping from z1

to f (x). This can be computed a priori, by considering that (1) the distribution of z1 over

all samples is a standard normal distribution and (2) using the empirical distribution

F̂ (x) of f (x) as the target distribution. Using the probability integral transform results in

µ′
f (z1) = F̂−1(Φ(z1)), (5.6)

where Φ is the CDF of the standard normal distribution. This procedure is illustrated in

Fig. 5.3. Following the steps that led to (4.5) we finally obtain the loss contribution

LOr i =
n∑

i=1

{[
f (xi )− F̂−1(Φ(qφ(zi ,1|xi )))

]2
/σ′2

fi
+ logσ′2

fi

}
. (5.7)
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Figure 5.4: Schematic of the proposed OVAE model.

The resulting schematic of the OVAE model is shown in Fig. 5.4. The coordinate z1 in the

latent space is indicated by the dashed box in the bottleneck layer B . Note that, when

utilized as a generator, the structure of the OVAE model is the same as that shown in

Fig. 4.1b, so the illustration is omitted.

When data labels f (x) are hard-to-get or when the analysis of data labels is time-

consuming, data sets may be partially labeled. In this case, the OVAE model can also be

trained in a semi-supervised manner. When a training batch contains both labeled and

unlabeled data, the Kullback-Leibler loss LDK L in (4.4) and reconstruction loss LRe in

(4.5) are calculated as an average over all data in the batch, but the orientation loss LOr i

shown in (5.7) is averaged only over the labeled data.

5.2.3. IMPORTANCE SAMPLING WITH OVAE

The OVAE model for data synthesis is highly suitable for use in importance sampling, be-

cause it has a known sample distribution in the latent space, and one of the latent space

variables encodes a feature of interest. In this work, we use a simple importance sam-

pling procedure that makes use of these properties. The biased sampling distribution in

the latent space is given by

q(z1) =αN (z1;0,1)+ (1−α)N (z1;µI S ,σ2
I S ), (5.8a)

q(zl ̸=1) =N (zl ;0,1), (5.8b)

where N (z;µ,σ2) = exp(−(z −µ)2/(2σ2))/(σ
p

2π). In this model, the first component z1

is sampled from a mixture of a standard normal distribution and a normal distribution
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with tunable parameters. The other components are sampled from the standard normal

distribution. The importance sampling weights are therefore given by

w(z) = p(z)

q(z)
= N (z1;0,1)

αN (z1;0,1)+ (1−α)N (z1;µI S ,σ2
I S )

. (5.9)

Exploding weights for relevant states is a known pitfall of importance sampling methods.

As can be seen from (5.9), the hyperparameter α ensures that the sampling weight never

exceeds 1/α. A value of 0.1 is used in this work, sacrificing a small fraction of the sample

in exchange for additional robustness.

The parameters µI S and σI S are chosen such that the importance sampling distribu-

tion approximates the optimal sampling distribution (5.3). The procedure for training

the OVAE model and the IS parameters for risk assessment (as described in Section 5.2.1)

is as follows:

1) Define a feature f (x) that equals or approximates the sample impact h(x).

2) If calculating f (x) is straightforward, label all data points xi . If not, label a random

subset.

3) Train the OVAE model on all data (fully or partially labeled).

4) Use the expectation-maximization (EM) algorithm to optimize µI S and σI S so that

(5.8a) approximates q∗(z).

5) Sample z̃ according to (5.8), decode latent samples using (4.2a) (inserting output

noise in the process) and estimate the risk r using (5.2) and weights (5.9).

5.3. CASE STUDY DESCRIPTION

The OVAE model was trained to generate snapshots of European country-level electric-

ity demand. The generated samples were then used in a multi-area resource adequacy

study, where the ability to generate targeted samples was used to greatly increase the

sample efficiency. The study case was similar to the one presented in Section 4.4. The

data and models used are explained in detail below.

5.3.1. ELECTRICITY DEMAND DATA AND OVAE MODEL STRUCTURE

Historical hourly load demand data for 34 European countries from 2017 and 2018 were

obtained from the Open Power System Data platform [48] (package version 2019-06-
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05). The columns of CS (Serbia and Montenegro), IS (Iceland), and UA (Ukraine) were

dropped due to incomplete records. Moreover, CY (Cyprus) was omitted due to its lack of

connection with power systems from other countries. The historical data were randomly

split into training and test sets in blocks of one week with a proportion of 4:1 (13,270

training and 3,212 test samples). The training set was min-max normalized before being

fed into the OVAE model, and the inverse transformation was applied to generated sam-

ples. The total volume of the generated data was the same as the historical training data

set, in order to balance them for visual and statistical analysis. However, we emphasize

that the purpose of constructing such a generative model is to have the ability to pre-

cisely generate limitless non-repeating data according to users’ interests, e.g. to reduce

the risk of overfitting in downstream machine learning tasks.

The parameters of the generative models were tuned for optimal performance. The

network contained 3 hidden layers in the encoder with dimensions all set as 1,000; the

bottleneck layer had 4 nodes (4-dimensional latent vector). The decoder also had 3 hid-

den layers with the same dimensions as the encoder. The ReLU activation function was

used, except for the generation of (µ, σ) and (µ′, σ′) leading up to the bottleneck and

output layers, respectively. The adaptive moment estimation (Adam) weight optimizer

[51] was utilized with default settings to iteratively optimize the value of weight matri-

ces W and bias vectors b. The batch size was 64, and the learning rate related was 10−4.

Training and data generation of the model was conducted in Python using tensorflow

on the Google Colab environment using the GPU option.

5.3.2. RESOURCE ADEQUACY MODEL

The multi-area resource adequacy model represents the network as a directed graph

with flow limits. The topology, capacities, and available generation in each node were

based on [103], the 2025 scenario of the ENTSO-E 2020 Mid-term Adequacy Forecast

(MAF2020). Net transfer capacities between countries were defined as the summation

of transfer capacities between their constituent zones. The released data set does not

include generators and unit capacities, so we modeled them as follows. The unit sizes

for conventional generators were set on a per-country basis as the closest value under

500 MW that was a divisor of the total capacity of the generators in each country. The

assumed unit availability was 80%, and outages were considered independent. The as-

sumed generating capacity of each country was a summation of conventional generating
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plus a constant 15% of nameplate wind power capacity. This model is not intended to

be an accurate representation of the European network, but to be representative of the

studies that can be carried out using the OVAE generative model.

5.3.3. MULTI-AREA RESOURCE ADEQUACY IMPACTS

For a Monte Carlo-based resource adequacy assessment, each sampled state s consists

of snapshots of generating capacity g i and demand di of each area i . Load curtailment

ci for each node can be calculated based on the flow constraints and dispatching policy

using (5.10). This quadratic problem (5.10) with variables c̃i (curtailment) and f̃i j (flows)

determines ci . It minimizes the total load curtailments and finds curtailments balance

between areas relative to the demand in that area [104]:

c(g ,d) = arg min
f̃ ,c̃

∑
i∈N

1

2di
c̃2

i + c̃i (5.10a)

f
i j
≤ f̃i j ≤ f i j , ∀(i j ) ∈L (5.10b)

0 ≤ c̃i ≤ di , ∀i ∈N (5.10c)

di − g i ≤
∑
j<i

f̃ j i −
∑
j>i

f̃i j + c̃i ≤ di , ∀i ∈N (5.10d)

Here, L and N are the sets of connections (from i to j with i < j ) and areas respectively.

Constraints on power flow f̃i j from node i to node j are given in (5.10b); (5.10c) limits

curtailment and (5.10d) enforces flow and generating power constraints. This optimiza-

tion problem is strictly convex and has a unique solution because the objective function

(5.10a) has a positive definite structure, and the constraints are linear. The python pack-

age quadprog [105] was used to solve this problem.

For a given sampled state s = (g ,d), the impact h(g ,d) is calculated using c according

to the metric of interest (LOLE or EENS):

hEE N S (g ,d) = 8760×hEP N S (g ,d), (5.11)

hLOLE (g ,d) = 8760×1hEP N S (g ,d)>0, (5.12)

both using the ‘power not supplied’

hEP N S (g ,d) = ∑
i∈N

ci (g ,d). (5.13)

Note that by summing curtailments over areas, these are whole-system adequacy met-

rics, instead of (more common) per-area metrics.
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The power system is a very reliable system, so draws from hEP N S (g ,d) are very likely

to return zero. It is undesirable to use a feature with such limited information for ori-

enting the OVAE latent space, so we measure the ‘distance from load shedding’ for those

states where hEP N S (s) = 0. This quantity∆ can be defined as the maximum demand that

can be added (in proportion to the base demand d) before a shortfall event occurs:

∆(g ,d) = max
f̃ ,k̃

k̃
∑

i∈N

di (5.14a)

f
i j
≤ f̃i j ≤ f i j , ∀(i j ) ∈L (5.14b)

di − g i ≤
∑
j<i

f̃ j i −
∑
j>i

f̃i j − k̃di ≤ di , ∀i ∈N (5.14c)

It is easily verified that this has a (non-negative) solution whenever hEP N S (g ,d) = 0.

The auxiliary feature f (d) that is used to train the OVAE model for demand can now

be defined in two steps. First, for each demand d , we draw k = 100 generation states g ( j ),

with j = 1, . . . ,100. Second, we define

fEE N S (d) =
{

8760×h(d), if h(d) > 0,

−8760×min j ∆(g ( j ),d) otherwise,
(5.15)

where

h(d) = 1

100

100∑
j=1

hEP N S (g ( j ),d). (5.16)

This is equal to hEE N S (s) averaged over 100 generation states when its value is positive,

and provides a continuous extension to negative values when no loss of load state is

encountered. This makes fEE N S (d) suitable as a feature for OVAE alignment.

5.4. EXPERIMENTAL RESULTS OF OVAE
This section describes a number of experiments to test the efficacy of the OVAE model

in capturing the data distribution, encoding the feature of interest and potential for im-

portance sampling.

5.4.1. IMPACT OF EXTRA ORIENTED LOSS LOr i ON MODEL TRAINING

In the first experiment, a simple feature, total load, was used to orient the OVAE model.

The total load

fT L(d) =∑
i

di (5.17)
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Figure 5.5: Evolution of loss terms during the training of the VAE and OVAE models.

is readily calculated for each load vector di and is expected to be correlated with system

stress. Like other training data, this feature is normalized. The evolution of the loss terms

during the training process of the VAE and OVAE models, for β= 5, is depicted in Fig. 5.5.

The two models show a similar tendency of the Reconstruction loss LRe (Fig. 5.5b). The

Kullback-Leibler loss LDK L is slightly higher for the OVAE model, probably due to the

additional orientation stress imposed by the Orientation loss LOr i (both Fig. 5.5a). De-

tailed comparison of the LDK L loss for each latent dimension (Fig. 5.5c, d) demonstrates

that the evolution of the loss (a measure of information contained along its dimension) is

similar, but not in identical order. Notably, in the OVAE model, the information content

is highest along the first dimension, and for both models, there is an unused dimension

(DK L=0). For the OVAE model, the total loss L of the test set starts increasing slightly

after 650 epochs. Thus, to avoid overfitting and to compromise on a good training result,

we set the number of training epochs as 650.

5.4.2. VALIDATION OF LATENT SPACE ALIGNMENT

The second experiment investigated the degree of alignment that is achieved between

the feature fT L(d) and the latent code z(d). Fig. 5.6a shows a scatter plot of z1(d) versus
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fT L(d) and z2(d) versus fT L(d), for all training points, using the encoder of the trained

OVAE model. The association between z1 and fT L(d) is clearly visible. To quantify this

dependence, the Spearman (rank) correlation coefficient was calculated. This associa-

tion is maintained for sampled data: Fig. 5.6b shows the same for samples z̃ that were

generated by sampling from the standard normal distribution in the latent space and

the total load fT L(d̃(z̃)) of the reconstructed snapshot. In contrast, no strong correlation

between fT L(d) and z1(d) (or between fT L(d̃(z̃)) and z̃1) is present for the VAE model

(Fig. 5.6c, d).

3 2 1 0 1 2 3
Value of Code z

(a)

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

To
ta

l L
oa

d 
f T

L(d
) (

M
W

)

1e5 OVAE Model
z1 ( =0.991)
z2 ( =-0.010)

3 2 1 0 1 2 3
Value of Sampled Code z

(b)

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

Ge
ne

ra
te

d 
To

ta
l L

oa
d 

f T
L(d

(z
)) 

(M
W

)

1e5 OVAE Model
z1 ( =0.993)
z2 ( =-0.002)

3 2 1 0 1 2 3
Value of Code z

(c)

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

To
ta

l L
oa

d 
f T

L(d
) (

M
W

)

1e5 VAE Model
z1 ( =-0.011)

3 2 1 0 1 2 3
Value of Sampled Code z

(d)

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

Ge
ne

ra
te

d 
To

ta
l L

oa
d 

f T
L(d

(z
)) 

(M
W

)

1e5 VAE Model
z1 ( =0.009)

Figure 5.6: Scatter plot and calculated Spearman correlations between total load (input fT L (d) or sampled

fT L (d̃(z̃))) and latent space data (z and z̃) when utilizing OVAE models (a, b) and VAE models (c, d).

5.4.3. UNBIASED AND BIASED SAMPLING

Apart from sampling z̃ from the standard normal distribution N (0,1), we changed the

distribution of z̃1 and observed the corresponding distribution of the total load fT L(d̃(z̃)).

Note that the other three dimensions of z̃ (i.e., z̃2, z̃3 and z̃4) were still sampled from the

standard normal distribution. Histograms of total load generated by using standard or



5

102 5. CONTROLLABLE GENERATOR: AN ORIENTED VARIATIONAL AUTOENCODER

nonstandard normal distributed z̃1 are depicted in Fig. 5.7. When z̃1 is sampled from

N (0,1), the distribution closely resembles that seen in the historical (training) data. By

changing the sampling distribution, targeted generation of low or high load states is pos-

sible.
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Figure 5.7: Total load of generated samples, compared between training data (top), unbiased sampling from

the OVAE model (middle) and biased sampling (two variations) from the OVAE model (bottom).

5.4.4. QUALITY EVALUATION OF GENERATED DATA

To further test the capacity of the CVAE model to generate realistic load profiles, non-

visual statistical tests were implemented to inspect different aspects of the generated

samples. Specifically, in this experiment, the Kolmogorov-Smirnov test, autoencoder-

based test, and energy test were utilized to examine univariate marginal distributions,

point-wise multivariate dependencies, and multivariate dependencies of population, re-

spectively (see Section 4.3.2 for a more extensive explanation). The statistical properties
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Figure 5.8: Statistical test results of historical data and generated data. (a) Kolmogorov-Smirnov test. (b)

Autoencoder-test. (c) Energy test

of four models were studied: the OVAE model, the VAE model, random sampling from

the training set, and random sampling from the test set.

The Kolmogorov-Smirnov test (Fig. 5.8a) assesses the accuracy of the marginal dis-

tributions. A p-value was calculated by comparing 66 random country-level demand

values from the training set (0.5% of the training data set) with the same number of sam-

ples from the study model. This was done for each country, and repeated 5,000 times.

The results were combined into p-value curves for each study model. The experimental

results demonstrate a significant difference between the training and test sets. Com-

pared to the test sets, data generated by the OVAE and VAE models have more similar

marginal distributions to that of the training set.

The autoencoder test trains a separate (regular) autoencoder on the training data and

tests point-wise multivariate dependencies. The distributions of reconstruction errors

obtained using real and generated data are shown in Fig. 5.8b. The results indicate that

typical reconstruction errors of demand snapshots generated by VAE and OVAE models

are larger than those of the reconstruction errors of training and test distributions. A

difference between training and test sets is also visible here.

Finally, the energy test quantifies the similarities of multivariate dependencies of

population, compared to the training set. The same as for the K-S test, we used ran-

dom subsets of 66 data points of the historical and generated population. We used 200

permutations and repeated 1,000 times to draw a distribution of p-values. The results in

Fig. 5.8c show that the distribution of samples generated by the OVAE and VAE models is

(in this sense) much closer to the training set than that of the test set.
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Figure 5.9: Scatter plot and calculated Spearman correlations between the normalized rank of fEE N S (d) and

latent space data z1(d) when trained with different percentages of labeled data.

5.4.5. EFFECTIVENESS OF PERFORMING SEMI-SUPERVISED LEARNING

In this section, experiments will be conducted to test if our proposed generator can work

properly on incomplete labeled data. Specifically, the OVAE model was trained on a data

set that is partially labeled using the computationally intensive label fEE N S (d) (5.15) for

resource adequacy studies. Different percentages of labeled data were used (5%, 20%,

30%) and labels were replaced by their normalized ranks prior to training.

The experimentally observed dependencies are shown in Fig. 5.9, for training data

(left) and test data (right). Using data with different percentages (pct.) of implicit la-

bels for training, fEE N S (d) and latent space data z1 show high Spearman correlations.

Notably, data with 5% labels have the highest Spearman correlation, which could be be-

cause the small volume of labeled data makes it easier to shape the latent space during

training. On the other hand, Spearman correlations are relatively stable on the test data

set.

5.4.6. MULTI-AREA ADEQUACY ASSESSMENT RESULTS

Finally, we tested a variety of load models in combination with the resource adequacy

model defined in Sections 5.3.2 and 5.3.3. For load models, we considered historical

data and 4 OVAE models that were trained with different settings. One used the total

load fT L(d) (5.17) as a heuristic feature, and the others were based on the more elaborate

fEE N S (d) feature ((5.15)). Different percentages of the training data (5%, 20%, and 30%)

were labeled.

Simulations to estimate the risk metrics LOLE and EENS were done using 1,000,000
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independent samples of demand and available generating capacity. Simulations were

implemented in Python 3.8.12 and were run under Windows 10 x64 on a PC equipped

with a 4-core Intel Xeon W-2223 CPU (3600 MHz).

To estimate the parameters of the importance sampling distribution (5.8), the pro-

cedure described in Section 5.2.3 was followed. The OVAE with standard normal dis-

tributions was used to generate 100,000 load states. From this collection of load states,

100,000 states d ( j ) were drawn at random along with random generating capacity states

g ( j ) and the sample weighting function

g (g ( j ),d ( j )) =1hEP N S (g ( j ),d ( j ))>0 (5.18)

was used to assign weights to the sampled points. This selects demand states that cause

a shortfall, according to the likelihood for this to happen. Finally, expectation maximiza-

tion was used to estimate µI S and σI S in (5.8a).

Table 5.1 shows the estimated LOLE and EENS values of the European continent for

historical load and OVAE models. Risk values are reported in the scientific format, fol-

lowed by the estimated standard error of the least significant digits in parentheses. For

example, 1.190(47)× 104 stands for an estimate of 11,900 with a standard error of 470.

When importance sampling was used, the optimized values for µI S and σI S are indi-

cated.

The speedup of sampling-based estimator A with respect to B can be estimated (us-

ing the asymptotic speed measure from [120]) as

speedup = r̂ 2
A tB SE(r̂B )2

r̂ 2
B tASE(r̂ A)2

, (5.19)

where t is the execution time of simulation, r̂ is the estimated value of the risk metric

and SE(r̂ ) is its standard error. Estimated speedup values for the LOLE and EENS risk

metrics are indicated in Table 5.1.

A few conclusions can be drawn from these results. First, all OVAE models, with or

without importance sampling, generate LOLE results that are compatible within their

margin of error. However, the LOLE results of around 18 hours per year are all higher than

that obtained using the historical load values (11 hours per year). That is not unexpected,

given the fact that smooth generative models necessarily extrapolate the historical load

distribution and will thus generate more extreme demand values.

The gap between historical and generative models increases for the EENS metric that

is more sensitive to extreme load values. Here, although the OVAE models trained with
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(partial) fEE N S (d) labels offer results that are consistent with each other, the OVAE model

trained on fT L labels consistently returns higher EENS values. This suggests that the use

of the fT L label results in a sample distribution that is slightly heavier in the tails, at least

in this instance.

Finally, significant speedups are consistently observed when importance sampling

is employed, for both the LOLE and EENS metrics. Although not as large as speedups

observed for purpose-made importance sampling schemes [117], it is important to em-

phasize that the OVAE is a generic data-driven generative model, that can be deployed

in a large variety of situations and levels of modeling complexity.





6
CONCLUSION AND

RECOMMENDATIONS

This thesis focuses on detecting power system anomalies and generating multivariate

load states and profiles. Motivated by the data modeling challenges arising from high

dimensional stochastic variables with complex univariate distribution and multivariate

dependencies, this thesis proposed an enhanced anomaly detector and novel data gen-

erator based on autoencoder neural networks. An autoencoder neural network-based

data attack detector was presented, and its hyperparameter selection strategy was in-

vestigated. Whitening transformation schemes and whitening matrices selections were

investigated to achieve optimal anomaly detection and localization performance, and

the performance of anomaly localization was quantified by several novel metrics. In ad-

dition, to generate multivariate load data, a conditional variational autoencoder-based

data generator has been studied. The impact of output noise and its parameterization

on the quality of the generated data was investigated, and the data quality was evaluated

in both a visual and statistical manner. Moreover, the performance of the generator was

further validated using more stochastic load data from a large variety of individual users.

Finally, an oriented variational autoencoder-based data generator has been proposed to

synthesize states with a carefully controlled bias. Its performance has been tested with

109
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completely labeled and incompletely labeled training data. Based on the OVAE model,

targeted data were sampled with well-defined importance weights.

The following subsections briefly conclude this thesis and provide recommendations

for future research.

6.1. CONCLUSIONS

The research questions Q1 to Q4 proposed in Chapter 1 have been addressed with both

theoretical analysis and experimental validation. The main conclusions of each chapter

regarding the research questions are listed as follows.

• AE-based Anomaly Detection (Q1): Chapter 2 proposed an FDIA detection ap-

proach based on an autoencoder neural network. The proposed detector learns

the internal dependency of ‘normal’ operation data, which avoids the need for

gathering attack data for training the classifiers and thus effectively overcomes

the inherent unbalanced training data set challenge in the power system. Focus-

ing on ‘normal’ operating conditions only, novel attacks with features that do not

match the patterns inferred from ‘normal’ data will then be considered anomalies.

This one-class classification strategy is well suited for detecting novel attacks that

may be fast-evolving, launched by attackers who are resourceful and possibly well-

equipped. In addition, the autoencoder can be used as a dimension reduction tool

by extracting the lower-dimensional signal from the bottleneck layer.

Chapter 2 validated the performance of the proposed detector using case stud-

ies based on the IEEE 118-bus system: the mechanism is able to robustly detect

stealthy FDIAs. Moreover, it still outperforms a BDD scheme when the attacker

has only approximate knowledge of the network parameters. In the case study,

experiments were conducted to investigate the influence of hyperparameters, i.e.,

learning rate, batch size, and layer configurations, along with threshold selections

on the training process and anomaly detection. The experimental results demon-

strate that under proper configurations, the mechanism is able to demonstrate

satisfactory learning efficiency and FDIA detection performance. Based on those

results, preliminary hyperparameter selection and tuning strategies were put for-

ward.

• Detector Enhancement (Q2): Autoencoder neural networks are a powerful tool
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for the detection of unknown anomalies. A threshold for the (Euclidean) length of

the residuals is typically used to identify anomalous states of a system, but the cor-

relation between residuals is identified as a source of misclassification. Chapter 3

investigated how whitening-based decorrelation of the input features and residu-

als can improve the performance of the anomaly detector, for a use case of detect-

ing anomalous wind power generation reduction at one or three out of 99 differ-

ent locations. The reduction of the generated power could represent unexpected

malfunction, disturbance, unscheduled outages, or unreported maintenance ac-

tivities, which are generic anomalies compared to data attacks discussed in Chap-

ter 2. Moreover, the outputs of spatially distributed wind farms are highly variable

due to natural variations in wind speed.

Different data processing methods, neural network configuration schemes, and

whitening matrix selections were applied to investigate their influence on the per-

formance of autoencoder-based detectors. Whitening of the input data was found

to be most beneficial for detection performance across multiple metrics, i.e., ROC,

PPV, TNR, ACC, F1-score. A small further enhancement was obtained when both

input data and the residuals were whitened (combined whitening). However, in-

put whitening was found to reduce the ability to locate the source of anomalies.

Three metrics, RMS Ratio, Gap Ratio, and OCR, were formulated to quantify this

ability. Outstanding localization performance was obtained using standardization

of the input data and whitening of the residuals with the ZCA or ZCA-cor whiten-

ing matrix. The localization performance was further enhanced by implementing

an offset to the whitening transformation.

• CVAE-based Data Generation (Q3): Chapter 4 investigated the performance of

conditional variational autoencoder- and variational autoencoder-based models

to generate multivariate load states. Performance was tested using three statistical

tests: Kolmogorov-Smirnov test for univariate marginal distributions, autoencoder-

based point-wise test for multivariate dependencies, and energy test for multivari-

ate dependencies of population. A Monte Carlo generation adequacy study on the

European network was implemented to illustrate the models’ ability to generate

realistic tail distribution. In addition to generating snapshots of country-level load

states with limited diversity and variability, Chapter 4 also validated the models’

capacity to generate synthetic load profiles representing a large variety of individ-
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ual users, where the loads are at a lower aggregation level and are more stochastic.

The experimental results demonstrate that the sample noise in the generator and

co-optimized output noise parameters lead to generated samples that show better

marginal distributions and dependencies when compared with common (C)VAE

implementations (fixed noise parameter, noise omitted from the generator). A loss

weighting factorβ (hyperparameter) can be used to tune the model’s performance

as a β-VAE [95]. The (C)VAE-based models significantly outperformed Gaussian

copula and cGAN models on at least one of the three statistical tests and were

competitive on all others. With access to contextual information, the CVAE model

slightly outperformed the VAE model. Moreover, such information can be used for

target analysis, e.g., as part of a Monte Carlo importance sampling scheme that se-

lects specific hours of the day. The results of generating contextual load profiles of

individual customers demonstrate that the proposed model can generate visually

realistic profiles that perform well in statistical tests. The results also reconfirm

the importance of explicitly including (trained) noise in the final stage of the load

profile generator.

• To achieve a more controllable data generator (Q4): (C)VAE is demonstrated to

generate data with both marginal distributions and multi-variate dependencies

embedded. However, naive (C)VAE models don’t constrain how latent space codes

are placed throughout the standard Gaussian distribution. However, samples with

specific properties are valuable for certain applications. Using latent space codes

is a promising solution to generate samples with certain properties. To this end,

an oriented variational autoencoder (OVAE) was proposed to relate the first di-

mension of latent space codes and the characteristics of original space data by

Spearman correlation. Specifically, apart from the Kullback-Leibler loss LDK L and

reconstruction loss LRe terms in (4.5), applied in (C)VAE models, an extra orienta-

tion loss LOr i was used during training to force values of the first dimension codes

to increase monotonically with values of the property of interest.

The performance of the OVAE-based data generator was tested by comprehensive

experiments. With an extra orientation loss added, the convergence of the other

two losses was affected in a limited way. Moreover, the OVAE generations demon-

strated comparable qualities of data generated by the VAE model. When the data

set was completely labeled with easy-to-obtain labels (i.e., total load) that are ap-
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proximately related to the exact generation goal (i.e., system risk), the experimen-

tal results demonstrated not only a good training correlation between data prop-

erties and the first dimension codes but also a satisfactory generation correlation

between them. Using the trained OVAE model, the generation process of data with

user-defined characteristics was significantly accelerated with well-specified im-

portance weight. Additionally, when only a subset (5-30%) of the training data was

labeled with precise information on system risk (i.e., EENS), the OVAE model could

still be adequately trained, showing an acceptable Spearman correlation between

data properties and latent space codes. A case study demonstrated that the OVAE

model can be used to speed up power system risk assessment studies.

6.2. DISCUSSION AND RESEARCH RECOMMENDATIONS

The results in this thesis suggest a number of interesting avenues for future research.

The detailed recommendations are provided below.

• Anomaly detection in time-series data: In Chapter 2 and 3, the (enhanced) au-

toencoder neural network-based anomaly detectors were trained using only snap-

shots of system states. However, if the attacker replaces the real system state with a

historical state that should not be present at the moment, then the trained detec-

tors are not able to detect it, since no time-series features of the system states have

been captured during the training process. In light of this, spatio-temporal mea-

surements can be used as inputs for the autoencoder during training, and the in-

puts are matrices instead of pure measurement vectors (snapshots). The internal

dependencies of each measurement vector, along with the dependencies between

those vectors, will be learned together. To do so, the recurrent neural network

(RNN) [121] and convolutional neural networks (CNN) [122] are promising solu-

tions to be involved in the detector proposed in Chapter 2 and Chapter 3. More-

over, contextual information, such as the time of day, and day of the week, could

be involved in detecting anomalies in time-series data.

• Anomaly detection in higher-dimensional spaces: The structure of the autoen-

coder neural network is naturally suitable for a dimension reduction task of high-

dimensional inputs. To validate the anomaly detection performance of the pro-

posed autoencoder-based detectors in high-dimensional space, 339-dimensional
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and 99-dimensional measurement vectors were used in Chapter 2 and 3, respec-

tively. However, with the large-scale deployment of sensors, the dimension of

measurements will be increasing, and this may degrade the detection sensitivity.

The scalability of autoencoder-based detectors for higher-dimensional anomaly

detection is worth investigating. To do so, the Polish 2383-bus system [123] may

be suitable for a case study. When detecting anomalies in such a high-dimensional

space, a whitening transformation, discussed in Chapter 3 for both input and resid-

ual data is highly recommended. Moreover, the partition of a large-scale power

grid and considering only data measured in small parts could be another promis-

ing solution to address the challenges of extremely high-dimensional data.

• Automatic hyperparameter selection for anomaly detector: In Chapter 2 and

3, the hyperparameters of the autoencoder neural networks were set using a trial-

and-error process. This manual process is rather time-consuming because of the

large number of hyperparameters, e.g., number of layers, dimension of layers,

learning rate, batch size, activation function, training epochs, initialization of the

weight and bias, and optimization algorithm. The combinations of those hyper-

parameters are numerous, and there could be a long training process under each

combination. In addition, the hyperparameter tuning process also requires spe-

cialist experience and rules of thumb. In view of this, investigating automated and

computationally efficient hyperparameter tuning strategies is appealing. Random

search [124], and Bayesian Optimization [125] may be possible solutions to find

satisfactory hyperparameter values with fewer function evaluations [126].

• More expressivity of the decoder: In Chapter 4, based on the (conditional) vari-

ational autoencoder, data generators were proposed to synthesize country-level

load states and individual load profiles. These generators were trained by a con-

straint that the output noise on each dimension is independent. Due to the com-

plex multi-dimensional distribution involved in real-world data, generating data

with noise that is dimensionally correlated may help to synthesize data with a

more realistic distribution. Cholesky decomposition could be a solution to make

the noise distributed with full covariance. The equation shown in (4.2b) can be

changed to x̂ = µ′(ẑ)+L(ẑ) · ϵ, where L is the lower triangular matrix of the output

noise. Notably, the quality of the generated data is also required to be verified us-

ing the metrics used in Chapter 4. Initial results show that the additional flexibility
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of correlated output noise frequently results in unstable training.

• Embedding of physical constraints in data generators: In Chapter 4, the gener-

ated load states and load profiles were decoded from codes sampled from multi-

dimensional standard Gaussian distributions. However, the generation process is

not constrained by any physical limits, thus there is a probability that the gener-

ated load data exceeds the upper or lower limits of possible loads. A brute-force

truncated Gaussian distribution might restrain the trained generator from synthe-

sizing extreme values. However, this could, in turn, affect the quality of the gen-

erated data, such as the marginal distribution. In light of this, curiosity is aroused

about how to embed physical constraints during the training process. A possi-

ble solution could be adding an extra loss term to the loss function as a Physics-

informed neural network (PINN) [127]. This extra loss is related to the value of

x̂ shown in (4.2b). Once the value of x̂ exceeds the set constraints, a large penalty

will be imposed on the loss value. However, the implementation details and math-

ematical derivations need to be carefully considered.
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Statistics, Series A, pp. 119–133, 1998.

[68] J. H. Friedman, “Exploratory projection pursuit”, Journal of the American statis-

tical association, vol. 82, no. 397, pp. 249–266, 1987.

[69] P. C. Mahalanobis, “On the generalised distance in statistics”, Proceedings of the

National Institute of Sciences of India, vol. 2, pp. 49–55, 1936.

[70] Wikipedia, “North holland”, wikipedia, 2010. [Online]. Available: https://en.

wikipedia.org/wiki/North_Holland.

[71] Wikipedia, “List of municipalities in south holland”, wikipedia, 2010. [Online].

Available: https://en.wikipedia.org/wiki/List_of_municipalities_

in_South_Holland.

[72] S. Pfenninger and I. Staffell, “Renewables.ninja”, Renewables.ninja, 2017. [On-

line]. Available: https://www.renewables.ninja/.

[73] M. M. Rienecker, M. J. Suarez, R. Gelaro, R. Todling, et al., “Merra: Nasa’s modern-

era retrospective analysis for research and applications”, Journal of climate, vol. 24,

no. 14, pp. 3624–3648, 2011.

[74] I. Staffell and S. Pfenninger, “Using bias-corrected reanalysis to simulate current

and future wind power output”, Energy, vol. 114, pp. 1224–1239, 2016.

[75] T. Fawcett, “An introduction to roc analysis”, Pattern recognition letters, vol. 27,

no. 8, pp. 861–874, 2006.

[76] C. Wang, E. Sharifnia, Z. Gao, S. H. Tindemans, and P. Palensky, “Generating mul-

tivariate load states using a conditional variational autoencoder”, Electric Power

Systems Research, vol. 213, p. 108 603, 2022.

https://en.wikipedia.org/wiki/North_Holland
https://en.wikipedia.org/wiki/North_Holland
https://en.wikipedia.org/wiki/List_of_municipalities_in_South_Holland
https://en.wikipedia.org/wiki/List_of_municipalities_in_South_Holland
https://www.renewables.ninja/


124 BIBLIOGRAPHY

[77] C. Wang, S. H. Tindemans, and P. Palensky, “Generating contextual load profiles

using a conditional variational autoencoder”, in 2022 IEEE PES Innovative Smart

Grid Technologies Conference Europe (ISGT-Europe), IEEE, 2022, pp. 1–6.

[78] I. Konstantelos, M. Sun, S. H. Tindemans, S. Issad, P. Panciatici, and G. Strbac,

“Using vine copulas to generate representative system states for machine learn-

ing”, IEEE Transactions on Power Systems, vol. 34, no. 1, pp. 225–235, 2019. DOI:

10.1109/TPWRS.2018.2859367.

[79] M.-S. Kang, C.-S. Chen, Y.-L. Ke, C.-H. Lin, and C.-W. Huang, “Load profile syn-

thesis and wind-power-generation prediction for an isolated power system”, IEEE

Transactions on Industry Applications, vol. 43, no. 6, pp. 1459–1464, 2007.

[80] F. B. dos Reis, R. Tonkoski, and T. M. Hansen, “Synthetic residential load models

for smart city energy management simulations”, IET Smart Grid, vol. 3, no. 3,

pp. 342–354, 2020.

[81] S. Theodoridis, Machine Learning: A Bayesian and Optimization Perspective, 2nd ed.

Academic Press, 2020, pp. 67–120, ISBN:978-0-12-818803-3, ISBN: 978-0-12-818803-

3.

[82] D. P. Kingma and M. Welling, “Auto-encoding variational bayes”, arXiv preprint

arXiv:1312.6114, 2013.

[83] Y. Gu, Q. Chen, K. Liu, L. Xie, and C. Kang, “Gan-based model for residential load

generation considering typical consumption patterns”, in 2019 IEEE Power & En-

ergy Society Innovative Smart Grid Technologies Conference (ISGT), IEEE, 2019,

pp. 1–5.

[84] Z. Wang and T. Hong, “Generating realistic building electrical load profiles through

the generative adversarial network (gan)”, Energy and Buildings, vol. 224, p. 110 299,

2020.

[85] R. Yu, “A tutorial on VAEs: From Bayes’ rule to lossless compression”, arXiv preprint

arXiv:2006.10273, 2020.

[86] S. Lin, S. Roberts, N. Trigoni, and R. Clark, “Balancing reconstruction quality and

regularisation in elbo for vaes”, arXiv preprint arXiv:1909.03765, 2019.

[87] O. Rybkin, K. Daniilidis, and S. Levine, “Simple and effective VAE training with

calibrated decoders”, in International Conference on Machine Learning, PMLR,

2021, pp. 9179–9189.

https://doi.org/10.1109/TPWRS.2018.2859367


BIBLIOGRAPHY 125

[88] C. Doersch, “Tutorial on variational autoencoders”, arXiv preprint arXiv:1606.05908,

2016.

[89] C. Mylonas, I. Abdallah, and E. Chatzi, “Conditional variational autoencoders for

probabilistic wind turbine blade fatigue estimation using supervisory, control,

and data acquisition data”, Wind Energy, vol. 24, pp. 1122–1139, 10 2021.

[90] Y. Qi, W. Hu, Y. Dong, Y. Fan, L. Dong, and M. Xiao, “Optimal configuration of

concentrating solar power in multienergy power systems with an improved vari-

ational autoencoder”, Applied Energy, vol. 274, p. 115 124, 2020.

[91] M. Brégère and R. J. Bessa, “Simulating tariff impact in electrical energy con-

sumption profiles with conditional variational autoencoders”, IEEE Access, vol. 8,

pp. 131 949–131 966, 2020.

[92] D. P. Kingma, M. Welling, et al., “An introduction to variational autoencoders”,

Foundations and Trends® in Machine Learning, vol. 12, no. 4, pp. 307–392, 2019.

[93] J. Xu and G. Durrett, “Spherical latent spaces for stable variational autoencoders”,

arXiv preprint arXiv:1808.10805, 2018.

[94] W. Joo, W. Lee, S. Park, and I.-C. Moon, “Dirichlet variational autoencoder”, Pat-

tern Recognition, vol. 107, p. 107 514, 2020.

[95] C. P. Burgess, I. Higgins, A. Pal, et al., “Understanding disentangling in β-VAE”,

arXiv preprint arXiv:1804.03599, 2018.

[96] C. Wang, Code release: Generating multivariate load states using a conditional

variational autoencoder, 2022. Accessed on: Apr. 13, 2022. [Online]. Available:

https://github.com/ChenguangWang-Sam/PSCC2022-CVAE.

[97] E. Sharifnia, Code release: System adequacy case study for CVAE load generation,

PSCC 2022, 2022. Accessed on: Apr. 15, 2022. [Online]. Available: https://github.

com/ensieh-sharifnia/MC-PSCC2022.

[98] F. J. Massey Jr, “The Kolmogorov-Smirnov test for goodness of fit”, Journal of the

American statistical Association, vol. 46, no. 253, pp. 68–78, 1951.

[99] G. J. Székely and M. L. Rizzo, “Energy statistics: A class of statistics based on dis-

tances”, Journal of statistical planning and inference, vol. 143, no. 8, pp. 1249–

1272, 2013.

https://github.com/ChenguangWang-Sam/PSCC2022-CVAE
https://github.com/ensieh-sharifnia/MC-PSCC2022
https://github.com/ensieh-sharifnia/MC-PSCC2022


126 BIBLIOGRAPHY

[100] J. Djolonga, A PyTorch library for differentiable two-sample tests, 2017. Accessed

on: Oct. 3, 2021. [Online]. Available: https://github.com/josipd/torch-

two-sample/blob/master/docs/index.rst.

[101] I. Goodfellow, J. Pouget-Abadie, M. Mirza, et al., “Generative adversarial nets”,

Advances in neural information processing systems, vol. 27, 2014.

[102] M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein generative adversarial net-

works”, in International conference on machine learning, PMLR, 2017, pp. 214–

223.

[103] ENTSO-E, Mid-term adequacy forecast 2020, 2020. Accessed on: Oct. 1, 2021. [On-

line]. Available: https://www.entsoe.eu/outlooks/midterm/.

[104] M. P. Evans and S. H. Tindemans, “Assessing energy storage requirements based

on accepted risks”, in 2020 IEEE PES Innovative Smart Grid Technologies Europe

(ISGT-Europe), IEEE, 2020, pp. 1109–1113.

[105] R. T. McGibbon, Quadprog 0.1.8 - pypi, 2021. Accessed on: Aug. 15, 2021. [Online].

Available: https://pypi.org/project/quadprog.

[106] nl.wikipedia.org, “Alliander”, Wikipedia, 2022. Accessed on: May. 16, 2022. [On-

line]. Available: https://nl.wikipedia.org/wiki/Alliander.

[107] S. Lloyd, “Least squares quantization in pcm”, IEEE transactions on information

theory, vol. 28, no. 2, pp. 129–137, 1982.

[108] H. Wang, Y.-P. Fang, and E. Zio, “Risk assessment of an electrical power system

considering the influence of traffic congestion on a hypothetical scenario of elec-

trified transportation system in new york state”, IEEE Transactions on Intelligent

Transportation Systems, vol. 22, no. 1, pp. 142–155, 2019.

[109] G. Baasch, G. Rousseau, and R. Evins, “A conditional generative adversarial net-

work for energy use in multiple buildings using scarce data”, Energy and AI, vol. 5,

p. 100 087, 2021.

[110] A. Creswell, T. White, V. Dumoulin, K. Arulkumaran, B. Sengupta, and A. A. Bharath,

“Generative adversarial networks: An overview”, IEEE signal processing maga-

zine, vol. 35, no. 1, pp. 53–65, 2018.

[111] T. Spinner, J. Körner, J. Görtler, and O. Deussen, “Towards an interpretable latent

space: An intuitive comparison of autoencoders with variational autoencoders”,

in IEEE VIS 2018, 2018.

https://github.com/josipd/torch-two-sample/blob/master/docs/index.rst
https://github.com/josipd/torch-two-sample/blob/master/docs/index.rst
https://www.entsoe.eu/outlooks/midterm/
https://pypi.org/project/quadprog
https://nl.wikipedia.org/wiki/Alliander


BIBLIOGRAPHY 127

[112] G. P. Way and C. S. Greene, “Extracting a biologically relevant latent space from

cancer transcriptomes with variational autoencoders”, in PACIFIC SYMPOSIUM

ON BIOCOMPUTING 2018: Proceedings of the Pacific Symposium, World Scien-

tific, 2018, pp. 80–91.

[113] A. Sarkar and S. Cooper, “Generating and blending game levels via quality-diversity

in the latent space of a variational autoencoder”, in The 16th International Con-

ference on the Foundations of Digital Games (FDG) 2021, 2021, pp. 1–11.

[114] C. Wang, S. H. Tindemans, and P. Palensky, “Generating contextual load profiles

using a conditional variational autoencoder”, arXiv preprint arXiv:2209.04056,

2022.

[115] Q. Chen and L. Mili, “Composite power system vulnerability evaluation to cas-

cading failures using importance sampling and antithetic variates”, IEEE trans-

actions on power systems, vol. 28, no. 3, pp. 2321–2330, 2013.

[116] A. B. Owen, Y. Maximov, and M. Chertkov, “Importance sampling the union of

rare events with an application to power systems analysis”, Electronic Journal of

Statistics, vol. 13, no. 1, pp. 231–254, 2019.

[117] A. M. L. Da Silva, R. A. Fernandez, and C. Singh, “Generating capacity reliability

evaluation based on monte carlo simulation and cross-entropy methods”, IEEE

Transactions on Power Systems, vol. 25, no. 1, pp. 129–137, 2010.

[118] Y. Zhao, Y. Han, Y. Liu, K. Xie, W. Li, and J. Yu, “Cross-entropy-based compos-

ite system reliability evaluation using subset simulation and minimum compu-

tational burden criterion”, IEEE Transactions on Power Systems, vol. 36, no. 6,

pp. 5198–5209, 2021.

[119] B. Roy and L. Wenyuan, Reliability assessment of electric power systems using Monte

Carlo methods. Springer Science & Business Media, 2013.

[120] S. Tindemans and G. Strbac, “Accelerating system adequacy assessment using

the multilevel monte carlo approach”, Electric Power Systems Research, vol. 189,

p. 106 740, 2020.

[121] W. Zaremba, I. Sutskever, and O. Vinyals, “Recurrent neural network regulariza-

tion”, arXiv preprint arXiv:1409.2329, 2014.



128 BIBLIOGRAPHY

[122] S. Albawi, T. A. Mohammed, and S. Al-Zawi, “Understanding of a convolutional

neural network”, in 2017 international conference on engineering and technology

(ICET), Ieee, 2017, pp. 1–6.

[123] R. D. Zimmerman, C. E. Murillo-Sánchez, and R. J. Thomas, “Matpower: Steady-

state operations, planning, and analysis tools for power systems research and ed-

ucation”, IEEE Transactions on power systems, vol. 26, no. 1, pp. 12–19, 2010.

[124] J. Bergstra and Y. Bengio, “Random search for hyper-parameter optimization.”,

Journal of machine learning research, vol. 13, no. 2, 2012.

[125] J. Snoek, H. Larochelle, and R. P. Adams, “Practical bayesian optimization of ma-

chine learning algorithms”, Advances in neural information processing systems,

vol. 25, 2012.

[126] F. Hutter, L. Kotthoff, and J. Vanschoren, Automated machine learning: methods,

systems, challenges. Springer Nature, 2019.

[127] G. E. Karniadakis, I. G. Kevrekidis, L. Lu, P. Perdikaris, S. Wang, and L. Yang, “Physics-

informed machine learning”, Nature Reviews Physics, vol. 3, no. 6, pp. 422–440,

2021.



CURRICULUM VITÆ

Chenguang Wang was born on April 23, 1992, in Jingzhou, Hubei Province, China. He

obtained his B.Sc. degree in Electrical Engineering from Wuhan University of Technol-

ogy in 2014, where he devoted much of his spare time to researching power electronics

technologies and conducting experiments in the laboratory. During his undergraduate

studies, he won the first prize in the "National Undergraduate Electronics Design Con-

test (Hubei Division)," which is one of the most prestigious student competitions in elec-

trical engineering. With achievements in student contests and high academic grades,

he was recommended as an exam-exempted postgraduate to Xi’an Jiaotong University,

where he pursued a master’s degree in High Voltage and Insulation Technology in Elec-

trical Engineering.

In 2017, Chenguang graduated from Xi’an Jiaotong University with an Outstanding

Graduate award, having received several awards and scholarships during his master’s

studies, including the 2014-2015 school year "China National scholarship" and the grand

prize of the "8th University Student Social Practice and Science Contest on Energy Saving

& Emission Reduction," which is a highly regarded academic competition in China. With

only 0.36% of participants receiving the grand prize, Chenguang led his team to rank 9th

out of over 2500 teams.

In 2018, Chenguang joined the Intelligent Electrical Power Grids group at Delft Uni-

versity of Technology to pursue his Ph.D. degree under the supervision of Prof.dr. Peter

Palensky and Dr. Simon Tindemans. During his Ph.D. journey, he focused on develop-

ing state-of-the-art machine learning models to address the challenges of power system

anomaly detection and synthetic data generation. As the first author, he published and

submitted 6 high-level research papers in top conferences and journals, attracting atten-

tion from both industry and academia due to their practicality.

129





LIST OF PUBLICATIONS

C. Wang, S. Tindemans, K. Pan, and P. Palensky, “Detection of false data injec-

tion attacks using the autoencoder approach”, in 2020 International Conference

on Probabilistic Methods Applied to Power Systems (PMAPS), IEEE, Liege, Belgium,

2020, pp. 1–6. DOI: 10.1109/PMAPS47429.2020.9183526

C. Wang, K. Pan, S. Tindemans, and P. Palensky, “Training strategies for autoencoder-

based detection of false data injection attacks”, in 2020 IEEE PES Innovative Smart

Grid Technologies Europe (ISGT-Europe), IEEE, Den Haag, the Netherlands, 2020,

pp. 1–5. DOI: 10.1109/ISGT-Europe47291.2020.9248894

C. Wang, E. Sharifnia, Z. Gao, S. H. Tindemans, and P. Palensky, “Generating multi-

variate load states using a conditional variational autoencoder”, presented in XXII

Power Systems Computation Conference (PSCC 2022), Porto, Portugal, 2022 and

published in Electric Power Systems Research, vol. 213, p. 108603, 2022.

C. Wang, S. Tindemans, and P. Palensky, “Improved Anomaly Detection and Local-

ization Using Whitening-Enhanced Autoencoders”, IEEE Transactions on Indus-

trial Informatics, Accepted. DOI: 10.1109/TII.2023.3268685

C. Wang, S. H. Tindemans, and P. Palensky, “Generating contextual load profiles

using a conditional variational autoencoder”, in 2022 IEEE PES Innovative Smart

Grid Technologies Europe (ISGT-Europe), IEEE, Novi Sad, Serbia, 2022, pp. 1–6.

DOI: 10.1109/ISGT-Europe54678.2022.9960309

C. Wang, E. Sharifnia, S. Tindemans, and P. Palensky, “Targeted Analysis of High-

risk States Using an Oriented Variational Autoencoder”, IEEE Transactions on Power

System, Submitted.

131





ACKNOWLEDGEMENTS

Throughout my Ph.D. journey, I have been fortunate to have the support and guidance

of many individuals who generously shared their time, expertise, and resources. I am

deeply grateful for the invaluable insights, feedback, and encouragement that they pro-

vided. I would like to express my heartfelt gratitude to all those who have made this Ph.D.

thesis possible.

First of all, I would like to express my deep gratitude to Prof.dr. P. Palensky, my Ph.D.

promoter, for his exceptional support, guidance, and expertise throughout my doctoral

studies. Peter’s efficiency, excellent communication skills, and commitment to my re-

search have been vital in the successful completion of my thesis. I have learned so much

from Peter’s vast knowledge and experience, as he always kept my research on the right

track and provided invaluable feedback. He also shared relevant conference and journal

paper opportunities with me promptly, ensuring that I was constantly updated on the

latest developments in my field.

Moreover, Peter not only cared about my academic growth but also my mental well-

being during the COVID-19 pandemic. When I was stranded outside the Netherlands

due to travel restrictions, he frequently reached out to me and offered encouragement

and support. His emails and messages helped me stay motivated and focused on my

research and personal development. I feel incredibly fortunate to have had Peter as my

promoter, and I will always be grateful for his generous and steadfast mentorship.

Next, I would like to express my sincere gratitude to Dr. S.H. Tindemans, my copro-

motor, for his invaluable guidance throughout my Ph.D. journey. Simon’s dedication and

expertise have been instrumental in shaping my research and improving my academic

writing. I am deeply grateful to him for revising my academic papers late into the night

and even taking time out of his vacation to do so. Simon not only helped me with for-

matting, symbols, and expressions, but also emphasized the importance of precision in

describing my research data and provided insightful suggestions to refine my scientific

experiments.

In addition, Simon has inspired me with new research ideas, which have broadened

133



134 ACKNOWLEDGEMENTS

my perspective and challenged me to think more critically. Our weekly meetings have

been the highlight of my research experience. Simon’s thought-provoking questions

have often made my “head spin”, but they have always encouraged me to make further

progress. His excellent advice has helped me avoid time-consuming pitfalls and to stay

focused on what matters most. Most importantly, Simon has taught me the value of

"baby steps" in research. He has always motivated me to take small, achievable steps

toward my goals, rather than trying to tackle everything at once. This approach has been

a game-changer for me, and I am grateful for Simon’s wisdom and direction. Thank you,

Simon, for being an outstanding copromotor. Your support and inspiration have made

all the difference, and I am honored to have had you as my copromotor.

I would like to convey my deep appreciation to my parents for their consistent and

unwavering support over the past 30 years. Particularly, I want to thank my father for

collecting every achievement I made and compiling them into a special album. This

album not only reflects my academic growth, but also serves as a constant reminder of

the immense love and pride my father has for me. His steadfast dedication and support

have been a constant source of motivation for me throughout my academic pursuits. It

is my father’s emphasis on education that has brought me to where I am today. I would

also like to express my sincere appreciation to my mother for her unwavering love and

support. Her infectious passion for life, including her love of singing and travel, and

her enthusiasm for sharing her life highlights have consistently inspired me to see the

beauty in everyday moments. The photos and videos she shared with me have filled

me with joy and provided me with a sense of relaxation during my studies. Her positive

attitude and loving care, evident in her frequent phone calls, have helped me to face the

challenges of life with optimism and perseverance. I am deeply grateful to have them as

my parents and to know that I can always count on their support in every aspect of my

life. I would also like to extend my heartfelt gratitude to my parents-in-law and family

for their unconditional support during my Ph.D. studies abroad. Without their belief in

me, I would not have been able to achieve all that I have.

Additionally, I would like to express my deep gratitude to my wife, Ting Hu, for her

unwavering support and encouragement. Her faith in me has been the foundation upon

which my academic achievements have been built. I am incredibly grateful to her for

agreeing to my decision to resign from my well-paid job and pursue my Ph.D. Thank you

for believing in me in pursuing my dreams. Furthermore, I am grateful for the sacrifices

my wife has made for our partnership. After completing her master’s degree, she gave



ACKNOWLEDGEMENTS 135

up the opportunity to pursue a career in a nice hospital and moved to the Netherlands

to be with me. Her selflessness and love have been a constant source of strength and

motivation for me, and I feel incredibly fortunate to have her by my side every day. I

could not have made it this far without her. I am forever appreciative for her presence in

my life.

Next, I would like to thank my Ph.D. committee members, Prof.dr. Johan Smit, Prof.dr.

ir. J.A. La Poutré, Prof.dr.ir. P. Bauer, Dr. P.H. Nguyen, Dr. P. Mohajerin Esfahani, Dr. S. Cha-

tzivasileiadis, and Dr.ir. S.E. Verwer for their assessment of this thesis.

I would like to express my gratitude to my coauthors Kaikai Pan, Ensieh Sharifnia,

and Zhi Gao for their invaluable contributions to our academic work. Their insights and

expertise have greatly enhanced the quality of our research, and I am deeply grateful for

their collaboration. I would like to thank Dr. Milos Cvetkovic for his academic sugges-

tions at the beginning of my Ph.D. journey. Many thanks to Umer, Digvijay and Hazem

for their help. We had so many happy moments together. Moreover, I would like to ex-

press my appreciation to Ellen, Sharmila, and Carla for their invaluable assistance, as

well as Remoko for his outstanding technical support.

I would like to express my gratitude to my Chinese friends Aihui, Le Liu, Yigu, Shen-

gren, Haiwei, Na Li, Siyuan, and Lian Liu for their invaluable contributions to my aca-

demic and social experiences. Our stimulating discussions and shared activities have left

me with many cherished memories, and I am grateful for their friendship and support.

I also want to thank my current colleagues, Dr. Jochen Cremer, Dr. Pedro P. Vergara,

Dr. Alex Stefanov, Dr.ir. Marjan Popov, Dr.ir. Jose Rueda Torres, Dr. Aleksandra Lekic,

Qisong, Nanda, Wouter, Kutay, Ajay, Vetrivel, Alfan, Amirreza, Mojtaba, Roman, Ties,

Zeynab, Demetris, Ali, Mert, Neda, Nidarshan, Dong Liu, Fan Xie, Shen Yan, Hongjin,

Shuyi, Weijie, Nan Lin, Aleksandar, Ioannis, Raifa, Lucas, and Farzad, as well as my for-

mer colleagues Rishabh, Zhou Liu, Haiyan, Da Wang, Swasti, Arun, Arcadio, Claudio,

Roland, Ilya, Nakis, and Matija. Your diverse research interests have broadened my hori-

zons and deepened my understanding of various topics. Working alongside individuals

from different cultures has shown me the beauty and richness of our differences, and I

am grateful for the opportunity to learn from you all.

I am grateful for the invaluable friendship of my high school classmate Haorui Peng

and my middle school classmate Linyu Lu. Their delicious home-cooked meals and

lively conversations in our local dialects have brought me comfort and joy, reminding

me of the warmth and familiarity of home. Our travels together have created unforget-



136 ACKNOWLEDGEMENTS

table memories filled with happiness. Thank you for making my time in the Netherlands

all the more meaningful and unforgettable. Many thanks also to Xingchen, Gaoyang,

Yuexiang, and Jiawang for their help, friendship, and care during my Ph.D. journey.


	Summary
	Samenvatting
	Introduction
	Research Background and Focus
	Data-driven Power System Operations
	Research Focus: Anomaly Detection and Data Generation

	Challenges and Research Questions
	Contributions and Thesis Outline

	Autoencoder-based Anomaly Detection
	Introduction
	State of the Art of Anomaly Detection
	Contribution and Outline

	Anomalous Data Attack Scenarios
	Power System State Estimation
	Stealth False Data Injection Attacks

	Autoencoder-based Anomaly Detectors
	Detector Schematic
	Anomaly Detection Mechanism

	Data Attack Detection Using Autoencoder
	Test System Modeling
	Detection Performance Analysis

	Detector Training Strategy
	Hyperparameter Tuning
	Threshold Selection Strategy Investigation
	Threshold Selection Strategy


	Anomaly Detector Performance Improvement
	Introduction
	Related Work and Motivation
	Contribution and Outline

	Detector Enhancements
	Problem Formulation
	Data Whitening Schemes
	Anomaly Localization Metrics
	Design of the Anomaly Detector

	Detection of Anomalous Wind Farm Generations
	Experiment Scenario Formulation
	Impact of Whitening Transformation
	Anomaly Detection Performance Evaluation
	Anomaly Localization Performance Evaluation


	Data Generation Using a Conditional Variational Autoencoder
	Introduction
	State of the Art of Data Generators
	Contribution and Outline

	Data Generation Mechanism
	CVAE-based Generative Model
	Training and Generation Process
	Generator Optimization Strategy

	Case Study on Country Level Load Data
	Data Source and Generation
	Data Quality Metrics
	Experimental Results Analysis

	Case Study on Multi-area Adequacy Assessment
	Multi-area Adequacy Assessment Structure
	Power System Model
	Multi-area Adequacy Assessment Results

	Case Study on Load Data of Individual Customers
	Data Source and Generation
	Experimental Results Analysis


	Controllable Generator: An Oriented Variational Autoencoder
	Introduction
	Motivation and Related Work
	Contribution and Outline

	Data Generation Mechanism
	Importance Sampling for Risk Assessment
	Proposed Oriented VAE-Based Generative Model
	Importance Sampling with OVAE

	Case Study Description
	Electricity Demand Data and OVAE Model Structure
	Resource Adequacy Model
	Multi-Area Resource Adequacy Impacts

	Experimental Results of OVAE
	Impact of Extra Oriented Loss LOri on Model Training
	Validation of Latent Space Alignment
	Unbiased and Biased Sampling
	Quality Evaluation of Generated Data
	Effectiveness of Performing Semi-Supervised Learning
	Multi-Area Adequacy Assessment Results


	Conclusion and Recommendations
	Conclusions
	Discussion and Research Recommendations

	Bibliography
	Curriculum Vitæ
	List of Publications
	Acknowledgements

