
 
 

Delft University of Technology

Designing and Diagnosing Models for Conversational Search and Recommendation

Penha, G.

DOI
10.4233/uuid:acdfb704-6310-4b28-b884-4bd3e78b3f84
Publication date
2023
Document Version
Final published version
Citation (APA)
Penha, G. (2023). Designing and Diagnosing Models for Conversational Search and Recommendation.
[Dissertation (TU Delft), Delft University of Technology]. https://doi.org/10.4233/uuid:acdfb704-6310-4b28-
b884-4bd3e78b3f84

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.4233/uuid:acdfb704-6310-4b28-b884-4bd3e78b3f84
https://doi.org/10.4233/uuid:acdfb704-6310-4b28-b884-4bd3e78b3f84
https://doi.org/10.4233/uuid:acdfb704-6310-4b28-b884-4bd3e78b3f84


Designing and Diagnosing Models for
Conversational Search and Recommendation





Designing and Diagnosing Models for
Conversational Search and Recommendation

Proefschrift

ter verkrijging van de graad van doctor
aan de Technische Universiteit Delft,

op gezag van de Rector Magnificus prof. dr. ir. T.H.J.J. van der Hagen,
voorzitter van het College voor Promoties,

in het openbaar te verdedigen
op woensdag 24 mei 2023 om 12.30 uur

door

Gustavo PENHA

Master of Science in Computer Science,
Universidade Federal de Minas Gerais, Brazilie,

geboren te Belo Horizonte, Brazilie.



Dit proefschrift is goedgekeurd door de

promotor: Prof. dr. ir. G.J.P.M Houben
promotor: Dr. C. Hauff

Samenstelling promotiecommissie:

Rector Magnificus, voorzitter
Prof. dr. ir. G.J.P.M Houben Delft University of Technology
Dr. C. Hauff Delft University of Technology

Onafhankelijke leden:
Prof. dr. L Flek University of Marburg
Prof. dr. K. Balog University of Stavanger
Prof. dr. E. Kanoulas University of Amsterdam
Prof. dr. U. Kruschwitz University of Regensburg
Prof. dr. A. Hanjalic Delft University of Technology
Prof. dr. P.S. César Garcia Delft University of Technology, reservelid

SIKS Dissertation Series No. 2023-18
The research in this thesis has been carried out under the auspices of SIKS, the Dutch Re-
search School for Information and Knowledge Systems. This research has been supported
by NWO projects SearchX (639.022.722) and NWO Aspasia (015.013.027).

Keywords: conversational search, ranking models, model understanding

Printed by: Print Service EDE

Cover: Gustavo Penha

Style: TU Delft House Style, with modifications by Moritz Beller
https://github.com/Inventitech/phd-thesis-template

https://github.com/Inventitech/phd-thesis-template


v

Contents

Summary ix

Samenvatting xi

Acknowledgments xiii

I Introduction 1

1 Introduction 3
1.1 Motivation and Context . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.1 Conversational Recommendation . . . . . . . . . . . . . . . . . 5
1.1.2 Conversational Search Approaches . . . . . . . . . . . . . . . . . 7
1.1.3 Retrieval and Ranking . . . . . . . . . . . . . . . . . . . . . . . 10

1.2 Main Research Questions. . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.4 Thesis Origins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

II Resources 19

2 MANtIS and the transformer-rankers Library 21
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.2 Related Work. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3 Conversational Search Goals . . . . . . . . . . . . . . . . . . . . . . . . 24
2.4 Dataset Desiderata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.5 MANtIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.6 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.6.1 Conversation Response Ranking . . . . . . . . . . . . . . . . . . 31
2.7 The transformer-rankers Library . . . . . . . . . . . . . . . . . . . . . 33

2.7.1 Dialogue Datasets . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.7.2 Transformer for Ranking . . . . . . . . . . . . . . . . . . . . . . 34
2.7.3 Negative Sampling . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

III Retrieval and Ranking for Conversational Search 37

3 Representations for First-Stage Retrieval of Responses 39
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.2 Related Work. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2.1 Dense and Sparse Retrieval. . . . . . . . . . . . . . . . . . . . . 41
3.2.2 Re-Ranking and Retrieval of Responses for Dialogues . . . . . . . 42



vi Contents

3.3 Full-rank Retrieval for Dialogues . . . . . . . . . . . . . . . . . . . . . . 43
3.3.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.3.2 Sparse Retrieval . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.3.3 Dense Retrieval . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.4 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.4.1 Implementation Details . . . . . . . . . . . . . . . . . . . . . . 45
3.4.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.5.1 Sparse Retrieval . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.5.2 Dense Retrieval . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.5.3 Dense Retrieval: Negative Sampling . . . . . . . . . . . . . . . . 50

3.6 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4 Difficulty Notions when Training Response Re-rankers 55
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.2 Related Work. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2.1 Neural Ranking Models . . . . . . . . . . . . . . . . . . . . . . 57
4.2.2 Curriculum Learning . . . . . . . . . . . . . . . . . . . . . . . . 57

4.3 Curriculum Learning: Easy First Difficult Later. . . . . . . . . . . . . . . 59
4.3.1 Problem Definition: Re-ranking . . . . . . . . . . . . . . . . . . 59
4.3.2 Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.3.3 Scoring Functions . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.3.4 Pacing Functions . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.4 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.4.1 Implementation Details . . . . . . . . . . . . . . . . . . . . . . 62
4.4.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.5.1 Pacing Functions . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.5.2 Scoring Functions . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.5.3 Error Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.6 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5 Difficulty Notions when Predicting with Response Re-rankers 69
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.2 Related Work. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.2.1 Calibration and Uncertainty in IR . . . . . . . . . . . . . . . . . 71
5.2.2 Bayesian Neural Networks . . . . . . . . . . . . . . . . . . . . . 72

5.3 Risk-Aware Neural Ranking . . . . . . . . . . . . . . . . . . . . . . . . 72
5.3.1 Measuring Calibration . . . . . . . . . . . . . . . . . . . . . . . 72
5.3.2 Modeling Uncertainty . . . . . . . . . . . . . . . . . . . . . . . 73
5.3.3 Robustness to Distributional Shift . . . . . . . . . . . . . . . . . 74

5.4 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.4.1 Implementation Details . . . . . . . . . . . . . . . . . . . . . . 75
5.4.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75



Contents vii

5.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.5.1 Calibration of Neural Rankers . . . . . . . . . . . . . . . . . . . 76
5.5.2 Uncertainty Estimates for Risk-Aware Neural Ranking . . . . . . . 77
5.5.3 Uncertainty Estimates for NOTA Prediction . . . . . . . . . . . . 79

5.6 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

IV UnderstandingRankingModels forConversational Search andRecommen-
dation 83

6 Evaluating Retrieval Pipelines with Language Variations of Questions 85
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
6.2 Related Work. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.2.1 Query Variation . . . . . . . . . . . . . . . . . . . . . . . . . . 88
6.2.2 Model Understanding . . . . . . . . . . . . . . . . . . . . . . . 88

6.3 Automatic Query Variations . . . . . . . . . . . . . . . . . . . . . . . . 89
6.3.1 UQV Taxonomy . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.3.2 Query Generators . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.4 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.4.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.4.2 Ranking Models . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.4.3 Query Generators Implementation . . . . . . . . . . . . . . . . . 94
6.4.4 Quality of Query Generators . . . . . . . . . . . . . . . . . . . . 94

6.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
6.5.1 Robustness to Query Variations . . . . . . . . . . . . . . . . . . 95
6.5.2 Fusing Query Variations . . . . . . . . . . . . . . . . . . . . . . 99

6.6 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
6.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

7 Evaluating Transformers with Conversational Recommendation Tasks 103
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
7.2 Related Work. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
7.3 Method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

7.3.1 Genre Probes. . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
7.3.2 Recommendation and Search Probes . . . . . . . . . . . . . . . . 109
7.3.3 Infusing Knowledge into LMs for Conversational Recommenda-

tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
7.4 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

7.4.1 Data Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
7.4.2 Implementation Details . . . . . . . . . . . . . . . . . . . . . . 112

7.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
7.5.1 Probing BERT . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
7.5.2 Infusing Knowledge for Conversational Recommendation . . . . . 116

7.6 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
7.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119



viii Contents

V Conclusions 121

8 Conclusions 123
8.1 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

8.1.1 First-stage Retrieval . . . . . . . . . . . . . . . . . . . . . . . . 123
8.1.2 Difficulty Notions for Re-ranking . . . . . . . . . . . . . . . . . 124
8.1.3 Retrievers and Rankers Limitations and Behavior . . . . . . . . . 124

8.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
8.3 Ethical Concerns and Wider Implications . . . . . . . . . . . . . . . . . 126
8.4 Future Directions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

8.4.1 Directions Related to the Main Research Questions. . . . . . . . . 127
8.4.2 Broader Directions . . . . . . . . . . . . . . . . . . . . . . . . . 129

Bibliography 135

Curriculum Vitæ 175



ix

Summary
Conversational search is a sub-field of Information Retrieval (IR) that focuses on solving
information needs through natural language conversations. Searching for information is
an inherently interactive task, and conversations offer a promising solution. One that
might change the current search paradigm. In this thesis, we focus on retrieval and rank-
ing approaches for conversational search systems, which are core IR technologies that
have been progressing for decades.

First, we contribute with resources we created and which are used throughout the
thesis. Namely, we introduce a novel dataset of information-seeking dialogues: MANtIS,
as well as a library to train and evaluate models for the task of conversation response
ranking: transformer-rankers.

Considering a two-stage pipeline for conversational search, we propose approaches
for retrieval and also for re-ranking responses. We start by empirically comparing sparse
and dense approaches for the first-stage retrieval of responses for dialogues. Next, we
go to the second stage of the pipeline and use notions of difficulty to improve response
re-rankers. We start with a curriculum learning approach that starts with easy dialogues
and moves progressively to harder ones during training. We also investigate how difficult
a dialogue can be when predicting the relevance of responses, by proposing models which
allow for estimating their uncertainty.

Finally, we move on to evaluating what is the behavior and limitations of retrieval
and ranking models for conversational search. We start by evaluating what is the effect
of categories of language variations of queries in retrieval pipelines. Additionally, we
evaluate what are the capabilities of heavily pre-trained language models for different
conversational recommendation tasks.

With this thesis, we make scientific contributions to the field by providing resources,
improving retrieval and re-rankers, and enabling a better understanding of models. We
hope our contributions can be used as a foundation for future work in conversational
search, enabling agents that can improve information-seeking interactions.
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Samenvatting
Conversational search is een deelgebied van Information Retrieval (IR) dat zich richt op
het oplossen van informatiebehoeften door middel van conversaties in natuurlijke taal. In-
formatie zoeken is een inherent interactieve taak en gesprekken bieden een veelbelovende
oplossing. Een die het huidige zoekparadigma zou kunnen veranderen. In dit proefschrift
richten we ons op benaderingen voor het ophalen en rangschikken van conversatiezoek-
systemen, die kern-IR-technologieën zijn die al tientallen jaren vooruitgang boeken.

Ten eerste dragenwe bij met middelen die we hebben gemaakt en die in dit proefschrift
worden gebruikt. We introduceren namelijk een nieuwe dataset van informatiezoekende
dialogen: MANtIS, evenals een bibliotheek om modellen te trainen en evalueren voor de
taak van het rangschikken van gespreksreacties: transformer-rankers.

Als we een pijplijn in twee fasen overwegen voor conversatiezoekopdrachten, stellen
we benaderingen voor voor het ophalen en ook voor het opnieuw rangschikken van reac-
ties. We beginnen met het empirisch vergelijken van spaarzame en dichte benaderingen
voor het ophalen van reacties in dialogen in de eerste fase. Vervolgens gaan we naar de
tweede fase van de pijplijn en gebruiken we noties van moeilijkheid om responsherrang-
schikkingen te verbeteren. We beginnen met een leerplanbenadering die eenvoudigweg
begint met eenvoudige dialogen en geleidelijk overgaat naar moeilijkere dialogen tijdens
de training. We onderzoeken ook hoe moeilijk een dialoog kan zijn bij het voorspellen
van de relevantie van reacties, door modellen voor te stellen die het mogelijk maken om
hun onzekerheid in te schatten.

Ten slotte gaan we verder met het evalueren van het gedrag en de beperkingen van
ophaal- en rangschikkingsmodellen voor conversatiezoekopdrachten. We beginnen met
te evalueren wat het effect is van categorieën van taalvariaties van queries in retrieval
pipelines. Daarnaast evalueren we wat de mogelijkheden zijn van zwaar vooraf getrainde
taalmodellen voor verschillende gespreksaanbevelingstaken.

Met dit proefschrift leveren we wetenschappelijke bijdragen aan het veld door midde-
len te verstrekken, het ophalen en opnieuw rangschikken te verbeteren en een beter begrip
van modellen mogelijk te maken. We hopen dat onze bijdragen kunnen worden gebruikt
als basis voor toekomstig werk op het gebied van conversatiezoeken, waardoor agents in
staat worden gesteld om interacties op het gebied van informatiezoeken te verbeteren.
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1
Introduction

T he central problem dealt with by information retrieval (IR) technologies is the infor-
mation overload problem: locating the information that is relevant to a user from

increasingly bigger collections of data, such as books, documents, web pages, entities, etc.
Before computers, books and papers were indexed by librarians with catalog schemes, an
approach that dates back to 300 BC [262]. Besides going through the card catalogs of a
library, which have bibliographical information about the books from the collection, the
other option was to ask a librarian. The specialized librarians that maintained such collec-
tions had a good overview of the inventory andwere trained to assist the user in expressing
their needs and help them find the relevant information through a conversation.

This conversation between the librarian and the information seeker is known as a ref-
erence interview [43], which has the purpose of clarifying the user’s needs, by gathering
sufficient information about the real need to begin searching. When information seekers
do not interact with the reference librarian, they have to interact with the library and its
contents by themselves. In such a self-help process users depend on their own knowledge
of the system, and they are often not fully aware of their own needs and the alternatives
they have [322]. Librarians, on the other hand, have developed sophisticated strategies for
interrogating information seekers to uncover their true information needs. While earlier
studies found that the accuracy of reference librarians in finding the correct information
ranged from 50–60% [131], they do not tell the whole story [86]. Follow-up studies show
that efforts by librarians to improve accuracy can be successful, up to the 70–90% range
in some cases [294]. With the introduction of personal computers, digitization and the
WWW, search engines such as Google became the predominant way of searching for in-
formation in opposition to using librarians.

In this mode of searching for information, the input to the system is a query, i.e. the ex-
pression of the user information need in the input language of the information system such
as keywords, and as the output, the system returns a set of documents expressed in units
of retrieval such as a paragraph, a web page, an article or a book. Recently, many advances
in approaches to the search engine results page (SERP) improved the user experience and
satisfaction while searching, using approaches such as query-biased snippets [336] and
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query suggestion [85] which assist users in understanding their own information needs
and the set of results returned by the system.

Nonetheless, engaging in natural conversations with a conversational agent can po-
tentially be more effective than using existing information retrieval systems (that work
by retrieving a list of documents for queries) due to the increased interactivity as is evi-
denced in a number of domains such as scholarly search [24], product search and recom-
mendation [144], education [307], legal case search [198], and other domains that require
significant context and interaction [13]. Additionally, the emergence of voice-only de-
vices makes it impractical to use standard interfaces based on lists of documents. This
way, the advantages of conversations coupled with the widespread use of personal assis-
tants, such as Alexa and Google Assistant, might turn the tide back to a search paradigm
where conversations play a major role¹.

1.1 Motivation and Context
Compared to traditional search engines which have as input a keyword-based query and
the output is a set of documents, in a conversation the inputs are a set of utterances, i.e.
an uninterrupted chain of spoken or written language and the output of the system is a
response. A response is an utterance that comes from the system. Compare the exam-
ples in Figure 1.1 where the user is searching for a firewall. While on the left (SERP) the
information seeker clicks and accesses the documents returned by the search engine
(the information provider), on the right (Conversation) the user engages in a dialogue
to satisfy his information need with the information provider, i.e. the conversational
system. Alternatively, a chat interface could be available inside the SERP, where the con-
versational agent could assist the user when searching. We focus here on the case where
the conversation replaces the SERP interaction entirely.

There are many factors that motivate what is broadly referred to as the conversa-
tional search paradigm, where conversations play a major role:

• The conversational human-computer mode is interactive and flexible [10, 234]. In-
formation retrieval systems are fundamentally interactive [162].

• Conversations are the only way to interact with a system when the device has no
screen and the spoken modality is required.

• Akin to interactions with reference librarians, a conversation with a system can be
used to elucidate, refine and clarify the information need of the user.

• Similar to a human intermediary which is aware of their own limitations, a system
can also disclaim what it is able to find, i.e. system revealment [273], being aware of
which questions can be answered and the level of uncertainty of its responses. For
example, in Figure 1.1, if the system is not able to answer the initial request in the
first utterance, it could answer “I am unable to find a firewall with such features”.

¹As of the writing of this thesis OpenAI released ChatGPT (https://openai.com/blog/chatgpt/), a language
model suited for dialogues. Enthusiasts claim models like ChatGPT will replace existing search engines. We
discuss this in the future work section of the thesis.

https://openai.com/blog/chatgpt/
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Conversation

I want a firewall that will protect me but 
more of that to monitor any connection 
in or out of my mac [...]

That would be the TCPblock {url} [...] With 
TCPBlock you can [..]

Thank you. The app is from unidentified 
developer it is safe to use it? [...]

I understand, but there is nothing that it 
100% safe and I use it [...]

Cheers anyway! I will try to buy [...] 
which is more safe [...]

seeker

seeker

SERP

mac firewall monitor connection

How to Monitor Your Mac's 
Firewall Logs | Macinstruct

document 1

query

Block connections to your Mac 
with a firewall - Apple Support

document 2

How to View & Watch the Firewall 
Log in Mac OS X - OSXDaily

document 3

utterance 1

utterance 2

utterance 3

utterance 4

utterance 5

provider

provider

provider

seeker

Figure 1.1: An interaction with a traditional search engine results page (SERP) on the left compared to an
information-seeking dialogue on the right (Conversation). The conversation from the right is extracted from
the MANtIS dataset we introduce in Chapter 2.

• The control of the conversation can be given to the system. The system might take
the initiative when the user wants to get guidance, learn about a topic, or obtain
a broad understanding of a complex topic. For example, if in Figure 1.1 the system
believes that the information need is not clearly stated in the first utterance, it might
take the lead and ask questions to the user: “What type of monitoring you want from
the firewall? What do you consider to be protection?”.

• Some information-seeking tasks require multiple interactions, where memory and
referring to previous interactions can be beneficial. For example in the conversation
from Figure 1.1 the user mentions in the third utterance “The app”, and it is required
that the system understands that they is referring to the TCPblock application from
the first utterance.

Given the different factors that motivate a search paradigm that enables natural lan-
guage conversations between the information seeker and the system, different ways to
implement a conversational search system (CSS) have been proposed. Prior research
proposed that a CSS should have a number of competencies [74, 273, 332] requiring the
system to be more than just an intermediary that helps users refine and clarify their in-
formation needs. The system should also be able to provide answers directly as shown in
Figure 1.1 (the second utterance by the system answers the information need directly).

1.1.1 Conversational Recommendation
Recommender systems are concerned with matching users with items or products that
might interest them based on their previous interactions [3], e.g. ratings given to movies.
The system has then to take into account such interactions that indicate user preferences
and possibly other contextual information, e.g. location, time of the day, etc., to provide a
recommendation from a collection of items, such as a book or a music track.
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However, there are cases when the user history of interactions with the system is not
enough to provide a relevant recommendation. A conversational recommender sys-
temmight offer a solution in such situations [144]. For examplewhen the past interactions
are not enough to estimate user preferences, or when there are none available²; when the
recommendation is highly context-dependent, and the system is unable to gather the nec-
essary information; when the user is unsure of the space of options they have, and might
only understand their needs by interacting with a system; when the user does not want
the system to take into account previous interactions; when there are many requirements
that need to be elicited for the desired item.

Information-seeking conversations do not necessarily have the intent of getting an
item recommendation in the end—while there are cases when this also happens, for ex-
ample, in the dialogue in Figure 1.1 the user wants to get a recommendation of a firewall.
Conversational search concerns solving information needs that might be simply asking
questions about a particular item, e.g. “What are the main themes of the book Killing Com-
mendatore?”. A recommendation conversation on the other hand has the specific goal to
assist in decision-making regarding items, e.g. “What book should I read next that is similar
to the book Killing Commendatore?”. Consider another example of this distinction in the
initial utterances of a conversation with the recommendation goal and an information-
seeking conversation in Figure 1.2.

Conversational Recommendation

How do you deal with lack of motivation 
after few years in the same job? It feels 
like a burden, and I need to force myself 
to do any work. It's like my mind refuses 
to do any work. Not fun.

seeker

Conversational Search

So I'm feeling down for a while and 
totally lack any motivation to work. 
However, this was not the case when I 
started my career. I totally lack any 
motivation to work suggest some good 
reads that can put me back on track.

seeker

… … provider

That would be the TCPblock {url} [...] With 
TCPBlock you can [..]

You should read Can't hurt me by David 
Goggins.

provider

One of the symptoms of burnout is not 
being able to focus. So, if you're in this 
position - there's a sliding scale of 
things you can do to fix it. [...]

Figure 1.2: On the left, we have an information-seeking conversation solved by conversational search systems.
On the right, we have a conversation solved by a conversational recommender system, for which an item (a
book) is suggested.

Nonetheless, there is only a tenuous line between search and recommendation. Balog
[23] argued for the term conversational information access. The core idea is that search
and recommendation should be integrated into such conversational information access
systems, moving from a siloed to a unified view. As also suggested by Jannach and Chen
[143] a conversational recommender will also require conversational search capabilities,

²This scenario of scarce interaction is known as the cold start problem.
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for example when trying to answer queries about a certain item. The opposite is also true,
as in a number of information-seeking conversations the user wants to obtain an item
recommendation throughout the interaction.

1.1.2 Conversational Search Approaches
Considering a CSS that replaces the SERP interface completely, while also being able to
recommend items, the input to the system is a dialogue context, which is the history
of the conversation so far, composed of the previous utterances at that point in time. For
example, the conversation from Figure 1.1 can be split into two points in time where the
information seeker gave input through an utterance and the system gave a response back.
This conversation can be split to generate two dialogue contexts, as shown in Figure 1.3.
The output of a CSS is a natural language response to the dialogue context.

seeker

seeker

I want a firewall that will protect me but 
more of that to monitor any connection 
in or out of my mac [...]

That would be the TCPblock {url} [...] 
With TCPBlock you can [..]

Thank you. The app is from unidentified 
developer it is safe to use it? [...]

I understand, but there is nothing that it 
100% safe and I use it [...]

dialogue 
context 1

response 1
seeker

seeker

I want a firewall that will protect me but 
more of that to monitor any connection 
in or out of my mac [...]

That would be the TCPblock {url} [...] 
With TCPBlock you can [..]

Thank you. The app is from unidentified 
developer it is safe to use it? [...]

I understand, but there is nothing that it 
100% safe and I use it [...]

dialogue
context 2

response 2

provider

provider provider

provider

Figure 1.3: Example of two dialogue contexts (left and right) from a single conversation. Each dialogue generates
multiple pairs of dialogue contexts and responses according to the number of turns in the dialogue.

Broadly speaking there are two different high-level approaches to implementing a
functional CSS and go from the dialogue context (the input) to the response (the output).
Figure 1.4 describes the two main approaches, namely conversation response ranking and
conversation response generation.

At the bottom of Figure 1.4 a retrieval pipeline uses the dialogue context to select
amongst a pool of responses³ the most adequate one. A pool of responses is a collection
containing a number of historical utterances, possibly from a number of different datasets
of human-to-human interactions⁴.

If we translate the query/document terminology into the conversational context, the
dialogue context can be thought of as being the query, i.e. how the user expresses the

³A similar retrieval-based approach known as conversational passage retrieval first retrieves passages and then
extracts responses as spans from the retrieved passage, instead of indexing a pool of responses directly. The
TREC CAsT track [75] is a task and dataset example that follows this structure. A limitation of TREC CAsT is
that the dialogues are composed of a number of sequential questionsmade by the information-seeker as opposed
to mixed-initiative conversations that resemble human-to-human ones.
⁴A human-to-human interaction consists of a conversation between two humans, for example in online forums.
A human-to-system interaction consists of a conversation between a human and a system, for example, the log
of interactions between humans and a conversational agent such as Amazon’s Alexa.
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Figure 1.4: Two major high-level approaches for conversational search systems: conversation response genera-
tion (top) and conversation response ranking (bottom).

information need for the information system, the response can be thought of as being the
document, i.e. the unit of retrieval.

On the top of Figure 1.4 we have a generative model that directly generates the re-
sponses from the conversational context. In the generative approach, the information re-
quired to answer a question is stored in the weights of the model; this is in contrast to the
ranking approach where the information is stored in the pool of responses. One limitation
of the generative approach is its inability (so far) to spell out the sources of information
used to answer the question [299]. Language models have no inherent mechanism to trace
back the information objects used to generate an answer. The language model’s training
uses a large number of documents to learn probabilities over tokens. In contrast, in the
ranking approach, the information that is provided to the user in the form of a response is
traceable, i.e. we can point to where this information came from in the pool of responses
and check if this is a trusted source or not, leading to higher transparency.

Another advantage of the ranking approach is that updating the model with new infor-
mation is much simpler than in generative models. For example, the GPT-3 [44] model—a
175B parameter transformer model trained with language modeling tasks—was re-trained
the last time using data up to June 2021⁵. Events that happened after this date are not
known to the model and they require a new and expensive training procedure to update
its knowledge. On the other hand, with a ranking approach, no training would be required
to do such an update, just adding new responses to the existing index.

An advantage of the generative models is that they can extrapolate and generate com-

⁵At the time of writing of this introduction, November 2022, the largest GPT-3 model (text-davinci-003) avail-
able at OpenAI API https://openai.com/api/ was outdated by more than a year and smaller models (text-
curie-001, text-babbage-001, and text-ada-001) by more than three years.

https://openai.com/api/
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pletely novel responses, whereas ranking approaches rely on the existing pool of responses.
However, with this capability, generative models are prone to a number of problems. They
can hallucinate [147, 368] and generate gibberish utterances [304]. Language models also
have nomechanism to assert the accuracy or truth of the generated text, as they are trained
to generate plausible text. Since ranking models rely on returning human-generated re-
sponses, they are less prone to the aforementioned problems [309, 372]. For example, when
we ask ChatGPT⁶ to answer the request from Figure 1.1, it gives three options of firewalls:
GlassWire which does not work for Mac computers (a requirement made in the input),
Little Snitch which is not free and the user already said it did not want in the input, and
Wireshark (the only one potentially correct option). GPT-3 also recommends GlassWire,
which is not available for Mac. See Figure 1.5 for the complete examples.

Figure 1.5: On the left, we have GPT-3’s (text-davinci-003) answer for the dialogue from Figure 1.1. Although
it seems correct, it recommends GlassWire which is not available for Mac computers. On the right, we have
ChatGPT, which recommends two firewalls that are not relevant for the information seeker—GlassWire which
is not available for Mac, and Little Snitch which was explicitly mentioned as not relevant for being paid. Model
responses were obtained on 19-12-2022.

Both approaches have advantages and issues, in this thesis, we focus on retrieval and
ranking technologies for conversational search as generative models have only recently
shown to be a feasible approach.

While ranking systems for conversational search is still an incipient research field⁷, we
have a long and rich history of research in ranking systems for other domains such as web
search where the objective is to return a set of ranked web documents for a given query.
Next, we describe the typical retrieve and re-rank pipeline in IR and give context on how
recent advances have advanced different steps of this pipeline.

⁶https://chat.openai.com/chat
⁷While initial efforts to create interactive and conversational IR systems date back to 1977 [239], conversational
search has only recently turned into a popular subfield of IR, as shown by the number workshops [254] and
surveys on the topic [103, 389].

https://chat.openai.com/chat
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1.1.3 Retrieval and Ranking
In web search and other information-seeking tasks, it is possible to divide the system into
two (or more) stages, where the number of documents being evaluated gets increasingly
smaller but the models get increasingly more expensive [15, 69, 106]. This allows for more
complexity to be added in later stages, while the initial stage operates efficiently on a larger
scale. The first stage is referred to as the retrieval step, and later stages are referred to as
ranking or re-ranking steps. All stages together form a pipeline, as shown in Figure 1.6
where we adapt it for conversational search. Before reviewing recent approaches for the
stages of the pipeline, first, we need to discuss recent breakthroughs that started in 2018
in the field of natural language processing, specifically related to transformer models.

Retrieval

Pool of 
responses

Re-ranking

first-stage second-stagedialogue context 
response

Figure 1.6: Multi-stage pipeline for conversational search composed of the first-stage retrieval step and the
second-stage re-ranking step.

Impact of Transformers
Transformer [343] is a neural architecture based on self-attention⁸ that has been shown
to be more effective for natural language tasks than other popular architectures such as
LSTMs and CNNs. The traditional paradigm for tasks involving language, including IR
ranking models, was to train a model from scratch, i.e. random initialization weights, on
the training dataset⁹. This has changed after the emergence of models such as BERT [80].
Now the training (or fine-tuning) starts with a pre-trained model, i.e. weights are not
random and are learned during a pre-training procedure.

BERT learns textual representations by conditioning on both left and right context
for all layers, hence the name Bidirectional Encoder Representations from Transformers.
BERT was pre-trained for two different language modeling tasks, masked language mod-
eling (MLM) and next sentence prediction (NSP). For MLM, 15% of the tokens are replaced
with a [MASK] token, and the model is trained to predict the masked tokens¹⁰. For NSP, the
model is trained to distinguish (binary classification) between pairs of sentences A and B,
where 50% of the time B is the next and 50% it is not the next sentence (a random sentence

⁸The transformer’s scaled dot-product attention mechanism [343] allows the neural network to use all other
tokens in the sequence when representing each individual token. This attention score is used to weigh each
token’s representation.
⁹Evaluation is performed on a separate test set for both pre-trained models and models trained from scratch.
¹⁰More accurately, for the 15% tokens, 80% are replaced with [MASK], 10% of the time they are replaced with
random tokens and the remaining 10% the token is unchanged
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BERT

NSP

[CLS]

sentence A sentence B

Pre-training

MLM

T1 … T[SEP]TN T’1 T’M…

[CLS] Tok1 … TokN [SEP] Tok’1 … Tok’M

token E[CLS]  ETok1 … ETokN E[SEP] ETok’1 … ETok’M

   EA       EA    … EA    EA        EB       … EB

   E0       E1    … EN    EN+1     EN+2   … EN+1+M

segment

position

+ + + + + + + +

+ + + + + + + +

BERT

relevance prediction

[CLS]

dialogue context candidate response

Fine-tuning

token embeddings

+

+

tokenized input

segment embeddings

position embeddings

Figure 1.7: On the left, we have the pre-training procedure of BERT. On the right, we have BERT fine-tuned as
a re-ranker for conversations.

is selected). The special token [CLS] is added to every sentence during pre-training; it is
used for classification tasks. [SEP] is another special token that is used to separate sen-
tence pairs that are packed together into a single sequence. The inputs to BERT are the sum
of the input token embeddings, the segment embeddings (which indicates whether each
token comes from sentence A or B), and the position embeddings (since the transformer
architecture cannot distinguish different positions of input tokens).

BERT is first pre-trained on the self-supervised tasks that do not depend on any la-
beled dataset (MLM and NSP)¹¹, and from this specific weight, configuration the model
can be fine-tuned for the task at hand, e.g. response re-ranking. See an overview of
the pre-training and fine-tuning procedure of BERT at Figure 1.7. The effectiveness of
this paradigm and initial models, together with libraries such as Huggingface [363] which
made using pre-trainedmodels like BERT¹² easy, leading to their increased adoption across
different research fields that use language as their modality.

Information retrieval is one of those fields. Nogueira and Cho [236] were the first to
show that using BERT leads to significant effectiveness gains for re-ranking passages. The
model receives as input the concatenation of the query and the passage and it predicts the
relevance of the query and passage pair.

¹¹BERT was pre-trained using both English Wikipedia (2.5m words) and the BookCorpus [404], which contains
the content of 11k books (800m words).

¹²Given the fast pace of research in language models, newer pre-trained language models outperform BERT, due
to improved techniques for training, model size, and collections size.
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Retrieval
New approaches have been proposed [94, 104, 105, 136, 205, 216, 238] to take advantage of
transformer-based language models at the retrieval step. One of them is to encode the
queries and documents separately, which allows documents to be encoded offline. Such
models are known as bi-encoders [160, 280]. After obtaining an embedded representation
of the query, an efficient k-nearest neighbor algorithm is used to retrieve the most similar
documents from the collection.

Bi-encoders are dense models (see bottom of Figure 1.8) that represent the query
and the document with a pre-defined number of non-zero values, such as an array of
768 dimensions that do not have a pre-defined meaning. Traditional IR models such as
BM25 [290] on the other hand have a sparse representation that indicates whether each
vocabulary token is present in the piece of text or not, so they have been refereed as sparse
models (see the top of Figure 1.8) due to the high amount of zero values. Recent models
have also adapted pre-trained language models to learn sparse representations [190]. One
of the main benefits of sparse representations is that they can re-use the inverted index
infrastructures from lexical methods that have been optimized for years by practitioners
and researchers. Another advantage is that sparse representations are easily interpretable
as each value represents a token in the input query or document.

Sparse encoder

…

Bi-encoder

Bi-encoder

…

scoressimilarity 
calculation

scoressimilarity 
calculation

Sparse retrieval

Dense retrieval

Pool of 
responses

Pool of 
responses

dialogue context 

dialogue context 

Sparse encoder

Figure 1.8: On the top we have a sparse retrieval method, while At the bottom we have a dense retrieval method.

Re-ranking
Using a transformer ranking model that receives both the query and document as input
has been referred to as cross-encoder. This is because the transformer model encodes
both the query and document at the same time and the attention mechanism between
all tokens across both the query and the document are considered. Cross-encoders are
typically applied as re-rankers, given their expensive inference costs [193]. The differences
between bi-encoders and cross-encoders are displayed in Figure 1.9.
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BERT

relevance prediction

[CLS]

dialogue context candidate response

BERT

pooling

dialogue context candidate response

BERT

pooling

similarity calculation

Cross-encoder Bi-encoder

Figure 1.9: On the left, we have a cross-encoder that receives both inputs at the same time and classifies the
relevance of the input pair. On the right, we have a bi-encoder that encodes sentences separately and calculates
a similarity score.

Figure 1.10: Negative sampling task: given a query retrieve non-relevant documents from the collection to be
used for the training of neural retrieval and ranking models.

The retrieval approaches we just reviewed were initially proposed for document re-
trieval tasks, which are the most popular IR settings. The same is observed when dealing
with the re-ranking models. This is due to the long history of research for such domains
that have many public datasets available, while newer research fields like conversational
search receive less attention and have fewer open datasets.

Negative Sampling
Both bi-encoders and cross-encoders require non-relevant query-document pairs to con-
trast with the relevant query-document pairs [200, 400]. It is prohibitively expensive to
use every other document (besides the relevant ones) in the collection as a negative for
a query. This motivates automatically finding informative non-relevant documents for a
query, known as negative sampling. Given that we use different negative sampling tech-
niques for training retrieval and ranking models throughout the thesis, we will quickly
review the negative sampling procedure before jumping into our research questions.
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This problem of negative sampling also exists for other domains of machine learning
such as computer vision, natural language, and graphs [149, 291, 380]. For example the
word2vec [223] word embedding technique randomly samples words that are not relevant
to the context (other words in the sentence) to distinguish from the actual word that is
part of the context. In IR, since most of the documents in a collection are not relevant
for a given query, a simple approach is to obtain negative candidates by randomly select-
ing documents. A popular technique is to use documents from other queries in the same
batch¹³, which are in essence random documents and make the training procedure effi-
cient [139, 178, 220]. A limitation of random samples is that they might be too easy for
the ranking model to discriminate from relevant ones.

For this reason, another popular approach is to use a retrieval model to find negative
documents using the given query with a classical retrieval technique such as BM25. This
leads to finding negative documents that are closer to the query in the sparse represen-
tation space, and thus they are harder negatives. Since dense retrieval models have been
outperforming unsupervised sparse retrieval in a number of cases with available train-
ing data, more complex negative sampling techniques taking advantage of dense retrieval
models’ effectiveness have been proposed. For example, the ANCE [370] model uses the
densemodel itself to find negatives, which is asynchronously updated in checkpoints. This
makes the model find harder and harder negatives throughout training.

Having reviewed the main categories of approaches for retrieval and ranking as well
as the topic of negative sampling, in the next section, we define the main research ques-
tions of this thesis. They concern the following stages of a response-ranking approach to
conversational search: retrieval methods (M-RQ1), re-ranking methods (M-RQ2), and the
pipeline as a whole (M-RQ3).

1.2 Main Research Questions
Considering the problem space defined above, we first turn our attention to the first-stage
retrieval step when building conversational search systems. Can we use sparse and dense
retrieval methods designed for passage and document retrieval and apply them to conver-
sational search? Unlike passage and document retrieval where the documents are longer
than the queries, in response ranking for dialogues the queries (dialogue contexts) are
longer than the documents (responses). Additionally, dialogues have a structure, i.e. the
dialogue context might contain utterances from both the information seeker and the in-
formation provider, which are not present in the queries of other IR tasks. This motivates
our first main research question:

M-RQ1: What is a strong baseline for the retrieval, i.e. first-stage, of responses
for conversational search? Do the findings of passage and document retrieval tasks
translate to the retrieval of responses for dialogues?

We then turn to the task of re-ranking responses and consider different notions of
difficulty—dialogues for which models struggle at training time and at prediction time—to

¹³A batch is a sample of training instances used to perform stochastic gradient descent [166], i.e. training of the
models.
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improve the effectiveness of conversational search systems, at both training and testing
time. For example, very long dialogue contexts might be difficult for a model as it needs to
identify which parts of the conversation are important and which parts can be ignored. If
we know that amodel is unable to find a relevant response for specific dialogue contextswe
can (I) devise training strategies so that such error does not happen anymore after training,
or (II) model the uncertainty of the model to better handle such cases at prediction time.
This leads us to our second main research question:

M-RQ2: Do different notions of difficulty improve the re-ranking, i.e. second-stage,
of responses for conversational search?

Finally, we investigate the limitations of transformer-based models for conversational
search. Conversational search systems have the potential to impact what we are able to
find, what we are exposed to, and the decisions we make. Understanding the behavior
of such models, when they fail, how robust they are, and why they are recommending
certain items over others is crucial for both machine learning practitioners and end users.
This motivates our final main research question:

M-RQ3: What are the limitations of transformer-based models for conversational
search and recommendation?

We start by exploring the effect of query language variations on the effectiveness of
retrieval and re-ranking pipelines. Different users communicate and ask questions in di-
verse forms, even when they have the same information need. For example, in the con-
versation from Figure 1.1, the first utterance is: “I want a firewall that will protect me but
more of that to monitor any connection in or out of my mac”. A possible variation of this
query of type paraphrasing could transform it into “I want a protection firewall which also
observes data in or out of my mac”. Given the known brittleness of neural networks, we ex-
plore how well pipelines using transformer-based models can handle different categories
of query variations. We also take a deeper look into what heavily pre-trained transformer
models can achieve based on the knowledge stored in their weights. Understanding what
the pre-training procedure of such models learns is a crucial step for employing them in
conversational search. For example, consider that a user is engaging in a dialogue with
a system to find which book to read next. If the model already knows that each book
belongs to certain categories, e.g. sci-fi, history, etc., based on the pre-training it can be
useful to deliver relevant responses.

1.3 Contributions
In this section, we lay out the main contributions of the thesis. R stands for resources, E
stands for empirical and C for conceptual.

R We introduce MANtIS, a novel information-seeking dialogues dataset that addresses
the limitations of previous datasets for the end goal of building conversational search
systems (Chapter 2).

R We introduce transformer-rankers, a library to conduct offline experiments and
evaluate models for conversation response ranking (Chapter 2).
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C We propose different ways to estimate the difficulty of dialogues (Chapter 4).

C We propose a taxonomy of query variations that describe different ways users de-
scribe the same information needs in various forms (Chapter 6).

E We perform a generalizability study of different sparse and dense retrieval tech-
niques for the first-stage retrieval of responses for dialogues, gathering evidence to
answer M-RQ1 (Chapter 3).

E We perform an empirical study on considering notions of difficulty of dialogues
when training ranking models with curriculum learning, gathering evidence to an-
swer M-RQ2 (Chapter 4).

E We perform an empirical study on considering notions of difficulty when predicting
with uncertainty-aware re-ranking models, gathering evidence to answer M-RQ2
(Chapter 5).

E We perform an empirical study on the effect of language variations in the effective-
ness of retrieval pipelines, gathering evidence to answer M-RQ3 (Chapter 6).

E We perform an empirical study on heavily pre-trained language models to probe
its capabilities in different conversational recommendation capabilities, gathering
evidence to answer M-RQ3 (Chapter 7).

1.4 Thesis Origins
The thesis is divided into three main parts. In the first part, we focus on resources to train
and evaluate conversational search systems. The second part is concerned with improv-
ing ranking models for conversational search by considering different notions of difficulty.
The third is concerned with trying to better understand heavily pre-trained language mod-
els in terms of their capabilities and behavior for conversational search.

Part I: Resources

Chapter 2 is based on the following resources and workshop paper:
 Gustavo Penha, Alexandru Balan, and Claudia Hauff. 2019. Introducing

MANtIS: a novelmulti-domain information-seeking dialogues dataset. arXiv
preprint arXiv:1912.04639 (2019) [246]¹⁴.

 Gustavo Penha and Claudia Hauff. 2020. Challenges in the Evaluation of
Conversational Search Systems. In Converse@ KDD [248].

 The library transformer-rankers.¹⁵

Part II: Retrieval and Ranking for Conversational Search

Chapter 3 is based on the following paper:

¹⁴MANtIS was created in collaboration with Alexandru Balan’s and is one of the results of his master thesis.
¹⁵https://github.com/Guzpenha/transformer_rankers

https://github.com/Guzpenha/transformer_rankers
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 Gustavo Penha and Claudia Hauff. 2023. Do the Findings of Document and
Passage Retrieval Generalize to the Retrieval of Responses for Dialogues?. In
ECIR. Springer, 132–147 [253]

Chapter 4 is based on the following paper:
 Gustavo Penha and Claudia Hauff. 2020. Curriculum Learning Strategies

for IR. In ECIR. Springer, 699–713 [249].
Chapter 5 is based on the following paper:
 Gustavo Penha and Claudia Hauff. 2021. On the Calibration and Uncer-

tainty of Neural Learning to Rank Models for Conversational Search. In
EACL. 160–170 [251].

Part III: Understanding Ranking Models

Chapter 6 is based on the following paper:
 Gustavo Penha, Arthur Câmara, and Claudia Hauff. 2022. Evaluating the
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Chapter 7 is based on the following paper:
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tion. In RecSys. 388–397 [250].





19

II
Resources





2

21

2
MANtIS and the

transformer-rankers Library
In this chapter, we describe the main resources we use throughout the thesis. We introduce
MANtIS, a large-scale dataset containing multi-domain and grounded information-seeking
dialogues that fulfill our dataset desiderata, which was created based on a novel conceptual
model of conversational search. We then describe the main components required to train and
evaluate models for retrieving and ranking responses with the transformer-rankers library.

This chapter is based on the following Arxiv preprint, the dataset created during the supervision of Alexandru
Balan’s master thesis, a workshop paper and the transformer-rankers library:

 Penha, Gustavo, Alexandru Balan, and Claudia Hauff. “Introducing MANtIS: a novel multi-domain infor-
mation seeking dialogues dataset” arXiv preprint arXiv:1912.04639 (2019) [246].

 Penha, Gustavo, and Claudia Hauff. ”Challenges in the Evaluation of Conversational Search Systems.” Con-
verse@KDD. 2020. [248].

 The library transformer-rankers: https://github.com/Guzpenha/transformer_rankers.

https://github.com/Guzpenha/transformer_rankers


2

22 2 MANtIS and the transformer-rankers Library

2.1 Introduction
Ideally, a Conversational Search System (CSS) exhibits the following competencies through
natural language interactionswith its users [18, 273]: the CSS is able to extract, understand,
refine, clarify, and elicit the user information need; the CSS is able to provide answers, sug-
gestions, summaries, recommendations, explanations, reasoning and divide the problem
into sub-problems, based on its knowledge source(s); the CSS is able to take the initiative,
ask questions back and decide which types of actions are best suited in the current conver-
sation context. Current neural conversational approaches are not yet able to demonstrate
all these properties [103], as, among others, we do not have large-scale and reusable train-
ing datasets that display all of the competencies listed above.

The fields of information retrieval, natural language processing, and dialogue systems
have already engaged in relevant and intersecting sub-problems of conversational search
such as ranking clarification questions [9, 278], user intent prediction [269], belief state
tracking [55] and conversation response ranking [374] and generation [372]. Despite this
progress, significant challenges in building and evaluating the CSS pipeline remain. As
discussed in the 2018 SWIRL report on research frontiers in IR [70], two significant ob-
stacles facing CSS are (1) the adaptation and aggregation of existing techniques in one
complex system for multi-domain information-seeking dialogues and (2) the design and
implementation of evaluation regimes coupled with large-scale datasets containing infor-
mation seeking conversation that enable us to evaluate all desired competencies of a CSS.

We explore here both challenges more closely. To deal with the first challenge we for-
malize a novel conceptual model, called conversational search goals, and determine what
goals of an information-seeking conversation existing tasks could help achieve. Regarding
the second challenge, we contribute with a study on which competencies of CSSs existing
datasets are able to evaluate. We find none of the twelve datasets (analyzed within the five
years prior to collecting the corpus, i.e. 2014–2019) that we investigate to fulfill all seven of
our dataset desiderata: multi-turn; multi-intent utterances; clarification questions; infor-
mation needs; utterance labels; multi-domain; grounded. We contribute MANtIS, a large-
scale dataset that fulfills all seven of our dataset desiderata, with 80K conversations across
14 domains that we extracted from Stack Exchange, one of the largest question-answering
portals. With such a dataset at hand, we describe here how to evaluate and compare
different models for conversational search using our library transformer-rankers. We
show that with this contribution we can download datasets, fine-tune heavily pre-trained
language models for the task of conversation response ranking using different negative
sampling strategies, and finally evaluate them using common IR metrics.

2.2 Related Work
Earlier efforts to human-machine dialogue date back to 1966 with ELIZA [358], a rule-
based system used to study clinical psychology dialogues, and later in 1971 PARRY [66]
which was used to study schizophrenia. The first task-oriented approach for human-
machine dialogue is known as the GUS system [36], proposed for travel planning. GUS’s
approach considers that for a certain domain, e.g. air travel, and intent, e.g. book flights,
there are a set of slots that need to be filled with values, e.g. destination Brazil. The
dialogue will be used to fill such slots and act upon them.
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Table 2.1: Possible actions that agents and users can take in information-seeking dialogues as defined by previous
work on conversational search. We group the actions into the two main categories of the proposed conceptual
model. S1 groups the actions related to information-need elucidation, while S2 groups the actions related to
information presentation. S1 and S2 are the main conversational goals described in our model (see Figure 2.1).

Model S1 - Information-need elucidation S2 - Information presentation

Vakulenko et al. [339] inf., understand, pos/neg feedback prompt, offer, results, backchannel, pos/neg
feedback

Qu et al. [268] original question, follow up question, repeat
question, clarifying question, inf. request,
pos/neg feedback

potential answer, further details, inf. re-
quest, pos/neg feedback

Trippas et al. [334] query refinement offer, query repeat, query
embellishment, intent clarification, con-
firms, inf. request

presentation, presentation with modifica-
tion, presentation with modification and
suggestion, scanning document, SERP, con-
firms, inf. request

Radlinski and Craswell [273] rating of (partial) item, preference among
(partial) item, lack of preference, critique of
(partial) item, unstructured text describing
inf. need

free text, single/partial item/cluster, small #
of partial items, complete item, small # of
complete items

Azzopardi et al. [18] (non) disclose, revise, refine, expand, extract,
elicit, clarify, hypothesize, interrupt

list, summarize, compare, subset, similar, re-
peat, back, more, note, record, recommend,
report, reason, understand, explain, inter-
rupt

Efforts in the specific case of engaging in dialogue for information-seeking tasks started
in the late 1970s, with a dialogue-based approach for reference retrieval [239]. Since
then, research in IR has focused on strategies—such as exploiting relevance feedback [292],
query suggestions [50] and exploratory search [219, 362]—tomake the search engine result
page more interactive, which can be considered as a very crude approach to CSS. Recently,
the widespread use of voice-based agents and advances inmachine learning have reignited
research interest in the area. User studies [328, 346] have been conducted to understand
how people interact with agents (simulated by humans) and inform the design of CSSs.

A number of works have defined models derived from the annotation process of col-
lected conversational data—see the first three rows of Table 2.1 for examples of dialogue
annotation models. Each scheme enumerates the possible user intent(s) for each utterance
in the dialogue. Trippas et al. [334] analyzed the behaviour of speech-only conversations
for search tasks and defined an annotation scheme to model such interactions, which they
subsequently employed to discuss search behaviour related to the type of modality (voice
or text) and to the search process [333]. Qu et al. [268] extracted information-seeking dia-
logues from a forum on Microsoft products to analyze user intent, using a forum annota-
tion scheme. Vakulenko et al. [339] proposed amore coarse-grainedmodel for information-
seeking dialogues, and based on the annotation scheme they label and analyze four differ-
ent datasets via process mining. The different annotation schemeswere used to get a better
understanding of different aspects of the information-seeking process through dialogue.

In contrast to models derived from actual conversations, conceptual works have fo-
cused on the larger picture of CSS: theorizing about desired actions, properties and utility
a CSS could have in the future—see the last two rows of Table 2.1 for examples of models
for desired actions of a CSS.

Radlinski and Craswell [273] defined a framework with five desirable properties: user-
revealment (the system should help the user express and discover her information need),
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system revealment (the system is able to reveal its capabilities and corpus), mixed-initiative
(both the user and the system can take initiative), memory (past references can be refer-
enced) and set retrieval (the system can reason about the utility of different items). Addi-
tionally, they proposed a theoretical conversational search informationmodel that exhibits
such characteristics through a set of user and agent actions (e.g., displaying partial/com-
plete items/clusters and providing feedback).

This theoretical model was expanded by Azzopardi et al. [18], who describes a set of
twenty-five actions regarding possible interactions between the user and the agent, e.g., a
user can revise or refine a criterion of her current information need; they discuss possible
trade-offs between actions, highlighting future decisions and tasks for CSSs.

As pointed out by Azzopardi et al. [18], it has not yet been discussed nor specified how
to implement the actions or decisions the agents need to perform in a CSS, thus we still
need a practical way to advance the field in this direction. In order to understand how
different research fields have worked with conversational search in practical terms, we
define a novel model to describe information-seeking conversations, by defining the main
goals of such conversations. With this model in mind, we describe a set of characteristics a
conversational search dataset should have, analyze which features existing datasets have
and finally introduce MANtIS.

2.3 Conversational Search Goals
Unlike previous CSS models [18, 268, 273, 334, 339] that focus on annotation schemes and
desired properties/actions, our main objective is to understand how different research
fields have tackled areas of conversational search in terms of tasks, datasets, and systems
capabilities to achieve them. Our model does not consider different stages and charac-
teristics of information-seeking and retrieval tasks from the user perspective, such as
ISP [173], Byström and Hansen [48]’s model and Vakkari and Hakala [337]’s model that
defines a number of task stages. The model proposed here only applies to interactions and
stages within the dialogue with the conversational system. We define a conceptual model
that describes the main goals of information-seeking conversations from the perspective
of the user and systems interactions. We opted for a model on the goal level as it enables
us to understand to what extent we can rely on existing tasks and datasets to train and
evaluate conversational search systems.

Figure 2.1 depicts our conversational search goals model. First, we define two states in
a search conversation: information-need elucidation (S1) and information presentation (S2).
We believe them to be the two significant goals pursued by the agent during the progres-
sion of information-seeking dialogues. Arrows indicate user or agent utterances during
the conversation, which might lead to a transition between goals or development under
the same goals.

Comparing our model with models from the users’ perspective, S1 would be more
frequent in Kuhlthau [173]’s selection (identifying topics to be investigated), exploration
(investigating the topics) whereas S2 would be more salient in formulation (obtaining a
focused perspective on the topic), collection (can specify more clearly the information
need) and presentation (completing the search and use the findings). Compared to Vakkari
and Hakala [337]’s model, S1 states correspond to pre-focus phases, where the user is
uncertain about the usefulness of the presented pieces of information, and the post-focus
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Information-need elucidation

Query suggestion/rewriting 

Clarifying questions gen/ranking

Dialog state tracking

Slot-filling

Intent prediction

Adhoc retrieval
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Conversation response gen/ranking
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Figure 2.1: Overview of our conversational search goals model and related tasks. Information-need elucidation
states (S1) concern actions to better understand the user information need whereas information presentation
states (S2) relate to actions of finding and presenting relevant information.

phase corresponds to S2 states, where they are looking for the pertinent information that
suits well their task. Let us now describe the goals from our model and connect tasks from
the related research fields to them.

State 1: Information-need elucidation
An important role of a CSS is helping the user understand, clarify, refine, express, and elicit
their information need [18]; this is one key difference from traditional search engines [70].
The IR, NLP, and DS communities offer only partial perspectives on this goal. From the
IR point of view, this challenge has been tackled with query suggestions and query dis-
ambiguation techniques. Such methods are trained and evaluated using search engine
query logs, which are not mixed-initiative nor dialogue-based and hence not sufficient for
training and testing CSSs’ capabilities of elucidating information needs.

The task-oriented approach¹ from the DS community has focused on representing
the user information need with explicit pre-defined slots and values that are extracted
from user utterances, and accumulated as a belief state. This is not directly applicable to
CSS, as it is not viable to enumerate all possible slot-value combinations for open-domain
information-seeking dialogues. Another direction pursued in the DS community is open-
domain chit-chat bots, which are non-task-oriented systems, with the objective of con-
ducting extended human-like conversations [286]².

Related work in NLP includes predicting the intent or domain of each utterance [269],
and learning representations of the user information need through its context (previous
utterances) [164, 367] in order to complete a downstream task, e.g. response generation.
Another relevant task that relates to bothNLP and IR is using information-seeking datasets
extracted from online forums, e.g. Stack Exchange [278] and MSDialog [268], to rank/gen-
erate clarification questions given the dialogue context.

¹A task-oriented dialogue system is typically composed of the following: natural language understanding →
dialogue state tracking → policy learning → natural language generation [55, 158, 179, 233].
²More recently a third category that considers interactive QA, an objective closer to the CSS task has been
proposed [23, 79, 101].
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State 2: Information presentation
The other conversational goal is to extract/retrieve and present the relevant information
in a conversational manner. The system has to decide how and which information to
present. In this stage of the conversation, the agent provides answers, suggestions, sum-
maries, explanations, recommendations, reasoning and possibly divides the problem into
sub-problems, all based on its knowledge sources, e.g. document corpora, databases, or
sets of existing user answers from online fora. The user is in charge of evaluating and
making sense of the information, giving feedback, and asking for further information.

In IR, approaches have taken into account the previous queries and implicit user feed-
back in search sessions, such as clicks on documents and dwell time, which can be useful
resources for the search engine to retrieve the next batch of results in the search ses-
sion [121, 153]. Related tasks include ad-hoc retrieval, document re-ranking, recommen-
dation, machine reading comprehension, answer generation/ranking, and text summariza-
tion. Themain open challenge here is evaluating and adapting extraction and presentation
techniques for information-seeking dialogues.

From the task-oriented systems from the DS community, this goal is delegated to the
last component of the system’s pipeline where natural language generation is used to
deliver the response based on the state of the dialogue. The language generation step is a
core NLP task that has seen great improvements due to large language models and their
capacity of generating human-sounding text [82].

States transitions
During the dialogue, the CSS can choose between a number of actions; it has to decide
which one(s) to take and then provide a natural language response to the user. Learn-
ing a mapping between the next action based on the current conversation state has been
evaluated in the DS community through the task of dialog policy learning [245, 316]. In
goal-oriented dialogues we can manually define a set of domain-dependent actions, e.g.,
compare products and recommend. NLP generally handles this with distributed represen-
tations of dialogues and information needs, which are learned in an end-to-end manner to
generate answers [101]. From the perspective of IR systems, an existing framework is to
decide between S1 (further elucidation of the information need) and S2 (the presentation
of such information) based on a module that might capture the uncertainty or confidence
of the system [9]. One of the challenges in conversational search is for the system to de-
termine when to move between the goals of the conversation. CSSs can have mechanisms
that handle this explicitly or do it in a fully data-driven and end-to-end manner.

2.4 Dataset Desiderata
Despite the fact that the IR, NLP and DS communities have independently contributed
to aspects of conversational search, we argue that we currently cannot fully train and
evaluate the effectiveness of CSSs with existing datasets. Based on the existing theoreti-
cal frameworks of CSSs [18, 273] and our conversational search goals model we formally
define a dataset desiderata:

• Multi-turn dialogues: the data must contain dialogues with more than one turn of
user and agent utterances. Single-turn dialogues do not take into account the process
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Table 2.2: Overview of dialogue datasets including their size and conversational search characteristics. 𝑎 The
dialog acts were pre-defined, and the teacher in the setup chooses only one among a few options. 𝑏 There are labels
for a sample of 2,199 dialogues. 𝑐 There are labels for a sample of 1,356 dialogues.
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SCS [333, 334] CHIIR IR 39 3 3 3 3 3 3
MISC [328] CAIR workshop IR 88 3 3 3 3 3
CCPE-M [272] SIGDIAL DS 502 3 3 3 3 3
Frames [16] SIGDIAL DS 1,369 3 3 3 3
KVRET [88] SIGDIAL DS 3,031 3 3 3 3
CoQA [279] preprint only - 8,000 3 3 3
MultiWOZ [46] EMNLP NLP 8,438 3 3 3 3
QuAC [59] EMNLP NLP 13,594 3 3 𝑎 3 3
WoW [81] ICLR ML 22,311 3 3 3 3
ShARC [296] EMNLP NLP 32,436 3 3

MSDialog [268] SIGIR IR 35,000 3 3 3 3 3 𝑏
DSTC-7-SS [382] DSTC7 workshop DS 100,000 3 3 3 3
UDC [204] SIGDIAL DS 930,000 3 3 3 3

MANtIS - - 80,324 3 3 3 3 3 𝑐 3 3

of elucidating the user information-need.

• Information needs: the user must have an information need [323] expressed in her
utterances. The conversations must be information-seeking, going beyond lookup, chit-
chat and goal-oriented tasks. Conversational search is different from general conversa-
tional AI [101], as there is an underlying information need to be solved.

• Clarification questions: the data must present mixed-initiative conversations by go-
ing beyond the user-asks/system-responds loop. Clarification questions are essential in
elucidating the user information-need.

• Multi-intent utterances: another indication of mixed-initiative [273] are utterances
that have more than one intent, e.g. giving feedback and presenting further information.

• Having utterance labels is a useful resource in building CSSs by providing additional
supervision signals.

• Multi-domain: the users’ information needs can fall into more than one domain (topics
of conversation, such as physics, travel and English). Domain specific dialogue systems
do not generalize to new/unseen information needs. Thus the dataset must contain
conversations from multiple domains.

• Grounded conversations: the agentmust be able to report the source(s) of the informa-
tion it is providing and the reasoning behind it. Grounding conversations in documents
is a useful resource for achieving explainable agents. Moreover, using sources of infor-
mation for generating responses has shown to improve the quality of the dialogues over
non-grounded conversations that rely only on historical conversational data [401].

With these desiderata in mind, we explored twelve multi-turn, non-chit-chat, human-
to-human, open-sourced, and datasets that were released in the five years prior to collect-
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ing the corpus, i.e. 2014 - 2019. The result—i.e. the datasets’ characteristics according
to our desiderata—can be found in Table 2.2. Importantly, none of the datasets have all
the desirable features. SCS is the most complete one, missing only the grounding aspect.
However, the very limited number of dialogues in this dataset (39) makes it not suitable
to train and evaluate conversational search models. The three largest datasets, MSDialog,
DSTC-7-SS and UDC, were all derived from technical forums. Their two main drawbacks
are the narrow content domain (technical) and lack of a correspondence between utter-
ances and documents where useful information to fulfill the information needs could be
extracted from (i.e., grounding). This poses challenges for research on CSS: how general-
izable are models trained on one or two particular domains? How can systems leverage
the huge amount of available information in web documents—from diverse domains—in
information-seeking conversations?

In order to study such challenges we created a novel dataset called MANtIS, short for
multi-domain information seeking dialogues dataset. MANtIS is to our knowledge the first
dataset at large-scale that fulfills all of our dataset desiderata.

2.5 MANtIS
In order to create a large-scale conversational dataset, we resort to the extraction of con-
versations from existing data sources— the same strategy followed by the creators of the
largest datasets in Table 2.2. We take the community question-answering portal Stack Ex-
change as a starting point³ as (i) the data dump is publicly available, (ii) it is large-scale
(more than 20M questions), (iii) the portal covers diverse domains (so-called sites, 175 as of
05/2019) such as physics, travel and a range of IT and computer science domains, and (iv)
the information needs are often complex as posing a question on Stack Exchange usually
means that a simple web search is not enough to find a suitable answer.

For MANtIS, we consider 14 diverse domains⁴. We make the source code available at
https://github.com/Guzpenha/MANtIS so that conversations from any of the 175 domains
of Stack Exchange can be extracted. The examples in Figure 2.2 showcase characteristics
of the conversations from our dataset.

Inclusion Criteria
We consider each question-answering thread of a Stack Exchange site as a potential con-
versation between an information seeker and an information provider and include it in
MANtIS if the following six criteria hold:

1. The entire conversation takes place between exactly two users (the information
seeker who starts off the conversation and the information provider).

2. The conversation consists of at least 2 utterances per user.

3. One of the provider’s utterances contains a hyperlink, providing grounding.

³https://archive.org/download/stackexchange data dump from 2019-03-04
⁴Specifically, we consider apple (5,645 dialogues), askubuntu (17,755), dba (5,197), diy (1,528), electronics
(10,690), english (3,231), gaming (2,982), gis (9,095), physics (7,826), scifi (2,214), security (3,752), stats
(7,676), travel (1,433) and worldbuilding (1,300).

https://github.com/Guzpenha/MANtIS
https://archive.org/download/stackexchange
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seeker

seeker

provider

provider

Conversation from Apple domain 

Original Question

Potential Answer

Intents

Greeting/Gratitude
Follow-up question

Further Details

Greeting/Gratitude

I want a firewall that will protect me but 
more of that to monitor any connection 
in or out of my mac [...]

That would be the TCPblock {url} [...] 
With TCPBlock you can [..]

Thank you. The app is from unidentified 
developer it is safe to use it? [...]

I understand, but there is nothing that it 
100% safe and I use it [...]

Cheers anyway! I will try to buy [...] 
which is more safe [...]

grounding 

information 
needs

positive final 
utterance 

Figure 2.2: MANtIS example with document grounding (url), positive feedback from the information seeker, clar-
ification questions and the initial information need. On the right we display the user intent labels.

4. The conversation has not been marked as Spam or Offensive.

5. The conversation has not been edited or marked as deprecated.

6. If the final utterance belongs to the seeker, it contains positive feedback.

In order to verify to what extent the existence of a hyperlink can be considered as doc-
ument grounding (criterium 3), we sampled 150 conversations from MANtIS and manually
verified whether the link contained in the information provider’s utterance(s) is indeed
leading to a grounding document. This was the case for 88% of the sampled conversations,
which we consider a sufficiently high percentage to not further refine the grounding rule.

In order to verify whether the final say of the information seeker was a positive state-
ment (criterium 6), we sampled 1,400 conversations (100 from each of our sites) where
the last person to respond was the information seeker and manually assessed whether the
final response was positive feedback (see last utterance of dialogue in Figure 2.2). Subse-
quently, for all conversations with a final response by the information seeker, we com-
puted the VADER sentiment score [140]. Based on our labeled conversations, we applied
a decision stump in order to obtain the optimal score threshold (separately for each site).
Consequently, all the conversations with a VADER score below the optimal threshold were
discarded—as we are interested in information-seeking conversations that contain a posi-
tive conclusion as we assume that in those cases the information need has been fulfilled.

Based on these criteria, we extracted a total of 80,324 conversations. The majority of
the conversations have 4 utterances (60%). Some technical domains such as electronics and
askubuntu have a high average number of turns, while other domains such as worldbuild-
ing and dba have very long utterances showcasing the diversity of the domains. Our list
of conditions was quite stringent, only 4.77% of all question-answering threads made it
into our final dataset, and each domain contributed at least 1K conversations.
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Next, we have some examples of dialogues from the different domains of MANtIS.

Dialogue from the english domain
𝑢1: I would like to describe a person who returns from a mind-relaxing break back to work
by the idiom fresh pair of eyes. However, as per its definition on some sources, a fresh pair of
eyes is another person [...], which made me think that maybe it is not suitable. The situation
I am imagining is of a person who worked longer than he/she expected to find the evident
(by the incorrect outcome) mistake in his/her work, goes out for a break, then returns back
to examine his work again for the mistake. I would like to describe the property of this
man/lady being refreshed by the break, and in a concise and effective manner. Does the
idiom ”a fresh pair of eyes” fit into this description? If not, then what else should be my
phrase of choice?
𝑢2: Yes, one can take a break so that they return with a fresh pair of eyes, or so that
they review the work with a fresh pair of eyes. However, the phrase idiomatically refers
to getting someone else to have a look - someone whose preconceptions or perspectives
haven’t already been tamed to match that of those close to the project. The free dictionary
http://idioms.thefreedictionary.com/a+fresh+pair+of+eyes another person to examine
something closely in addition to anyone previously. As soon as we can get a fresh pair of eyes
on this mansuscipt, we will find the last of the typos.
𝑢3: Should I perhaps than say *almost* fresh pair of eyes, or just use it without the ”almost”
regardless of what it idiomatically refers to?
𝑢4: No, I don’t think *almost* gets you what you want here. The phrase (and in particular
the word fresh) *can* be used in its literal sense, as noted in the opening sentence of my
answer. You’re welcome. :)

Dialogue from the gaming domain
𝑢1: What kind of pokemon should I place in the gyms? There is this gym defence tier
list which has pokemon with high hp in it. https://i.stack.imgur.com/kMTSc.jpg Is that
the only thing we should look for? Does DPS, attack moves, CP matter or is hp the most
important thing?
𝑢2: There are 3 main criteria: The first being high hp, for obvious reasons. The
second criteria is charges that charge fast and have a high base damage to
take full advantage of the 1.5 attackrate. The third one is a high Defense-DPS,
explained in depth in https://gaming.stackexchange.com/questions/277288/
is-damage-from-defending-pokemon-normalized-for-slow-and-fast-attacks/277364#
277364. But to simplify it: a high base damge is generally better. The highest Tier actually
isn’t simply the highest hp Pokémon - it is more of a coincidence that the high hp Pokémon
also have a higher base damage.
𝑢3: So in that case is this tier list inaccurate?
𝑢4: Not really. I browsed the net a bit and found this reddit post https://www.reddit.com/r/
TheSilphRoad/comments/4skafz/best_attackers_and_defenders_analysis/ with a rather
accurate tier list in my opinion, so feel free to check it out.

http://idioms.thefreedictionary.com/a+fresh+pair+of+eyes
https://i.stack.imgur.com/kMTSc.jpg
https://gaming.stackexchange.com/questions/277288/is-damage-from-defending-pokemon-normalized-for-slow-and-fast-attacks/277364#277364
https://gaming.stackexchange.com/questions/277288/is-damage-from-defending-pokemon-normalized-for-slow-and-fast-attacks/277364#277364
https://gaming.stackexchange.com/questions/277288/is-damage-from-defending-pokemon-normalized-for-slow-and-fast-attacks/277364#277364
https://www.reddit.com/r/TheSilphRoad/comments/4skafz/best_attackers_and_defenders_analysis/
https://www.reddit.com/r/TheSilphRoad/comments/4skafz/best_attackers_and_defenders_analysis/
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Dialogue from the stats domain
𝑢1: How do I call a forecast (more precisely, a forecasting rule) that is both accurate and
precise? Is there a word that expresses both properties combined?I do not mean the forecast-
ing rule is perfect, i.e. it does not have to produce forecasts that always perfectly coincide
with their respective targets, but its accuracy is good (low bias) and its precision too (low
variance).
𝑢2: My guess would be ’consistent forecast’. As you said: How do I call a forecast
(more precisely, a forecasting rule) that is both accurate and precise? Quoting Wikipedia
(https://en.wikipedia.org/wiki/Consistency_(statistics)) on consistency: Use of the
terms consistency and consistent in statistics is restricted to cases where essentially the
same procedure can be applied to any number of data items. I am taking procedure and
rule to be synonymous in this case. And some more: A consistent estimator (https:
//en.wikipedia.org/wiki/Consistent_estimator) is one for which, when the estimate is
considered as a random variable indexed by the number n of items in the data set, as n in-
creases the estimates converge to the value that the estimator is designed to estimate. So if
the estimate converges to the value the forecasting rule is designed to estimate then it can
be called accurate and given the same information the forecasting rule must give precise
forecasts.
𝑢3: This is rather specific (an accurate and precise forecast need not be consistent) and
tangential to the part precise (a consistent forecasting rule can be imprecise in any finite
sample).
𝑢4: By imprecise do you mean high standard deviation? I didn’t get the first part of your
comment I.e. an accurate and precise forecast need not be consistent.
𝑢5: By imprecise, yes. Consistent means it converges to a perfect forecast; mine need not
converge. It can stay about as good as it is for any sample size.
𝑢6: That means your forecast’s goodness has to be independent of sample size. What if the
sample size is 1?Vis-à-vis a sample size of lets say 1000?

2.6 Evaluation
In order to evaluate models using MANtIS and other information-seeking datasets for con-
versational search, in this section we first formally define the conversation response rank-
ing task, followed by the limitations of this evaluation scheme.

2.6.1 Conversation Response Ranking
The task of conversation response ranking [83, 115, 129, 130, 246, 319, 367, 373, 374, 384,
398, 402], concerns finding the best response given the dialogue context. Formally, let
𝒟 = {(𝒰𝑖 ,ℛ𝑖 ,𝒴𝑖)}𝑀𝑖=1 be a dataset consisting of 𝑀 triplets: dialogue context, response
candidates and response relevance labels. The dialogue context 𝒰𝑖 is composed of the
previous utterances {𝑢1,𝑢2, ...,𝑢𝜏 } at the turn 𝜏 of the dialogue. The candidate responses
ℛ𝑖 = {𝑟1, 𝑟2, ..., 𝑟𝑛} are either ground-truth responses or negative sampled candidates, indi-
cated by the relevance labels 𝒴𝑖 = {𝑦1, 𝑦2, ..., 𝑦𝑛}.

Typically, the number of candidates 𝑛 is way smaller, e.g. 𝑛 = 10, than the number
of responses in the collection. When 𝑛 is small and the model has to score only a few
candidate responses we have the re-ranking setup (second-stage retrieval of the pipeline
from Figure 1.6). If we consider 𝑛 to be the size of the entire collection of responses we

https://en.wikipedia.org/wiki/Consistency_(statistics)
https://en.wikipedia.org/wiki/Consistent_estimator
https://en.wikipedia.org/wiki/Consistent_estimator
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have the retrieval setup (first-stage retrieval of the pipeline from Figure 1.6). By design
the number of ground-truth responses is one, the observed response in the conversational
data. The task is then to learn a ranking function 𝑓 (.) that is able to generate a ranked list
for the set of candidate responses ℛ𝑖 based on their predicted relevance scores 𝑓 (𝒰𝑖 , 𝑟).

F(U,r) P(relevant=1 | U, r)

dialogue context (U)

candidate response (r)

Figure 2.3: Ranking function 𝑓 predicts the relevance of a candidate response 𝑟 for the dialogue context 𝒰 .

Other similar ranking tasks related to conversational search are clarification question
retrieval [277, 278], where the set of responses to be retrieved are always clarification
questions and conversation passage retrieval [75, 194]. A successful model for the ranking
tasks retrieves the ground-truth response(s) first in the ranked list, and thus the evaluation
metrics employed are IR metrics such as MAP and 𝑅𝑁@𝐾 (where N is the number of
candidate responses and K is the list cutoff threshold).

Premises and Limitations
There are a number of premises and limitations that we would like to highlight in this
offline evaluation next.

There is a complete pool of adequate responses that endure over time
Our ranking task assumes access to a pool of responses that contain at least one appro-
priate answer to a given information need. If we resort only to historical responses the
maximum effectiveness of a system would be very low. For example, in popular bench-
marks such as UDC [204] and MSDialog [268] the number of responses that exactly match
with historical responses are less than 11% and 2% respectively. We also see that such ex-
act matches are often uninformative: 40% are utterances for which the intent is to show
gratitude, e.g.‘Thank you!’, compared to the 20% overall rate in MSDialog. Another con-
cern is that responses that were never given before, e.g. questions about a recentWindows
update, would not be answerable by such a system even though this information might be
available on the web.

The correct answer is always in the candidate responses list.
Neural ranking models are generally employed for the task of re-ranking a set of docu-
ments, obtained from a recall-oriented and efficient first-stage ranker [387]. While such
a multi-stage approach offers a practical approach for conversational response ranking,
benchmarks always include the relevant response in the candidate list to be retrieved.
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The effectiveness of models for small collections generalizes to large collections.
While in ad-hoc retrieval we have to rank from a pool of millions of documents, current
benchmarks require models to retrieve responses from a list of 10–100 candidates (12 out
of 13 use less than 100 candidates, and 7 use only 10 candidates). This makes the task un-
reasonably easy, as demonstrated by the 80% drop in performance from subtask 5 (120000
candidates) and subtask 2 (100 candidates) of DTSC7-NOESIS [118]. In Chapter 3 we eval-
uate the effectiveness of models for the full-rank task where the number of candidates is
the complete collection.

Test instances from the same dialogue are considered as independent.
When creating conversational datasets [129, 204, 268] the default is to generate multiple
instances from one dialogue: one instance for each answer provided by the information
provider composed of the last information seeker utterance, and the dialogue history—
see Figure 1.3. Even though multiple utterances come from the same dialogue, they are
evaluated independently, e.g. an inappropriate response at the beginning of a conversa-
tion does not change the evaluation of a response given later by the system in the same
dialogue. Benchmarks evaluate instances from the same dialogue independently. In a
real-world scenario, if a model fails at the start of the conversation, it has to recover from
unsatisfactory responses.

There is only one adequate answer.
Traditional offline evaluation cannot handle counterfactuals [37] such as what would have
happened if another response was given instead of the ground-truth one. Due to the high
cost of human labels, it is common to use only one relevant response per context (the
observed human response). However, multiple responses could be correct for a given con-
text with different levels of relevance. Multiple answers can be right because they provide
semantically similar responses or because they are different but appropriate responses to
an information need.

2.7 The transformer-rankers Library
In this section, we describe the three main modules of the transformer-rankers library⁵:
datasets, transformer rankers, and negative sampling. The core task supported is conver-
sation response ranking as defined in Section 2.6. For example, it is possible to download
the MANtIS dataset and fine-tune a BERT [80] re-ranker model with BM25 to obtain negative
samples with a few lines of code⁶.

2.7.1 Dialogue Datasets
It is possible to download a number of datasets in transformer-rankers⁷, including three
information-seeking dialogue datasets used in most chapters of the thesis:

• MANtIS [246] the dataset introduced in Section 2.5.
⁵https://github.com/Guzpenha/transformer_rankers
⁶See for example this Google Colab notebook: https://colab.research.google.com/drive/
1wGmaO3emC7Sg-tA7nGehIQ2vjOLN9S5e?usp=sharing.
⁷See all datasets here: https://github.com/Guzpenha/transformer_rankers/blob/master/transformer_
rankers/datasets/downloader.py

https://github.com/Guzpenha/transformer_rankers
https://colab.research.google.com/drive/1wGmaO3emC7Sg-tA7nGehIQ2vjOLN9S5e?usp=sharing
https://colab.research.google.com/drive/1wGmaO3emC7Sg-tA7nGehIQ2vjOLN9S5e?usp=sharing
https://github.com/Guzpenha/transformer_rankers/blob/master/transformer_rankers/datasets/downloader.py
https://github.com/Guzpenha/transformer_rankers/blob/master/transformer_rankers/datasets/downloader.py
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• MSDialog [268]which contains 246K context-response pairs, built from 35.5K information-
seeking conversations from the Microsoft Answer community, a QA forum for sev-
eral Microsoft products;

• UDC-DSTC8 [175]which contains 184k context-response pairs of disentangledUbuntu
IRC dialogues.

See for example how to download those three datasets with transformer-rankers:

1 from transformer_rankers.datasets import downloader
2 data_folder = ’./ datasets ’
3 for name in [’mantis ’, ’msdialog ’, ’ubuntu_dstc8 ’]:
4 dataDownloader = downloader.DataDownloader(name , data_folder)
5 dataDownloader.download_and_preprocess ()

2.7.2 Transformer for Ranking
The multi-stage pipeline described in the introduction to produce a retrieval-based con-
versational search system requires a first-stage retrieval system that selects a number of
candidates from the entire pool of responses that can be re-ranked later. In Chapter 3
we describe approaches for the first-stage retrieval, whereas in later chapters we focus
on re-ranking. Re-ranking with a transformer model that has as input both the query
and the document, also known as a cross-encoder, has been a really successful approach
to numerous IR tasks, including conversation response ranking⁸. A strong baseline for
the task is BERT [80], which is used throughout this thesis⁹. The transformer-rankers
implementation relies on the Hugging Face library [363].

In Figure 2.4 we show how a dialogue context and a candidate response are concate-
nated as input to a BERT re-ranker in order to obtain a prediction of relevance. Each
dialogue context 𝒰 contains only one utterance per seeker/provider for each conversa-
tional turn. In cases where the concatenation of (𝒰[SEP]𝑟) is bigger than the input limit,
we truncate 𝒰 from the left to the right.

2.7.3 Negative Sampling
With transformer-rankers there are three different negative sampling approaches imple-
mented¹⁰: random, BM25, and dense retrieval. Note that since they are required to perform
retrieval, they are capable of doing the first-stage step in pipelines. Section 1.1.3 gives an
overview of negative sampling procedures.

⁸See for example https://github.com/JasonForJoy/Leaderboards-for-Multi-Turn-Response-Selection
⁹See the following report on getting baseline results using transformer-rankers BERT re-rankers for all the three
information-seeking datasets employed here: https://wandb.ai/guz/library-crr-bert-baseline/reports/
BERT-ranker-baselines-for-CRR--Vmlldzo0NDcyMzU.
¹⁰https://github.com/Guzpenha/transformer_rankers/blob/master/transformer_rankers/negative_
samplers/negative_sampling.py

https://github.com/JasonForJoy/Leaderboards-for-Multi-Turn-Response-Selection
https://wandb.ai/guz/library-crr-bert-baseline/reports/BERT-ranker-baselines-for-CRR--Vmlldzo0NDcyMzU
https://wandb.ai/guz/library-crr-bert-baseline/reports/BERT-ranker-baselines-for-CRR--Vmlldzo0NDcyMzU
https://github.com/Guzpenha/transformer_rankers/blob/master/transformer_rankers/negative_samplers/negative_sampling.py
https://github.com/Guzpenha/transformer_rankers/blob/master/transformer_rankers/negative_samplers/negative_sampling.py
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I want a firewall that will protect me but 
more of that to monitor any connection 
in or out of my mac [...]

That would be the TCPblock {url} [...] 
With TCPBlock you can [..]

Thank you. The app is from unidentified 
developer it is safe to use it? [...]

I understand, but there is nothing that it 
100% safe and I use it [...]

Figure 2.4: Using cross-encoder BERT re-ranker to estimate the relevance of a pair of dialogue context 𝒰 and
the candidate response 𝑟 . On the left, we have a diagram of the inputs and outputs of the model. In the middle,
we have an example dialogue context and candidate response. On the right, we have the same example as the
input to the model. The input is their concatenation with a [SEP] token. The dialogue context 𝒰 is represented
by the concatenation of its utterances, separated by the special end of utterances and turns tokens: [U] and [T].

2.8 Conclusions
We proposed here a model of conversational search that focuses on the main goals of the
agent and user interactions. We identified two major challenges: (1) the collaboration of
efforts in the research fields of IR, NLP, and DS, and (2) the lack of publicly available large-
scale conversational search datasets. Based on a set of dataset desiderata, we introduce
MANtIS, a large-scale dataset that contains more than 80K conversations across 14 domains
that are multi-turn, centered around complex information needs, and are mixed-initiative.

We also describe the core task thatwe use for the evaluation of rankingmodels through-
out this thesis. We introduce the transformer-rankers library to train and evaluate trans-
former models for the task, going through the main components of datasets, transformer
rankers, and negative sampling.

Having described the main resources used in this thesis, next, we dive into retrieval
and ranking models for conversational search. We begin with the first-stage retrieval of
responses for dialogues in the next chapter.
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3
Representations for First-Stage

Retrieval of Responses
In this chapter, we focus on the first stage of the multi-stage pipeline for conversational search.
The predominance of the re-ranking task in previous work has led to a great deal of attention
to building neural re-rankers, while the first-stage retrieval step has been overlooked. Since
the correct response is always available in the candidate list of 𝑛, this artificial re-ranking
evaluation setup assumes that there is a first-stage retrieval step that is always able to rank
the correct response in its top-𝑛 list. In this chapter, we focus on the more realistic task of
full-rank retrieval of responses, where 𝑛 can be up to millions of responses. We investi-
gate both dialogue context and response expansion techniques to augment sparse represen-
tations for retrieval, as well as zero-shot and fine-tuned dense representations for retrieval.
Our findings—based on three different information-seeking dialogue datasets—reveal that a
learned response expansion technique is a solid baseline for sparse retrieval. We find the best-
performing method overall to be dense retrieval with intermediate training—a step after the
language model pre-training where sentence representations are learned—followed by fine-
tuning on the target conversational data. We also look into hypotheses that could explain
why we observed the phenomena of harder negatives sampling techniques leading to worse
results for the fine-tuned dense retrieval models. The code required to reproduce this chapter is
available at https://github.com/Guzpenha/transformer_rankers/tree/full_rank_retrieval_dialogues.

This chapter is based on the following paper:

 Gustavo Penha and Claudia Hauff. 2023. Do the Findings of Document and Passage Retrieval Generalize to
the Retrieval of Responses for Dialogues? In ECIR. Springer, 132–147. [253]

https://github.com/Guzpenha/transformer_rankers/tree/full_rank_retrieval_dialogues


3

40 3 Representations for First-Stage Retrieval of Responses

3.1 Introduction
The offline evaluation of neural ranking models for conversational response ranking is to
rank the ground-truth response over a limited set of 𝑛 responses and measure the number
of relevant responses found in the first 𝐾 positions—𝑅𝑒𝑐𝑎𝑙𝑙𝑛@𝐾 [399]. Since the entire
collection of available responses is typically way bigger¹ than such set of candidates, this
setup is in fact a re-ranking problem, where we have to select the best response out of
a few options. Additionally, in existing benchmarks the correct response is traditionally
always amongst the 𝑛 responses to re-rank [248]. This is thus an artificial evaluation that
overlooks the first-stage retrieval step, which needs to retrieve the 𝑛 responses that will
be later re-ranked. If the first-stage model, e.g. BM25 [290], fails to retrieve relevant
responses, the retrieve then re-rank pipeline will also fail.

In this chapter, we contribute a novel comparison of supervised and unsupervised,
dense and sparse retrieval models² for the overlooked problem of full-rank retrieval of
responses for dialogues. We adapt prominent techniques for the problem, i.e. effective in
other ranking tasks such as passage retrieval, including document expansion for the task
of ranking responses for dialogue contexts.

We contribute here an empirical evidence to the following open questionswhen setting
up a full-rank retrieval system for conversation response ranking. What is the effective-
ness of sparse and dense retrieval when ranking responses from the entire collection? How
do dense models compare with strong sparse baselines? What is their effectiveness in a
zero-shot setup? What is the effect of adding an intermediate representation learning step
between the language model pre-training and the training with conversational data?

We also shed light on the important problem of selecting negative samples when train-
ing dense retrieval models, which is known to have a great effect on the final effective-
ness in different ranking tasks [370, 392]. Unlike previous work that studies sampling
out of a few random conversational responses in the re-ranking setup of a cross-encoder
model [184], we study the harder problem of sampling negative responses from the entire
collection. We are the first to investigate different hypotheses in the context of negative
sampling of responses for dialogues that can explain difficulties in using harder negatives
in the training of dense retrievers. Our main findings in building retrieval models of re-
sponses for dialogues in the full-rank setting are:

• While dialogue context expansion is not successful for sparse retrieval, supervised
response expansion through the proposed 𝑟𝑒𝑠𝑝2𝑐𝑡𝑥𝑡𝑙𝑢 is a strong baseline for full-
rank retrieval of responses for dialogues.

• Dense retrieval without access to the target dialogue data, i.e. the zero-shot scenario,
is able to beat a strong sparse baseline only when it has access to a large amount of
out-of-domain supervision data.

¹While for most benchmarks [399] we have only 10–100 candidates, a working system with the Reddit dataset
from PolyAI https://github.com/PolyAI-LDN/conversational-datasets for example would need to retrieve
from 3.7 billion responses.
²Althoughwe evaluate them as standalonemethods for the full-rank retrieval problem, they can also be employed
as first-stage retrievers followed by a re-ranking step.

https://github.com/PolyAI-LDN/conversational-datasets
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• Dense retrieval models that have intermediate training followed by fine-tuning with
the target data are the best-performingmodels, evenwith a simple random sampling
approach for obtaining negative responses.

• Harder negative sampling techniques lead to worse effectiveness. We found evi-
dence indicating that false positives strongly contribute to this phenomenon. De-
noising is an effective approach for taking advantage of harder negative samples.

3.2 Related Work
In this section, we analyze previous work pertinent to this paper by first discussing current
research in (un)supervised dense and sparse retrieval followed by reviewing work on re-
ranking and retrieval models for responses.

3.2.1 Dense and Sparse Retrieval
The proposed conceptual framework by Lin [190] argues for categorizing retrieval models
into two dimensions: supervised vs. unsupervised and dense vs. sparse representations³.
An unsupervised sparse representation model such as BM25 and TF-IDF [156] represents
each document and query with a sparse vector with the dimension of the collection’s
vocabulary, having many zero weights due to non-occurring terms. Since the weights of
each term are based on term statistics they are unsupervised methods.

A supervised sparse retrieval model such as COIL [105], SPLADE [94], TILDE [406]
and DeepImpact [216] can take advantage of the effectiveness of transformer-based lan-
guage models by changing the terms’ weights from collection statistics to something that
is learned. DeepCT [71] for example learns term weights with a transformer-based re-
gression model from the supervision of the MSMarco dataset. Approaches that only modify
non-zero weights however are not able to address the vocabulary mismatch problem [98],
as terms with zero weight will not be affected. One way to address such a problem in
sparse retrieval is by using query expansion methods. RM3 [1] has been shown to be a
competitive query expansion technique that uses pseudo-relevance feedback to add new
terms to the queries followed by another final retrieval step using the modified query.

Document expansion has also been shown to be an effective technique to improve
sparse retrieval, which is able to address the vocabulary mismatch problem. The core
idea is to create pseudo documents that have expanded terms and use them instead when
doing retrieval. doc2query [238] is an effective approach to document expansion that uses
a language model to predict the queries which might be issued to find the document. The
predictions of this model are used to create the augmented pseudo documents. Expansion
techniques are able to modify non-zero weights by adding terms that did not exist in the
query or document.

Supervised dense retrieval models, such as ANCE [370], RocketQA [271], PAIR [281]
and coCodenser [104], represent query and documents in a smaller fixed-length space,
for example of 768 dimensions, which can naturally capture semantics. They are thus
able to address the vocabulary mismatch problem. While dense retrieval models have

³A distinction can also be made of cross-encoders and bi-encoders, where the first encode the query and doc-
ument jointly as opposed to separately [325]. Cross-encoders are applied in a re-ranking step due to their
inefficiency and thus are not our focus.
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shown to consistently outperform BM25, this is not so easily the case when dense retrieval
models do not have access to training data from the target task, known as the zero-shot
scenario [282, 326]. The BEIR benchmark [326] showed that BM25 was superior to dense
retrieval from 9–18 (depending on the model) out of the 18 datasets under this evaluation
scheme. While the zero-shot scenario offers a fairer comparison of dense models with
unsupervised sparse models, learned dense retrieval models should also be compared with
learned sparse models, e.g. BM25+doc2query.

Unlike previous work that compares supervised and unsupervised, dense and sparse
retrieval models for other tasks such as passage ranking, we provide a novel and compre-
hensive comparison for the problem of full-rank retrieval of responses for dialogues.

3.2.2 Re-Ranking and Retrieval of Responses for Dialogues
Early neural models for response ranking were based on matching the representations of
the concatenated dialogue context and the representation of a response in a single-turn
manner with architectures such as CNN and LSTM [159, 204]. Researchers later explored
matching each utterance in the dialogue context with the response with more complex
neural architectures [114, 195, 367, 371, 402].

Using heavily pre-trained language models for ranking was first shown to be effec-
tive by Nogueira and Cho [236]. They used a BERT model to re-rank the responses of a
first-stage retrieval system on the MSMarco passage retrieval task and showed significant
improvements in effectiveness. Such language models for ranking have quickly become a
predominant approach in information retrieval [193]. This was also shown to be effective
for re-ranking responses in conversations. We were amongst the first to show a way of
using a BERT-based re-ranking model for the dialogues domain (see Chapter 4).

One limitation of transformer-based language models is that they do not take into
account the structure of the dialogue. Gu et al. [113] proposed adding another embedding
layer to BERT that takes into account the speaker of the dialogue. Dialogue-aware training
has also been further explored, for example, both by Han et al. [126] and Whang et al.
[361] who proposed different modifications to the conversational data to improve the fine-
tuning of language models. Building better re-ranking models for dialogue tasks is still an
active research field as seen by recent surveys on the topic [318, 399].

In contrast, full-rank retrieval of responses, i.e. the first-stage retrieval step, has been
under-explored [248]. Lan et al. [178] showed that a BERT-based dense retrieval model
outperforms BM25 on the full-rank task. Tao et al. [317] later proposed a mutual learn-
ing model that trains both the dense retrieval bi-encoder model and the cross-encoder
re-ranker model at the same time. They also showed that such a dense model is more
effective than BM25 without expansion techniques for the full-rank problem of retrieving
responses for dialogues.

A limitation of previous work is that a strong sparse retrieval baseline model, e.g.
BM25+dialogue context expansion or BM25+response expansion, was not compared. Such
methods are capable of mitigating the vocabulary mismatch and thus the question if dense
models are able to outperform sparse ones when using expansion techniques is still unan-
swered. We expand on the analysis of previous work [178, 317] by looking into stronger
sparse baselines, evaluating the effect of intermediate training, testing zero-shot effective-
ness of dense models, and studying the effect of other negative sampling methods.
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3.3 Full-rank Retrieval for Dialogues
In this section, we first describe the problem of full-rank retrieval of responses, followed
by the proposed sparse and then dense approaches.

3.3.1 Problem Definition
The full-rank retrieval of responses for dialogue is a particular case of the conversation
response ranking task (defined in Section 2.6.1), where the candidate list is the entire set
of responses from the collection. In previous work, the number of candidates is limited,
typically 𝑛 = 10. Since we are concerned with the full-rank task and not the re-ranking
setting, in our experiments 𝑛 is the number of responses available in the collection.

3.3.2 Sparse Retrieval
In order to do sparse retrieval of responses we rely on classical retrieval methods with
query and document expansion techniques. One of the limitations of sparse retrieval is
that, since it represents each dialogue context and response using the existing terms in
a bag-of-words manner, the vocabulary mismatch problem might occur. Such expansion
techniques are able to overcome this problem if they append new words to the dialogue
contexts and responses.

For this reason, we propose here to do dialogue context expansion with RM3 [1], a com-
petitive unsupervised method that assumes that the top-ranked responses by the sparse
retrieval model are relevant. From such pseudo-relevant responses, words are selected and
an expanded dialogue context is generated, and then used by the sparse retrieval method
to generate the final ranked list.

In order to expand the responses to be retrieved, we propose 𝑟𝑒𝑠𝑝2𝑐𝑡𝑥𝑡 . This is an
adaptation of the effective doc2query [238] approach for dialogues. Formally, we fine-
tune a generative transformer model for the task of generating the dialogue context 𝒰𝑖
from the ground-truth response 𝑟+. This model is then used to generate expansions for all
responses in the collection. They are appended to the responses and the sparse retrieval
method itself is not modified. 𝑟𝑒𝑠𝑝2𝑐𝑡𝑥𝑡 allows for two things: term re-weighting (adding
terms that already exist in the document) and the addition of new terms (to deal with the
vocabulary mismatch problem).

Unlike most ad-hoc retrieval problems where the queries are smaller than the docu-
ments, full-rank retrieval of responses for dialogues is the exact opposite. For example,
while the TREC-DL-2020 passage and document retrieval tasks the queries have between
5–6 terms on average and the passages and documents have over 50 and 1000 terms re-
spectively, the dialogue contexts (queries) have between 70 and 474 terms on average
depending on the dataset while the responses (documents) have between 11 and 71 terms
on average, as seen in the first two rows of Table 3.2. This is a challenge for the generative
model since generating larger pieces of text is a more difficult problem than smaller ones,
e.g. more room for error.

Motivated by this, we also explored an adaptation of 𝑟𝑒𝑠𝑝2𝑐𝑡𝑥𝑡 that aims to generate
only the last utterance of the dialogue context: 𝑟𝑒𝑠𝑝2𝑐𝑡𝑥𝑡𝑙𝑢 . This model is trained to gen-
erate 𝑢𝜏 from 𝑟+. The underlying premise is that the part that needs to be answered by
the dialogue context is the last utterance, and if this is correctly generated by 𝑟𝑒𝑠𝑝2𝑐𝑡𝑥𝑡𝑙𝑢 ,
the sparse retrieval method will be able to find the correct response from the collection.
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3.3.3 Dense Retrieval
In order to do dense retrieval we rely on methods that learn to represent the dialogue
context and the responses separately in a dense embedding space. Responses are then
ranked by their similarity to the dialogue context. We rely here on pre-trained language
transformer models, such as BERT [80], RoBERTa [201] or MPNet [308], to obtain such
representations of the dialogue context and response. This approach is generally referred
as a bi-encoder model [193].

Intermediate Training
The first step of the pipeline is to train the representations of the language model with
intermediate⁴ data that does not contain the target domain data. Such intermediate data
contains triplets of query, relevant document, and negative document and can includemul-
tiple datasets. The main advantage of adding this step before fine-tuning the bi-encoder
for the target conversational data is to reduce the gap between the pre-training, often
including language modeling, and the downstream task at hand.

The intermediate training step learns to represent texts (query and documents) by do-
ing a mean pooling function over the transformer’s final layer, which is then used to
calculate the dot-product similarity. The relevant document representation is used to con-
trast with the representations of the document that is not relevant. Such a procedure
learns better text representations than a naive approach of simply using the [CLS] token
representation of BERT for the dialogue contexts and responses [4, 280].

The loss function employs multiple negative texts to learn the representations in a
contrastive manner, also known as in-batch negative sampling. This model is then able to
do zero-shot retrieval for the full-rank retrieval of responses to dialogue contexts since it
does not have access to the target domain data.

The function 𝑓 (𝒰,𝑟) can be defined as 𝑑𝑜𝑡(𝜂(𝑐𝑜𝑛𝑐𝑎𝑡(𝒰)),𝜂(𝑟)), where 𝜂 is the repre-
sentation obtained with the mean pooling of all the output vectors of the transformers
language model, and 𝑐𝑜𝑛𝑐𝑎𝑡(𝒰) = 𝑢1 | [U] | 𝑢2 | [T] | ... | 𝑢𝜏 , where | indicates the con-
catenation operation. The utterances from the context 𝒰 are concatenated with special
separator tokens [U] and [T] indicating end of utterances and turns⁵.

Fine-tuning
The second step in the pipeline is to fine-tune the model with data from the target domain:
dialogue contexts and responses. Sincewe do not have labeled negative responses and only
relevant ones, the remaining responses can be thought of as non-relevant to the dialogue
context. Computing the probability of the correct response over all other responses in
the dataset would give us 𝑃(𝑟 ∣ 𝒰) = 𝑃(𝒰,𝑟)

∑𝑘 𝑃(𝒰,𝑟𝑘)
. Since this computation is prohibitively

expensive to calculate, we approximate it using only a few negative samples retrieved by
a negative sampling approach.

The negative sampling task is then to: given the dialogue context 𝒰 find challenging
responses that are not relevant. This can be seen as a retrieval task as well, where one can
⁴We differentiate this intermediate step to a pre-training step. The transformer-based language models were first
pre-trained for their respective language modeling tasks. For example, BERT is pre-trained for next-sentence
prediction and masked language modeling and can be later trained to represent queries and documents.
⁵The special tokens [U] and [T] will not have any meaningful representation in the zero-shot setting, but they
can be learned in the fine-tuning step.
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use a retrieval model to find negatives by applying 𝑓 (𝒰,𝑟) for every 𝑟 in the collection,
sorting, and removing 𝑟+ from the resulting top negatives. With such a dataset at hand,
we continue the training—after the intermediate step—in the same manner as done by
the intermediate training step, with the following cross-entropy loss function⁶ for a batch
with size 𝐵: 𝒥 (𝒰,r, 𝜃) = − 1

𝐵 ∑
𝐵
𝑖=1 [𝑓 (𝒰𝑖 , 𝑟𝑖) − log∑𝐵

𝑗=1,𝑗!=𝑖 𝑒𝑓 (𝒰𝑖 ,𝑟𝑗)], where 𝑓 (𝒰,𝑟) is the
dot-product of the mean pooled representation of the transformer model.

3.4 Experimental Setup
In order to compare the different sparse and dense approaches we consider three large-
scale information-seeking conversation datasets introduced in Section 2.7.1: MANtIS, MS-
Dialog, and UDC-DSTC8.

3.4.1 Implementation Details
For BM25 and BM25+RM3 we rely on the pyserini implementations [192]. In order to
train 𝑟𝑒𝑠𝑝2𝑐𝑡𝑥𝑡 expansionmethods we rely on the Huggingface transformers library [363],
using the t5-base model. For all methods, we use default hyperparameters from either
the original paper or library and perform no parameter optimization. We fine-tune the
T5 model for 2 epochs, with a learning rate of 2e-5, weight decay of 0.01, and batch size
of 5. When augmenting the responses with 𝑟𝑒𝑠𝑝2𝑐𝑡𝑥𝑡 we follow docT5query [238] and
append three different context predictions, using sampling and keeping the top-10 highest
probability vocabulary tokens.

For the zero-shot dense retrieval models, we rely on the SentenceTransformers [280]
model releases⁷. The library uses Hugginface transformers for the pre-trainedmodels such
as BERT [80], RoBERTa [201], MPNet [308]. When fine-tuning the dense retrieval models,
we rely on the MultipleNegativesRankingLoss, which accepts a number of hard negatives
and also uses the remaining in-batch random negatives to train the model. We use a total
of 10 negative samples for dialogue context.

We fine-tune the dense models for a total of 10k steps, and for every 100 steps, we eval-
uate the models on a re-ranking task that selects the relevant response out of 10 responses.
We use the re-ranking validation MAP to select the best model from the whole training
to use in evaluation. We use a batch size of 5, with 10% of the training steps as warmup
steps. The learning rate is 2e-5 and a weight decay of 0.01. We use the FAISS [155] library
to perform the similarity search.

In the follow-up experiments to investigate negative sampling, we denoise negatives
(E2) using lists of 100 responses and keep the bottom 10 as negatives. We expand the
collection with an external corpus (E5) using ConvoKit [54]. We choose datasets that have
similar topics to the information-seeking datasets we use⁸, amounting to a total of 17M
non-empty candidate responses. For experiment E6 we generate the negative candidates

⁶We refer to this loss as MultipleNegativesRankingLoss.
⁷https://www.sbert.net/docs/pretrained_models.html
⁸Namely movie-corpus, wiki-corpus, subreddit-Ubuntu, subreddit-microsoft, subreddit-apple, subreddit-
Database, subreddit-DIY, subreddit-electronics, subreddit-ENGLISH, subreddit-gis, subreddit-Physics,
subreddit-scifi, subreddit-statistics, subreddit-travel and subreddit-worldbuilding.

https://www.sbert.net/docs/pretrained_models.html
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using Hugginface [363] conversational pipelines, with the pre-trained models DialoGPT-
large and blenderbot-400M-distill.

3.4.2 Evaluation
To evaluate the effectiveness of the retrieval systems, instead of resorting to the standard
evaluation metric in conversation response ranking [113, 319, 384] which is recall at posi-
tion 𝐾 with 𝑛 candidates⁹ 𝑅𝑛@𝐾 , we set 𝑛 to be the entire collection of answers, and thus
we evaluate the model’s effectiveness in finding the correct response out of the whole
possible set of responses: 𝑅@𝐾 . While the first-stage retrieval component can be coupled
with another re-ranking stage that focuses on precision, we consider here the case where
we do not have a re-ranking stage and evaluate the capability of the approaches to per-
form the task as stand-alone models. For this reason, we use R@1 and R@10. We perform
Student t-tests at a confidence level of 0.95 with Bonferroni correction to compare the
statistical significance of methods.

3.5 Results
In this section, we first report on both dense and sparse retrieval results. Then we analyze
the negative sampling procedure used to train the dense retrieval models.

3.5.1 Sparse Retrieval
In order to compare supervised and unsupervised sparse retrieval methods as well as zero-
shot and fine-tuned dense retrieval models, we divided them into four categories as shown
in Table 3.1. Each row is a retrieval approach, containing the effectiveness in terms of R@1
and R@10 for each of the three datasets.

Does dialogue context expansion via RM3 lead to improvements over no expan-
sion for sparse retrieval?
BM25+RM3 (row 1b) does not improve over BM25 (1a) on any of the three conversational
datasets analyzed. A thorough hyperparameter fine-tuning was performed and no combi-
nation of the RM3 hyperparameters outperformed BM25.

A manual analysis of the new terms appended to a sample of 60 dialogue contexts re-
veals that only 18% of them have at least one relevant term added based on our best judg-
ment. Unlike web search where the query is often incomplete, under-specified, and am-
biguous, in the information-seeking datasets employed here the dialogue context (query)
is quite detailed and has more terms than the responses (documents).

We hypothesize that because the dialogue contexts are already quite descriptive the
task of expansion is trickier in this domain and thus we observe many dialogues for which
the terms added are just noise.

Does response expansion, i.e. 𝑟𝑒𝑠𝑝2𝑐𝑡𝑥𝑡 , lead to improvements over no expansion
for sparse retrieval?
Wefind that response expansion helped in two of the three datasets tested. BM25+𝑟𝑒𝑠𝑝2𝑐𝑡𝑥𝑡
(2a) outperforms BM25 (1a) in two of the three datasets. Predicting only the last utterance of
⁹For example 𝑅10@1 indicates the number of relevant responses found at the first position when the model has
to rank 10 candidate responses.
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Table 3.1: Effectiveness of sparse and dense retrieval for the retrieval of responses for dialogues. Bold values
indicate the highest recall for each type of approach. Superscripts indicate statistically significant improvements
using Students t-test with Bonferroni correction. †=other methods from the same group; 1=best from unsupervised
sparse retrieval ; 2=best from supervised sparse retrieval; 3=best from zero-shot dense retrieval.

MANtIS MSDialog UDC-DSTC8

R@1 R@10 R@1 R@10 R@1 R@10

(0) Random 0.000 0.000 0.000 0.001 0.000 0.001

Unsupervised sparse

(1a) BM25 0.133† 0.299† 0.064† 0.177† 0.027† 0.070†
(1b) BM25 + RM3 0.073 0.206 0.035 0.127 0.011 0.049

Supervised sparse

(2a) BM25 + 𝑟𝑒𝑠𝑝2𝑐𝑡𝑥𝑡 0.135 0.309 0.074 0.208 0.028 0.067
(2b) BM25 + 𝑟𝑒𝑠𝑝2𝑐𝑡𝑥𝑡𝑙𝑢 0.147†1 0.325†1 0.0751 0.2021 0.029 0.076

Zero-shot dense
Model𝐼 𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒𝐷𝑎𝑡𝑎

(3a) ANCE600𝐾−MSMarco-PR 0.048 0.111 0.050 0.124 0.010 0.028
(3b) TAS-B400𝐾−MSMarco-PR 0.062 0.143 0.060 0.157 0.019 0.050
(3c) Bi-encoder500𝑘−MSMarco-QA 0.038 0.098 0.043 0.113 0.014 0.040
(3d) Bi-encoder215𝑀−𝑚𝑢𝑙 0.138 0.297 0.108 0.277 0.023 0.076
(3e) Bi-encoder1.17𝐵−𝑚𝑢𝑙 0.155†1 0.341†12 0.147†12 0.339†12 0.041† 0.097†12

Fine-tuned dense
Model𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑆𝑎𝑚𝑝𝑙𝑒𝑟

(4a) Bi-encoder𝑅𝑎𝑛𝑑𝑜𝑚(0) 0.130† 0.307† 0.168†123 0.387†123 0.050†12 0.128†123
(4b) Bi-encoderBM25(1𝑎) 0.112 0.271 0.128 0.316 0.027 0.087
(4c) Bi-encoder𝐵𝑖−𝑒𝑛𝑐𝑜𝑑𝑒𝑟(3𝑒) 0.065 0.146 0.144 0.306 0.018 0.051

the dialogue (𝑟𝑒𝑠𝑝2𝑐𝑡𝑥𝑡𝑙𝑢) performs better than predicting the whole utterance, as shown
by BM25+𝑟𝑒𝑠𝑝2𝑐𝑡𝑥𝑡𝑙𝑢’s (2b) higher recall values. For example, in the MANtIS dataset the
R@10 goes from 0.309 when using the model trained to predict the dialogue context, to
0.325 when using the one trained to predict only the last utterance of the dialogue context.

In order to understand what the response expansion methods are doing most—term re-
weighting or adding novel terms—we present the percentage of novel terms added by both
methods in Table 3.2. The table shows that 𝑟𝑒𝑠𝑝2𝑐𝑡𝑥𝑡𝑙𝑢 does more term re-weighting than
adding new words when compared to 𝑟𝑒𝑠𝑝2𝑐𝑡𝑥𝑡 (53% and 70% on average are new words
respectively and thus 47% vs 30% are changing the weights by adding existing words),
generating overall smaller augmentations (115.45 vs 431.17 on average respectively).

In terms of sparse retrieval, the experiments so far reveal that using a response aug-
mentation technique is a much better baseline than using BM25, which has been used as
a strong baseline for comparison with dense models in dialogue benchmarks [178, 317].

3.5.2 Dense Retrieval
Can zero-shot dense retrieval outperform a strong sparse baseline?
Zero-shot dense retrieval, i.e. no access to target data, beats the strong sparse baseline
BM25+𝑟𝑒𝑠𝑝2𝑐𝑡𝑥𝑡 (2b) only when it is fine-tuned on large datasets containing diverse data
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Table 3.2: Statistics of the augmentations for the response (document) expansion methods 𝑟𝑒𝑠𝑝2𝑐𝑡𝑥𝑡 and
𝑟𝑒𝑠𝑝2𝑐𝑡𝑥𝑡𝑙𝑢 .

MANtIS MSDialog UDC-DSTC8

Context avg length 474.12 426.08 76.95
Response avg length 42.58 71.38 11.06
Augmentation average length - 𝑟𝑒𝑠𝑝2𝑐𝑡𝑥𝑡 494.23 596.99 202.3
Augmentation average length - 𝑟𝑒𝑠𝑝2𝑐𝑡𝑥𝑡𝑙𝑢 138.5 135.29 72.57
Percentage of new words - 𝑟𝑒𝑠𝑝2𝑐𝑡𝑥𝑡 71% 69% 71%
Percentage of new words - 𝑟𝑒𝑠𝑝2𝑐𝑡𝑥𝑡𝑙𝑢 59% 37% 63%

including dialogues, as we see by comparing rows (3a–c) and (3e–d) with row (2b) in Ta-
ble 3.1. For example, while the zero-shot dense retrieval models based only on the MSMarco
dataset (3a–c) perform on average 35% worse than the strong sparse baseline (2b) in terms
of R@10 for the MSDialog dataset, the zero-shot model trained with 1.17B instances on
diverse data (3e) is 68% better than the strong sparse baseline (2b). When using a bigger
amount of intermediate training data¹⁰, we see that the zero-shot dense retrieval model (3e)
is able to outperform the sparse retrieval baseline by margins of 33% of R@10 on average
across the datasets.

As expected, the closer the intermediate training data distribution is to the target do-
main, the better the dense retrieval model performs. The results indicate that a good
zero-shot retrieval model needs to be trained for representation learning on a large set
of datasets to outperform strong sparse retrieval baselines. Our results match previous
empirical evidence on the effect of the intermediate training step on dense retrieval for
different retrieval tasks [240].

Is intermediate training of dense retrieval models helpful or is it sufficient to
fine-tune a dense model on the target data?
Intermediate training on a large set of training instances is quite important for learning
dense representations. Table 3.3 compares the dense models using either different pre-
trained language models with and without using the intermediate data, with a different
number of negative sampling procedures.

We see that if we fine-tune mpnet-base directly on the target data, and do not do any
intermediate training step the effectiveness drops are significant and substantial as shown
when comparing results of 1.17B mul. sources (rows 1—3) vs no intermediate data (rows
4–6) in Table 3.3. For example, in the MANtIS dataset the R@10 goes from 0.307 to 0.172
when using random negative sampling. This also happens for other language models and
intermediate datasets, e.g. for bert-base and MSMarco the R@10 goes from 0.205 to 0.092
the MANtIS dataset.

What is the effect of fine-tuning the dense model after the intermediate training?
First, we see that simply using random sampling to find negatives and then fine-tuning
the dense retrieval model that had already gone through intermediate training—row (4a)

¹⁰For the full description of the intermediate data see https://huggingface.co/sentence-transformers/
all-mpnet-base-v2.

https://huggingface.co/sentence-transformers/all-mpnet-base-v2
https://huggingface.co/sentence-transformers/all-mpnet-base-v2
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Table 3.3: Effectiveness of fine-tuned dense retrieval models when using different language models and inter-
mediate training for each negative sampling procedures from Table 3.1. Bold indicates the highest value within
different negative sampling methods for the same setting. We observe the same phenomena of decreasing ef-
fectiveness for better negative sampling methods when using different language models and whether using
intermediate training or not.

MANtIS MSDialog UDC-DSTC8

Model Intermediate data Neg. Sampler R@1 R@10 R@1 R@10 R@1 R@10

Bi-encoder𝑚𝑝𝑛𝑒𝑡−𝑏𝑎𝑠𝑒

1.17B mul.sources
Random (0) 0.130 0.307 0.168 0.387 0.050 0.128
BM25 (1a) 0.112 0.271 0.128 0.316 0.027 0.087

Bi-encoder (3e) 0.065 0.146 0.144 0.306 0.018 0.051

-
Random (0) 0.070 0.172 0.114 0.308 0.021 0.063
BM25 (1a) 0.043 0.118 0.091 0.256 0.009 0.027

Bi-encoder (3e) 0.032 0.087 0.083 0.205 0.002 0.019

Bi-encoder𝑏𝑒𝑟𝑡−𝑏𝑎𝑠𝑒

500K MSMarco-QA
Random (0) 0.085 0.205 0.138 0.339 0.030 0.079
BM25 (1a) 0.051 0.130 0.116 0.287 0.007 0.022

Bi-encoder (3e) 0.043 0.106 0.107 0.242 0.008 0.030

-
Random (0) 0.029 0.092 0.063 0.200 0.012 0.038
BM25 (1a) 0.017 0.057 0.040 0.144 0.002 0.006

Bi-encoder (3e) 0.011 0.041 0.034 0.119 0.000 0.009

in Table 3.1—achieves the best overall effectiveness we obtain in two of the three datasets.
Having access to the target conversational data as opposed to only a diverse set of ques-
tions and answers means that the representations learned by the model are closer to the
true distribution of the data.

We hypothesize that fine-tuning Bi-encoder𝑚𝑝𝑛𝑒𝑡−𝑏𝑎𝑠𝑒 (3e) for MANtIS (4a) is harmful
because the intermediate data contains multiple Stack Exchange responses. In this way,
the subset of dialogues of Stack Exchange that MANtIS encompasses might be serving only
to overfit the intermediate representations. As evidence for this hypothesis, we found that
(I) the learning curves flatten quickly (as opposed to other datasets) and (II) fine-tuning
another language model that does not have Stack Exchange data (MSMarco) in their fine-
tuning, Bi-encoder𝑏𝑒𝑟𝑡−𝑏𝑎𝑠𝑒 (3c), improves the effectiveness with statistical significance
from 0.092 R@10 to 0.205 R@10, as shown in Table 3.3.

Do harder negative samples lead to more effective fine-tuning of dense models?
Surprisingly we found that using more effective models to select negative candidates is
detrimental to the effectiveness of the dense retrieval model (rows 4a–c). We observe
this phenomenon when using different language models and whether using intermediate
training or not for all datasets tested, as shown in Table 3.3. We performed an experiment
with an alternative contrastive loss [125] that employs in-batch negative sampling, and
we observe that the same behaviour regardless of the loss function¹¹.

Based on brainstorming sessions and discussions the authors of the paper that origi-
nated this chapter had with other IR researchers a set of hypotheses was formed that could
explain why this phenomenon might be happening. Next, we explore the three resulting
hypotheses with six additional experiments.

¹¹Other loss functions were also tested and resulted in the same effectiveness for the negative samplers: Random
>> BM25 >> Bi-encoder.
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3.5.3 Dense Retrieval: Negative Sampling
We investigated the following hypotheses that could explain the observed phenomena of
decreasing effectiveness for better negative sampling functions:

H1: False negative samples increase when using better negative sampling methods.
False negatives are responses that are potentially valid for the context. Such rele-
vant responses sampled will lead to unlearning relevant matches between context
and responses as they receive negative labels. Example retrieved by the Bi-encoder
model (line 3e of Table 3.1):

Dialogue context (𝒰 ): hey... how long until dapper comes out? [U] 14 days [...] [U] i
thought it was coming out tonight
Correct response (𝑟+): just kidding couple hours
Negative sample (𝑟−): there is a possibility dapper will be delayed [...] meanwhile, dapper
discussions should occur in ubuntu+1

H2: Confusing negative samples increases when using better negative sampling
methods. They are not relevant, i.e. a valid response to the context, but they are
semantically or lexically identical to (or exact matches or part of) the context. Such
samples will lead to representations of similar sentences being far apart in the em-
bedding space. Example of a partial match retrieved by BM25 (line 1a of Table 3.1):

Dialogue context (𝒰 ): can any one help me im trying to install some thing and i
get this error GTK... configure: error: Package requirements (gtk+-2.0 [U] perhaps
sudo apt-get install libgtk2.0-dev [U] any way to tell it to install all dependencies too

Correct response (𝑟+): what do you mean, it won’t compile if you don’t have the depen-
dencies
Negative sample (𝑟−): sudo apt-get install libgtk2.0-dev

H3: There is a lack of informative negative samples, i.e. responses that are more
informative than random negative responses for training, for the dialogue contexts
in each dataset. Informative negative samples are ideally the ones that (I) have
lexical matches with the dialogue context¹² and are not semantically relevant or
(II) give the impression that it is a natural and fluent response to the last utterance
of the dialogue context but are not semantically relevant. Examples of potentially
informative negative samples¹³:

¹²Unlike H2, they are not subsets of continuous parts of the context.
¹³The negative from a different collection was selected from reddit/r/onedrive dialogues. The generated negative
sample was made using DialoGPT-large for the dialogue context.
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Dialogue context (𝒰 ): I had my iPhone swapped out by Apple and after reinstalling my
apps, signing in, etc, I noticed my OneDrive app was saying ”Be sure you’re connected to
cellular or wifi”.... and it is. I’ve signed out and back in... removed and re added the app...
etc no dice. Anyone have any suggestions?
Correct response (𝑟+): Hi, I realized the inconvenience you are experiencing. Is the issue
specific to OneDrive app or with other apps as well? First, update iOS on your device. Then,
make sure you’ve installed any available updates to the app. [...]
Different collection negative sample (𝑟−): I love OneDrive, have used it for years with
no issues. I believe a lot of people have issues because they don’t understand how it works,
they don’t read the instructions [...].
Generated negative sample (𝑟−): I had the same problem. I had to uninstall and reinstall
the app.

In order to test our hypotheses we perform the following experiments, each one geared
towards investigating one hypothesis:

E1: Annotate the relevance of a subset of negative samples to check whether the
number of false negatives increases with better negative sampling functions (H1).

E2: Instead of using the top-ranked responses as negative responses, we use the
bottom responses of the top-ranked responses as negatives¹⁴. This decreases the
chances of obtaining false positives and if 𝑘 is small such as 100, it will not render
the sampling procedure to random (H1).

E3: Remove negative samples that are subsets of the context when training dense
models and compare their effectiveness with the original negative samples (H2).

E4: Use only the last utterance to retrieve negative samples, this will make it less
likely that a response is an exact match with the entire dialogue context (H2).

E5: Compare the effectiveness of models when using a corpus of responses for neg-
ative sampling which has additional responses from external corpora, that are po-
tentially more informative than the ones from the original dataset (H3).

E6: Generate negative samples using a generative language model and compare the
effectiveness of this model against using retrieved negative samples (H3).

Our findings for the six experiments (E1–E6) are displayed in Table 3.4. Bold values
indicate positive evidence for their respective hypothesis. In the first experiment (E1),
wemanually annotated the relevance of 270 pairs of dialogue context and negative samples
(3 datasets × 3 dialogue contexts × 10 negative samples × 3 negative sampling method).
We found that indeed the number of false positives increases when using better negative
sampling approaches, providing positive evidence for the hypothesis that false positives
are detrimental to the training of the dense retrieval models. For the second experiment
(E2)we employ a denoising technique that uses the bottom negative samples from the top-
k list instead of the first. We found that the effectiveness improves by large margins when

¹⁴As an example, when we retrieve 𝑘 = 100 responses, instead of using responses ranked 1 to 10 we use responses
ranked 91 to 100.
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Table 3.4: Experiments to examine why better negatives sampling procedures lead to worse dense retrieval
results. Bold indicates positive evidence for the corresponding hypothesis. We present the R@1 and R@10 for
the condition presented and the absence of the condition for E2–E5.

E1

Negative Sampler MANtIS MSDialog UDC-DSTC8

Random (0)
false 𝑟− count

0 0 0
BM25 (1a) 0 4 2
Bi-encoder (3e) 11 4 15

E2

MANtIS MSDialog UDC-DSTC8

Negative Sampler Condition R@1 R@10 R@1 R@10 R@1 R@10

Random (0) 0.130 0.307 0.168 0.387 0.050 0.128

BM25 (1a) no denoising 0.112 0.271 0.128 0.316 0.027 0.087
denoising 0.101 0.257 0.151 0.358 0.041 0.121

Bi-encoder (3e) no denoising 0.065 0.146 0.144 0.306 0.018 0.051
denoising 0.146 0.316 0.184 0.397 0.042 0.106

E3

MANtIS MSDialog UDC-DSTC8

Negative Sampler Condition R@1 R@10 R@1 R@10 R@1 R@10

BM25 (1a) 𝑟− not subset of 𝒰 0.112 0.271 0.128 0.316 0.027 0.087
𝑟− subset of 𝒰 0.095 0.239 0.138 0.331 0.025 0.077

Bi-encoder (3e) 𝑟− not subset of 𝒰 0.065 0.146 0.144 0.306 0.018 0.051
𝑟− subset of 𝒰 0.078 0.180 0.127 0.266 0.015 0.047

E4

MANtIS MSDialog UDC-DSTC8

Negative Sampler Condition R@1 R@10 R@1 R@10 R@1 R@10

BM25 (1a) 𝒰 to retrieve candidate 0.112 0.271 0.128 0.316 0.027 0.087
𝒰𝑙𝑢 to retrieve candidate 0.123 0.270 0.160 0.360 0.030 0.078

Bi-encoder (3e) 𝒰 to retrieve candidate 0.065 0.146 0.144 0.306 0.018 0.051
𝒰𝑙𝑢 to retrieve candidate 0.146 0.319 0.151 0.348 0.040 0.098

E5

MANtIS MSDialog UDC-DSTC8

Negative Sampler Corpus to retrieve R@1 R@10 R@1 R@10 R@1 R@10

Random (0) target only 0.130 0.307 0.168 0.387 0.050 0.128
expanded 0.136 0.312 0.150 0.361 0.046 0.122

BM25 (1a) target only 0.112 0.271 0.128 0.316 0.027 0.087
expanded 0.104 0.257 0.140 0.347 0.035 0.110

Bi-encoder (3e) target only 0.065 0.146 0.144 0.306 0.018 0.051
expanded 0.110 0.259 0.172 0.364 0.035 0.101

E6

MANtIS MSDialog UDC-DSTC8

Negative Sampler R@1 R@10 R@1 R@10 R@1 R@10

Random (0) 0.130 0.307 0.168 0.387 0.050 0.128
BM25 (1a) 0.112 0.271 0.128 0.316 0.027 0.087
Bi-encoder (3e) 0.065 0.146 0.144 0.306 0.018 0.051
GenNegatives𝑏𝑙𝑒𝑛𝑑𝑒𝑟𝑏𝑜𝑡−400𝑀−𝑑𝑖𝑠𝑡𝑖𝑙𝑙 0.109 0.267 0.142 0.348 0.050 0.134
GenNegatives𝐷𝑖𝑎𝑙𝑜𝐺𝑃𝑇−𝑙𝑎𝑟𝑔𝑒 0.103 0.260 0.154 0.363 0.046 0.123
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using the dense model to find negatives in all three datasets. In two datasets (MANtIS and
MSDialog) we find that the denoised negative sampling of the Bi-encoder yields statistically
significant improvements over Random (0.316 R@10 vs 0.307 R@10 for MANtIS and 0.397
R@10 vs 0.387 for MSDialog). The results for the second experiment are thus additional
positive evidence for the hypothesis that false positives are detrimental.

In the third experiment (E3), by allowing the negative samples to be subsets of the
dialogue context, we expect the effectiveness of the model to drop by large margins since
the number of confusing negative samples increases. This was not the case. The results
indicate that possibly confusing negative samples with exact matches with the dialogue
context was not detrimental. For the fourth experiment (E4) we expected that when
using only the last utterance of the dialogue to find negatives, we would decrease the
number of confusing negatives. This was the case for training the model with the bi-
encoder as the negative sampler.

In the final two experiments, we tested whether we could find more informative sam-
ples by using an expanded corpus of responses (E5) and by using generated nega-
tive responses (E6). We found that using the larger corpus was beneficial when using the
bi-encoder negative sampler, showing that we can possibly findmore informative negative
samples when using larger data. We found however that the generated negative responses
from both models were not effective, as random samples from the corpus lead to better
effectiveness when training the dense retrieval model.

Overall we see that we have the most evidence for the first hypothesis (H1) of false
negatives degrading the training procedure. The problems of false negatives when using
harder negatives has been discussed before for other retrieval tasks [104, 271], and we find
evidence here on the conversational task that matches prior works on denoising the hard
negatives. Other hypotheses (H2 and H3) had partial positive evidence, which suggests
that they could also be a potential source of difficulty when training dense models with
harder negatives. In conclusion, we demonstrate that a denoising strategy to remove false
negative samples is required to train densemodels for ranking responses for conversations
when taking into account hard negative samples.

3.6 Limitations
One of the limitations of our study is that recent and more complex techniques that im-
prove supervised sparse retrieval were not considered. doc2query does term re-weighting
and expansion of the documents, but it does not modify the queries. Approaches that
perform weighting and expansion for both the queries and documents [94]—predicting
the weights of every token in the vocabulary regardless if they appear in the inputs or
not—might be able to achieve better performance and close the gap or even surpass dense
retrieval models in our domain.

3.7 Conclusions
We explored sparse and dense techniques that retrieve responses out of the entire collec-
tion available—in contrast to most prior work in response ranking for dialogues which are
typically set up as a re-ranking task. The expansion of responses, i.e. 𝑟𝑒𝑠𝑝2𝑐𝑡𝑥𝑡𝑙𝑢 showed
to be a strong baseline for sparse retrieval. We also find that dense retrieval needs large
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datasets in order to beat a strong sparse retrieval baseline in the zero-shot setting.
Our findings also suggest that fine-tuning a bi-encoder dense retrieval model after in-

termediate training is the best-performing method for the task of full-rank retrieval of
responses for dialogues. We finish our experiments with a thorough analysis of negative
sampling methods, exploring different hypotheses that could explain why harder nega-
tives lead to worse effectiveness for the dense methods.

This chapter answers our first main research question of the thesis (M-RQ1), showing
that a bi-encodermodel is a strong baseline for the retrieval of responses for conversational
search. We showed that most findings from other tasks such as passage retrieval translate
to the retrieval of responses for dialogues. In terms of the multi-stage pipeline described in
Figure 1.6, we focused in this chapter on first-stage approaches for conversational search.
For the next two chapters, we move to the second main research question (M-RQ2) of the
thesis and focus on the second-stage re-ranking step.
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4
Difficulty Notions when Training

Response Re-rankers
In this chapter, we focus on the second stage of the multi-stage pipeline for conversational
search and explore how different notions of difficulty can improve re-rankers. In order to
do so we rely on curriculum learning. This technique can be used to improve neural models’
effectiveness by sampling batches non-uniformly, going from easy to difficult instances during
training. In the context of neural information retrieval curriculum learning has not been
explored yet, and so it remains unclear (1) how to measure the difficulty of training instances
and (2) how to transition from easy to difficult instances during training. In order to deal with
challenge (1), we explore scoring functions to measure the difficulty of conversations based on
different input spaces. To address challenge (2) we evaluate different pacing functions, which
determine the velocity at which we go from easy to difficult instances. We find that, overall,
by just intelligently sorting the training data (i.e., by performing curriculum learning) we can
improve the retrieval effectiveness by up to 2%. The code required to reproduce this chapter is
available at https://github.com/Guzpenha/transformers_cl.

This chapter is based on the following paper:

 Gustavo Penha and Claudia Hauff. 2020. Curriculum Learning Strategies for IR. In ECIR. Springer, 699–
713 [249].

https://github.com/Guzpenha/transformers_cl
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4.1 Introduction
Curriculum Learning (CL) is motivated by theway humans teach complex concepts: teach-
ers impose a certain order of the material during students’ education. Following this guid-
ance, students can exploit previously learned concepts to learn new ones. This idea was
initially applied to machine learning over two decades ago [87] as an attempt to use a simi-
lar strategy in the training of a recurrent network by starting small and gradually learning
more difficult examples. More recently, Bengio et al. [31] provided additional evidence
that curriculum strategies can benefit neural network training with experimental results
on different tasks such as shape recognition and language modeling. Since then, empiri-
cal successes were observed for several computer vision [124, 357] and natural language
processing (NLP) tasks [295, 313, 396].

In supervised machine learning, a function is learned by the learning algorithm (the
student) based on inputs and labels provided by the teacher. The teacher typically samples
randomly from the entire training set. In contrast, CL imposes a structure on the training
set based on a notion of difficulty of instances, presenting to the student easy instances
before difficult ones. When defining a CL strategy we face two challenges that are specific
to the domain and task at hand [124]: (1) arranging the training instances by a sensible
measure of difficulty, and, (2) determining the pace in which to present instances—going
over easy instances too fast or too slow might lead to ineffective learning.

We conduct here an empirical investigation into those two challenges in the context
of IR. Estimating relevance—a notion based on human cognitive processes—is a complex
and difficult task at the core of IR, and it is still unknown to what extent CL strategies are
beneficial for neural ranking models. This is the question we aim to answer in our work.

Given a set of queries—for instance user utterances, search queries, or questions in
natural language—and a set of documents—for instance responses, web documents, or
passages—neural ranking models learn to distinguish relevant from non-relevant query-
document pairs by training on a large number of labeled training pairs. Neural models
had for some time struggled to display significant and additive gains in IR [375]. In a
short time though, BERT [80] (released in late 2018) and its derivatives (e.g. XLNet [379],
RoBERTa [201]) have proven to be remarkably effective for a range of NLP tasks. The
recent breakthroughs of these large and heavily pre-trained language models have also
benefited IR [376, 377, 381].

In ourworkwe focus on the challenging IR task of conversation response ranking [367],
where the query is the dialogue history and the documents are the candidate responses of
the agent. The set of responses is not generated on the go, they must be retrieved from a
comprehensive dialogue corpus. A number of deep neural ranking models have recently
been proposed for this task [320, 367, 374, 398, 402], which is more complex than retrieval
for single-turn interactions, as the ranking model has to determine where the important
information is in the previous user utterances and how it is relevant to the current in-
formation need of the user. Due to the complexity of the relevance estimation problem
displayed in this task, we argue it to be a good test case for curriculum learning in IR.

In order to tackle the first challenge of CL (determine what makes an instance difficult)
we contribute different scoring functions that determine the difficulty of query-document
pairs based on four different input spaces: conversation history {𝒰 }, candidate responses
{ℛ}, both {𝒰 ,ℛ}, and {𝒰 , ℛ, 𝒴}, where 𝒴 are relevance labels for the responses. To
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address the second challenge (determine the pace to move from easy to difficult instances)
we contribute different pacing functions that serve easy instances to the learner for more
or less time during the training procedure. We empirically explore how the curriculum
strategies perform for two different response ranking datasets when compared against
vanilla (no curriculum) fine-tuning of BERT for the task. Our main findings are that (i)
CL improves retrieval effectiveness when we use difficulty criteria based on a supervised
model that uses all the available information {𝒰 , ℛ, 𝒴}, (ii) it is best to give the model
more time to assimilate harder instances during training by introducing difficult instances
in earlier iterations, and, (iii) the CL gains over the no CL baseline are spread over different
conversation domains, lengths of conversations and measures of conversation difficulty.

4.2 Related Work
In this section, we first review neural ranking models followed by curriculum learning
approaches in diverse fields.

4.2.1 Neural Ranking Models
Over the past few years, the IR community has seen a great uptake of the many flavors
of deep learning for all kinds of IR tasks such as ad-hoc retrieval, question answering,
and conversation response ranking. Unlike traditional learning to rank (LTR) [200] ap-
proaches in which we manually define features for queries, documents and their inter-
action, neural ranking models learn features directly from the raw textual data. Neural
ranking approaches can be roughly categorized into representation-focused [138, 301, 349]
and interaction-focused [120, 350]. The former learn query and document representations
separately and then computes the similarity between the representations. In the latter ap-
proach, first, a query-document interaction matrix is built, which is then fed to neural net
layers. Estimating relevance directly based on interactions, i.e. interaction-focused mod-
els, has shown to outperform representation-based approaches on several tasks [137, 235].

Transfer learning via large pre-trained Transformers [343]—the prominent case being
BERT [80]—has led to remarkable empirical successes on a range of NLP problems. The
BERT approach to learning textual representations has also significantly improved the
performance of neural models for several IR tasks [270, 297, 376, 377, 381], that for a long
time struggled to outperform classic IR models [375]. In this work, we use the no-CL BERT
as a strong baseline for the conversation response ranking task.

4.2.2 Curriculum Learning
Following a curriculum that dictates the ordering and content of the educational material
is prevalent in the context of human learning. With such guidance, students can exploit
previously learned concepts to ease the learning of new and more complex ones. Inspired
by cognitive science research [293], researchers posed the question of whether a machine
learning algorithm could benefit, in terms of learning speed and effectiveness, from a sim-
ilar curriculum strategy [31, 87]. Since then, positive evidence for the benefits of curricu-
lum training, i.e. training the model using easy instances first and increasing the difficulty
during the training procedure, has been empirically demonstrated in different machine
learning problems, e.g. image classification [110, 124], machine translation [171, 260, 396]
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and answer generation [199].
Processing training instances in a meaningful order is not unique to CL. Another re-

lated branch of research focuses on dynamic sampling strategies [42, 53, 174, 302], which,
unlike CL that requires a definition of what is easy and difficult before training starts, esti-
mates the importance of instances during the training procedure. Self-paced learning [174]
simultaneously selects easy instances to focus on and updates the model parameters by
solving a biconvex optimization problem. A seemingly contradictory set of approaches
give more focus to difficult or more uncertain instances. In active learning [53, 65, 331],
the most uncertain instances with respect to the current classifier are employed for train-
ing. Similarly, hard example mining [302] focuses on difficult instances, measured by the
model loss or magnitude of gradients for instance. Boosting [42, 394] techniques give
more weight to difficult instances as training progresses. In this work, we focus on CL,
which has beenmore successful in neural models, and leave the study of dynamic sampling
strategies in neural IR as future work.

The most critical part of using a CL strategy is defining the difficulty metric to sort
instances by. The estimation of instance difficulty is often based on our prior knowledge
of what makes each instance difficult for a certain task and thus is domain-dependent
(cf. Table 4.1 for curriculum examples). CL strategies have not been studied yet in neural
ranking models. To our knowledge, CL has only been employed in IR within the LTR
framework, using LambdaMart [47], for ad-hoc retrieval by Ferro et al. [93]. However,
no effectiveness improvements over randomly sampling training data were observed. The
representation of the query, document, and their interactions in the traditional LTR frame-
work is dictated by the manually engineered input features. We argue that neural ranking
models, which learn how to represent the input, are better suited for applying CL in order
to learn increasingly more complex concepts.

Table 4.1: Difficulty measures used in the curriculum learning literature.

Difficulty criteria Tasks

Sentence length machine translation [260], language generation [313], reading
comprehension [383]

Word rarity machine translation [260, 396], language modeling [31]

External model confidence machine translation [396], image classification [124, 357], ad-hoc
retrieval [93]

Supervision signal intensity facial expression recognition [116], ad-hoc retrieval [93]

Noise estimate speaker identification [275], image classification [56]

Human annotation image classification [335] (through weak supervision)
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4.3 Curriculum Learning: Easy First Difficult Later
Before introducing our experimental framework (i.e., the scoring functions and the pacing
functions we investigate), let us first formally introduce the specific IR task we explore—a
choice dictated by the complex nature of the task (compared to e.g. ad-hoc retrieval) and
the availability of large-scale training resources such as MSDialog [268].

4.3.1 Problem Definition: Re-ranking
This is the typical conversation response ranking problem as defined in Section 2.6.1, with
a small set of candidate responses, i.e. re-ranking step.

4.3.2 Framework
When training neural networks, the common training procedure is to divide the dataset
𝒟 into 𝒟𝑡𝑟𝑎𝑖𝑛 ,𝒟𝑑𝑒𝑣 ,𝒟𝑡𝑒𝑠𝑡 and randomly (i.e., uniformly—every sample has the same like-
lihood of being sampled) sample mini-batches ℬ = {(𝒰𝑖 ,ℛ𝑖 ,𝒴𝑖)}𝑏𝑖=1 of 𝑏 instances from
𝒟𝑡𝑟𝑎𝑖𝑛 where 𝑏 is way smaller than the collection size, and perform an optimization proce-
dure sequentially in {ℬ1, ...,ℬ𝐵}. TheCL framework employed here is inspired by previous
works [260, 357]. It is defined by two functions: the scoring function which determines the
difficulty of instances and the pacing function which controls the pace with which to tran-
sition from easy to hard instances during training. More specifically, the scoring function
𝑓𝑠𝑐𝑜𝑟𝑒(𝒰𝑖 ,ℛ𝑖 ,𝒴𝑖), is used to sort the training dataset. The pacing function 𝑓𝑝𝑎𝑐𝑒(𝑠) deter-
mines the percentage of the sorted dataset available for sampling according to the current
training step 𝑠 (one forward pass plus one backward pass of a batch is considered to be
one step). The neural ranking model samples uniformly from the initial 𝑓𝑝𝑎𝑐𝑒(𝑠) ∗ |𝐷𝑡𝑟𝑎𝑖𝑛 |
instances sorted by 𝑓𝑠𝑐𝑜𝑟𝑒 , while the rest of the dataset is not available for sampling. Dur-
ing training 𝑓𝑝𝑎𝑐𝑒(𝑠) goes from 𝛿 (percentage of initial training data) to 1 when 𝑠 = 𝑇 . Both
𝛿 and 𝑇 are hyperparameters. We provide an illustration of the process in Figure 4.1.

Training data in random order

Training data sorted by scoring 
function fscore

For each step train on a mini-batch B 
sampled from initial  fpace (step) 
percentage of the sorted training data.

training step s = 0 ...
...

sample mini-batch B from fpace(s)  fraction of sorted D 

sort D by fscore

s = 500

s = T = 1000 ...

s = 1500

during training

before training

Figure 4.1: Our curriculum learning framework is defined by two functions. The scoring function 𝑓𝑠𝑐𝑜𝑟𝑒(𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒)
defines the instances’ difficulty (darker/lighter blue indicate higher/lower difficulty). The pacing function 𝑓𝑝𝑎𝑐𝑒(𝑠)
indicates the percentage of the dataset available for sampling according to the training step 𝑠.
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Table 4.2: Overview of our curriculum learning scoring functions.

Input
Space

Name Definition Difficulty no-
tion

baseline random 𝑓𝑠𝑐𝑜𝑟𝑒 = 𝑈𝑛𝑖𝑓 𝑜𝑟𝑚(0,1)

(𝒰) #𝑡𝑢𝑟𝑛𝑠 𝑓𝑠𝑐𝑜𝑟𝑒(𝒰) = |𝒰| information
spread#𝒰𝑤𝑜𝑟𝑑𝑠 𝑓𝑠𝑐𝑜𝑟𝑒(𝒰) = ∑|𝒰|

𝑖=0𝑤𝑜𝑟𝑑_𝑐𝑜𝑢𝑛𝑡(𝑢𝑖)
|𝒰|

(ℛ) #ℛ𝑤𝑜𝑟𝑑𝑠 𝑓𝑠𝑐𝑜𝑟𝑒(ℛ) = ∑|ℛ|
𝑖=0 𝑤𝑜𝑟𝑑_𝑐𝑜𝑢𝑛𝑡(𝑟𝑖)

|ℛ| distraction in
responses

(𝒰,ℛ) 𝜎𝑆𝑀 𝑓𝑠𝑐𝑜𝑟𝑒(𝒰,ℛ) = √
∑|ℛ|

𝑖=0 (𝑆𝑀(𝒰,𝑟𝑖)−𝑆𝑀(𝒰,ℛ))2
|ℛ|−1 responses

heterogeneity
𝜎𝐵𝑀25 𝑓𝑠𝑐𝑜𝑟𝑒(𝒰,ℛ) = √

∑|ℛ|
𝑖=0 (𝐵𝑀25(𝒰,𝑟𝑖)−𝐵𝑀25(𝒰,ℛ))2

|ℛ|−1

(𝒰,ℛ,𝒴) 𝐵𝐸𝑅𝑇𝑝𝑟𝑒𝑑 𝑓𝑠𝑐𝑜𝑟𝑒(𝒰,ℛ,𝒴) =
− (𝐵𝐸𝑅𝑇_𝑝𝑟𝑒𝑑(𝒰,𝑟+𝑖 ) −𝐵𝐸𝑅𝑇_𝑝𝑟𝑒𝑑(𝒰,𝑟−𝑖 )) model

confidence
𝐵𝐸𝑅𝑇𝑙𝑜𝑠𝑠 𝑓𝑠𝑐𝑜𝑟𝑒(𝒰,ℛ,𝒴) = ∑|ℛ|

𝑖=0 𝐵𝐸𝑅𝑇_𝑙𝑜𝑠𝑠(𝒰,𝑟𝑖)
|ℛ|

4.3.3 Scoring Functions
In order to measure the difficulty of a training triplet composed of (𝒰𝑖 ,ℛ𝑖 ,𝒴𝑖), we define
scoring functions that use different parts of the input space: functions that leverage (i) the
text in the dialogue history {𝒰} (ii) the text in the response candidates {ℛ} (iii) interactions
between them, i.e., {𝒰,ℛ}, and, (iv) all available information including the labels for the
training set, i.e., {𝒰,ℛ,𝒴}. The seven¹ scoring functions we propose are defined in Table
4.2; we now provide intuitions of why we believe each function to capture some notion of
instance difficulty.

• #𝑡𝑢𝑟𝑛𝑠(𝒰) and #𝒰𝑤𝑜𝑟𝑑𝑠(𝒰): The important information in the context can be spread
over different utterances and words. Bigger dialogue contexts mean there are more
places where the important part of the user information need can be spread over.
#ℛ𝑤𝑜𝑟𝑑𝑠(ℛ): Longer responses can distract the model as to which set of words or
sentences are more important for matching. Previous work shows that it is possi-
ble to fool machine reading models by creating longer documents with additional
distracting sentences [148].

• 𝜎𝑆𝑀 (𝒰,ℛ) and 𝜎𝐵𝑀25(𝒰,ℛ): Inspired by query performance prediction [303], we
use the variance of retrieval scores to estimate the amount of heterogeneity of in-
formation, i.e. diversity, in the response candidate. Homogeneous ranked lists are
considered to be easy. We deploy a semantic matching model (SM) and BM25 to
capture both semantic correspondences and keyword matching [276]. SM is the av-
erage cosine similarity between the first 𝑘 words from 𝒰 (concatenated utterances)
with the first 𝑘 words from 𝑟 using pre-trained word embeddings.

¹The function random is the baseline—instances are sampled uniformly (no CL).
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• 𝐵𝐸𝑅𝑇𝑝𝑟𝑒𝑑 (𝒰,ℛ,𝒴) and 𝐵𝐸𝑅𝑇𝑙𝑜𝑠𝑠(𝒰,ℛ,𝒴): Inspired by CL literature [124], we
use external model prediction confidence scores as a measure of difficulty². We fine-
tune BERT [80] on𝒟𝑡𝑟𝑎𝑖𝑛 for the conversation response ranking task. For 𝐵𝐸𝑅𝑇𝑝𝑟𝑒𝑑
easy dialogue contexts are the ones that the BERT confidence score for the positive
response 𝑟+ candidate is higher than the confidence for the negative response can-
didate 𝑟−. The higher the difference the easier the instance is. For 𝐵𝐸𝑅𝑇𝑙𝑜𝑠𝑠we
consider the loss of the model to be an indicator of the difficulty of an instance.
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Figure 4.2: Example of pacing functions with 𝛿 = 0.33 (fraction of data used at the beginning of training) and
𝑇 = 1000 (total of iterations).

4.3.4 Pacing Functions
Assuming that we know the difficulty of each instance in our training set, we still need
to define how are we going to transition from easy to hard instances. We use the concept
of pacing functions 𝑓𝑝𝑎𝑐𝑒(𝑠); they should each have the following properties [260, 357]: (i)
start at an initial value of training instances 𝑓𝑝𝑎𝑐𝑒(0) = 𝛿 with 𝛿 > 0, so that the model has
a number of instances to train in the first iteration, (ii) be non-decreasing, so that harder
instances are added to the training set, and, (iii) eventually all instances are available for
sampling when it reaches 𝑇 iterations, 𝑓𝑝𝑎𝑐𝑒(𝑇 ) = 1.

As intuitively visible in Figure 4.2, we opted for pacing functions that introduce more
difficult instances at different paces—while 𝑟𝑜𝑜𝑡_10 introduces difficult instances very
early (after 125 iterations, 80% of all training data is available), 𝑔𝑒𝑜𝑚_𝑝𝑟𝑜𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 intro-
duces them very late (80% is available after ∼ 800 iterations). We consider four different
types of pacing functions, formally defined in Table 4.3. The 𝑠𝑡𝑒𝑝 function [31, 124, 310] di-
vides the data into 𝑆 fixed-sized groups, and after 𝑇

𝑆 iterations a new group of instances is
added, where 𝑆 is a hyperparameter. A more gradual transition was proposed by Platanios
et al. [260], by adding a percentage of the training dataset linearly with respect to the total
of CL iterations 𝑇 , and thus the slope of the function is 1−𝛿

𝑇 (𝑙𝑖𝑛𝑒𝑎𝑟 function). They also

²We note, that using BM25 average precision as a scoring function failed to outperform the baseline.
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Table 4.3: Overview of our curriculum learning pacing functions. 𝛿 and 𝑇 are hyperparameters.

Pacing function Definition

baseline_training 𝑓𝑝𝑎𝑐𝑒(𝑠) = 1

step 𝑓𝑝𝑎𝑐𝑒(𝑠) =
⎧
⎨
⎩

𝛿, if 𝑠 ≤ 𝑇 ∗ 0.33
0.66, if 𝑠 > 𝑇 ∗ 0.33, 𝑠 ≤ 𝑇 ∗ 0.66
1, if 𝑠 > 𝑇 ∗ 0.66

root 𝑓𝑝𝑎𝑐𝑒(𝑠,𝑛) = 𝑚𝑖𝑛(1,(𝑠 1−𝛿
𝑛

𝑇 +𝛿𝑛)
1
𝑛 )

linear 𝑓𝑝𝑎𝑐𝑒(𝑠,𝑛) = 𝑟𝑜𝑜𝑡(𝑠,1)
root_n 𝑓𝑝𝑎𝑐𝑒(𝑠,𝑛) = 𝑟𝑜𝑜𝑡(𝑠,𝑛)

geom_progression 𝑓𝑝𝑎𝑐𝑒(𝑠) = 𝑚𝑖𝑛(1,2(𝑠
𝑙𝑜𝑔21−𝑙𝑜𝑔2𝛿

𝑇 +𝑙𝑜𝑔2𝛿))

proposed 𝑟𝑜𝑜𝑡_𝑛 functions motivated by the fact that difficult instances will be sampled
less as the training data grows in size during training. By making the slope inversely pro-
portional to the current training data size, the model has more time to assimilate difficult
instances. Finally, we propose the use of a geometric progression that instead of quickly
adding difficult examples, gives easier instances more training time.

4.4 Experimental Setup
In order to test curriculum learning approaches we consider two³ large-scale information-
seeking conversation datasets introduced in Section 2.7.1: MANtIS and MSDialog.

4.4.1 Implementation Details
As a strong neural ranking model for our experiments, we employ BERT [80] for the con-
versational response ranking task. We follow recent research in IR that employed fine-
tuned BERT for retrieval tasks [236, 377] and obtain strong baseline (i.e., no CL) results
for our task. The best model by Yang et al. [374], which relies on external knowledge
sources for MSDialog, achieves a MAP of 0.68 whereas our BERT baselines reach a MAP
of 0.71 (cf. Table 4.4). We fine-tune BERT⁴ for sentence classification, using the [CLS]
token⁵; the input is the concatenation of the dialogue context and the candidate response
separated by [SEP] tokens. When training BERTwe employ a balanced number of relevant
and non-relevant context and response pairs⁶. We use cross entropy loss and the Adam
optimizer [168] with a learning rate of 5𝑒 −5 and 𝜖 = 1𝑒 −8, the default hyperparameters.

For 𝜎𝑆𝑀 , as word embeddings, we use pre-trained fastText⁷ embeddings with 300 di-

³The experiments of this chapter were performed when the UDC-DSTC8 dataset was not yet released.
⁴We use the PyTorch-Transformers implementation https://github.com/huggingface/pytorch-transformers
and resort to bert-base-uncased with default settings.
⁵The BERT authors suggest [CLS] as a starting point for sentence classification tasks [80].
⁶We observed similar results to training with a 1 to 10 ratio in initial experiments.
⁷https://fasttext.cc/docs/en/crawl-vectors.html

https://github.com/huggingface/pytorch-transformers
https://fasttext.cc/docs/en/crawl-vectors.html
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mensions and a maximum length of 𝑘 = 20 words of dialogue contexts and responses. For
𝜎𝐵𝑀25, we use default values⁸ of 𝑘1 = 1.5, 𝑏 = 0.75 and 𝜖 = 0.25. For CL, we fix 𝑇 as 90%
percent of the total training iterations—this means that we continue training for the final
10% of iterations after introducing all samples—and the initial number of instances 𝛿 as
33% of the data to avoid sampling the same instances several times.

4.4.2 Evaluation
To compare our strategies with the baseline where no CL is employed, for each approach,
we fine-tune BERT five times with different random seeds—to rule out that the results are
observed only for certain random weight initialization values—and for each run, we select
the model with best-observed effectiveness on the development set. The best model of
each run is then applied to the test set. We report the effectiveness with respect to Mean
Average Precision (MAP) like prior works [367, 374]. We perform paired Student’s t-tests⁹
between each scoring/pacing-function variant and the baseline run without CL.

4.5 Results
Wefirst report the results for the pacing functions (Figure 4.3) followed by the main results
(Table 4.4) comparing different scoring functions. We finish with an error analysis to
understand when CL outperforms our no-curriculum baseline.
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Figure 4.3: Average development MAP for 5 different runs, using different curriculum learning pacing functions.
△ is the maximum observed MAP. On the left, we have results for the MSDialog dataset, and on the right for the
MANtIS dataset.

4.5.1 Pacing Functions
In order to understand how CL results are impacted by the pace we go from easy to hard
instances, we evaluate the different proposed pacing functions. We display the evolution
of the development set MAP (average of 5 runs) during training in Figure 4.3 (we use
development MAP to track effectiveness during training). We fix the scoring function as
𝐵𝐸𝑅𝑇𝑝𝑟𝑒𝑑 ; this is the best performing scoring function, more details in the next section.
We see that the pacing functions with the maximum observed average MAP are 𝑟𝑜𝑜𝑡_2
⁸https://radimrehurek.com/gensim/summarization/bm25.html
⁹Unlike other chapters, we do not apply Bonferoni correction here due to having a single baseline (no CL).

https://radimrehurek.com/gensim/summarization/bm25.html
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and 𝑟𝑜𝑜𝑡_5 for MSDialog and MANtIS respectively¹⁰. The other pacing functions, linear,
geom_progression and step, also outperform the standard training baseline with statistical
significance (using Student’s t-test and confidence level of 99%) on the test set and yield
similar results to the root_2 and root_5 functions.

Our results are aligned with previous research on CL [260], that giving more time for
the model to assimilate harder instances (by using a root pacing function) is beneficial
to the curriculum strategy and is better than no CL with statistical significance. For the
rest of our experiments, we fix the pacing function as 𝑟𝑜𝑜𝑡_2, the best pacing function for
MSDialog. Let’s now turn to the impact of the scoring functions.

4.5.2 Scoring Functions

Table 4.4: Test set MAP results of 5 runs using different curriculum learning scoring functions. Superscripts †/‡
denote statistically significant improvements over the baseline where no curriculum learning is applied (𝑓𝑠𝑐𝑜𝑟𝑒 =
𝑟𝑎𝑛𝑑𝑜𝑚) at 95%/99% confidence intervals. Bold indicates the highest MAP for each line.

MSDialog

Run 𝑟𝑎𝑛𝑑𝑜𝑚 #𝑡𝑢𝑟𝑛𝑠 #𝒰𝑤𝑜𝑟𝑑𝑠 #ℛ𝑤𝑜𝑟𝑑𝑠 𝜎𝑆𝑀 𝜎𝐵𝑀25 𝐵𝐸𝑅𝑇𝑝𝑟𝑒𝑑 𝐵𝐸𝑅𝑇𝑙𝑜𝑠𝑠
1 0.7142 0.7220 † 0.7229 † 0.7182 0.7239 †‡ 0.7175 0.7272 †‡ 0.7244 †‡
2 0.7044 0.7060 0.7053 0.6968 0.7032 0.7003 0.7159 †‡ 0.7194 †‡
3 0.7126 0.7215 † 0.7163 0.7171 0.7174 0.7159 0.7296 †‡ 0.7225 †‡
4 0.7031 0.7065 0.7043 0.6993 0.7026 0.6949 0.7154 †‡ 0.7204 †‡
5 0.7148 0.7225 † 0.7203 0.7169 0.7171 0.7134 0.7322 †‡ 0.7331 †‡

AVG 0.7098 0.7157 0.7138 0.7097 0.7128 0.7084 0.7241 0.7240

SD 0.0056 0.0086 0.0086 0.0106 0.0095 0.0101 0.0079 0.0055

MANtIS

1 0.7203 0.7192 0.7198 0.7194 0.7166 0.7200 0.7257 †‡ 0.7268 †‡
2 0.6984 0.6993 0.6989 0.6996 0.6964 0.7009 0.7067 †‡ 0.7051 †‡
3 0.7200 0.7197 0.7134 0.7206 0.7153 0.7153 0.7282 †‡ 0.7221
4 0.7114 0.7117 0.7002 0.6978 0.7140 0.7084 0.7240 †‡ 0.7184 †‡
5 0.7156 0.7174 0.7193 † 0.7162 0.7147 0.7185 0.7264 †‡ 0.7258 †‡

AVG 0.7131 0.7135 0.7103 0.7107 0.7114 0.7126 0.7222 0.7196

SD 0.0090 0.0085 0.0102 0.0111 0.0084 0.0079 0.0088 0.0088

Themost critical challenge of CL is defining a measure of the difficulty of instances. In
order to evaluate the effectiveness of our scoring functions we report the test set results
across both datasets in Table 4.4. We observe that the scoring functions which do not use
the relevance labels 𝒴 are not able to outperform the no CL baseline (random scoring
function). They are based on features of the dialogue context 𝒰 and responses ℛ that
we hypothesized make them difficult for a model to learn. Differently, for 𝐵𝐸𝑅𝑇𝑙𝑜𝑠𝑠 and
𝐵𝐸𝑅𝑇𝑝𝑟𝑒𝑑 we observe statistically significant results on both datasets across different runs.
They differ in two ways from the unsuccessful scoring functions: they have access to the

¹⁰If we increase the 𝑛 of the root function to bigger values, e.g. 𝑟𝑜𝑜𝑡_10, the results drop and get closer to not
using CL. This is due to the fact that higher 𝑛 generate root functions with a similar shape to standard training,
giving the same amount of time to easy and hard instances (cf. Figure 4.2).
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training labels 𝒴 and the difficulty of an instance is based on what a previously trained
model determines to be hard, and thus not our intuition.

Our results bear resemblance to Born Again Networks [97], where a student model
which is identical in parameters and architecture to the teacher model outperforms the
teacher when trained with knowledge distillation [133], i.e., using the predictions of the
teacher model as labels for the student model. The difference here is that instead of trans-
ferring the knowledge from the teacher to the student through the labels, we transfer the
knowledge by imposing a structure/order on the training set, i.e. curriculum learning.

4.5.3 Error Analysis
In order to understand when CL performs better than random training samples, we fix the
scoring (𝐵𝐸𝑅𝑇𝑝𝑟𝑒𝑑 ) ad pacing function (root_2) and explore the test set effectiveness along
several dimensions (Figures 4.4 and 4.5). We report the results only for MSDialog, but the
trends hold for MANtIS as well.

We first consider the number of turns in the conversation in Figure 4.4. CL outperforms
the baseline approach for the types of conversations appearing most frequently (2-5 turns
in MSDialog). The CL-based and baseline effectiveness drops for conversations with a large
number of turns. This can be attributed to two factors: (1) employing pre-trained BERT
in practice allows only a certain maximum number of tokens as input, so longer conver-
sations can lose important information due to truncating; (2) for longer conversations it
is harder to identify the important information to match in the history.
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Figure 4.4: On the top we have the MSDialog test set MAP of curriculum learning and baseline (no curriculum)
by number of turns. On the bottom, we have the number of instances per number of turns.

Next, we look at different conversation domains in Figure 4.5 (left), such as windows10
and word for MSDialog—are the gains in effectiveness limited to particular domains? The
error bars indicate the confidence intervals with a confidence level of 95%. We list only the
most common domains in the test set. The gains of CL are spread over different domains
as opposed to concentrated on a single domain.

Lastly, using our scoring functions we sort the test instances and divide them into
three buckets: first 33% instances, 33%–66%, and 66%–100%. In Figure 4.5 (right), we see
the effectiveness of CL against the baseline for each bucket using #𝒰𝑤𝑜𝑟𝑑𝑠 (the same trend
holds for the other scoring functions). As we expect, the bucket with the most difficult
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Figure 4.5: Test set MAP for MSDialog across different domains (left) and instances’ difficulty (right) according
to #ℛ𝑤𝑜𝑟𝑑𝑠 for curriculum learning and the baseline.

instances according to the scoring function is the one with the lowest MAP values. Finally,
the improvements of CL over the baseline are again spread across the buckets, showing
that CL is able to improve over the baseline for different levels of difficulty.

4.6 Limitations
A limitation of our study is that we only consider a single BERT model for re-ranking.
While the focus of this chapter is on the re-ranking step, the findings might also generalize
to the retrieval step and other model architectures. For example, Zeng et al. [391] showed
in a subsequent study¹¹ that a curriculum learning approach is effective for the first-stage
retrieval step, by employing it to control the level of difficulty of the teacher supervision
for a dense retriever. In the domain of conversational data, a dense retriever was also
shown to benefit from curriculum learning in another subsequent study [218].

A second concern is that even though the method is simple to implement as it only
changes the order of the training instances, the size of the effectiveness improvements we
obtained was small. We believe that more sophisticated scoring functions and different
ways of applying curriculum learning, e.g. through different tasks, might lead to higher
effectiveness gains.

4.7 Conclusions
In this work, we studied whether CL strategies are beneficial for neural ranking models.
We find supporting evidence for curriculum learning in IR. Simply reordering the instances
in the training set using difficulty criteria leads to effectiveness improvements, requiring
no changes to the model architecture—a similar relative improvement inMAP has justified
novel neural architectures in the past [320, 367, 398, 402]. Our experimental results on two
conversation response ranking datasets reveal (as one might expect) that it is best to use
all available information (𝒰,ℛ,𝒴) as evidence for instance difficulty.

This chapter provides evidence for the second research question of the thesis (M-RQ2),
showing that different notions of the difficulty of a dialogue can be used to improve a re-

¹¹Curriculum learning was also shown in 2022 [391] to be helpful for dense retrieval. This study was published
after the paper [249] (2020) which originated this chapter.
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ranking model for conversational search. We rely here specifically on a CL method, but
other approaches could be used to take advantage of the difficulty estimations as proposed
by the scoring functions. In terms of the multi-stage pipeline described in Figure 1.6, we
focused in this chapter on second-stage approaches for conversational search, with a cross-
encoder model that is more powerful but less efficient than the approaches outlined in the
previous chapter. In the next chapter we continue to evaluate M-RQ2, still working with
cross-encoder re-ranking models for the second stage of the pipeline. We take a different
route to calculate and employ the difficulty of dialogues, relying on stochastic rankers and
using the such model’s uncertainty estimates.
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5
Difficulty Notions when Predicting

with Response Re-rankers
In this chapter, we continue our exploration of the second stage of the multi-stage pipeline
for conversational search and turn our attention to difficult dialogues when predicting rele-
vance. According to the Probability Ranking Principle (PRP), ranking responses in decreasing
order of their probability of relevance leads to an optimal ranking. The PRP holds when two
conditions are met: [C1] the models are well calibrated, and, [C2] the probabilities of rele-
vance are reported with certainty. We know however that deep neural networks (DNNs) are
often not well calibrated and have several sources of uncertainty, and thus [C1] and [C2]
might not be satisfied by neural rankers. Given the success of neural re-ranking models—and
here, especially BERT-based cross-encoder approaches—we first analyze under which circum-
stances they are calibrated for conversational search problems. Then, motivated by our find-
ings we use two techniques to model the uncertainty of neural rankers leading to the proposed
stochastic rankers, which output a predictive distribution of relevance as opposed to point
estimates. Our experimental results reveal that (i) BERT-based rankers are not robustly cal-
ibrated and that stochastic BERT-based rankers yield better calibration; and (ii) uncertainty
estimation is beneficial for both risk-aware neural ranking, i.e. taking into account the un-
certainty when ranking responses, and for predicting unanswerable conversational contexts.
The code required to reproduce this chapter is available at https://github.com/Guzpenha/
transformer_rankers/tree/uncertainty_estimation.

This chapter is based on the following paper:

 Gustavo Penha and Claudia Hauff. 2021. On the Calibration and Uncertainty of Neural Learning to Rank
Models for Conversational Search. In EACL. 160–170 [251].

https://github.com/Guzpenha/transformer_rankers/tree/uncertainty_estimation
https://github.com/Guzpenha/transformer_rankers/tree/uncertainty_estimation
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5.1 Introduction
According to the Probability Ranking Principle (PRP) [289], ranking documents in decreas-
ing order of their probability of relevance leads to an optimal document ranking for ad-
hoc retrieval¹. Gordon and Lenk [112] discussed that for the PRP to hold, a ranking model
must at least meet the following conditions: [C1] assign well-calibrated probabilities of
relevance, i.e. if we gather all documents for which the model predicts relevance with a
probability of e.g. 30%, the number of relevant documents should be 30%, and [C2] report
certain predictions, i.e. only point estimates, for example, 80% probability of relevance.

DNNs have been shown to outperform classic information retrieval ranking models
over the past few years in setups where considerable training data is available. It has
been shown that DNNs are not well calibrated in the context of computer vision [119].
If the same is true for neural models for IR, e.g. transformer models for ranking [236],
[C1] is not met. Additionally, there are a number of sources of uncertainty in the training
process of neural networks [99] that make it unreasonable to assume that neural ranking
models fulfill [C2]: parameter uncertainty (different combinations of weights that explain
the data equally well), structural uncertainty (which neural architecture to use for neural
ranking), and aleatoric uncertainty (noisy data). Given these sources of uncertainty, using
point estimate predictions and ranking according to the PRPmight not achieve the optimal
ranking. While the effectiveness benefits of risk-aware models [352, 353], which take into
account the risk², i.e. the uncertainty of the document’s prediction scores, have been
shown for non-neural IR approaches, the same was not explored for neural L2R models.

We first contribute an analysis of the calibration of neural rankers, specifically BERT-
based rankers for IR tasks to understand how calibrated they are. Then, to model the un-
certainty of BERT-based rankers, we contribute with stochastic neural ranking models (see
Figure 5.1), by applying different techniques to model the uncertainty of DNNs, namely
MC Dropout [100] and Deep Ensembles [177] which are agnostic to the particular DNN
architecture. In our experiments, we test models under distributional shift, i.e. the test
data distribution is different from the training data, also referred to as out-of-distribution
(OOD) examples [181]. In real-world settings, there are often inputs that are shifted due
to factors such as non-stationarity and sample bias. Additionally, this experimental setup
provides a way of measuring whether the DNN “knows what it knows” [242], e.g. by out-
putting high uncertainty for OOD examples.

We find that BERT-based rankers are not robustly calibrated. Stochastic BERT-based
rankers have 14% less calibration error on average than BERT-based rankers. Uncertainty
estimation from stochastic BERT-based rankers is advantageous for downstream appli-
cations as shown by our experiments for risk-aware neural ranking (2% more effective
on average relative to a model without risk-awareness) and for predicting unanswerable
conversational contexts (improves classification by 33% on average of all conditions).

¹Standard retrieval task where the user specifies his information need through a query which initiates a search
by the system for documents that are likely relevant [19].
²We use risk and uncertainty interchangeably here.
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Figure 5.1: While deterministic neural rankers (left) output a point estimate probability (magenta values) of
relevance for a combination of dialogue context and candidate response, stochastic neural rankers (right) output
a predictive distribution (orange curves). The dispersion of the predictive distribution provides an estimation of
the model uncertainty.

5.2 Related Work
In this section we first analyze previous efforts in the topics of calibration and uncertainty
within information retrieval, followed by the field of bayesian neural networks.

5.2.1 Calibration and Uncertainty in IR
Even though optimally ranking documents according to the PRP [289] requires the model
to be calibrated [112] ([C1]), the calibration of ranking models has received little atten-
tion in IR. In contrast, in the machine learning community, there have been a number
of studies about calibration [215, 242], due to the larger decision-making pipelines DNNs
are often part of and their importance for model interpretability [327]. For instance, in
the automated medical domain it is important to provide a calibrated confidence measure
besides the prediction of a disease diagnosis to provide clinicians with sufficient informa-
tion [150]. Guo et al. [119] have shown that DNNs are not well calibrated in the context
of computer vision, motivating our study of the calibration of neural L2R models.

The second condition ([C2]) for optimal retrieval when ranking according to the PRP
[112] is thatmodels report predictionswith certainty. While the (un)certainty has not been
studied in neural L2Rmodels, there are classic approaches in IR that model the uncertainty.
Such approaches have been mostly inspired by economics theory, treating variance as a
measure of uncertainty [342]. Following such ideas, non-neural ranking models that take
uncertainty into account (i.e. risk-aware models), and thus do not follow the PRP [289],
have been proposed [353, 403], showing significant effectiveness improvements compared
to the models that do not model uncertainty. Uncertainty estimation is a difficult task
that has other applications in IR besides improving the ranking effectiveness: it can be
employed to decide between asking clarifying questions and providing a potential answer
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in conversational search [9]; to perform dynamic query reformulation [194] for queries
where the intent is uncertain; and to predict questions with no correct answers [92].

5.2.2 Bayesian Neural Networks
Unlike standard algorithms to train neural networks, e.g. SGD, that fit point estimate
weights given the observed data, Bayesian Neural Networks (BNNs) infer a distribution
over the weights given the observed data. Denker et al. [78] contains one of the earli-
est mentions of choosing probability over the weights of a model. An advantage of the
Bayesian treatment of neural networks [35, 214, 230] is that they are better at representing
existing uncertainties in the training procedure. One limitation of BNNs is that they are
computationally expensive compared to DNNs. This has led to the development of tech-
niques that scale well and do not require modifications of the neural net architecture and
training procedure. Gal and Ghahramani [100] proposed a way to approximate Bayesian
inference by relying on dropout [312]. While dropout is a regularization technique that
ignores units with probability 𝑝 during every training iteration and is disabled at test time,
Dropout [100] employs dropout at both train and test time and generates a predictive dis-
tribution after a number of forward passes. Lakshminarayanan et al. [177] proposed an al-
ternative: they employ ensembles of models (Ensemble) to obtain a predictive distribution.
Ovadia et al. [242] showed that Ensemble are able to produce well-calibrated uncertainty
estimates that are robust to dataset shift.

5.3 Risk-Aware Neural Ranking
In this section, we introduce the methods used for answering the following research ques-
tions: RQ1 How calibrated are deterministic and stochastic BERT-based rankers? RQ2 Are
the uncertainty estimates from stochastic BERT-based rankers useful for risk-aware ranking?
RQ3 Are the uncertainty estimates obtained from stochastic BERT-based rankers useful for
identifying unanswerable queries? We first describe how to measure the calibration of neu-
ral rankers ([C1]), followed by our approach for modeling and ranking under uncertainty
([C2]), and then we describe how we evaluate their robustness to distributional shift.

5.3.1 Measuring Calibration
To evaluate the calibration of neural rankers (RQ1) we resort to the Empirical Calibration
Error (ECE) [228]. ECE is an intuitive way of measuring to what extent the confidence
scores from neural networks align with the true correctness likelihood. It measures the
difference between the observed reliability curve [77] and the ideal one³. More formally,
we sort the predictions of the model, divide them into 𝑐 buckets {𝐵0, ...,𝐵𝑐}, and take the
weighted average between the average predicted probability of relevance 𝑎𝑣𝑔(𝐵𝑖) and the
fraction of relevant⁴ documents 𝑟𝑒𝑙(𝐵𝑖)

|𝐵𝑖 |
in the bucket:

𝐸𝐶𝐸 =
𝑐
∑
𝑖=0

|𝐵𝑖 |
𝑛

|||𝑎𝑣𝑔(𝐵𝑖) −
𝑟𝑒𝑙(𝐵𝑖)
|𝐵𝑖 |

|||,

³See examples of reliability diagrams in Figure 5.2.
⁴We consider here binary relevance.
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where 𝑛 is the total number of test examples.

5.3.2 Modeling Uncertainty
First we define the ranking problem we focus on, followed by the BERT-based ranker
baseline model (BERT). Having set the foundations, we move to the methods we propose
to answer RQ2 and RQ3: a stochastic BERT-based ranker to model uncertainty (S-BERT)
and a risk-aware BERT-based ranker to take into account uncertainty provided by S-BERT
when ranking (RA-BERT).

Conversation Response Ranking
This is the typical conversation response ranking problem as defined in Section 2.6.1, with
a small set of candidate responses, i.e. re-ranking step.

Deterministic BERT Ranker
We use BERT for learning the function 𝑓 (𝒰𝑖 , 𝑟), based on the representation of the [CLS]
token. The input for BERT is the concatenation of the context 𝒰𝑖 and the response 𝑟 ,
separated by [SEP] tokens. This is the equivalent of early adaptations of BERT for ad-
hoc retrieval [377] transported to conversation response ranking. Formally the input sen-
tence to BERT is 𝑐𝑜𝑛𝑐𝑎𝑡(𝒰𝑖 , 𝑟) = 𝑢1 | [U] | 𝑢2 | [T] | ... | 𝑢𝜏 | [SEP] | 𝑟 , where | indicates
the concatenation operation. The utterances from the context 𝒰𝑖 are concatenated with
special separator tokens [U] and [T] indicating the end of utterances and turns. The
response 𝑟 is concatenated with the context using BERT’s standard sentence separator
[SEP]. We fine-tune BERT on the target conversational corpus and make predictions as
follows: 𝑓 (𝒰𝑖 , 𝑟) = 𝜎(𝐹𝐹𝑁 (𝐵𝐸𝑅𝑇𝐶𝐿𝑆(𝑐𝑜𝑛𝑐𝑎𝑡(𝒰𝑖 , 𝑟)))),where 𝐵𝐸𝑅𝑇𝐶𝐿𝑆 is the pooling oper-
ation that extracts the representation of the [CLS] token from the last layer and 𝐹𝐹𝑁 is a
feed-forward network that outputs logits for two classes (relevant and non-relevant). We
pass the logits through a softmax transformation 𝜎 that gives us a probability of relevance.
We use the cross entropy loss for training. The learned function 𝑓 (𝒰𝑖 , 𝑟) outputs a point
estimate and we refer to it as BERT.

Stochastic S-BERT Ranker
In order to obtain a predictive distribution, 𝑅𝑟 = {𝑓 (𝒰𝑖 , 𝑟)0, 𝑓 (𝒰𝑖 , 𝑟)1, ..., 𝑓 (𝒰𝑖 , 𝑟)𝑛}, which
allows us to extract uncertainty estimates, we rely on two techniques, namely Ensem-
ble [177] and Dropout [100]. Both techniques scale well and do not require modifications
on the architecture or training of BERT.

Using Deep Ensembles (S-BERT𝐸) We train 𝑀 models using different random seeds
without changing the training data, each with its own set of parameters {𝜃𝑚}𝑀𝑚=1 and make
predictions with each one of them to generate 𝑀 predicted values:

𝑅𝐸𝑟 = {𝑓 (𝒰𝑖 , 𝑟)0, 𝑓 (𝒰𝑖 , 𝑟)1, ..., 𝑓 (𝒰𝑖 , 𝑟)𝑀 }
The mean of the predicted values is used as the predicted probability of relevance:

S-BERT𝐸(𝒰𝑖 , 𝑟) = 𝐸[𝑅𝐸𝑟 ], and the variance 𝑣𝑎𝑟[𝑅𝐸𝑟 ] gives us a measure of the uncertainty.
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Using MC Dropout (S-BERT𝐷) We train a single model with parameters 𝜃 and employ
dropout at test time and generate stochastic predictions of relevance by conducting 𝑇
forward passes: 𝑅𝐷𝑟 = {𝑓 (𝒰𝑖 , 𝑟)0, 𝑓 (𝒰𝑖 , 𝑟)1, ..., 𝑓 (𝒰𝑖 , 𝑟)𝑇 }. The mean of the predicted values
is used as the predicted probability of relevance: S-BERT𝐷(𝒰𝑖 , 𝑟) = 𝐸[𝑅𝐷𝑟 ], and the variance
𝑣𝑎𝑟[𝑅𝐷𝑟 ] gives us a measure of the uncertainty.

Risk-Aware RA-BERT Ranker
Given the predictive distribution 𝑅𝑟 , obtained either by Ensemble or Dropout, we use the
following function to rank responses with risk awareness:

RA-BERT(𝒰𝑖 , 𝑟) = 𝐸[𝑅𝑟 ] − 𝑏 ∗ 𝑣𝑎𝑟[𝑅𝑟 ]

−2𝑏
𝑛−1
∑
𝑖
𝑐𝑜𝑣[𝑅𝑟 ,𝑅𝑟𝑖 ],

where 𝐸[𝑅𝑟 ] is the mean of the predictive distribution, and 𝑏 is a hyperparameter that
controls the aversion or predilection towards risk. Unlike [409], we are not combining
different runs that encompass different model architectures. We instead take a Bayesian
interpretation of the process of generating a predictive distribution from a single model
architecture. We refer to the rankers as RA-BERT𝐷 and RA-BERT𝐸 , when using S-BERT𝐷 ’s
predictive distribution and S-BERT𝐸 ’s predictive distribution respectively.

5.3.3 Robustness to Distributional Shift
In order to evaluate whether we can trust the model’s calibration and uncertainty esti-
mates, similar to [242] we evaluate how robust the models are to different types of shifts
in the test data. We do so by training the model using one setting and applying it in a
different setting. Specifically for all three research questions we test the models under
two settings— cross-domain and cross-negative sampling—which we describe next.

Cross Domain
We train a model using the training set from one domain known as the source domain𝒟𝒮
and evaluate it on the test set of a different domain, known as the target domain𝒟𝒯 . This
is also known as the problem of domain generalization [117].

Cross Negative Sampling
Pointwise L2R models are trained on pairs of query and relevant document and pairs of
query and non-relevant document [207]. Selecting the non-relevant documents requires
a negative sampling (NS) strategy. For the cross-NS condition, we test models on negative
documents that were sampled using a different NS strategy than during training, evaluat-
ing the generalization of the models on a shifted distribution of candidate documents. The
dataset on the other hand is always the same for the cross-NS condition. We use three
NS strategies. In NS𝑟𝑎𝑛𝑑𝑜𝑚 we randomly select candidate responses from the list of all re-
sponses. For NS𝐵𝑀25 we retrieve candidate responses using the conversational context 𝒰𝑖
as a query to a lexical retrieval model (here BM25) and all the responses 𝑟 as documents.
In NS𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒𝐵𝐸𝑅𝑇 we represent both 𝒰𝑖 and all the responses with a sentence embedding
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technique and retrieve candidate responses using a similarity measure. Unless stated oth-
erwise, we use NS𝐵𝑀25 as the negative sampling strategy.

5.4 Experimental Setup
In order to answer our research questionswe consider three large-scale information-seeking
conversation datasets introduced in Section 2.7.1: MANtIS, MSDialog, and UDC-DSTC8.

5.4.1 Implementation Details
We fine-tune BERT [80] (bert-base-cased) for conversation response ranking using the
huggingface-transformers [363]. We follow recent research in IR that employed fine-tuned
BERT for retrieval tasks [236, 377], including conversation response ranking [249, 344,
360]. When training BERT we employ a balanced number of relevant and non-relevant—
sampled using BM25 [290]—context and response pairs. The sentence embeddings we use
for cross-NS is sentenceBERT [280] andwe employ dot product calculation from FAISS [155].
We consider each dataset as a different domain for cross-NS. We use the default hyperpa-
rameters: Adam optimizer [168] with 𝑙𝑟 = 5−6 and 𝜖 = 1−8, we train with a batch size
of 6 and fine-tune the model for 1 epoch. This baseline BERT-based ranker setup yields
comparable effectiveness with SOTA methods⁵.

5.4.2 Evaluation
To evaluate the effectiveness of the neural rankers we resort to a standard evaluationmetric
in conversation response ranking [113, 319, 384]: recall at position 𝐾 with 𝑛 candidates
𝑅𝑛@𝐾 . To evaluate the calibration of the models, we resort to the Empirical Calibration
Error (see Section 5.3.1, using 𝐶 = 10). Throughout, we report the test set results for each
dataset. To evaluate the quality of the uncertainty estimation we rely on two downstream
tasks. The first is to improve conversation response ranking itself via Risk-Aware ranking
(see Section 5.3.2). The second, which fits well with conversation response ranking, is
to predict unanswerable conversational contexts. Formally the task is to predict whether
there is a correct answer in the candidates listℛ or not. In our experiments, for half of the
instances, we remove the relevant response from the list, setting the label as None Of The
Above (NOTA). The other half of the data has the label Answerable (ANSW) indicating that
there is a suitable answer in the list of candidates, for which we remove one of the negative
samples instead. Similar to Feng et al. [92], who proposed to use the outputs (logits) of
a LSTM-based model in order to predict NOTA, we use the uncertainties as additional
features to the classifier for NOTA prediction. The input space with the additional features
is fed to a learning algorithm (Random Forest), and we evaluate it with a 5-fold cross-
validation procedure using F1-Macro.

⁵We obtain 0.834 𝑅10@1 on UDC-DSTC8with our baseline BERTmodel, c.f. Table 5.1, while SA-BERT [113] achieves
0.830. The best-performing model of the DSTC8 [167] also employed a fine-tuned BERT
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5.5 Results
5.5.1 Calibration of Neural Rankers
In order to answer our first research question about the calibration of neural rankers, let
us first analyze BERT under standard settings (no distributional shift). Our results show
that BERT is both effective and calibrated under no distributional shift conditions. In Ta-
ble 5.1 we see that when the target data (Test on →) is the same as the source data (Train
on ↓)—indicated by underlined values—we obtain the highest effectiveness (on average
0.70 𝑅10@1) and the lowest calibration error (on average 0.036 ECE). When plotting the
calibration curves of the model in Figure 5.2, we observe the curves to be almost diago-
nal (i.e. having near perfect calibration) when there are an equal number of relevant and
non-relevant candidates (#-non-rel = 1).

Table 5.1: Calibration (ECE, lower is better) and effectiveness (R10@1, higher is better) of BERT for conversation
response ranking in cross-domain, and cross-NS conditions. All models were trained using NS𝐵𝑀25. ECE is
calculated using a balanced number of relevant and non relevant documents. Underlined values indicate no
distributional shift (𝒟𝒮 = 𝒟𝒯 and train NS = test NS). For the cross-NS conditions the train dataset is the same
as the test dataset, and models trained with NS𝐵𝑀25 are tested against NS𝑟𝑎𝑛𝑑𝑜𝑚 and NS𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒𝐵𝐸𝑅𝑇 .

cross-domain cross-NS

Test on → MANtIS MSDialog UDC-DSTC8 NS𝑟𝑎𝑛𝑑𝑜𝑚 NS𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒𝐵𝐸𝑅𝑇

Train on ↓
(NS𝐵𝑀25)

R10@1 ECE R10@1 ECE R10@1 ECE R10@1 ECE R10@1 ECE

MANtIS 0.615 0.003 0.653 0.010 0.422 0.028 0.263 0.011 0.310 0.009
MSDialog 0.398 0.009 0.652 0.006 0.495 0.014 0.298 0.029 0.239 0.027
UDC-DSTC8 0.349 0.016 0.306 0.023 0.834 0.002 0.318 0.050 0.182 0.045

However, whenwemake the conditionsmore realistic⁶ by havingmultiple non-relevant
candidates for each conversational context, we observe in Figure 5.2 that the calibration
errors start to increase, moving away from the diagonal. Additionally, when we challenge
the model in cross-domain and cross-NS settings, the calibration error increases signifi-
cantly as evident in Table 5.1. On average, the ECE is 4.6 times higher for cross-domain
and 7.9 times higher for cross-NS. Thus answering the first part of our first research
question about the calibration of deterministic BERT-based rankers, indicating
that they do not have robust calibrated predictions, failing on the scenarios where
there is a distributional shift.

In order to answer the remaining part of RQ1, on how calibrated stochastic BERT-based
rankers are, let us consider Tables 5.2 and 5.3. They display the improvements (relative
drop in ECE) over BERT in terms of calibration. S-BERT𝐸 is on average 14% better (has less
calibration error) than BERT, while S-BERT𝐷 is on average 10% better than BERT, answering
our first research question: stochastic BERT-based rankers are better calibrated
than deterministic BERT-based ranker. We hypothesize that S-BERT𝐸 leads to less ECE
than S-BERT𝐷 because it better captures the model uncertainty in the training procedure
since it combines different weights that explain equally well the prediction of relevance

⁶In a production system, the retrieval stage would be executed over all candidate responses. As a consequence,
the data is highly unbalanced, i.e. only a few relevant responses among potentially millions of non-relevant
responses.
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Figure 5.2: Calibration of BERT trained on a balanced set of relevant and non-relevant documents, and tested
data with more non-relevant (#-non-rel) than relevant (1 per query) documents. A fully calibrated model is
represented by the dotted diagonal: for every bucket of confidence in relevance, the % of relevant documents in
that bucket is exactly the confidence. The calibration error is the difference between the curves and the diagonal.

given the inputs. In the next section, we focus on evaluating the effectiveness of such
models that are better calibrated and also taking into account uncertainty when ranking.

Table 5.2: Relative decreases of ECE (lower is better) of S-BERT𝐸 and S-BERT𝐷 over BERT for the cross-domain
condition. Superscript † denote significant improvements (95% confidence interval) using Student’s t-tests.

cross-domain

Test on → MANtIS MSDialog UDC-DSTC8

Train on ↓
(NS𝐵𝑀25)

S-BERT𝐸 S-BERT𝐷 S-BERT𝐸 S-BERT𝐷 S-BERT𝐸 S-BERT𝐷

MANtIS -35.13%† -56.14%† -03.42% -26.89%† -04.94% -00.83%
MSDialog +25.05% +08.27% -43.11% -11.54% +22.77% +05.85%
UDC-DSTC8 -54.95%† -09.98%† -25.78%† -09.15% +24.77% -01.84%

Table 5.3: Relative decreases of ECE (lower is better) of S-BERT𝐸 and S-BERT𝐷 over BERT for the cross-NS condition.
Superscript † denote significant improvements (95% confidence interval) using Student’s t-tests.

cross-NS

Test on → NS𝑟𝑎𝑛𝑑𝑜𝑚 NS𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒𝐵𝐸𝑅𝑇
Train on ↓
(NS𝐵𝑀25)

S-BERT𝐸 S-BERT𝐷 S-BERT𝐸 S-BERT𝐷

MANtIS -31.35% -18.65%† -37.65%† -02.79%
MSDialog -15.91% -10.58% -17.17% -12.93%
UDC-DSTC8 -08.05% -01.78% -04.81% -01.28%

5.5.2 Uncertainty Estimates for Risk-Aware Neural Ranking
In order to evaluate the quality of the uncertainty estimations, we first resort to using
them as a measure of the risk through risk-aware neural ranking (RA-BERT𝐷 and RA-BERT𝐸).
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Figure 5.3 displays the effectiveness in terms of 𝑅10@1 gains over BERT for the different
settings (cross-domain and cross-NS) when varying the risk aversion 𝑏.
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Figure 5.3: Gains of the Risk-Aware BERT-ranker for different values of risk aversion 𝑏 (the importance of the
uncertainty estimation for the final ranking).

We note that when 𝑏 = 0, we are using the mean of the predictive distribution and dis-
regard the risk, which is equivalent to S-BERT𝐷 and S-BERT𝐸 . The ensemble-based average
S-BERT𝐸 is more effective than the baseline BERT for almost all combinations and S-BERT𝐷
is equivalent to the baseline. This is in line with previous work that ensemble and stacking
approaches are more effective than using single models [2, 40, 41] and in line with public
leaderboards and machine learning competitions [176].

When using 𝑏 < 0, we are ranking with risk predilection (the opposite of risk aversion),
and in all conditions, we found that the effectiveness was significantly worse than when
𝑏 = 0 and thus 𝑏 < 0 is not displayed in Figure 5.3.

When increasing the risk aversion (𝑏 > 0), we see that it has different effects depending
on the combination of domain and NS. For instance, when training in MSDialog and ap-
plying on UDC-DSTC8, increasing the risk aversion improves the effectiveness of RA-BERT𝐸
until 𝑏 reaches 0.25, and after that the effectiveness drops.

In order to investigate whether ranking with risk aversion is more effective than us-
ing the predictive distribution mean, we select 𝑏 based on the best value observed on
the validation set. Tables 5.4 and 5.5 display the results of this experiment, showing the
improvements of RA-BERT𝐷 and RA-BERT𝐸 over S-BERT𝐷 and S-BERT𝐸 respectively. The re-
sults show that in a few cases (8 out of 30) the best value of 𝑏 is 0, for which risk-aversion is
not the best option in the development set. We obtain effectiveness improvements primar-
ily on the cross-NS condition (up to 17.2% improvement of 𝑅10@1), which is the hardest
condition (when the models are mostly ineffective, c.f. Table 5.1). This answers our sec-
ond research question, indicating that the uncertainties obtained from stochastic
neural rankers are useful for risk-aware ranking, especially in the cross-NS set-
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ting where the baseline model is quite ineffective. RA-BERT𝐸 is on average 2% more
effective than S-BERT𝐸 , while RA-BERT𝐷 is on average 1.7% more effective than S-BERT𝐷 .

Table 5.4: Relative improvements (higher is better) of 𝑅10@1 of RA-BERT𝐸 and RA-BERT𝐷 over the mean of stochas-
tic BERT predictions (S-BERT𝐸 and S-BERT𝐷 ) for the cross-domain condition. Superscript † denote statistically
significant improvements over the S-BERT ranker at 95% confidence interval using Student’s t-tests.

cross-domain

Test on → MANtIS MSDialog UDC-DSTC8

Train on ↓
(NS𝐵𝑀25)

RA-BERT𝐸 RA-BERT𝐷 RA-BERT𝐸 RA-BERT𝐷 RA-BERT𝐸 RA-BERT𝐷

MANtIS -0.14% +0.16%† +0.00% +0.00% +0.00% +0.00%
MSDialog -2.74% +0.39% -1.05% -0.66% +5.08%† -0.10%
UDC-DSTC8 +0.00% +0.00% +0.00% +0.00% +0.42% -0.06%

Table 5.5: Relative improvements (higher is better) of 𝑅10@1 of RA-BERT𝐸 and RA-BERT𝐷 over the mean of stochas-
tic BERT predictions (S-BERT𝐸 and S-BERT𝐷 ) for the cross-NS condition. Superscript † denote statistically signif-
icant improvements over the S-BERT ranker at 95% confidence interval using Student’s t-tests.

cross-NS

Test on → NS𝑟𝑎𝑛𝑑𝑜𝑚 NS𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒𝐵𝐸𝑅𝑇
Train on ↓
(NS𝐵𝑀25)

RA-BERT𝐸 RA-BERT𝐷 RA-BERT𝐸 RA-BERT𝐷

MANtIS +4.73%† +4.58%† +9.68%† -2.68%
MSDialog -7.61% +3.29% -0.61% +0.63%
UDC-DSTC8 +6.32%† +3.83%† +16.39%† +17.18%†

5.5.3 Uncertainty Estimates for NOTA Prediction
Besides using the uncertainty estimation for risk-aware ranking, we also employ it for
the NOTA (None of the Above) prediction task. We compare here different input spaces
for the NOTA classifier. 𝐸[𝑅𝐷] stands for the input space that only uses the mean of the
predictive distribution for the 𝑘 candidate responses in ℛ using S-BERT𝐷 , +𝑣𝑎𝑟[𝑅𝐸] uses
both 𝐸[𝑅𝐷] and the uncertainties of S-BERT𝐸 for the 𝑘 candidates and +𝑣𝑎𝑟[𝑅𝐷] uses both
the scores 𝐸[𝑅𝐷] and the uncertainties of S-BERT𝐷 . Our results show that the uncertainties
from S-BERT𝐷 and of S-BERT𝐸 significantly improve the F1 for NOTA prediction for both
cross-domain (Table 5.6, improvement of 24% on average when using S-BERT𝐷) and cross-
NS settings (Table 5.7, improvement of 46% on average when using S-BERT𝐷). We can
thus answer our last research question: the uncertainty estimates from stochastic
neural rankers do improve the effectiveness of the NOTA prediction task (by an
average of 33% across all conditions considered).
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Table 5.6: Results of the cross-domain condition for the NOTA prediction task, using a Random Forest classifier
and different input spaces. The F1-Macro and standard deviation over the 5 folds of the cross validation are
displayed. Superscript † denote statistically significant improvements over 𝐸[𝑅𝐷] at 95% confidence interval
using Student’s t-tests. Bold indicates the most effective approach.

cross-domain

Test on → MANtIS MSDialog

Train on ↓
(NS𝐵𝑀25)

𝐸[𝑅𝐷] +𝑣𝑎𝑟[𝑅𝐸] +𝑣𝑎𝑟[𝑅𝐷] 𝐸[𝑅𝐷] +𝑣𝑎𝑟[𝑅𝐸] +𝑣𝑎𝑟[𝑅𝐷]

MANtIS 0.635 (.02) 0.686 (.01)† 0.792 (.02)† 0.669 (.03) 0.731 (.04) 0.855 (.02)†
MSDialog 0.561 (.02) 0.598 (.02)† 0.633 (.02)† 0.662 (.04) 0.702 (.01)† 0.699 (.06)†
UDC-DSTC8 0.527 (.04) 0.665 (.02)† 0.738 (.03)† 0.523 (.05) 0.691 (.03)† 0.757 (.04)†

Table 5.7: Results of the cross negative sampling condition for the NOTA prediction task, using a Random Forest
classifier and different input spaces. The F1-Macro and standard deviation over the 5 folds of the cross validation
are displayed. Superscript † denote statistically significant improvements over 𝐸[𝑅𝐷] at 95% confidence interval
using Student’s t-tests. Bold indicates the most effective approach.

cross-NS

Test on → NS𝑟𝑎𝑛𝑑𝑜𝑚 NS𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒𝐵𝐸𝑅𝑇
Train on ↓
(NS𝐵𝑀25)

𝐸[𝑅𝐷] +𝑣𝑎𝑟[𝑅𝐸] +𝑣𝑎𝑟[𝑅𝐷] 𝐸[𝑅𝐷] +𝑣𝑎𝑟[𝑅𝐸] +𝑣𝑎𝑟[𝑅𝐷]

MANtIS 0.557 (.01) 0.604 (.02)† 0.698 (.02)† 0.534 (.03) 0.587 (.02)† 0.647 (.05)†
MSDialog 0.505 (.02) 0.606 (.02)† 0.702 (.05)† 0.522 (.03) 0.611 (.07)† 0.653 (.04)†
UDC-DSTC8 0.565 (.03) 0.800 (.02)† 0.942 (.04)† 0.506 (.05) 0.755 (.05)† 0.821 (.05)†

5.6 Limitations
One of the limitations of thiswork is thatwe only use a single ranker to test our hypotheses.
We believe our findings might generalize to other neural ranking architectures, as well as
other tasks. Additionally, the experiments focus on the re-ranking procedure and the same
could be tested for retrieval. Our out-of-domain evaluation is limited as all datasets were
extracted from online forums. How a method trained in such a dataset would generalize
to other types of datasets, e.g. extracted through a wizard-of-oz experiment, is unknown.

5.7 Conclusions
In this work, we study the calibration and uncertainty estimation of neural rankers, specif-
ically BERT-based rankers. We first show that the deterministic BERT-based ranker is not
robustly calibrated for the task of conversation response ranking and we improve its cal-
ibration with two techniques to estimate uncertainty through stochastic neural ranking.
We also show the benefits of estimating uncertainty using risk-aware neural ranking and
for predicting unanswerable conversational contexts.

This chapter provides further evidence for the secondmain research question (M-RQ2),
showing that different notions of the difficulty of a dialogue can be used to improve a re-
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ranking model for conversational search. Specifically, we show how to model the uncer-
tainty of a cross-encoder model. This notion of difficulty can be then used by the re-ranker
model as shown in our risk-aware model to consider both the relevance prediction and the
uncertainty to produce the final ranked list. We finish here the chapters of the thesis re-
lated to improvements to the multi-stage pipeline for conversational search. Next, we
start an investigation of the limitations of such pipelines for conversational search and
recommendation in order to answer our third main research question (M-RQ3).
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6
Evaluating Retrieval Pipelines with
Language Variations of Questions

In this chapter, we start to explore the limitations of multi-stage retrieval pipelines. IR bench-
marks evaluate the effectiveness of retrieval pipelines based on the premise that a single query,
or utterance in the case of conversational search, is used to instantiate the underlying informa-
tion need. However, previous research has shown that (I) queries generated by users for a fixed
information need are extremely variable, and, in particular, (II) neural models are brittle and
often make mistakes when tested with modified inputs. Motivated by those observations we
aim to answer the following question: how robust are retrieval pipelines with respect to differ-
ent variations in queries that do not change the queries’ semantics? In order to obtain queries
that are representative of users’ querying variability, we first created a taxonomy based on the
manual annotation of transformations occurring in a dataset (UQV100) of user-created query
variations. For each syntax-changing category of our taxonomy, we employed different auto-
matic methods that when applied to a query generate a query variation. Our experimental
results across two datasets for two IR tasks reveal that retrieval pipelines are not robust to these
query variations, with effectiveness drops of ≈ 20% on average. The code required to reproduce
this chapter is available at https://github.com/Guzpenha/query_variation_generators.

This chapter is based on the following paper:

 Gustavo Penha, Arthur Câmara, and Claudia Hauff. 2022. Evaluating the Robustness of Retrieval Pipelines
with Query Variation Generators. In ECIR. Springer, 397–412 [247]. This paper received the best paper
award at ECIR 2022 .

https://github.com/Guzpenha/query_variation_generators
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6.1 Introduction
Heavily pre-trained transformers for language modeling such as BERT [80] have been
shown to be remarkably effective for a wide range of Information Retrieval (IR) tasks [236,
249, 377]. Commonly, IR benchmarks organized as part of TREC or other evaluation
campaigns, evaluate the effectiveness of ranking models—neural or otherwise—based on
small sets of topics and their corresponding relevance judgments. Importantly, each topic
is typically represented by a single query¹. However, previous research has shown that
queries created by users given a fixed information need may vary widely [22, 410]. In the
UQV100 [21] dataset for instance, crowd workers on average created 57.7 unique queries
for a given information need as instantiated as a backstory, e.g. “You have heard quite a
lot about cheap computing as being the way of the future, including one recent model called
a Raspberry Pi. You start thinking about buying one, and wonder how much they cost.”

Table 6.1: Examples of BERT effectiveness drops (nDCG@10 Δ) when we replace the original query from TREC-
DL-2019 by an automatic (except for the first two lines that were produced manually) query variation. We focus
here on transformations that change the query syntax , but not its semantics .

Original Query Query Variation nDCG@10 Δ
popular food in switzerland popular food in zurich

gen./specialization

cost of interior concrete flooring concrete flooring finishing
aspect change

what is theraderm used for what is thrraderm used for
misspelling

-1.00 (-100%)

anthropological definition of environ-
ment

anthropological definition of environ-
ment naturality

-0.15 ( -26%)

right pelvic pain causes causes pelvic pain right ordering -0.18 ( -46%)

define visceral what is visceral paraphrasing -0.26 ( -38%)

We thus argue that it is necessary to investigate the robustness of retrieval pipelines in
light of query variations (i.e., different expressions of the same information need) that are
likely to occur in practice. That different query variations lead to vastly different ranking
qualities is anecdotally shown in Table 6.1 for a vanilla BERT model for ranking [236].
If, for example, the word order of the original query from TREC-DL-2019 right pelvic pain
causes is changed to causes pelvic pain right, the retrieval effectiveness of the resulting
ranking drops by 46%. Similarly, paraphrasing define visceral to what is visceral reduces
the retrieval effectiveness by 38%.

In this chapter, we quantify the extent to which different retrieval pipelines (composed
of first-stage retrieval and second-stage re-ranking as described in the introduction of this
thesis) are susceptible to different types of query variations as measured by their drop in

¹The same procedure is taken for conversational search and recommendation tasks, where each information-need
dialogue is represented by unique utterances
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retrieval effectiveness. Also, different from other chapters we consider here a simpler case
of one-shot interactions with the system (queries) as opposed to conversations².

In contrast to prior works that either analyze behaviour of models when faced with
modifications to the documents [209], analyze models through the lens of IR axioms [49,
283] or analyze NLP models via general natural language text adversarial examples [108,
285], we instantiate our query variations based on user-created data. Concretely, we man-
ually label a large fraction of UQV100 queries³ and extract six types of frequently occurring
query transitions: gen./specialization, aspect change, misspelling, naturality, ordering and
paraphrasing—an example of each is shown in Table 6.1. The last four of these categories
change the query syntax but not its semantics. For each of the syntax-changing cate-
gories, we develop automated approaches that enable us to generate query variations of
each category for any input query. With these query variation generators in place, we
contribute extensive empirical work on the recent TREC-DL-2019 [68] and ANTIQUE [128]
datasets to answer the following research question: Are retrieval pipelines robust to differ-
ent variations in queries that do not change its semantics? To this end we consider seven
ranking approaches: two traditional lexical models (BM25 [290] and RM3 [1]), two neural
re-ranking approaches that do not make use of transformers (KNRM [369] and CKNRM [73])
and three transformer-based re-ranking approaches (EPIC [210], BERT [236] and T5 [237]).
Additionally, motivated by the fact that certain query variations can improve the retrieval
effectiveness compared to using the original query [27, 33], we contribute with a study of
the combination of automatic query variations with rank fusion [67].

Our main findings are as follows:

• The four types of syntax-changing query variations differ in the extent to which they
degrade retrieval effectiveness: misspellings have the largest effect (with an average
drop of 0.25 nDCG@10 points across seven retrieval models for TREC-DL-2019) while
the word ordering has the least effect (with an average drop of nDCG@10 smaller
than 0.01 for TREC-DL-2019).

• Different types of rankingmodels make similar mistakes. For example, effectiveness
decreases formodels based on transformer languagemodels are higher for naturality
query variations compared to decreases when using traditional lexical models.

• While rank fusion mitigates the drops in retrieval effectiveness when compared to
using a single query variation, it does not achieve the full potential of the combina-
tion of query variations. An oracle that always selects the best query achieves gains
of 0.08 and 0.06 nDCG@10 points on TREC-DL-2019 and ANTIQUE respectively.

Our work indicates that more research is required to improve the robustness of re-
trieval pipelines. Evaluation benchmarks should aim to have multiple query variations
for the same information need in order to evaluate whether ranking pipelines are indeed
robust, and we provide here a number of methods to automatically generate such query
variations for any dataset.

²We believe that the results from this chapter would generalize to the first utterance in information-seeking
dialogues, but leave this exploration as future work.
³To our knowledge, UQV100 is the only publicly available dataset that contains a large number of query variations
for a set of information needs.
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6.2 Related Work
To put our work in context, we now describe prior research into query variations and then
move on to research analyzing neural (IR) models.

6.2.1 Query Variation
A number of studies have argued that evaluation in IR tasks should take into account
multiple instantiations of the same information need, i.e. query variations, due to their
impact on the effectiveness of ranking models [20–22, 26, 45, 224, 311, 410]. Zuccon et al.
[410] proposed a mean-variance framework to explicitly take into account query varia-
tions when comparing different IR systems. Bailey et al. [22] argued that a model should
be consistent with different query variations, and proposed a measure of consistency that
gives additional information to effectiveness measurements.

Besides a better evaluation of models, query variations can also be employed to im-
prove the overall effectiveness of ranking models, for instance by combining the different
rankings obtained from them [27, 33] or by modeling relevance of multiple query varia-
tions [206]. They have also shown to be helpful for query performance prediction [390].

Different methods to automatically generate query variations have been proposed.
Benham et al. [32] proposed to obtain query expansions through a relevance model which
is built by issuing the original query against an external corpus and expanding it with
additional terms from the set of external feedback documents. Lu et al. [206] employed
a query-URL click graph and generated query variations automatically using a two-step
backward walk process. Chakraborty et al. [52] generated query variations automatically
based on an external knowledge base with a prior term distribution or by building a rele-
vance model in an iterative manner. Our work differs from previous work on automatic
query variation generation in the following ways:

• Our methods do not require access to external corpora, a relevance model, or a
query-URL click graph.

• We are not concerned with generating queries with the sole purpose of improving
effectiveness, but with generating queries that are likely to occur in practice.

• Each of our generator methods follows a category of our taxonomy of query varia-
tions which allows us to diagnose ranking models’ effectiveness by analyzing what
types of variations are more detrimental to what ranking models.

6.2.2 Model Understanding
The success of pre-trained transformer-based language models such as BERT [80] and
T5 [274] on several IR benchmarks—a comprehensive account of the effectiveness gains
can be found in [193]—has lead to research on understanding their behaviour and the
reasons behind their significant gains in ranking effectiveness [49, 209, 243, 265, 393].

Câmara and Hauff [49] showed that BERT does not adhere to IR axioms, i.e., heuristics
that a reasonable IR model should fulfill, through the use of diagnostic datasets. MacA-
vaney et al. [209] expanded on the axiomatic diagnostic datasets [283] with ABNIRML, a
framework to understand the behaviour of neural ranking models using three different
strategies: measure and match (controlling certain measurements such as relevance or
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term frequency and changing another), manipulation of the documents’ text (for example
by shuffling words or replacing it with the query) and through the transfer of Natural
Language Processing (NLP) datasets (for example comparing documents that are more/-
less fluent or formal with inferred queries). We expand on MacAvaney et al. [209]’s work
by proposing textual manipulations—unlike previous methods, we are inspired by user-
created variations—to the queries instead of the documents and examine the robustness in
terms of the effectiveness of neural ranking models to such manipulations.

A different direction of research in NLP has challenged how well current evaluation
schemes through the use of held-out test sets are actually evaluating the desired capabil-
ities of the models [34, 38, 189]. For example, Gardner et al. [108] proposed the manual
creation of contrast sets—small perturbations that preserve artifacts but change the true
label—in order to evaluate the models’ decision boundaries for different NLP tasks. They
showed that the model effectiveness on such contrast sets can be up to 25% lower than on
the original test sets. Inspired by behavioral testing, i.e. validating input-output behaviour
without knowledge about the internal structure, from software engineering tests, Ribeiro
et al. [285] proposed to test NLP models with three different types of tests: minimum
functionality tests (simple examples where the model should not fail), label (e.g. positive,
negative and neutral in sentiment analysis) invariant changes to the input, and modifica-
tions to the input with known outcomes. With such tests, they were able to find actionable
failures in different commercial models that had already been extensively tested.

It has also been shown that neural models developed for different NLP tasks can be
tricked by adversarial examples [11, 102, 109], i.e. examples with perturbations indis-
cernible by humans which get misclassified by the model. In terms of query modifica-
tions, [366, 405] found typos to be detrimental to the effectiveness of neural rankers. Wu
et al. [366] analyzed the robustness of neural rankers with respect to three dimensions:
difficult queries from similar distribution, out-of-domain cases, and defense against adver-
sarial operations. Our work differs from the adversarial line of research by evaluating the
robustness of models to query modifications that could be generated by humans, i.e. trans-
formations that naturally occur, and not modifications optimized to trick neural models.

6.3 Automatic Query Variations
We now first describe in Section 6.3.1 how we arrive at our query variation categories in a
data-drivenmanner by annotating a large set of user-created query variations from UQV100.
We end upwith six categories: four that change the syntax (but not the semantics) and two
that change the semantics. In our work, we focus on the four syntax-changing cate-
gories. In Section 6.3.2 we subsequently describe our methods to automatically generate
query variations categories that do not change the query semantics.

6.3.1 UQV Taxonomy
In order to better understand how queries differ when we compare different query vari-
ations for the same information need, we resort to analyzing variations from the UQV100
dataset. UQV100 contains query variations for 100 (sub)-topics from the TREC 2013 and
2014 web tracks, written by crowd workers who received a “backstory” for each topic as
a starting point. On average, UQV100 contains 57.7 spelling corrected (corrected by the



6

90 6 Evaluating Retrieval Pipelines with Language Variations of Questions

Table 6.2: Taxonomy of query variations derived from a sample of the UQV100 dataset. Last column is the count of
each query variation found on UQV100 based on manual annotation of tuples of queries for the same information
need. Categories in grey change the semantics. * typos were already fixed for the UQV100 pairs.

Category Definition {𝑞𝑖 , 𝑞𝑗 } from UQV100 Count

Gen./specializationGeneralizes or specializes within
the same information need.

american civil war ↔ number of battles in
south carolina during
civil war

172

Aspect
change

Moves between related but differ-
ent aspects within the same infor-
mation need.

what types of spiders can
bite you while gardening

↔ signs of spider bite 111

Misspelling Adds or removes spelling errors. raspberry pi ↔ raspeberry pi *

Naturality Moves between keyword queries
and natural language queries.

how does zinc relate to
wilson’s disease

↔ zinc wilson’s disease 118

Ordering Changes the order of words carotid cavernous fistula
treatment.

↔ treatment carotid cav-
ernous fistula

37

Paraphrasing Rephrases the query by modifying
one or more words.

cures for a bald spot ↔ cures for baldness 215

UQV100 authors using the spelling service of the Bing search engine) query variations per
topic. We consider a query variation pair {𝑞𝑖 , 𝑞𝑗 } to be two queries 𝑞𝑖 and 𝑞𝑗 that were
provided in UQV100 for the same backstory. In total, 365K such pairs exist; Table 6.2 (4th
column) contains a number of {𝑞𝑖 , 𝑞𝑗 } examples. We sampled 100 pairs from the 365K avail-
able ones for manual annotation. The three authors of the paper that originated this chap-
ter (the “annotators”) performed an open card sort [365]. The annotators independently
sorted the query variation pairs into different piles and named them, each representing a
transformation 𝑇 that can be applied to 𝑞𝑖 and then leads to 𝑞𝑗 , i.e. 𝑇(𝑞𝑖) = 𝑞𝑗 . Multiple
transformations can be applied to 𝑞𝑖 in order to yield 𝑞𝑗 , e.g. 𝑇2(𝑇1(𝑞𝑖)) = 𝑞𝑗 .

After the independent sorting step, the different piles were discussed and merged
where necessary, which yielded five categories of transformations. Since the UQV100 data
used had already been spelling-corrected by its authors, we added the categorymisspellings.
The resulting taxonomy can be found in Table 6.2. It contains a concrete definition and
examples for each of our—in total—six categories: (I) generalization or specialization, (II)
aspect change, (III) misspelling, (IV) naturality, (V) word ordering and (VI) paraphrasing. We
observed two broad types of transformations: transformations that change the semantics
of the query and transformations that do not change the semantics. The gen./specialization
and aspect change transformations fall into the former type, whereas all other categories
fall into the latter. We highlight here that, unlike previous categorizations that describe
how users revise queries in e-commerce [12, 134], how to generate better queries to sub-
stitute the original query [157], how users reformulate queries in a session [145], we study
here how to categorize query variations for the same information need which is a related
but different problem.

Having arrived at our six categories, our annotators then labeled an additional set of
550 {𝑞𝑖 , 𝑞𝑗 } randomly sampled pairs from UQV100 in order to determine the distribution
of these categories in UQV100. Each {𝑞𝑖 , 𝑞𝑗 } was labeled as belonging to one (or more)
of the five categories (with the exception of misspelling which, as already stated, had al-
ready been corrected by the UQV100 authors). In order to determine the inter-annotator
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agreement, 25 {𝑞𝑖 , 𝑞𝑗 } pairs were labeled by all three annotators, and 175 pairs were each
labeled by a single annotator. The inter-annotator agreement [64] was moderate (Cohen’s
𝜅 = 0.42); the disagreements were highest for the naturality and paraphrasing categories.
We found that a total of 56 {𝑞𝑖 , 𝑞𝑗 } pairs had more than one category assigned to it⁴. The
resulting distribution is shown in Table 6.2 (right-most column); the categories of query
variations that change the query without changing its semantics account for 57% of all the
transformations. In contrast, 43% of query variations are semantic changes. Among the
syntax-changing categories, we found naturality to be the most common with 33% of all
transformations falling into this category. Having observed that query variations change
the syntax, but not the semantics for the majority of cases, we focus in the remainder
of our work on syntax-changing query variations. We leave the exploration of query
variation generators for gen./specialization and aspect change as future work.

Table 6.3: Example of applying each query generationmethod𝑀 for the query ‘what is durable medical equipment
consist of ’ from TREC-DL-2019. Rightmost columns indicate the total percentage of valid queries by automatic
query variation method based on manual annotation of queries from the test sets of TREC-DL-2019 and ANTIQUE.

𝐶 Method Name 𝑀(‘what is durable medical equipment
consist of ’)

TREC ANT

M
is
sp

el
lin

g NeighbCharSwap what is durable mdeical equipment consist of 100.00% 99.50%

RandomCharSub what is durable medycal equipment consist of 97.67% 91.00%

QWERTYCharSub what is durable medical equipment xonsist of 97.67% 98.50%

N
at
ur

al
ity RemoveStopWords what is durable medical equipment consist of 86.05% 99.50%

T5DescToTitle what is durable medical equipment consist of 81.40% 68.00%

O
rd

er
in
g

RandomOrderSwap medical is durable what equipment consist of 100.00% 100.00%

Pa
ra

ph
ra

si
ng

BackTranslation what is sustainable medical equipment consist of 53.49% 46.50%

T5QQP what is durable medical equipment consist of 60.47% 52.50%

WordEmbedSynSwap what is durable medicinal equipment consist of 62.79% 62.00%

WordNetSynSwap what is long lasting medical equipment consist of 37.21% 35.50%

6.3.2 Query Generators
For each of the four syntax-changing categories, we explored different methods that gen-
erate query variations of the specified category. After an initial exploration of different
query generator methods for each category, filtering approaches that did not generate
valid variations for the category and approaches that have a high correlation with each
other, we employed a total of ten different methods. These methods are listed in Table 6.3,
each with an example transformation. We explain each one in more detail in this section.
A method 𝑀𝐶 receives as input a query 𝑞 and outputs a query variation �̂�: 𝑀𝐶 (𝑞) = �̂�.
⁴For example, the pair {“what is doctor zhivago all about”, “dr zhivago synopsis” } had both paraphrasing and
naturality labels, as it goes from a natural language question to a keyword-base question and also paraphrases
“doctor [...] all about” to “dr [...] synopsis”
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While most of the methods can generate multiple variations for a single input query
(for example by replacing different words of the same query by synonyms or by including
several spelling mistakes), for the experiments in the paper we resort to using a single
query variation per method which already yields enough data for analysis (see § 2.7.1).
Inspired by adversarial examples, we aim to make minimal perturbations to the input
text when possible, e.g. replace only one word by a synonym, increasing the chances of
obtaining valid variations.

Misspelling
The three methods in this category add one spelling error to the query; the query term an
error is introduced in is chosen uniformly at random.

• NeighbCharSwap: Swaps two neighboring characters from a random query term (ex-
cluding stopwords⁵).

• RandomCharSub: Replaces a random character from a random query term (excluding
stopwords) with a randomly chosen new ASCII character.

• QWERTYCharSub: Replaces a random character of a random query term (excluding
stopwords) with another character from the keyboard such that only characters in
close proximity are chosen, replicating errors that come from typing quickly.

Naturality
The twomethods in this category transformnatural language queries into keyword queries.

• RemoveStopWords: Removes all stopwords from the query.

• T5DescToTitle: Applies an encoder-decoder transformer model (here we employ
T5 [274]) that we fine-tuned on the task of generating the title of a TREC topic ti-
tle based on the TREC topic description. For example, a title and description tuple
from ‘trec-robust04’: ‘Evidence that rap music has a negative effect on young peo-
ple.’ → ‘Rap and Crime’. We collect pairs of titles and descriptions from eleven
datasets available through the IR datasets library [212]: trec-robust04, trec-tb-
2004, aquaint/trec-robust-2005, gov/trec-web-2002, ntcir-www-2, ntcir-www-3,
trec-misinfo-2019, cord19/trec-covid, dd-trec-2015, dd-trec-2016 and dd-trec-
2017. Overall, we fine-tuned our model on 1322 description/title tuples.

Ordering
In this category, we employ only one basic method to shuffle words as done by previous
research on the order of words [209, 258].

• RandomOrderSwap: Randomly swap two words of the query.

⁵We use the NLTK english stopwords list for all the methods; it is available at https://www.nltk.org/.

https://www.nltk.org/
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Paraphrasing
The four methods in this category change query terms in the process of paraphrasing.

• BackTranslation: Applies a translation method to the query to a pivot language, i.e.
an auxiliary language, and from the pivot language back to the original language
of the query, i.e. English. In our experiments, we employ the M2M100 [90] model,
a multilingual model that can translate between any pair of 100 languages, and we
use ‘German’ as the pivot language, which yielded better results—shown by manual
inspection of the generated variations—than the other two languages for which the
model had the most data for training (‘Spanish’ and ‘French’). This technique has
been used before as a way to generate paraphrases [91, 217].

• T5QQP: Applies an encoder-decoder transformer model (here we employ T5 [274])
that was fine-tuned on the task of generating a paraphrase question from the origi-
nal question⁶. The model employs the Quora Question Pairs⁷ dataset for fine-tuning,
which has 400k pairs of questions like the following: ‘How do you start a bakery? ’
→ ‘How can one start a bakery business? ’. We also tested T5 models fine-tuned
for PAWS [378] and the combination of PAWS and Quora Question Pairs, but the
manual inspection of the generated queries revealed that T5 fine-tuned for Quora
Question Pairs generated a higher number of valid variations.

• WordEmbedSynSwap: Replaces a non-stop word with a synonym as defined by the
nearest neighbor word in the embedding space according to a counter fitted-Glove
embedding which yields better synonyms than standard Glove embeddings [227].

• WordNetSynSwap: Replaces a non-stop word by a the first synonym found on Word-
Net ⁸. If there are no words with valid synonyms it will not output a valid variation.

6.4 Experimental Setup
In this section, we describe our experimental setup aimed to answer the question: are
retrieval pipelines robust to different variations in queries that do not change its semantics?

6.4.1 Datasets
We consider the following datasets in our experiments: TREC-DL-2019 [68] for the passage
retrieval task and ANTIQUE [128] for non-factoid question answering task, containing 43
and 200 queries respectively in their test sets. For each of the test set queries, we generate
one query variation for each of the proposed methods, and we use the manual annota-
tion described in this section (§6.4.4) to take into account only the valid generated query
variations in our experiments. The statistics of the datasets can be found in Table 6.4.

6.4.2 Ranking Models
We use different ranking models that cover from lexical traditional models (Trad) such as
BM25, to neural ranking models (NN) such as KNRM and neural ranking models that employ

⁶As available here https://huggingface.co/ramsrigouthamg/t5_paraphraser
⁷https://www.kaggle.com/c/quora-question-pairs
⁸https://wordnet.princeton.edu/

https://huggingface.co/ramsrigouthamg/t5_paraphraser
https://www.kaggle.com/c/quora-question-pairs
https://wordnet.princeton.edu/
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Table 6.4: Statistics of the TREC-DL-2019 and ANTIQUE datasets used to evaluate the robustness of query variations.

TREC-DL-2019 ANTIQUE

#Q train 367013 2426
#Q valid 5193 -
#Q test 43 200

# terms/ Q test 5.51 10.51
# valid query variations 334 1706

transformer-based language models (TNN) such as BERT. For all of our experiments, we
apply BM25 as a first-stage retriever and re-rank the top 100 results with the neural ranking
models, which is an established and efficient approach [193].

For BM25 [290] and RM3 [1] we resort to the default hyperparameters and implementa-
tion provided by the PyTerrier toolkit [213]. We trained the kernel-based ranking models
KNRM [369] and CKNRM [73] on the training sets of TREC-DL-2019 and ANTIQUE using default
settings from the OpenNIR [208] implementation. For the BERT-basedmethods EPIC [210],
an efficiency-focused model that encodes query and documents separately, and BERT [236],
also known as monoBERT, which concatenates query and the document and makes pre-
dictions based on the [CLS] token representation, we fine-tune the bert-base-uncased
model for the train datasets. For T5 [274] we use the monoT5 [237] implementation from
PyTerrier T5 plugin ⁹ which has the pre-trained weights for MSMarco [231] by the original
authors of monoT5.

6.4.3 Query Generators Implementation
As for our methods of generating query variations, for T5DescToTitle and T5QQP we rely
on pre-trained T5 models (t5-base) and we fine-tune them using the Huggingface trans-
formers library [364]. For BackTranslationwe use the facebook/m2m100_418M pre-trained
model from the transformers library¹⁰. For all other methods, we use the implementations
from the TextAttack [226] library.

6.4.4 Quality of Query Generators
Given the automatic nature of the methods we introduced, we need to evaluate their qual-
ity: how good are thesemethods at generating query variations users would also generate?

To this end, we consider two properties of the generated queries: (I) �̂� maintains the
same semantics as 𝑞, and (II) the syntax difference between 𝑞 and �̂� can be attributed to the
category 𝐶 . All pairs of 𝑞 and �̂� = 𝑀(𝑞) from the test sets of TREC-DL-2019 (43 queries) and
ANTIQUE (200 queries) for each of the 10 automatic variationmethods went to the following
process. First, we automatically set the variations from misspelling¹¹ and ordering as valid
since they are rule-based transformations to the input.

⁹https://github.com/terrierteam/pyterrier_t5
¹⁰https://huggingface.co/facebook/m2m100_418M
¹¹misspelling methods can generate invalid queries when all words of the query are stop-words (e.g. ‘how is it
being you’ from ANTIQUEwould generate the same query as output since there are no non-stop-words to modify)

https://github.com/terrierteam/pyterrier_t5
https://huggingface.co/facebook/m2m100_418M
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Then all transformations that generate a variation that is identical to the input query
(�̂� = 𝑀(𝑞) = 𝑞) were automatically set to invalid. The annotators (the authors) then anno-
tated independently the remaining 1371 pairs of {𝑞, �̂�} for the two mentioned properties
(binary labels). The percentage of queries that are valid (both desired properties) are dis-
played at the right-most columns of Table 6.3 for the 10 automatic variation methods used
in the paper and all combinations of {𝑞, �̂�} (2430).

We find the methods in the paraphrasing category to yield the largest percentage of in-
valid query variations: fewer than 38% of query variations generated via WordNetSynSwap
are valid. A manual inspection of the invalid queries reveals the following insights:

• T5DescToTitle at times removes query terms that are important and thus change
its semantics (e.g. ‘if i had a bad breath what should i do’ → ‘if i had a’).

• BackTranslation and T5QQP methods can generate an identical copy of the input
query which was automatically labelled as invalid (e.g. ‘what is dark energy’ →
‘what is dark energy’)

• Transformations that replacewords by their presumed synonyms (WordEmbedSynSwap
and WordNetSynSwap) at times adds words that are not in fact synonymous in the
query context (e.g. ‘what is dark energy’ → ‘what is blackness energy’ and ‘what is
a active margin’ → ‘what is a active border’).

To evaluate the robustness of the ranking models, we resort to using only the
valid queries as defined by themanual annotations. We have thus 2,040 valid queries
for datasets TREC-DL-2019 and ANTIQUE that we employ in the experiments that follow.
Since some methods generate more valid variations than others, it is possible that we get
better approximations of their impact on the effectiveness of retrieval pipelines.

6.5 Results
In this section we first describe our main results on the robustness of models to query
variations, analyzing them by category of variation and by category of ranking model. We
then move on to discussing the fusion of the ranking list obtained by the query variations.

6.5.1 Robustness to Query Variations
In order to explore the robustness of our three types of ranking models (traditional, neural,
and transformer-based), we compare the effectiveness of our models when we replace the
original query with the respective query variation. The results of this experiment are
displayed in Table 6.5 for both the TREC-DL-2019 and ANTIQUE datasets. Each row shows
the effectiveness of the ranking models (columns) when using the queries obtained from
each automatic query variationmethod. The last column (#𝑄) displays the number of valid
queries generated by each query variation method; the invalid queries are replaced with
the original ones¹².

The results show that for most of the query variations and ranker combinations, we
observe a statistically significant effectiveness drop (49 out of 70 times for TREC-DL-2019

¹²While rows are directly comparable, methods with fewer valid queries are a lower bound of the potential
decreases in effectiveness.
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Table 6.5: Effectiveness (nDCG@10) of different methods for TREC-DL-2019 and ANTIQUE when faced with dif-
ferent query variations. Bold indicates the highest values observed for each model and ↓/↑ subscripts indicate
statistically significant losses/improvements, using two-sided paired Student’s T-Test at 95% confidence interval
with Bonferroni correction when compared against the model with original queries. #𝑄 is the number of valid
query variations (invalid query variations are replaced by the original query).

TREC-DL-2019

Category Variation BM25 RM3 KNRM CKNRM EPIC BERT T5 #Q

- original query 0.480 0.516 0.502 0.493 0.624 0.645 0.700 43

Misspelling
NeighbCharSwap 0.275↓ 0.275↓ 0.316↓ 0.309↓ 0.389↓ 0.416↓ 0.495↓ 43
RandomCharSub 0.231↓ 0.233↓ 0.236↓ 0.226↓ 0.295↓ 0.328↓ 0.396↓ 42
QWERTYCharSub 0.244↓ 0.250↓ 0.267↓ 0.297↓ 0.351↓ 0.387↓ 0.446↓ 42

Naturality RemoveStopWords 0.478 0.511 0.484 0.476 0.621 0.639 0.687 37
T5DescToTitle 0.421 0.434↓ 0.392 0.393 0.506↓ 0.536↓ 0.571↓ 35

Ordering RandomOrderSwap 0.480 0.516 0.502 0.471 0.623 0.635 0.697 43

Paraphrasing

BackTranslation 0.396 0.420↓ 0.393 0.361↓ 0.530 0.547↓ 0.606 23
T5QQP 0.472 0.504 0.454 0.461 0.605 0.640 0.705 26
WordEmbedSynSwap 0.353↓ 0.354↓ 0.382↓ 0.368↓ 0.475↓ 0.472↓ 0.560↓ 27
WordNetSynSwap 0.349↓ 0.365↓ 0.381↓ 0.361↓ 0.449↓ 0.447↓ 0.545↓ 16

ANTIQUE

Category Variation BM25 RM3 KNRM CKNRM EPIC BERT T5 #Q

- original query 0.229 0.217 0.218 0.207 0.266 0.421 0.334 200

Misspelling
NeighbCharSwap 0.156↓ 0.148↓ 0.159↓ 0.145↓ 0.184↓ 0.287↓ 0.251↓ 199
RandomCharSub 0.162↓ 0.159↓ 0.156↓ 0.148↓ 0.189↓ 0.280↓ 0.249↓ 182
QWERTYCharSub 0.161↓ 0.153↓ 0.160↓ 0.155↓ 0.192↓ 0.299↓ 0.266↓ 197

Naturality RemoveStopWords 0.227 0.216 0.222 0.215 0.269 0.383↓ 0.320 199
T5DescToTitle 0.167↓ 0.165↓ 0.160↓ 0.167↓ 0.200↓ 0.270↓ 0.240↓ 136

Ordering RandomOrderSwap 0.229 0.217 0.218 0.198 0.267 0.413↓ 0.325↓ 200

Paraphrasing

BackTranslation 0.162↓ 0.155↓ 0.160↓ 0.144↓ 0.204↓ 0.305↓ 0.258↓ 93
T5QQP 0.220 0.207 0.210 0.196 0.261 0.393↓ 0.321 105
WordEmbedSynSwap 0.176↓ 0.172↓ 0.190↓ 0.169↓ 0.214↓ 0.325↓ 0.283↓ 124
WordNetSynSwap 0.179↓ 0.175↓ 0.196↓ 0.177↓ 0.212↓ 0.324↓ 0.273↓ 71

and 54 out of 70 times for ANTIQUE), and that no set of query variations improves statisti-
cally over using the original query. If we look into the percentage of overall effectiveness
decreases considering only the valid queries, we see on average that the models become
20.62% and 19.21% less effective for TREC-DL-2019 and ANTIQUE respectively. This answers
our main research question indicating that retrieval pipelines are not robust to
query variations. This confirms previous empirical evidence that query variations in-
duce a big variability effect on different IR systems [22, 410]. We show that even with
newer large-scale collections such as TREC-DL-2019, pipelines with neural ranking models
are not robust to such variations.

There are several potential explanations for this drop in effectiveness besides the lack
of robustness of neural rankers. The first-stage ranker may be the point of failure, being
unable to retrieve sufficiently many relevant documents for the neural rankers to re-rank.
It is also possible that the query variations lead to unjudged documents being ranked
highly by the retrieval pipelines, which in the standard retrieval evaluation setup are con-
sidered non-relevant. We now present two experiments to show that these alternative
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explanations are not the cause of the drop in retrieval effectiveness.
Let’s focus first on the first-stage ranker. Figure 6.1 shows the effect of increasing the

re-ranking threshold on the distribution of nDCG@10 Δ when using BERT, revealing that
although the number of relevant documents on the re-ranking set increases (e.g. BM25
has Recalls @10, @100 and @1000 on average of 0.06, 0.25 and 0.48 for misspelling query
variations), BERT still struggles (negative Δ) with query variations¹³. This indicates that
even if we increase the number of relevant documents in the list to be re-ranked, the re-
rankers still fail when facing query variations.
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Figure 6.1: Distribution of nDCG@10 Δ for different re-ranking thresholds when using BERT as a re-ranker.

To further isolate the effect of the first-stage retrieval module, we analyzed whether
the effectiveness of the pipelines would not degrade in case the first-stage retrieval was
performed on the original query. In this experiment, only the re-ranker models use the
query variations and we check whether the effectiveness drops persist. The results reveal
that there are still statistically significant effectiveness drops when only the re-ranker
models use the query variations, although in a smaller magnitude. While the drops in the
effectiveness of the pipelines when using query variations for the entire pipeline are on
average of 20% in nDCG@10, when using the query variations only for re-ranking they
are of 9%. This indicates that not only the first stage retrieval module is not robust
to query variations, but also the neural re-rankers.

Let’s now focus on the matter of unjudged documents. It is possible that we are under-
estimating the effectiveness of the retrieval pipelines when facing query variations if (I)
the number of unjudged documents in the top-10 ranked lists increases and (II) they turn
out to be relevant. When counting the amount of judged documents in the top-10 ranked
lists of the retrieval pipelines, we find that on average the number actually increases (4.30%
for TREC-DL-2019 and 0.36% for ANTIQUE), meaning that the performance drops of the
retrieval pipelines can not be attributed to unjudged documents being brought up
in the ranking by the query variations.

Robustness by Query Variation Category
In order to study the effect of each query variation category, Figure 6.2 displays the
nDCG@10 Δ (difference in effectiveness when replacing the original query by its varia-
¹³Similar results are obtained for other neural rankers.
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tion) distribution per category andmodel. Although some query variations have a positive
effect (points with positive Δ), the distributions are mostly skewed towards effectiveness
decreases (negative Δ).
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Figure 6.2: Distribution of nDCG@10 Δ when replacing the original query by the methods of each category.

First, we see that on average the decreases are higher for themisspelling category: -0.25
and -0.08 of nDCG@10 Δ for TREC-DL-2019 and ANTIQUE respectively. We hypothesize that
the effect is higher on TREC-DL-2019 due to it having shorter queries than TREC-DL-2019
(see the average number of terms per query in Table 6.4).

The second highest effect on both datasets is the query variations from the paraphras-
ing category (-0.08 and -0.03 of nDCG@10Δ) followed by naturality (-0.05 and -0.03). Com-
pared to the misspelling variations which in most cases degrade the effectiveness of our
models, paraphrasing and naturality have more queries for which the effect is positive,
rendering the overall nDCG@10 Δ smaller.

Queries from the ordering category have the least effect (less than 0.01). Since tradi-
tional methods are in fact bag-of-words models, changing the word order will not have
any effect on them, which makes the average of all models’ nDCG@10 Δ closer to zero. In
the following section, we take a further look at how each type of ranking model is affected
by each query variation method.

Robustness by Model Category
When we consider how different models are affected by the query variations, we see from
Figure 6.2 that with the exception of ordering, which has no effect on BM25, RM3 and KNRM,
other transformations have a similar overall distribution of nDCG@10Δ amongst different
models. In order to understand if models (and category of models) make mistakes on the
same queries, we label the models as follows: BM25 and RM3 are labeled as Trad (lexical
matching), KNRM and CKNRM (neural network based) are labeled as NN and EPIC, BERT, T5 are
labeled as TNN (transformer language model based). We then represent each model with
the nDCG@10 Δ values obtained for each query and variation method resulting in a total
of #𝑄 × #𝑀 features per model. In order to visualize them we reduce this representation



6.5 Results

6

99

to 2 factors with tSNE¹⁴ [340], as shown in Figure 6.3.
We observe that even thoughmodels have similarmagnitudes and directions of nDCG@10

Δs, classes of models as indicated by color are clustered indicating that the query varia-
tions have similar effects for each type of model.
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Figure 6.3: tSNE dimensionality reduction where each model is represented by the nDCG@10 Δ values obtained
for each query and variation method (#𝑄 ×#𝑀 ).

While Trad models have decreases of -0.03 (TREC-DL-2019) and -0.01 (ANTIQUE) for nat-
urality query variations, the effect is higher on TNN: -0.05 and -0.04 respectively. This is
evidence that neural ranking models based on heavily pre-trained language models have
a slight preference for natural language queries as opposed to keyword queries, which is
a finding aligned with previous work [72]. Another interesting finding is that the word
order does not have a great effect on TNN models (decreases smaller than 0.01). This is in
line with recent research that indicates that the word order might not be as important as
initially thought for transformer models [258, 306].

6.5.2 Fusing Query Variations
Although on average query variations make models less effective, there are cases when
there are effectiveness gains (as shown with the positive nDCG@10 Δ in Figure 6.2). This
motivates the combination of different query variations to obtain better ranking effective-
ness. In order to understand whether we can improve the effectiveness of models by com-
bining different query variations, we compare different methods for combining queries,
as displayed in Table 6.6. RRF𝐶 indicates that we fuse the results obtained from the query
variations obtained after applying 𝑀𝐶 methods using the Reciprocal Rank Fusion (RRF)
method [67], and RRF𝐴𝑙𝑙 fuses the results obtained by all query variation methods¹⁵.

First, we see that there is potential to have significant effectiveness gains, as shown by
the last line (best query) where we always use the querywith the highest retrieval effective-
ness amongst query variations and the original query. The results show that combining
¹⁴tSNE first calculates a probability distribution of pairs of objects in a way that similar ones (locally) have higher
probability compared to dissimilar points in the high-dimensional space, then it defines a probability over the
points in the low-dimensional space, minimizing the Kullback-Leibler divergence between the two distributions
with respect to the locations of the points.

¹⁵ordering was not included in the experiments as a separated row since it only has one method, but it is included
in the RRF𝐴𝑙𝑙 method.
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Table 6.6: Effectiveness (nDCG@10) of different methods when employing rank fusion (RRF) of the rankings
obtained by using different sets of queries, e.g. RRFmisspelling fuses queries generated by misspelling methods.
Bold indicates the highest values observed for each model and ↓/↑ subscripts indicate statistically significant
losses/improvements, using t-test when compared against the same model with the original queries.

TREC-DL-2019

BM25 RM3 KNRM CKNRM EPIC BERT T5

original query 0.479 0.515 0.501 0.493 0.624 0.644 0.699
RRFMisspelling 0.303↓ 0.309↓ 0.323↓ 0.317↓ 0.383↓ 0.416↓ 0.465↓
RRFNaturality 0.475 0.497 0.485 0.463 0.590 0.616 0.662
RRFParaphrasing 0.474 0.486 0.480 0.433↓ 0.5847 0.612 0.662
RRF𝐴𝑙𝑙 0.474 0.497 0.502 0.495 0.590↓ 0.603↓ 0.645↓

best query 0.540↑ 0.577↑ 0.605↑ 0.612↑ 0.699↑ 0.719↑ 0.759↑

ANTIQUE

BM25 RM3 KNRM CKNRM EPIC BERT T5

original query 0.228 0.216 0.217 0.206 0.266 0.421 0.333
RRFMisspelling 0.171↓ 0.166↓ 0.175↓ 0.165↓ 0.206↓ 0.275↓ 0.243↓

RRFNaturality 0.184↓ 0.186↓ 0.202 0.203 0.240↓ 0.317↓ 0.270↓

RRFParaphrasing 0.190↓ 0.184↓ 0.191↓ 0.176↓ 0.238↓ 0.339↓ 0.288↓

RRF𝐴𝑙𝑙 0.199↓ 0.197↓ 0.215 0.203 0.243↓ 0.317↓ 0.272↓

best query 0.271↑ 0.268↑ 0.298↑ 0.284↑ 0.337↑ 0.448↑ 0.392↑

query variations with RRF is better than using query variations individually (Table 6.5),
and sometimes it is even the same as using the original query (no statistical difference).
Our results indicate that while rank fusion mitigates the decreases in effective-
ness of different query variations (RRF𝐴𝑙𝑙 decreases are of 3% and 10% nDCG@10
for TREC-DL-2019 and ANTIQUE respectively when compared to the original query),
it does not improve the effectiveness over using the original query.

When are query variations better?
To better understand when models benefit from different query variations, we plot the
distribution of query variations that improve over the original query by ranking model
and query variation category in Figure 6.4.

We see that overall the queries obtained through the naturality and paraphrasing meth-
ods are the ones that improve over the original queries the most. Intuitively, paraphrasing
query variations can potentially rewrite the query with better terms (e.g. ‘why do crim-
inals practice crime’ → ‘why do criminals practice misdemeanour’ +0.13 nDCG@10 for
BERT using WordEmbedSynSwap), make queries grammatically correct (e.g. ‘how sun rises’
→ ‘how does the sun rise’ +0.03 nDCG@10 for BERT using T5QQP) and also corrects spelling
mistakes (e.g. ‘what is sosiology’ → ‘what is sociology’ +0.47 nDCG@10 for BERT using
BackTranslation). naturality methods make the queries shorter (e.g. ‘who is robert gray’
→ ‘robert gray’ +0.34 nDCG@10 for BERT using RemoveStopWords), removing unnecessary
information from the original query on certain cases.
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Figure 6.4: Distribution of query variations that are better than the original query.

6.6 Limitations
A limitation of the proposed methods to generate variations is that there is no guarantee
that the outputs do not shift the original query in a way that modifies also the under-
lying information need. While we solved this problem in our study by manually going
through the generated queries and checking that, this is not a scalable solution. A second
point we would like to mention is that there are categories of query variations, specifi-
cally misspelling and naturality, that have a direction. For example, the transformation
“add spelling errors” is different than “remove spelling errors”. Removing spelling errors
can be thought of as an auto-correct function that is present in most commercial search
engines. The same is true when we use the naturality transformation to go from a natural
language question to a query. Our work is limited as it did not consider two different
models, one for each direction of the transformation.

A related but not covered aspect of the query variations is the auto-complete feature
that most commercial search engines have. In our work, we do not consider the categories
Gen./specialization and Aspect change (see Table 6.2) which are modifications to the query
that are particularly interesting as auto-complete options.

Another aspect that we do not cover is language variations when dealing with full-
blown conversations as opposed to initial information-seeking requests represented by
the queries. Initial work has looked into query paraphrases for conversational passage
retrieval [6], however, it is unknown the different types of language variations and how
they occur when the interaction is a dialogue as opposed to single queries.

Finally, the set of valid query variations for some categories is small. Also, while
the query variations are valid for the taxonomy proposed here it does not mean they are
representative of how users actually generate such variations.

6.7 Conclusions
In this work, we studied the robustness of ranking models when faced with query varia-
tions. We first described a taxonomy of transformations between two queries for the same
information need that characterizes how exactly a query is modified to arrive at one of its
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variants. We found six different types of transformations, and we focused our experiments
on the ones that do not change the query semantics: misspelling, naturality, ordering, and
paraphrasing. They account for 57% of observed variations in the UQV100 dataset.

For each of these four categories, we proposed different methods to automatically gen-
erate a query variation based on an input query. We studied the quality of the gener-
ated query variations, and based only on the valid ones we analyzed how robust retrieval
pipelines are to them. Our experimental results on two different datasets quantify how
much each model is affected by each type of query variation, demonstrating large effec-
tiveness drops of 20% on average when compared to the original queries from the test sets.
We found rank fusion techniques to somewhat mitigate the drops in effectiveness. Our
work highlights the need of creating test collections that include query variations to better
understand model effectiveness.

This chapter provides initial evidence for the third main research question of the the-
sis (M-RQ3). We show that language variations of users when engaging with information
retrieval systems lead to degradation in the effectiveness of retrieval pipelines, both for
retrieval and re-ranking. This indicates that our multi-stage retrieval pipeline for conver-
sational search studied in the first part of this thesis needs to be improved in terms of
robustness to language variations.

Considering that transformer-based language models are used throughout the entire
multi-stage pipeline, we evaluate next which conversational search and recommendation
capabilities they have, in order to provide further evidence regarding M-RQ3.
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7
Evaluating Transformers with

Conversational Recommendation
Tasks

In this chapter, we continue to explore the limitations of multi-stage retrieval pipelines. Given
that pre-trained transformer models are ubiquitous in such pipelines, from retrieval to re-
ranking, we explore here their limitations for conversational recommendation tasks. Given
that such models implicitly store factual knowledge in their parameters after pre-training,
understanding this step is crucial for using and improving them for conversational recom-
mendation models. We study how much off-the-shelf pre-trained BERT “knows” about recom-
mendation items such as books, movies, and music. In order to analyze the knowledge stored
in BERT’s parameters, we use different probes (i.e., tasks to examine a trained model regard-
ing certain properties) that require different types of knowledge to solve, namely content-
based and collaborative-based. Content-based knowledge is the one that requires the model
to match the titles of items with their content information, such as descriptions and genres. In
contrast, collaborative-based knowledge requires the model to match items with similar ones,
according to interactions such as ratings. We resort to BERT’s Masked Language Modelling
(MLM) head to probe it about the genre of items, with cloze style prompts. In addition, we
employ BERT’s Next Sentence Prediction (NSP) head and representations’ similarity (SIM) to
compare relevant and non-relevant search and recommendation query-document inputs to
explore whether it can, without any fine-tuning, rank relevant items first. Finally, we study
how BERT performs in a conversational recommendation downstream task. To this end, we
fine-tune BERT to act as a retrieval-based CRS. The code required to reproduce this chapter is
available at https://github.com/Guzpenha/ConvRecProbingBERT.

This chapter is based on the following paper:

 Gustavo Penha and Claudia Hauff. 2020. What Does BERT Know About Books, Movies and Music? Probing
BERT for Conversational Recommendation. RecSys. 388–397 [250].

https://github.com/Guzpenha/ConvRecProbingBERT
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7.1 Introduction
One important breakthrough in Natural Language Processing (NLP) is the use of heavily
pre-trained transformers for language modeling, such as BERT [80] or T5 [274]. These
pre-trained Language Models (LMs) are extremely powerful for many downstream tasks
in NLP as well as IR, Recommender Systems, Dialogue Systems, and other fields—and
have thus become an essential part of our machine learning pipelines. One advantage
of these models is their capability to perform well on specific tasks and domains (that
were not part of their training regime) via fine-tuning, i.e. the retraining of a pre-trained
model with just a few thousand labeled task- and/or domain-specific examples. Besides
the power of such models to model human language, they have also been shown to store
factual knowledge in their parameters [257, 287]. For instance, we can extract the fact
that the famous Dutch painter Rembrandt Harmenszoon van Rijn died in Amsterdam by
feeding the prompt sentence ”Rembrandt died in the city of ____” to a pre-trained LM¹, and
use the token with the highest prediction score as the chosen answer.

Given the prevalence of such heavily pre-trained LMs for transfer learning in NLP
tasks [267, 324], it is important to understand what the pre-training objectives are able
to learn, and also what they fail to learn. Understanding the representations learned by
such models has been an active research field, where the goal is to try and understand
what aspects of language such models capture. Examples include analyzing the attention
heads [61, 222], or using probing tasks [146, 324] that showwhich linguistic information is
encoded. Such LMs have been successfully applied to different IR tasks [270, 297, 376, 377],
but it is still unknown what exactly makes them so powerful in IR [49]. Unlike previous
studies, we diagnose LMs here from the perspective of conversational recommendations.
We focus on BERT [80] as its publicly released pre-trained models have been shown to be
effective in a wide variety of NLP and IR tasks.

Thus, our first research question (RQ1) is: How much knowledge do off-the-shelf BERT
models store in their parameters about items to recommend? We look specifically at movies,
books, and music due to their popularity, since many users frequently engage with recom-
menders in such domains. Indeed, some of the largest existent commercial recommender
systems such as Netflix, Spotify, and Amazon focus on the aforementioned domains.

In order to provide a better intuition of our work, consider the examples in Table 7.1.
Shown are examples (for the movie domain) of inputs and outputs for the different tasks
considered in our work. In conversational recommendation, users engage in a conver-
sation with the system to obtain recommendations that satisfy their current information
needs. This is the downstream task we focus on in this chapter. The users often describe
items that they have interacted with and enjoyed (”Power Rangers in 1995 and then Turbo
in 1997” ), and give textual descriptions of what they are looking for regarding the rec-
ommendation (”film with great soundtrack” and ”dramas, thrillers” ). Such interactions
can be categorized as having the intent of providing preferences [144]. We consider the
knowledge of which items are often consumed together to be collaborative-based knowl-
edge, and we examine models for this through a recommendation probing task: given an
item, find similar ones (according to the community interaction data such as ratings from
ML25M [127]), e.g. users who like ”Power Rangers” also like ”Pulp Fiction”. We consider

¹This specific example works with both bert-large-cased and roberta-large in the fill-mask pipeline from the
transformers library https://huggingface.co/transformers/pretrained_models.html.

https://huggingface.co/transformers/pretrained_models.html
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the descriptions about the content of the items to be content-based knowledge, and we ex-
amine models for this using a search probing task for which a review of the item has to be
matched with the title of the item, and a genre probing task for which the genres of the
movie have to be matched with the movie title.

Table 7.1: Input and output examples for the probing and downstream tasks considered in the movie domain.
For the first task, recommendation, the user input is the history of seen movies, and the output is the recom-
mendation for what to watch next. This task requires a model to match movies that are often seen together by
different users—and thus are similar in a collaborative sense. We refer to this as collaborative-based knowledge.
The second task, search, requires that a model matches descriptions of the item (item review) with the title.
Similarly, the genre requires the model to match the genres of the items with their titles. We refer to this type of
knowledge described in the second column as content-based. In conversational recommendation (the down-
stream task we focus on here), we see that knowing that “Pulp Fiction” is a movie often seen by people who saw
“Power Rangers” (recommendation probe), that it has a good soundtrack (search probe), and that it is from the
genres “drama” and “thriller” (genre probe) are helpful information to give a credible and accurate response.

Recommendation Search and Genre Conversational Recommenda-
tion

User input Critters (1986) → Nev-
erEnding Story, The
(1984) → Power Rangers
(1995) → Turbo: A Power
Rangers Movie (1997)→

search ”[...] and there’s
the music in the movie:
the songs Tarantino chose
for his masterpiece fit
their respective scenes
so perfectly that most of
those pieces of music.”
genre ”drama, thriller”

”90’s film with great sound-
track.[...] I thought Power Rangers
in 1995 and then Turbo in 1997
were masterpieces of cinema, mind
you [..] I’m looking for movies
from that era with great music.
Dramas, thrillers, road movies,
adventure… Any genre (except too
much romantic) will do .”

System out-
put

Pulp Fiction (1994) Pulp Fiction (1994) You should see Pulp Fiction, Rock
Star, [...]

Task type probing probing downstream

Knowledge collaborative content content and collaborative

To answer RQ1, we probe BERT models on content-based knowledge, by using the pre-
dictions of BERT’s Masked Language Modelling (MLM) head. We use knowledge sources
to extract the information of the genre of the items, and generate prompt sentences such as
”Pulp Fiction is a movie of the ____ genre.” similar to prior works [257], for which the tokens
drama, thriller should have high prediction scores in case the BERTmodel stores this infor-
mation. In order to probe BERT models for the search and recommendation probing tasks,
we introduce two techniques that do not require fine-tuning and are able to estimate the
match between two sentences. One technique is based on BERT’s Sentence Representa-
tion Similarity (SIM), while the other is based on BERT’s Next Sentence Prediction (NSP)
head. We generate the relevant recommendation prompt sentences with items that are
frequently consumed together and use both techniques to compare them against the non-
relevant ones with items that are rarely consumed together. For example, the prompt “If
you liked Pulp Fiction [SEP] you will also like Reservoir Dogs“ ² should have a higher next
sentence prediction score than the input “If you liked Pulp Fiction [SEP] you will also like

²Note that the [SEP] token is used by BERT as sentence separator, and we, therefore, use the next sentence
predictor head as a next subsentence predictor head.
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To All the Boys I’ve Loved Before”, since the first two movies co-occur more often than the
second pair based on rating data such as MovieLens [127]. For the search prompt, we gen-
erate relevant sentences by matching the title of the items with their respective reviews,
a common approach to simulate product search [122, 386].

Our experimental results for RQ1 reveal the following:

• BERT has both collaborative-based and content-based knowledge stored in its pa-
rameters; correct genres are within the top-5 predicted tokens in 30% to 50% of the
cases depending on the domain; reviews are matched to correct items 80% of the
times in the book domain when having two candidates; correct recommendation
sentences are selected around 60% of the time when having two candidates.

• BERT ismore effective at storing content-based knowledge than collaborative-based
knowledge as shown by our probing experiments.

• The NSP is an important pre-training objective for the search and recommendation
probing tasks, improving the effectiveness over not using it up to 58%.

• BERT’s effectiveness for search and recommendation probes drops considerably
when increasing the number of candidates in the probes, especially for collaborative-
based knowledge (i.e., a 35% decrease in the recall at the first position).

Based on these findings, we next study how to use BERT for conversational recommenda-
tion and, more importantly, manners to infuse collaborative-based knowledge and content-
based knowledge into BERT models as a step towards better CRS. We hypothesize that a
model which is able to perform well at search and recommendation probing tasks is bet-
ter for conversational recommendation. And thus, our second research question (RQ2) is:
What is an effective manner to infuse additional knowledge for conversational recommenda-
tion into BERT? Our experimental results show the following.

• Our fine-tuned BERT is highly effective in distinguishing relevant responses and
nonrelevant responses, yielding significant improvements when compared to a com-
petitive baseline for the downstream task.

• When faced with adversarially generated negative candidates with random items,
BERT’s effectiveness degrades significantly (from 0.78 to 0.07 MRR).

• Infusing content-based and collaborative-based knowledge via multi-task learning
during the fine-tuning procedure improves conversational recommendation.

7.2 Related Work
Theextensive success of pre-trained transformer-based languagemodels such as BERT [80],
RoBERTa [201]³, and T5 [274] can be attributed to the transformers’ computational effi-
ciency, the amount of pre-training data, the large amount of computations used to train
such models⁴ and the ease of adapting them to downstream tasks via fine-tuning. Given

³RoBERTa is similar to BERT but it is trained for longer on more data, and without the NSP pre-training task.
⁴For instance, the RoBERTa model [201] was trained on 160GB of text using 1,024 32GB NVIDIA V100 GPUs
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the remarkable success of such LMs, pioneered by BERT, researchers have focused on un-
derstanding what exactly such LMs learn during pre-training. For instance, by analyzing
the attention heads [61, 222], by using probing tasks [146, 324] that examine BERT’s rep-
resentation to understand which linguistic information is encoded at which layer and by
using diagnostic datasets [49].

BERT and RoBERTa failed completely on 4 out of the 8 probing tasks that require
reasoning skills in experiments conducted by Talmor et al. [315]. The “Always-Never”
probing task is an example of such a failure. Here, prompt sentences look like “rhinoceros
[MASK] have fur”, with candidate answers for this task being “never” or “always”. Petroni
et al. [257] showed that BERT can be used as a competitive model for extracting factual
knowledge, by feeding cloze-style prompts to the model and extracting predictions for its
vocabulary. Jiang et al. [151] extended this work, demonstrating that using better prompt
sentences through paraphrases and mined templates led to better extraction of knowledge
from LMs. Roberts et al. [287] showed that off-the-shelf (i.e., pre-trained LMs without
fine-tuning) T5 outperformed competitive baselines for open-domain question answering.
More recently, with the uptake in model size and pre-training time, we see improvements
across multiple different tasks, and the effectiveness of such models when using zero-shot
prompts is getting closer to the effectiveness of fine-tuned models [25, 172, 266]⁵.

Another line of work has focused on infusing different information in LM parameters
to perform better at downstream tasks. One approach to do so is by having intermediary
tasks before the fine-tuning on the downstream task [259]. The intuition here is that other
tasks that are similar to the downstream task could improve the LM’s effectiveness. It is
still unknown why a combination of intermediate and downstream tasks is effective [263].
A similar approach is to continue the pre-training of the language model with domain-
specific text corpora [123]. Wang et al. [351] proposed a different approach inspired by
multi-task learning [397] that grouped similar NLP tasks together. When infusing differ-
ent types of knowledge into LMs, it is possible for some of the knowledge that was stored
in its parameters to be erased, otherwise known as catastrophic forgetting [169]. Thomp-
son et al. [329] proposed a technique that regularizes the model when doing adaptation so
that the weights are close to the pre-trained model. Wang et al. [354] tackled this problem
by proposing adapters, i.e., auxiliary neural modules that have different sets of weights, in-
stead of sharing weights in a multi-task manner—and are effective when infusing different
types of knowledge into LMs (such as factual and linguistic).

Instead of probing LMs for linguistic properties or general facts, we examine LMs
in our work through the lens of conversational recommendation. Specifically, we look
into recommendation, search, and genre probes that require collaborative and content
knowledge regarding items to be recommended. We then examine the effectiveness of the
LMs for conversational recommendation—before and after infusing additional knowledge
via multi-task learning.

⁵Given the closed nature of commercial models, such as ChatGPT and PaLM, it is difficult to evaluate what the
model has seen and what the model has not seen during pre-training, and thus what is in fact zero-shot.
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Table 7.2: Examples of the probes used in this paper. We use off-the-shelf BERT’s Masked Language Modelling
(MLM) head for predicting tokens, BERT’s Next Sentence Prediction (NSP) head for predicting if the under-
lined sentence is the most likely continuation of the sentence, and BERT’s last layer hidden representations
(CLS pooled and MEAN pooled) for calculating the similarity between two texts (SIM). All probes require no
fine-tuning, and thus indicate what BERT learns through its pre-training objectives. The knowledge source for
recommendation prompts are interaction datasets, such as users’ movie ratings. For search prompts, we use
items’ review data. No underline indicates sentences that are treated as the query, and underline indicates sen-
tences that are treated as the document. Relevant documents for a query have label 1, e.g. document you will
also like Lord of the Rings for the query If you liked The Hobbit, while non-relevant have label 0, e.g. document
you will also like Twilight for the query If you liked The Hobbit.

Type Prediction Task Prompt Examples Labels

MLM Token Genre

TP-NoTitle: ”It is a movie of the [MASK] genre.” crime
TP-Title:”Pulp Fiction is a [MASK] movie.” crime
TP-TitleGenre:”Pulp Fiction is a movie of the [MASK] genre .” crime

TP-NoTitle:”It is a book of the [MASK] genre.” comic
TP-Title:”Palestine by Joe Sacco is a [MASK] book.” comic
TP-TitleGenre:”Palestine by Joe Sacco is a book of the [MASK] genre.” comic

SIM IsSimilar Recommendation
{(”The Hobbit”, ”Lord of the Rings”),
(”The Hobbit”, ”Twilight”)} {1, 0}

Search {(”The book is not about the murder [...]”, ”The Brothers Karamazov”),
(”It gives a brilliant picture of three bright young people [...]”, ”The Brothers Karamazov.”) } {1, 0}

NSP IsNext Recommendation
{”If you liked The Hobbit, [SEP] you will also like Lord of the Rings”,
”If You liked The Hobbit, [SEP] you will also like Twilight”} {1, 0}

Search {”The book is not about the murder [...] [SEP] The Brothers Karamazov. ”,
” It gives a brilliant picture of three bright young people [...] [SEP] The Brothers Karamazov. ”} {1, 0}

7.3 Method
In this section, we introduce our three types of probing tasks (genre, search, and recom-
mendation). We then turn to our downstream task—conversational recommendation.

7.3.1 Genre Probes
We resort to genre (i.e. a style or category of the item such as comedy) probes to extract
and quantify the knowledge stored in language models about the recommended items.
Using knowledge sources that contain an item’s title and its respective genres, e.g. “Los
miserables by Victor Hugo”⟶ “romance, fiction, history” ⁶, we create prompt sentences for
each item with the genre as the masked token. Since we use the MLM head to make pre-
dictions, we refer to this probing as MLM. We use three manually defined prompt sentence
templates (cf. Table 7.2, first row, for examples of each template type) inspired by [151]
for the MLM probe to investigate what BERT can do with different templates:

• TP-NoTitle: we do not provide the item, only the domain of the item.

• TP-Title: we use both the title of the item and its domain.

• TP-TitleGenre: we provide the item title, domain, and additional phrase “of the
genre” indicating that we are looking specifically for the genre of the item.

The underlying assumption of this probing technique is that if the correct tokens are
ranked higher by the language model, it has this knowledge stored in its parameters about

⁶We can extract this information from user-generated tags to books for example.
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the item. We evaluate the amount of knowledge stored in the model by counting the num-
ber of correctly ranked labels as the most probable in the first and first 5 positions, i.e.
recall@1 and recall@5. Since the template sentences are not exhaustive, our manually
selected templates offer only a lower bound on the amount of knowledge stored in the
language model.

7.3.2 Recommendation and Search Probes
In order to probe a LM’s capacity to rank relevant items in recommendation and search
scenarios we now introduce two probing techniques (SIM and NSP). Like the genre probe,
these two techniques do not require any fine-tuning to quantify the LM’s ranking effec-
tiveness. We were inspired by methods to calculate the matching degree between two
sentences, in a non-supervised way [395]. While SIM uses the representations directly
to calculate the matching degree, NSP relies on the fact that this pre-training BERT head
was designed to understand the relationship between the two sentences, something not
directly captured by the MLM training [80].

Using both techniques, we compare prompt sentences (the template and prompt gen-
eration are explained shortly) that represent either a ‘query’ or a ‘document’. The query
sentences take input from the user side (for search this is the item description, and for
recommendation this is the history of rated items), and the document sentences contain
a possible answer from the system to this input (the item to be recommended). We refer
to relevant document sentences as the ones that are relevant items for the query sentence.
Non-relevant document sentences are randomly sampled.

Probe Based on Similarity (SIM)
SIM ranks document sentences for a query sentence based on the representations learned
by the LM: we calculate the dot similarity between the query sentence and document
sentences using either the [CLS] token representation (SIMCLS), or the average pooling of
all tokens (SIMMEAN). More formally:

𝑆𝐼𝑀𝐶𝐿𝑆 = 𝐵𝐸𝑅𝑇𝐶𝐿𝑆(𝑞𝑢𝑒𝑟𝑦_𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒) ⋅ 𝐵𝐸𝑅𝑇𝐶𝐿𝑆(𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡_𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒)

where 𝐵𝐸𝑅𝑇𝐶𝐿𝑆(𝑠) means the representation of the CLS token in the last layer, and

𝑆𝐼𝑀𝑀𝐸𝐴𝑁 = 𝐵𝐸𝑅𝑇𝑀𝐸𝐴𝑁 (𝑞𝑢𝑒𝑟𝑦_𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒) ⋅ 𝐵𝐸𝑅𝑇𝑀𝐸𝐴𝑁 (𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡_𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒)

where 𝐵𝐸𝑅𝑇𝑀𝐸𝐴𝑁 (𝑠) means extracting the representations of each token in the last layer
by taking the average.

Probe Based on Next Sentence Prediction Head (NSP)
NSP ranks document sentences for a query sentence based on the likelihood of the docu-
ment sentence being the next sentence for the query sentence. Stated formally:

𝑁𝑆𝑃 = 𝐵𝐸𝑅𝑇𝑁𝑆𝑃 (𝑞𝑢𝑒𝑟𝑦_𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒 | [SEP] | 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡_𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒)

where | indicates the string concatenation operator. This probe technique also does not
require any fine-tuning of BERT.
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Templates and Prompt Generation
Having defined our probing techniques, we now discuss how to generate the prompts for
the recommendation and search probes, alongwith the templates. Based on the knowledge
extracted from rating and review datasets, we create prompt sentences in a similar manner
to how previous work extracted knowledge from other data sources [256, 257].

For the recommendation probe, the query sentence is built using an item that was
rated by a user 𝑢, and the relevant document sentence is another item rated by 𝑢 as well.
The non-relevant document sentences are items that were not rated by 𝑢, and are sampled
based on the item’s popularity. Since we do not have access to negative feedback on items,
we use a common assumption in the offline evaluation of recommender systems that a
randomly sampled item is not relevant [28]. The assumption for the recommendation
& search probes is that a model that has higher similarity between the query sentence
and the relevant document sentence has knowledge regarding which items are consumed
together. For instance, see the SIM recommendation example in Table 7.2—a successful
collaborative-filtering recommender system would display a higher similarity between
“The Hobbit” and ”Lord of the Rings” (items extracted from the user ratings’ history) than
the similarity between “The Hobbit” and ”Twilight” (an item not relevant to the given user).
Conversely, for the NSP probes, we expect the next sentence prediction from the relevant
document sentence to be higher than the non-relevant ones. Using the same user as an
example, the next sentence prediction score for the relevant query-document sentence “If
you liked The Hobbit [SEP], you will also like Lord of the Rings” should be higher than the
non-relevant sentence “If You liked The Hobbit [SEP], you will also like Twilight”.

For the search probe, the query sentence is built using entire reviews from the items,
whereas the relevant document sentence is the title of the item for which the review was
written⁷. The non-relevant document sentences are reviews of randomly sampled items.
We use review data to simulate product search inspired by previous works [5, 122, 341,
386]. For instance, we expect that the SIM and NSP scores between the item “The Brothers
Karamazov” and its review text “The book is not about the murder [...]” to be higher than
the scores between the item and a randomly sampled review.

7.3.3 Infusing Knowledge into LMs for Conversational Recommen-
dation

Finally, we discuss our downstream task, i.e. the task we aim to solve better with knowl-
edge gained from our probes. Let us first define how to use BERT as an end-to-end
retrieval-based conversational recommender system by formally defining the problem, be-
fore discussing the infusion of knowledge into a pre-trained language model.

Conversational Recommendation
We treat the conversational recommendation task as finding the best response in a set of
candidates as defined in Section 2.6.1. This formulation abstracts away the task of finding
the specific item to be recommended and considers that the existing responses contain
the relevant items to be recommended as part of their text. Another option for approach-
ing conversational recommendation is to find the specific item IDs as a response to the

⁷We remove the titles of the items from the reviews to make the task more challenging.
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dialogue context, which requires entities to be identified and linked in the training and
evaluation datasets [51, 183].

To fine-tune BERT for the task we follow the procedure described in 2.7.2 and predict
relevance as follows:

𝑓 (𝒰𝑖 , 𝑟) = 𝐹𝐹𝑁 (𝐵𝐸𝑅𝑇𝐶𝐿𝑆(𝑢1 | [SEP] | 𝑢2 | ... | 𝑢𝜏 | [SEP] | 𝑟)),
where | indicates the concatenation operation⁸ and 𝐹𝐹𝑁 is a linear layer. We train it

for binary classification using cross entropy as the loss function.

Infusing Knowledge into LMs
In order to infuse content-based and collaborative-based knowledge into BERT, we re-
sort to multi-task learning [397]. In addition to fine-tuning BERT for the conversational
data, we also consider interleaving batches of different tasks. 𝐵𝐸𝑅𝑇𝑟𝑒𝑐 interleaves train-
ing instances of the conversational recommendation task, with the recommendation NSP
probing task. Analogously 𝐵𝐸𝑅𝑇𝑠𝑒𝑎𝑟𝑐ℎ interleaves the downstream task with search NSP.

Multi-task learning is challenging as the order of the tasks [255] and theweighting [163]
for each task have a large impact on the model’s quality; we leave such analyses as future
work and resort to equal weights and interleaved batches.

This way, half of the time the inputs to BERT are

{𝑢1 | [SEP] | 𝑢2 | ... | 𝑢𝜏 | [SEP] | 𝑟 },
the concatenation of the dialogue context and the candidate response, and the other half
of the inputs to BERT are

{𝑞𝑢𝑒𝑟𝑦_𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒 | [SEP] | 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡_𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒},
the concatenation of the query sentences and the candidate document sentences from

the search and recommendation probes as defined in Section 7.3.2. The labels are 1 when
the input is a relevant query and document pair and 0 otherwise.

7.4 Experimental Setup
We first discuss our data sources and then point out important implementation details.

7.4.1 Data Sources
We use English language data⁹ from three different domains in order to generate the tem-
plates for our probes:

• Books: we use the publicly available GoodReads¹⁰ [348] data with over 200M inter-
actions from the GoodReads community. We extract ratings, reviews, and genres.

⁸An example of input sequence for BERT is: “Good morning, I am looking for a good classic today. [SEP] What
type of movie are you looking for today? [SEP] I enjoyed Annie (1982) [SEP] okay no problem. If you enjoyed Annie
then you will love You’ve Got Mail (1998)”
⁹The data we created for this work, as well as all our code, are publicly available at https://github.com/
Guzpenha/ConvRecProbingBERT.
¹⁰https://sites.google.com/eng.ucsd.edu/ucsdbookgraph/home

https://github.com/Guzpenha/ConvRecProbingBERT
https://github.com/Guzpenha/ConvRecProbingBERT
https://sites.google.com/eng.ucsd.edu/ucsdbookgraph/home


7

112 7 Evaluating Transformers with Conversational Recommendation Tasks

• Movies: we use the publicly available ML25M¹¹ [127] dataset that contains 25M in-
teractions from the MovieLens community. We extract ratings and genres. Since
ML25M does not have any review data, we crawled reviews for movies that were
rated in ML25M from IMDB. We collected a maximum of 20 reviews for each movie
from the ML25M data. This resulted in a total of 860k reviews (av. length of 84.22
words) and an average of 13.87 reviews per movie.

• Music: We use the “CDs and Vinyl” subset of the publicly available Amazon re-
views¹² [232] dataset which contains 2.3m interactions. We extract ratings, reviews,
and genres for music albums.

For all the probes in this paper (genre, search, and recommendation) we generate 100k
instances, with the exception of movies in the genre probing task for which we have access
to only approximately 60k movies (the number of movies in the ML25M dataset). For the
genre probing task, we have on average 3.6, 1.8, and 1.4 genres for the books, movies, and
music domains and a total of 16, 20, and 284 distinct genres respectively.

Inspired by previous work that uses online forums as a source of rich conversational
data [246, 268], we extract conversational recommendation data for the three domains
from reddit forums: /r/booksuggestions, /r/moviesuggestions and /r/musicsuggestions¹³ on
March 17, 2020. They include multi-turn conversations where an information-seeker is
looking for recommendations, and an information provider gives suggestions through nat-
ural language conversations.¹⁴

Additionally, we use the ReDial dataset [186] which was collected using crowd work-
ers and includes dialogues of users seeking and providing recommendations in the movies
domain. We use this dataset due to the annotated movie identifiers that are mentioned in
each utterance, which is not available for the Reddit data. This allows us to create adver-
sarial examples (see Table 7.9 for a concrete example) that require the model to reason
about different items to be recommended, while the rest of the response remains the same.
The statistics of the data used for conversational recommendation are shown in Table 7.3.
For the music domain, there is a limited number of conversations available (the musicsug-
gestions subreddit has only 10k users, compared to the 292k users of the booksuggestions
subreddit). ReDial has relatively few words in the responses.

For all dialogue datasets, we generate 50 candidate responses for every context by
querying all available responses using BM25 [288] using the context as a query. This is the
re-ranking setup described in Section 2.6.1, with conversational recommendation datasets
instead of general information-seeking dialogues.

7.4.2 Implementation Details
We use the BERT and RoBERTa PyTorch transformers implementations¹⁵. When fine-
tuning BERT for conversational recommendation, we employ a balanced number of rele-
vant and non-relevant context and response pairs. We resort to BERT’s default hyperpa-
¹¹https://grouplens.org/datasets/movielens/25m/
¹²https://nijianmo.github.io/amazon/index.html
¹³https://www.reddit.com/r/booksuggestions/, https://www.reddit.com/r/moviesuggestions/ and https:
//www.reddit.com/r/musicsuggestions/

¹⁴See the conversational recommendation example from Table 7.1 which comes from this dataset.
¹⁵https://github.com/huggingface/transformers

https://grouplens.org/datasets/movielens/25m/
https://nijianmo.github.io/amazon/index.html
https://www.reddit.com/r/booksuggestions/
https://www.reddit.com/r/moviesuggestions/
https://www.reddit.com/r/musicsuggestions/
https://www.reddit.com/r/musicsuggestions/
https://github.com/huggingface/transformers
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rameters, and use the large casedmodels; we fine-tune themwith theAdamoptimizer [168]
with a learning rate of 5𝑒 − 6 and 𝜖 = 1𝑒 − 8. We employ early stopping using the valida-
tion nDCG. For the conversational recommendation task, we also employ as baselines
traditional IR methods: QL¹⁶ [261], and QL with RM3 [180]. We use the pyserini¹⁷ im-
plementation of QL and RM3 and use the context as query and candidate responses as
candidate documents. In addition, we compare BERT against strong neural baselines for
the task: DAM [402]¹⁸, and MSN [384]¹⁹, which are interaction-based methods that learn
interactions between the utterances in the context and the response with attention and
multi-hop selectors, respectively. We fine-tune the hyperparameters for the baseline mod-
els (QL, RM3, DAM, and MSN) using the validation set.

Table 7.3: Statistics of the conversational recommendation datasets. We use dialogues extracted from three sub-
reddits: /r/booksuggestions; /r/moviesuggestions; and /r/musicsuggestions. We also experiment with ReDial [186]
due to its exact matches with movies.

Books Movies Music ReDial

# 𝒰–𝑟 pairs 157k 173k 2k 61k
# candidates per 𝒰 50 50 50 50
Avg # turns 1.11 1.08 1.11 3.54
Avg # words per 𝑢 103.37 124.93 74.17 71.11
Avg # words per 𝑟 40.10 23.39 38.84 12.58

7.5 Results
In this section, we first discuss the results of the probes for genre, followed by the probes
for search and recommendation. We then analyze how BERT performs in our downstream
task of conversational recommendation.

7.5.1 Probing BERT
In this subsection, we first analyze the results of the genre probes, followed by the search
and recommendation probes.

Genres
The results for probing BERT for each item’s genre (100k books and music albums and 62k
movies) are displayed in Table 7.4. We show the recall at positions 1 and 5 (number of
relevant tokens in the first and first 5 predictions divided by the total number of relevant
genres). To provide the readerwith intuition, we provide example prompts and predictions
in Table 7.5. First, we note that by just using the domain of the item, and not an item’s title
(TP-NoTitle templates), BERT can already retrieve a reasonable amount of tokens related
to the genre in the first five positions (from 25% to 41% depending on the domain) which is
high given that the vocabulary contains 29k tokens. We see examples of this in Table 7.5,

¹⁶We experimented with BM25 as well and kept QL due to it achieving better results.
¹⁷https://github.com/castorini/pyserini/
¹⁸https://github.com/baidu/Dialogue/tree/master/DAM
¹⁹https://github.com/chunyuanY/Dialogue

https://github.com/castorini/pyserini/
https://github.com/baidu/Dialogue/tree/master/DAM
https://github.com/chunyuanY/Dialogue
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Table 7.4: Results for 𝐵𝐸𝑅𝑇 genre MLM probe. Bold indicates a statistically significant difference over all other
sentence types using a paired t-test with a confidence level of 0.95 and Bonferroni correction.

Genre probes

Books Movies Music

Template R@1 R@5 R@1 R@5 R@1 R@5

TP-NoTitle 0.067 0.259 0.067 0.395 0.074 0.412
TP-Title 0.031 0.119 0.058 0.258 0.139 0.346
TP-TitleGenre 0.109 0.296 0.179 0.505 0.156 0.412

where for instance BERT predicts fantasy if you ask for a book genre and pop if you ask for
an album genre. This result shows that the pre-trained model indeed contains information
regarding which genres are specific to each domain.

When we consider the template types where we inform BERT about the item’s title
(TP-Title and TP-TitleGenre), we see that there is knowledge about specific items stored
in BERT’s parameters, as the results of TP-TitleGenre are better than TP-NoTitle, with
improvements from 0.067 to 0.179 R@1. We can thus answer RQ1 partially: BERT
has content knowledge about items stored in its parameter, specifically regarding
their genres. From a total of 29k tokens it can find the correct genre token up to 50% of
the times in the first 5 positions using TP-TitleGenre.

We also note that a prompt with more specific information leads to better results (from
TP-Title to TP-TitleGenre for instance), and this is only a lower bound for the knowledge
stored since some information might be stored in BERT that we could have retrieved with
a different prompt template sentence. For example, if we do not indicate in the prompt
that we are looking for the genres of the items (TP-Title), we get tokens that can describe
the item but are not genres. For example, for the prompt “The Wind-Up Bird Chronicle by
Haruki Murakami is a _____ book.” we get the token japanese, (cf. Table 7.5), which is valid
since the author is Japanese, but it is not the correct answer for the genre probe task. In
some cases TP-Title retrieves the publication year of the item, e.g. “1990 book”.

Search and Recommendation
The results of the recommendation and search probes are shown in Tables 7.6 and 7.7
respectively. We show the recall at 1 with 2 and 5 candidates 𝑅2@1 & 𝑅5@1 (we resort
to using different numbers of candidates here, due to the candidates being sentences and
not tokens like the genre probing task). We see that using both SIM and NSP techniques
BERT retrieves better than the random baseline (being equal to the random baseline would
mean that there is no such information stored in BERT’s parameters). This answers RQ1:
BERT has content-knowledge and collaborative-knowledge about items stored in
its parameter. Using the NSP technique BERTmatches itemswith their respective reviews
82%, 67% and 75% of the times for the books, movies, and music domains when choosing
between two options. Also, BERT selects themost appropriate item tomatch a user history
(recommendation probe) 65% of the time when choosing between two options.

Regarding the technique to probe BERT with, NSP is the most effective, showing that
this pre-training objective is indeed crucial for tasks that require relationships between
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Table 7.5: Examples of 𝐵𝐸𝑅𝑇 predictions for each of the domains when probing it with the MLM head for item
genres. Bold indicates a correct prediction. BERT is able to match domains with common genres (TP-NoTitle
template), e.g. books with fantasy and music with rock. Prompt sentences that indicates to BERT it is looking
for the genre of items (TP-TitleGenre as opposed to TP-Title) yields better predictions as they avoid general
descriptions, e.g. “television, 2003, japanese”.

Sentence Genre Prompt Predicted (top 2)

Bo
ok
s TP-NoTitle It is a book of the genre _____. fantasy [0.18], romance [0.13]

TP-Title The Wind-Up Bird Chronicle is a _____ book. comic [0.07], japanese [0.04]
TP-TitleGenre The Wind-Up Bird Chronicle is a book of the genre

_____.
fantasy [0.60], horror [0.04]

Mo
vi
es TP-NoTitle It is a movie of the genre _____. horror [0.08], action [0.05]

TP-Title I, Robot (2004) is a _____ movie. tv [0.16], television [0.16]
TP-TitleGenre I, Robot (2004) is a movie of the genre _____. robot [0.54], horror [0.08]

Mu
si
c TP-NoTitle It is a music album of the genre _____. pop [0.09], rock [0.07]

TP-Title Tom Petty: Greatest Hits is a _____ music album. country [0.09], 2003 [0.08]
TP-TitleGenre Tom Petty: Greatest Hits is a music album of the

genre _____.
rock [0.73], country [0.10]

Table 7.6: Results for the recommendation probes using SIM-based and NSP-based approaches. Bold means
statistical significance compared to baselines (paired t-tests with Bonferroni correction and confidence level of
0.95). NSP-based probes are the most effective for all three datasets.

Recommendation probes

Books Movies Music

Technique Model R2@1 R5@1 R2@1 R5@1 R2@1 R5@1

- Random 0.500 0.200 0.500 0.200 0.500 0.200
𝑆𝐼𝑀𝐶𝐿𝑆 BERT 0.538 0.252 0.525 0.230 0.537 0.254
𝑆𝐼𝑀𝐶𝐿𝑆 RoBERTa 0.574 0.291 0.509 0.219 0.550 0.267
𝑆𝐼𝑀𝑀𝐸𝐴𝑁 BERT 0.601 0.331 0.525 0.232 0.583 0.295
𝑆𝐼𝑀𝑀𝐸𝐴𝑁 RoBERTa 0.518 0.230 0.497 0.205 0.534 0.243

𝑁𝑆𝑃 BERT 0.651 0.402 0.653 0.367 0.610 0.333

sentences. Although RoBERTa uses a similar framework to BERT, it has more parameters
(340M → 355M), and it is trained on more data (16GB → 160GB of text) for longer (100K
→ 500K steps). BERT is still more effective than RoBERTa, when we employ the NSP head.
We note that during the training phase of RoBERTa the NSP pre-training objective was
not employed as for NLP downstream tasks no gains were observed [201].

We see that BERT has about 17% more content-based knowledge than collaborative-
based knowledge considering the results from our probes. We hypothesize that this is due
to textual descriptions of items with content information (useful for search) being more
common than comparative sentences between different items (useful for recommendation)
in the data used for BERT’s pre-training. We also note in Figure 7.1 that when increasing
the number of candidates (x-axis), the effectiveness of the recommendation probe degrades
more than for the search probes. This means that for a downstream task, BERTwould have
to be employed as a re-ranker for only a few candidates.
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Table 7.7: Results for the search probes using SIM-based and NSP-based approaches. Bold indicates statistical
significance compared to all baselines (paired t-tests with Bonferroni correction and confidence level of 0.95).
BERT stores more content-based knowledge (search, this table) than collaborative-based knowledge (recommen-
dation, Table 7.6). NSP-based probes are the most effective for all three datasets.

Search probes

Books Movies Music

Technique Model R2@1 R5@1 R2@1 R5@1 R2@1 R5@1

- Random 0.500 0.200 0.500 0.200 0.500 0.200
𝑆𝐼𝑀𝐶𝐿𝑆 BERT 0.495 0.198 0.387 0.123 0.498 0.200
𝑆𝐼𝑀𝐶𝐿𝑆 RoBERTa 0.578 0.255 0.516 0.229 0.527 0.215
𝑆𝐼𝑀𝑀𝐸𝐴𝑁 BERT 0.612 0.338 0.523 0.235 0.579 0.314
𝑆𝐼𝑀𝑀𝐸𝐴𝑁 RoBERTa 0.548 0.225 0.476 0.208 0.492 0.192

𝑁𝑆𝑃 BERT 0.825 0.636 0.670 0.420 0.755 0.537
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Figure 7.1: BERT effectiveness (𝑅𝑥@1) for NSP probes when increasing the number of candidates to rank 𝑥 .

When comparing different domains, the highest observed effectiveness when probing
BERT for search is for books. We hypothesize this to be due to one of BERT’s pre-training
data being the BookCorpus [404]. Since the review data used for the search probe of-
ten include mentions of book content, the overlap between both data sources is probably
high. We are unable to verify this directly because the BookCorpus dataset is not publicly
available anymore.

7.5.2 Infusing Knowledge for Conversational Recommendation
Table 7.8 shows the results of fine-tuning BERT for the conversational recommendation
task on the three domains using our Reddit forum data. Standard IR baselines, QL, and QL
with RM3 performed poorly on this task (≈0.05 MRR). We hypothesize this happens due
to the recommendation nature of the underlying task in the conversation. For example, a
user that describes its previously liked items does not want to receive answers with the
same items being recommended in it (which are highly ranked by QL) but new item titles
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that have semantic similarity with the conversational context. The deep models (DMN
and MSN) that learn semantic interactions between utterances and responses on the other
hand perform better than traditional IR methods (up to 0.79 MRR), MSN being the best
non-BERT approach. BERT is powerful at this task (up to 0.93 MRR), with statistically
significant improvements for books, movies, and music when compared to MSN.

Table 7.8: Results for the conversational recommendation task. We provide the MRR, with the respective stan-
dard deviation (for 5 runs). Bold indicates statistical significance compared to all baselines (paired t-tests with
Bonferroni correction and confidence level of 0.95). Fine-tuned BERT is remarkably effective for retrieving rele-
vant answers in conversations containing recommendations when sampling 50 negative candidates with BM25.

/r/booksuggestions /r/moviessuggestions /r/musicsuggestions

QL 0.055 (.00) 0.048 (.00) 0.061 (.00)
RM3 0.051 (.00) 0.046 (.00) 0.049 (.00)
DAM 0.610 (.02) 0.662 (.02) 0.208 (.04)
MSN 0.707 (.01) 0.788 (.02) 0.535 (.06)

BERT 0.886 (.01) 0.929 (.00) 0.620 (.03)

To investigate why BERT is so successful at this task, we resort to the ReDial dataset.
Specifically, we create adversarial response candidates for the responses that included a
recommendation. This is possible because, unlike our Reddit-based corpus, ReDial has
additional labels indicating which item fromML25M was recommended at each utterance.
For every relevant response containing a recommendation, we generate adversarial candi-
dates by changing only the relevant item with randomly selected items, see Table 7.9 for
some examples. This way, we can evaluate whether BERT is only picking up linguistic
cues of what makes a natural response to a dialogue context or if it is using collaborative
knowledge to retrieve relevant items to recommend.

The results for the adversarial dataset are displayed in Table 7.10. BERT’s effectiveness
drops significantly (from 0.78 to 0.07 MRR) when we test using the adversarial version of
ReDial. Previous works have also been able to generate adversarial examples that fool
BERT on different NLP tasks [152, 314].

Failing on the adversarial data shows that BERT is not able to successfully distin-
guish relevant items from non-relevant items, and is only using linguistic cues to find
relevant answers. This motivates infusing additional knowledge into BERT, besides fine-
tuning it for the conversational recommendation task. In order to do so, we do multi-task
learning for the probe tasks in order to infuse additional content-based (𝐵𝐸𝑅𝑇𝑠𝑒𝑎𝑟𝑐ℎ) and
collaborative-based (𝐵𝐸𝑅𝑇𝑟𝑒𝑐 ) knowledge into BERT using only probes for items that are
mentioned in the training conversations.

Our results in Table 7.10 show that the recommendation probe improves BERT by
9% for the adversarial dataset 𝑅𝑒𝐷𝑖𝑎𝑙𝐴𝑑𝑣 , while the search probe improves effectiveness
on 𝑅𝑒𝐷𝑖𝑎𝑙𝐵𝑀25 by 1%. This indicates that the adversarial dataset indeed requires more
collaborative-based knowledge. The approach of multi-task learning for infusing knowl-
edge into BERT was not successful for our Reddit-based forum data. We hypothesize that
this happened because, unlike ReDial, we have no additional labels indicating which items
were mentioned in the reddit conversations. This forces us to train on probes for items



7

118 7 Evaluating Transformers with Conversational Recommendation Tasks

Table 7.9: Examples of the ReDial dataset for conversational recommendation using either BM25 to sample neg-
ative candidates (𝑅𝑒𝐷𝑖𝑎𝑙𝐵𝑀25) or the adversarial generation that replaces the movies from the relevant response
with random movies (𝑅𝑒𝐷𝑖𝑎𝑙𝐴𝑑𝑣 ) but keeps the context. The adversarial candidates requires BERT to be able to
chose between different movies, while for the BM25 candidates BERT can use language cues to select the correct
response—likely text given the context.

Context Relevant response Negative BM25 candidate
(𝑅𝑒𝐷𝑖𝑎𝑙𝐵𝑀25)

Negative adversarial
candidate (𝑅𝑒𝐷𝑖𝑎𝑙𝐴𝑑𝑣 )

Good morning, I am looking
for a good classic today.
[SEP] What type of movie are
you looking for today? [SEP]
I enjoyed Annie (1982)

okay no problem.. If you
enjoyed Annie then you will
love You’ve Got Mail (1998) !

I am great! What type of
movie are you looking for
today?

okay no problem.. If you
enjoyed Annie then you
will love The Best Years
of Our Lives (1946) !

HI! [SEP] Hi what type of
movie would you like? [SEP]
I am looking for something
like Star Wars (1977) but not
Star Trek

Have you seen Avatar (2009) I love Star Trek Generations
(1994) the best!

Have you seen
Wishmaster (1997),

Table 7.10: Fine-tuned BERT results (MRR) for conversational recommendation for the dataset when using dif-
ferent procedures to sample negative candidates. Bold indicates statistical significance compared to other ap-
proaches (paired t-tests with Bonferroni correction and confidence level of 0.95). 𝐵𝐸𝑅𝑇 is the model fine-tuned
on ReDial, 𝐵𝐸𝑅𝑇𝑟𝑒𝑐 multi-tasks between fine-tuning for ReDial and for the recommendation probes and 𝐵𝐸𝑅𝑇𝑟𝑒𝑐
multi-tasks between fine-tuning for ReDial and for the search probes.

𝑅𝑒𝐷𝑖𝑎𝑙𝐵𝑀25 𝑅𝑒𝐷𝑖𝑎𝑙𝐴𝑑𝑣
BERT 0.778 (.01) 0.069 (.02)
BERT𝑟𝑒𝑐 0.780 (.00) 0.073 (.01)
BERT𝑠𝑒𝑎𝑟𝑐ℎ 0.791 (.01) 0.072 (.02)

that are likely not going to be useful. We leave the study of automatically identifying
mentions of items in conversations as future work.

Answering our second research question (RQ2), we demonstrate that infusing
knowledge from the probing tasks into BERT, via multi-task learning during the
fine-tuning procedure is an effective technique.

7.6 Limitations
Given the fast pace of research in language models, our findings might not hold for recent
models with significantly higher amounts of parameters. While the biggest BERT model
has 340M parameters, GPT-3 has 175B, and PaLM [60] has 540B. Whether simply scaling
up such language models solves the limitations we found is still an open question.

The language models tested in this chapter are not yet applicable in realistic conversa-
tional recommendation scenarios. In the first research question of this chapter, we analyze
what was already stored in the weights of language models during pre-training through
simple probes, which do not necessarily translate to realistic scenarios of using such mod-
els for delivering recommendations. In the second section, we analyze how to infuse such
knowledge and see that in more complicated scenarios (e.g. adversarial recommendations)
language models still have a long way to go. Our study is also limited in the experimental
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setup, as it does not put such language models in contact with dynamic dialogues with
real users, and is limited to English corpora.

7.7 Conclusions
Given the potential that heavily pre-trained language models offer for conversational rec-
ommender systems, we examine how much knowledge is stored in BERT’s parameters
regarding books, movies, and music. We resort to different probes in order to answer this
question. We find that we can use BERT to extract the genre for 30-50% of the items on the
top 5 predictions, depending on the domain; and that BERT has about 17% more content-
based knowledge (search) than collaborative-based knowledge (recommendation).

Based on the findings of our probing task we investigate a retrieval-based approach
based on BERT for conversational recommendation, and how to infuse knowledge into its
parameters. We show that BERT is powerful for distinguishing relevant from non-relevant
responses. By using adversarial data, we demonstrate that BERT is less effective when it
has to distinguish candidate responses that are reasonable responses but include randomly
selected item recommendations. This motivates infusing collaborative-based and content-
based knowledge into BERT, which we do via multi-task learning during the fine-tuning
step, obtaining effectiveness improvements of up to 9%.

This chapter provides further evidence for the third main research question of the
thesis (M-RQ3). We show that transformer-based language models have only a limited
knowledge about entities such as movies, books and fail in recommendation problems
that require collaborative-filtering. This indicates that retrieval and re-ranking systems
for conversational search require better ways to infuse or combine relationships between
entities that is commonly used for recommendation.
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8
Conclusions

In this chapter, we summarize the thesis by revisiting the main research questions that
were introduced and our main findings. Then we discuss its limitations, followed by a
discussion on ethical concerns and wider implications of conversational search systems,
and finish with a discussion on future directions in the field of conversational search.

8.1 Summary
In this section, we revisit the main findings of this thesis guided by our main research
questions stated in the introduction. They are:

M-RQ1: What is a strong baseline for the retrieval, i.e. first-stage, of responses
for conversational search? Do the findings of passage and document retrieval tasks
translate to the retrieval of responses for dialogues?

M-RQ2: Do different notions of difficulty improve the re-ranking, i.e. second-stage,
of responses for conversational search?

M-RQ3: What are the limitations of transformer-based models for conversational
search and recommendation?

8.1.1 First-stage Retrieval
In order to answerM-RQ1, in Chapter 3 we compare major techniques from four different
categories of models that are capable of performing first-stage retrieval: unsupervised and
supervised sparse retrieval, zero-shot and fine-tuned dense retrieval. While such models
were initially proposed for document and passage retrieval tasks, we show that most of
the findings hold when we go to the conversational search domain. Specifically, we show
that a pipeline to obtain a dense retriever composed of (1) self-supervised pre-training, (2)
intermediate representation learning, and (3) a final fine-tuning on target conversational
data with hard negative samples is the best-performing approach. Such a dense model
is able to significantly outperform a supervised sparse baseline based on document aug-
mentation. Our results indicate that findings from other tasks such as passage retrieval do
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generalize to retrieval for conversational search. Our study also reveals that there is room
to improve such models when adapting them to deal with conversations. For example, we
show that a better way to adapt doc2query [238] is to predict only the last utterance of
the dialogue context (the query in our domain), as they are typically longer than queries
in the document retrieval task.

8.1.2 Difficulty Notions for Re-ranking
In order to answer M-RQ2, we analyze two different ways difficulty notions can be im-
plemented in order to improve conversational search systems, in Chapters 4 and 5.

We first rely on a machine learning technique known as curriculum learning. This
technique expects a difficulty estimation for each training instance from the dataset. Based
on this estimate, first, the model will receive easy instances, and the hard ones will be
seen in the later stages of the training procedure. In Chapter 4 we compare a number
of ways to estimate the difficulty of training instances of conversational search models.
We find that the better-performing difficulty estimate is to use the difference between the
predictions for the relevant response for the dialogue context and the negative response
for the dialogue context. Applying curriculum learning to the training of neural re-rankers
for conversational search is an effective way to consider the difficulty of instances during
training. Subsequent work¹ in IR [211] shows that curriculum learning is also effective for
passage retrieval tasks.

Similar ideas to estimate the difficulty of instances have been proposed after the pub-
lication of Chapter 4 to improve ranking models with different techniques other than cur-
riculum learning, such as the distillation of scores with a margin MSE loss [135], residual-
based margin [107], hard negative sampling [392]. This is further evidence that indeed
using notions of difficulty can be used to improve ranking models during training time.

As for dealing with difficult instances at test time, we provide in Chapter 5 ways to
estimate the uncertainty of the predictions of neural ranking models, and how to take
them into account to obtain better models. We do so with stochastic rankers. Instead of
predicting a single value that tells if a response is relevant for a dialogue context, stochas-
tic rankers output a relevance distribution. With such distribution, we can measure how
spread the predictions are, i.e. their variance, indicating the level of uncertainty for the
dialogue context and response at hand. In order to improve the effectiveness of conversa-
tional search systems, we use such estimates to take into account how risky, i.e. level of
uncertainty, the response is. A risk-aware ranker takes into account both the relevance
prediction as well as the uncertainty related to it. We show in Chapter 5 that a risk-aware
re-ranker is particularly effective when dealing with test conditions that have distribution
shifts compared to the train conditions. Subsequent work² in IR [63] showed that a risk-
aware re-ranker is also effective for passage retrieval tasks. This is further evidence that
using notions of difficulty can also be used to improve ranking models during test time.

8.1.3 Retrievers and Rankers Limitations and Behavior
Finally, we provide two studies to better understand the limitations of conversational
search and recommendation systems for answering M-RQ3, in Chapters 6 and 7. In the

¹The paper that originated Chapter 4 was available online in December 2019.
²The paper that originated Chapter 5 was available online in January 2021.
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first study, we analyze the impact query variations have on retrieval pipelines. A query
variation of a query is another way to express the same underlying information need. The
assumption we base this study on is that if a query and a query variation express the same
information need, the retrieval pipeline should also behave the same. In order to study
the effect of different types of variations when expressing an information need, we first
define a taxonomy of query variations. In Chapter 6 we propose different techniques to
generate a query variation for a given query and chosen category of variation. We then
quantify the effect of each category of query variation on the effectiveness of retrieval
pipelines. We find that retrieval pipelines are not robust to such query variations, with
significant drops in effectiveness.

Our results relate to a broader research direction which shows that neural networks
struggle with inputs that are somehow different from the training due to distribution shifts.
In comparison with adversarial examples that are created with the goal of tricking the
model [111], query variations are phenomena observed by users that interact with the
system. Thus dealing with them is a crucial problem for existing pipelines, and can be an
obstacle to the implementation of conversational search systems.

In Chapter 7 we test what type of knowledge is stored in the weights of pre-trained lan-
guagemodels. A better understanding of the pre-training procedure is important for being
able to take advantage of them and improving them for conversational search and recom-
mendation. We focus on entities from the music, book, and movie domains. Through
different probes, i.e. tasks to examine a trained model for certain properties, we evaluate
search, genre, and conversational recommendation capabilities. Our findings indicate that
models such as BERT are able to answer questions about the content of entities (such as
finding the correct genre of a book) to a certain extent. However, they have little collabo-
rative filtering capacities, e.g. knowing which movies are typically watched together.

In conversational recommendation, where there arewell-defined entities and attributes,
language models still lack important capabilities. Sileo et al. [305] extended our analysis
and showed that GPT-2models perform better than BERT for recommendation tasks based
solely on the knowledge stored in their pre-training weights. However, they are still out-
performed by simple recommendation baselines when there is enough training data.

8.2 Limitations
We would like to acknowledge a number of limitations that runs through the entire thesis.
First, all experiments were performed using corpora in a high-resource language (English),
and thus the findings might not generalize to other languages. Additionally, although we
have datasets containing dialogues from multiple domains, they are a finite set. Thus
the findings of our thesis and the effectiveness of the models in truly open-domain sce-
narios might differ. The main information-seeking dialogue datasets used in this thesis
were extracted from online forums, which is a specific and non-comprehensive way peo-
ple interact with other users to find information—long descriptive initial utterances, and
asynchronous dialogue. However, this might not be how people will interact with conver-
sational search agents.

There are other limitations of the experimental setup employed as described in Sec-
tion 2.6.1 that challenge how realistic offline tasks used to evaluate retrieval-based chat-
bots are. A few of them we do not look into in this thesis, namely the creation and main-
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tenance of a pool of responses³, the fact that test instances from the same dialogue are
considered independent and that there is only one adequate answer. The implications are
that an effective model for such offline tasks might not perform well when users interact
with them. Online experiments, albeit expensive, offer a solution to some of the limita-
tions we just described.

8.3 Ethical Concerns and Wider Implications
The adoption of conversational systems for search may have major implications for how
we deal with the information overload problem. Users already act as if search engines
provide testimony, acquiring and altering beliefs on the basis of results the model has
ranked on top [229]. Direct answers in search engines can further reduce the cognitive
load required to go through documents as “the answer given, and not others, is the one to be
taken seriously” [262], even in unwarranted cases such as complex and controversial topics.
Conversational interfaces can further increase the trust of users in information systems,
by using anthropomorphic design cues that lead to the appearance of human-likeness [14].
This raises a significant question: How to ensure that conversational search systems are
not harmful to the information literacy of users? Users should be able to understand
that there are several sources of information being retrieved and that the agent is less of a
domain expert and more of a librarian. A conversational search system should not “deposit
knowledge” in the user but engage in a truly interactive dialogue.

A significant concern is that research with increasingly larger language models re-
quires significant financial investments, incurring environmental costs due to the costs of
the training procedures [30]. This is also effectively a barrier to where such research is
done and who is able to do so. While techniques to compress [84], prune [355], and dis-
till knowledge [187] allow the usage of smaller models by a larger number of researchers,
they are not a substitute for training large models from scratch. A number of capabilities
seem to emerge only when training models with a large number of weights [356], and that
pruning from the beginning does not lead to the same accuracy⁴.

Another concern is that the gap between users that create pieces of trustworthy infor-
mation and the user accessing this information can increase. This might demotivate con-
tent creation, as there would be no credit or economic value given to the original content
creator. The capabilities of current large language models of creating plausible content
might further aggravate this problem as anyone can create and disseminate disinforma-
tion through social media and messaging apps, for example, to influence elections [284].

Finally, a critical challenge is to guarantee that conversational search models are not
harmful, for example by propagating bias against marginalized groups. The large datasets
used to pre-train language models contain a number of problematic patterns such as abu-
sive language, hate speech, gender and race bias, dehumanization and etc [188, 359]. With-
out mechanisms to detect and control them, the systems will propagate them.

³We would like to highlight again that generative approaches could be used to create such a pool of responses.
⁴Frankle and Carbin [95] introduced the lottery ticket hypothesis: randomly initialized neural networks have
winning tickets, i.e. sub-networks with a particular set of initial weights that reach the same accuracy of the
neural network when trained in isolation. Understanding the circumstances when one can effectively train
sparse networks is an active area of research that could lead to the democratization of the field.
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8.4 Future Directions
Based on the discussion of the findings of this thesis we provide a number of areas for
future work that follow directly from the research questions of this thesis: first-stage re-
trieval, improving difficulty estimations and their applications, and understanding ranking
models. Then we discuss broader directions for future work.

8.4.1 Directions Related to the Main Research Questions
Improving First-stage Retrieval
The quality of a pipeline for conversational search is heavily dependent on the first-stage
retrieval step. If there are no relevant responses in the responses retrieved, later re-ranking
stages will not be effective. Also, there is a chance there is no relevant response in the
entire pool of responses, and thus a challenging problem is detecting such cases. Handling
such failures is an area that requires further investigation: a system should not give a re-
sponse that seems plausible when there is no valid answer, and users might not be satisfied
with uninformative “I am unable to answer this request.”. How to maneuver conversations
in a direction the system is able to answer is an open area of research.

In the realm of dense retrieval, approaches that take into account multiple dense vec-
tors have shown to be more effective than single vector approaches [165, 185, 264]. This
has great potential to improve conversational search, as the input has structure, i.e. differ-
ent utterances, and more than one speaker (the seeker and the provider)⁵, which could be
directly used for different representation spaces.

Multi-vector approaches however suffer from the problem of increased computational
cost and increased space to store indexes. Another concern with dense methods for first
stage-retrieval is that in practice the pool of responses is constantly changing, with novel
responses for example. Also, model updates can be expensive, as a naive approach re-
quires calculating the embeddings of the whole collection again—intelligently updating
embeddings is a useful direction of research.

The field of supervised sparse retrieval is also quickly developing [71, 94, 105, 191,
216]. Although we provided initial evidence in this thesis on their usage for retrieval, the
effectiveness of more complex sparse methods, that perform weighting and expansion for
both the dialogue context and the responses, is still unknown.

Another possible venue for research is to combine retrieval with generation methods.
While generative approaches to conversational search have limitations we laid out in the
introduction, they can be used in conjunction with retrieval. How to combine generated
answers in a retrieval pipeline without getting for example hallucinations and incorrect
responses is still an open research direction. Such a combination could be done for in-
stance when there is no direct answer in the corpus for the request; to generate a direct
answer from a document that was retrieved; to combine multiple responses into one.

There are also other practical problems that prevent the implementation of conversa-
tional search systems. Transformer models have high complexity regarding the size of the
input sentence—𝑂(𝑁 2) where N is the number of input tokens. Since they are the back-
bone of many techniques for retrieval and ranking, it is a challenge how to adapt them to

⁵The development of conversational search systems that handle more than two speakers is also a developing
direction known as conversational collaborative search [17]. This field is the intersection of conversational
search and collaborative search [225, 300].
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deal with long conversations—for example, BERT accepts a maximum of 512 input tokens.
How to model the context of the conversation without using the whole dialogue as in-
put? Transformers that deal with long sequences [29, 170, 321, 385] are incipient and have
shown limited success. Approaches that model the entire history of the dialogue will be
required to guarantee that the agent is able to remember past utterances in the dialogue.

Additionally, given that collections of responses will be constantly growing, e.g. Stack-
Exchange receives over 400 new questions and answers per hour on average⁶, learnedmod-
els for sparse and dense retrieval will require smart ways to perform continual learning
and also update their indexes when new responses arrive.

Estimation of Difficulty and its Applications for Ranking
There are a number of ways to take advantage of difficulty estimates for improving rank-
ing models. With an accurate prediction of the difficulty of a dialogue, a conversational
search pipeline can, for example, decide to ask a clarification question⁷ or to present the
results [9]. It can also be used as a feature to classify if there is no valid answer in the pool
of responses [92, 251]—a very difficult dialogue might indicate there is no answer.

We explored two techniques in this thesis that consider difficulty estimations, cur-
riculum learning, and risk-aware ranking. Negative sampling is another technique that
can benefit from difficulty estimates. Negative candidate responses found using random
sampling lead to easy and uninformative training instances. Harder negatives have been
shown to improve the effectiveness of ranking models in a number of domains [184, 207,
291]. Approaches to finding negative samples typically deal with model-based difficulty
estimates, for example using the ranking model itself [370]. This is likely due to what is
difficult depending on what the model has learned at some point in training. Thus, we
believe more sophisticated sampling procedures to find negative samples, that considers
the model is not static and thus the notion of difficulty evolves during training, are a
promising direction for research.

Another related research direction is to use the prior knowledge of an instance diffi-
culty in the loss function. For example, we showed [252] that using a curriculum learning
approach for introducing label smoothing in the loss function improved the effectiveness
of ranking models. Hofstätter et al. [136] considered a notion of difficulty (the margin of a
teacher model) to balance easy and difficult instances of training batches and also used it
as the supervision signal in a knowledge distillation setup. Themost advantageous way to
use difficulty notions as inductive biases for ranking models remains an open question—
for example as part of the loss function, as part of the order of the training instances, as
part of the negative sampling procedure, or as part of a risk-aware re-ranking strategy.

Better Understanding of Ranking Models
An active area of research in natural language processing is devoted to finding the lim-
itations and understanding and explaining black box neural models [76, 182, 408]. One
of the concerns which might prevent the adoption of conversational systems is the lack

⁶Statistics of new questions and answers obtained from https://sostats.github.io/ on 22-12-2022.
⁷According to Braslavski et al. [39] clarification questions can be used to ask for more information, check a fact,
try to reason about the request, ask for more general details, filter and narrow down a specific aspect, and ask
for past experience details. In a different taxonomy focused on search systems, Zamani et al. [388] categorized
clarification questions into disambiguation, preference elicitation, topic narrowing, and comparison-based.

https://sostats.github.io/
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of robustness and understanding of when and why they fail. This is thus a crucial and
nascent field for conversational search systems. We provided evidence that rankers are
not robust to query variations. We hypothesize that a model which is able to align the
representations of equivalent queries and equivalent documents will improve their ro-
bustness. In data augmentation, the model is simply given additional training instances
to learn such equivalences, e.g. different but equivalent queries are matched against the
same document. While more complex approaches have been proposed to align equivalent
queries in the embedding space [57, 407], further work is necessary as identifying which
instances are equivalent for the different types of query variations is a hard and unsolved
problem. Additionally, creating datasets with query variations remains an open challenge,
as models that do so automatically are prone to shifts in the information need and noise.

A particularly promising way to reason about representations is through the lens of
disentangled learning [58, 132, 142]. With disentangled representations, the underlying
assumption is that themodel would benefit from separating (disentangling) the underlying
structure of the input into disjoint parts of its representation. Such representation would
allow us to model transformations such as query variations, which have an effect on form
factors of the representation but that do not affect the factor representing the underlying
information need. Another benefit of such representations is that they are interpretable.
With a disentangled representation we could calculate a similarity score between a query
and a document in terms of different aspects, going beyond a single number to describe
their similarity. Initial work [196] has applied this idea to recommender systems, in order
to provide relevant items with respect to different aspects.

Besides robustness, another important future work direction is to understand ranking
model behavior, its potential biases, and weaknesses. Understanding ranking models’ be-
havior is still an incipient field of research [49, 209, 265, 283]. In the particular domain
of conversational search, this is a crucial and under-explored task, due to potential risks
of employing language models [30, 299]. This research direction is closely related to the
field of explainability. Some open research questions are: How to explain a response from
a conversational search system? Why has the model ranked/generated such a response,
where did this information come from? How to increase trust and other potential objec-
tives [330], such as persuasiveness and scrutability, an explanation can have?

8.4.2 Broader Directions
Challenges in Generative Approaches
At the time of writing of this conclusion⁸, OpenAI released a new language model for
dialogue: ChatGPT⁹. It is a sibling model to InstructGPT [241], which improves over GPT-
3 by taking into account human feedback to generate outputs to prompts and also to rank
different outputs from the model. Another key difference between ChatGPT and GPT-
3 is that it is able to generate answers in a dialogue, as opposed to one-shot answers
given to prompts. ChatGPT reached one million users in five days. Users have already
found it useful as a tool for learning to code—a case where you can check the correctness
of the answers it provides—and as a way to surf through reading material while asking

⁸This chapter was written in December 2022.
⁹https://openai.com/blog/chatgpt/

https://openai.com/blog/chatgpt/
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questions¹⁰. Other users claim it to be helpful in scenarios that require creativity such as
brainstorming ideas and presenting information.

Enthusiasts claim that ChatGPT will replace Google search entirely¹¹ because it an-
swers questions more directly and clearly than search engines. However, a careful analy-
sis of its answers reveals that it is often incorrect, making plenty of mistakes¹², all while
sounding like reasonable and plausible answers¹³. This has led for example StackOverflow
to ban ChatGPT answers¹⁴, “because the average rate of getting correct answers from Chat-
GPT is too low, the posting of answers created by ChatGPT is substantially harmful to the site
and to users who are asking or looking for correct answers”.

The debate around fully generative models replacing search is not new [262, 299]. Lan-
guage models certainly will be a crucial component of conversational search systems.
However, we believe that using them as fully generative models will not be possible to
solve the entire conversational search problem, and that retrieval and ranking compo-
nents have to be part of the equation. As discussed in the introduction, generative models
are capable of generating convincing responses with untrue facts—in Figure 1.5 we show
how it recommends software that is not available for the operating system that the user
asked for. This can be harmful in a number of domains, e.g. in health-related searches.
Also, there are a number of ethical concerns which are exacerbated by generative models
(see Section 8.3).

Evaluation Challenges
The evaluation of conversational search is a complex problem, where applying traditional
search evaluation paradigms, i.e. the Cranfield paradigm [62, 345], is not straightfor-
ward [96, 202]. In a conversation, there are an exponential number of paths that a dialogue
can evolve to, depending on which utterances are chosen by the information seeker and
the system as shown in Figure 8.1. An observed dialogue, as highlighted in pastel yellow,
from human-to-human or human-to-machine interaction provides us with only a single
path among all possible options. When using this dialogue as ground truth to compare
models repeatedly, we miss “conterfactual” [154] paths—what would have happened if the
left response was given instead of the right response at the initial turn of the dialogue
in Figure 8.1? One direction to improve offline evaluation of conversational search and
offering a remedy for such problem is through user simulation [23, 197, 298]. A challenge
is to obtain a realistic model that correlates with human interactions while being efficient
to run repeatedly.

¹⁰The tweet accessible at https://twitter.com/yacineMTB/status/1599618855273664515 contains the follow-
ing: “The new way to learn: Wikipedia on the left, chatGPT on the right. You can surf through material so ridicu-
lously fast while relating it to things you already know. It’s actually speedrunning knowledge uptake. And this is
only a non-special purpose v1. Incredible!”

¹¹The tweet accessible at https://twitter.com/jdjkelly/status/1598021488795586561 contains a thread with
following initial tweet: “Google is done. Compare the quality of these responses” followed by a number of screen-
shots of the Google search engine response and the ChatGPT response to the same requests.

¹²In the following blog post https://vitalik.eth.limo/general/2022/12/06/gpt3.html the author shows how
many mistakes ChatGPT makes when helping him solve a coding problem.

¹³In the following blog post https://aisnakeoil.substack.com/p/chatgpt-is-a-bullshit-generator-but the
author argues that ChatGPT output texts that are intended to persuade without regard for the truth.

¹⁴https://meta.stackoverflow.com/questions/421831/temporary-policy-chatgpt-is-banned

https://twitter.com/yacineMTB/status/1599618855273664515
https://twitter.com/jdjkelly/status/1598021488795586561
https://vitalik.eth.limo/general/2022/12/06/gpt3.html
https://aisnakeoil.substack.com/p/chatgpt-is-a-bullshit-generator-but
https://meta.stackoverflow.com/questions/421831/temporary-policy-chatgpt-is-banned
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…
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… … … …

Figure 8.1: Different paths a dialogue might take, depending on which answer is given by the information-seeker
and the system. In pastel yellow, we see a single dialogue that we might observe and is typically how systems
are evaluated. This overlooks all other paths the dialogue could have taken.

Additionally, the focus of the NLP field and also IR has been on English-speaking users.
We lack multi-lingual datasets and also datasets for specific domains, e.g. scholar searches,
medical searches, etc. Large-scale human conversation data is expensive to create, and
mapping out different paths of dialogue increases this cost exponentially. While public
benchmarks are helpful in advancing the field, they overlook the fact that their collections
are static. In reality, the pool of responses will evolve, new content will be added to it, and
we need resources to be able to evaluate the effect of content evolution, e.g. Is there a
point where answers become outdated and should not be retrieved?

A more complete offline evaluation of a conversational search system would also test
different dimensions of the user experience [13, 161], e.g. trust, cognitive load, effort,
utility, etc, and would not treat each utterance in a single observed dialogue indepen-
dently [89]. Given that the majority of research in the field evaluates only small modules
or tasks, improving existing evaluation schemes is a key factor to develop better conver-
sational search systems.

In fact, a significant step that needs to be taken for conversational search adoption is
to move from purely offline evaluation to online evaluation. User studies are really scarce
in this domain and mostly use the wizard-of-oz setup¹⁵, partially due to the difficulty in
creating practical end-to-end conversational search systems for testing. Given the intrin-
sic interactive nature of conversational information access, we claim user studies will be
essential for the adoption and development of the field.

Interaction Challenges
Radlinski and Craswell [273] argued that a conversational search system should display
five properties when interacting with users (see Section 2.2): user revealment, system re-
vealment, mixed-initiative, memory, and set retrieval. Six years have passed since the
publication of his article, which has proven to be influential as researchers have indeed
explored such objectives. For example, in order to achieve user revealment, i.e. the capac-

¹⁵A wizard-of-oz experiment is when subjects interact with a system that they believe to be fully automated, but
there is actually a human behind it.
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ity of helping the user express and discover their true information need, researchers have
focused on the problem of asking follow-up and clarification questions [8, 9, 298], that
are capable of eliciting users information needs. In conversational recommender systems,
this elicitation process has also received attention [141, 272].

Clarification questions are also helpful to achieve mixed-initiative interactions, as the
initiative that is typically dictated by the user is taken by the system. There are still open
questions that need progress in this area: when to ask for clarification, how to model the
ambiguity of the user request and the uncertainty of the system, how to generate/rank clar-
ification questions, and what objective the question has. Another under-explored aspect
of mixed-initiative is the system starting a conversation instead of the user. The conversa-
tional agent might recommend an item to the user based on contextual information, such
as an online event based on the time and date. Important questions that still need to be
addressed are how to detect when, why, and how to start such conversations [347]. De-
spite recent developments [7, 221, 298, 338], enabling truly mixed-initiative conversations
is still an open challenge in the field.

Another aspect of the interaction that has received little attention is how to reveal to
the user what the system is able to achieve, the reach of its corpus, setting expectations,
and thus having the capability of performing system revealment. The capacity of exploring
and understanding the corpus is related to the field of exploratory search [244, 362]. Ex-
ploration and investigation could potentially occur through multiple conversations with
the system, which could help the user in finding and analyzing what is available.

Memory is another crucial aspect of conversational search systems that is still un-
solved. An agent should be able to relate to the history of interactions when considering a
single conversation and across different conversations the user had with the system. This
includes for example creating a long-term profile of preferences, understanding the level
of expertise of the user for a certain topic, references to past statements made, and so on.
As previously pointed out (see Section 8.4.1), a simple approach to concatenate previous
interactions with the system is not viable for transformer-based architectures, which con-
stitute the backbone of solutions to many different tasks related to conversational search.
How to model long conversations and previous interactions is still an open question.

Finally, there is still work required to better understand how to present information
to users in conversational search. The modality (voice, text, image), the device, and the
way to present information in such settings are important factors to be considered when
delivering responses. Some open questions are: How to transition between devices? What
scenario invites which modality? What is the best length of the response when a certain
modality is used?

Design Challenges
In Chapter 2 we lay out a number of tasks from different research fields that can contribute
to the implementation of a conversational search system. Such components still need to
be put together to build a functional system, which raises questions such as how to go
from the evaluation of certain tasks to the entire system in real-world settings, and how
to better integrate different components in a functional system.

A conversational search system that works in practice needs to be constantly evolving.
New conversations and documents should be used to update existing models continually.
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Besides the costs attached to updating embeddings (see Section 8.4.1), a naive approach
that continues the training procedure can lead to problems such as forgetting previous
knowledge that was already learned, i.e. catastrophic forgetting [203]. Additionally, since
approaches use a static dataset to train and evaluate models, there is a risk of shifts in
the distribution when the system is engaging with real users that have dynamic tasks and
settings. Conversations are not predominant in large natural language datasets, which
exacerbates such out-of-domain scenarios. Since there is a scarcity of dialogue data com-
pared to unlabeled natural language datasets¹⁶ used to train large language models, an
important direction of research is to reduce the dependency on supervised data.

¹⁶For example, https://huggingface.co/datasets has 297 datasets for language-modeling, including C4, a
305GB dataset which is based on a web crawl. Whereas it contains only one conversational dataset. Accessed
on 23-12-2022

https://huggingface.co/datasets
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Sceduling; a practical framework with a case study in eleva-
tor dispatching

==== 2013 ====
2013-01 Viorel Milea (EUR) News Analytics for Financial

Decision Support
2013-02 Erietta Liarou (CWI) MonetDB/DataCell: Lever-

aging the Column-store Database Technology for Efficient and
Scalable Stream Processing

2013-03 Szymon Klarman (VU) Reasoning with Contexts
in Description Logics

2013-04 Chetan Yadati(TUD) Coordinating autonomous
planning and scheduling

2013-05 Dulce Pumareja (UT) Groupware Requirements
Evolutions Patterns

2013-06 Romulo Goncalves(CWI) The Data Cyclotron:
Juggling Data and Queries for a Data Warehouse Audience

2013-07 Giel van Lankveld (UvT) Quantifying Individual
Player Differences

2013-08 Robbert-Jan Merk(VU) Making enemies: cogni-
tive modeling for opponent agents in fighter pilot simulators

2013-09 Fabio Gori (RUN) Metagenomic Data Analysis:
Computational Methods and Applications

2013-10 Jeewanie Jayasinghe Arachchige(UvT) A Unified
Modeling Framework for Service Design.

2013-11 Evangelos Pournaras(TUD) Multi-level Reconfig-
urable Self-organization in Overlay Services

2013-12 Marian Razavian(VU) Knowledge-driven Migra-
tion to Services

2013-13 Mohammad Safiri(UT) Service Tailoring: User-
centric creation of integrated IT-based homecare services to
support independent living of elderly

2013-14 Jafar Tanha (UVA) EnsembleApproaches to Semi-
Supervised Learning Learning

2013-15 Daniel Hennes (UM) Multiagent Learning - Dy-
namic Games and Applications

2013-16 Eric Kok (UU) Exploring the practical benefits of
argumentation in multi-agent deliberation



2013-17 Koen Kok (VU) The PowerMatcher: Smart Coor-
dination for the Smart Electricity Grid

2013-18 Jeroen Janssens (UvT) Outlier Selection and One-
Class Classification

2013-19 Renze Steenhuizen (TUD) Coordinated Multi-
Agent Planning and Scheduling

2013-20 Katja Hofmann (UvA) Fast and Reliable Online
Learning to Rank for Information Retrieval

2013-21 SanderWubben (UvT) Text-to-text generation by
monolingual machine translation

2013-22 TomClaassen (RUN) Causal Discovery and Logic
2013-23 Patricio de Alencar Silva(UvT) Value Activity

Monitoring
2013-24 Haitham Bou Ammar (UM) Automated Transfer

in Reinforcement Learning
2013-25 Agnieszka Anna Latoszek-Berendsen (UM)

Intention-based Decision Support. A new way of representing
and implementing clinical guidelines in a Decision Support
System

2013-26 Alireza Zarghami (UT) Architectural Support for
Dynamic Homecare Service Provisioning

2013-27 Mohammad Huq (UT) Inference-based Frame-
work Managing Data Provenance

2013-28 Frans van der Sluis (UT) When Complexity be-
comes Interesting: An Inquiry into the Information eXperi-
ence

2013-29 Iwan de Kok (UT) Listening Heads
2013-30 Joyce Nakatumba (TUE) Resource-Aware Busi-

ness Process Management: Analysis and Support
2013-31 Dinh Khoa Nguyen (UvT) Blueprint Model and

Language for Engineering Cloud Applications
2013-32 Kamakshi Rajagopal (OUN) Networking For

Learning; The role of Networking in a Lifelong Learner’s Pro-
fessional Development

2013-33 Qi Gao (TUD) User Modeling and Personaliza-
tion in the Microblogging Sphere

2013-34 Kien Tjin-Kam-Jet (UT) Distributed Deep Web
Search

2013-35 Abdallah El Ali (UvA) Minimal Mobile Human
Computer Interaction Promotor: Prof. dr. L. Hardman
(CWI/UVA)

2013-36 Than Lam Hoang (TUe) Pattern Mining in Data
Streams

2013-37 Dirk Börner (OUN) Ambient Learning Displays
2013-38 Eelco den Heijer (VU) Autonomous Evolutionary

Art
2013-39 Joop de Jong (TUD) A Method for Enterprise On-

tology based Design of Enterprise Information Systems
2013-40 Pim Nijssen (UM) Monte-Carlo Tree Search for

Multi-Player Games
2013-41 Jochem Liem (UVA) Supporting the Conceptual

Modelling of Dynamic Systems: A Knowledge Engineering
Perspective on Qualitative Reasoning

2013-42 Léon Planken (TUD) Algorithms for Simple Tem-
poral Reasoning

2013-43 Marc Bron (UVA) Exploration and Contextualiza-
tion through Interaction and Concepts

==== 2014 ====
2014-01 Nicola Barile (UU) Studies in LearningMonotone

Models from Data
2014-02 Fiona Tuliyano (RUN) Combining System Dy-

namics with a Domain Modeling Method
2014-03 Sergio Raul Duarte Torres (UT) Information Re-

trieval for Children: Search Behavior and Solutions
2014-04Hanna Jochmann-Mannak (UT)Websites for chil-

dren: search strategies and interface design - Three studies on
children’s search performance and evaluation

2014-05 Jurriaan van Reijsen (UU) Knowledge Perspec-
tives on Advancing Dynamic Capability

2014-06 Damian Tamburri (VU) Supporting Networked
Software Development

2014-07 Arya Adriansyah (TUE) Aligning Observed and
Modeled Behavior

2014-08 Samur Araujo (TUD) Data Integration over Dis-
tributed and Heterogeneous Data Endpoints

2014-09 Philip Jackson (UvT) Toward Human-Level Arti-
ficial Intelligence: Representation and Computation of Mean-
ing in Natural Language

2014-10 Ivan Salvador Razo Zapata (VU) Service Value
Networks

2014-11 Janneke van der Zwaan (TUD) An Empathic Vir-
tual Buddy for Social Support

2014-12 Willem van Willigen (VU) Look Ma, No Hands:
Aspects of Autonomous Vehicle Control

2014-13 Arlette van Wissen (VU) Agent-Based Support
for Behavior Change: Models and Applications in Health and
Safety Domains

2014-14 Yangyang Shi (TUD) Language Models With
Meta-information

2014-15 Natalya Mogles (VU) Agent-Based Analysis and
Support of Human Functioning in Complex Socio-Technical
Systems: Applications in Safety and Healthcare

2014-16 Krystyna Milian (VU) Supporting trial recruit-
ment and design by automatically interpreting eligibility cri-
teria

2014-17 Kathrin Dentler (VU) Computing healthcare
quality indicators automatically: Secondary Use of Patient
Data and Semantic Interoperability

2014-18 Mattijs Ghijsen (UVA) Methods and Models for
the Design and Study of Dynamic Agent Organizations

2014-19 Vinicius Ramos (TUE) Adaptive Hypermedia
Courses: Qualitative and Quantitative Evaluation and Tool
Support

2014-20 Mena Habib (UT) Named Entity Extraction and
Disambiguation for Informal Text: The Missing Link

2014-21 Kassidy Clark (TUD) Negotiation and Monitor-
ing in Open Environments

2014-22 Marieke Peeters (UU) Personalized Educational
Games - Developing agent-supported scenario-based training

2014-23 Eleftherios Sidirourgos (UvA/CWI) Space Effi-
cient Indexes for the Big Data Era

2014-24 Davide Ceolin (VU) Trusting Semi-structured
Web Data

2014-25 Martijn Lappenschaar (RUN) New network mod-
els for the analysis of disease interaction

2014-26 Tim Baarslag (TUD) What to Bid and When to
Stop

2014-27 Rui Jorge Almeida (EUR) Conditional Density
Models Integrating Fuzzy and Probabilistic Representations of
Uncertainty

2014-28 Anna Chmielowiec (VU) Decentralized k-Clique
Matching

2014-29 Jaap Kabbedijk (UU) Variability in Multi-Tenant
Enterprise Software

2014-30 Peter de Cock (UvT) Anticipating Criminal Be-
haviour

2014-31 Leo van Moergestel (UU) Agent Technology in
Agile Multiparallel Manufacturing and Product Support

2014-32 Naser Ayat (UvA) On Entity Resolution in Prob-
abilistic Data

2014-33 Tesfa Tegegne (RUN) Service Discovery in
eHealth

2014-34 Christina Manteli(VU) The Effect of Governance
in Global Software Development: Analyzing TransactiveMem-
ory Systems.



2014-35 Joost van Ooijen (UU) Cognitive Agents in Vir-
tual Worlds: A Middleware Design Approach

2014-36 Joos Buijs (TUE) Flexible Evolutionary Algo-
rithms for Mining Structured Process Models

2014-37 Maral Dadvar (UT) Experts andMachines United
Against Cyberbullying

2014-38 Danny Plass-Oude Bos (UT) Making brain-
computer interfaces better: improving usability through post-
processing.

2014-39 Jasmina Maric (UvT) Web Communities, Immi-
gration, and Social Capital

2014-40 Walter Omona (RUN) A Framework for Knowl-
edge Management Using ICT in Higher Education

2014-41 Frederic Hogenboom (EUR) Automated Detec-
tion of Financial Events in News Text

2014-42 Carsten Eijckhof (CWI/TUD) Contextual Multi-
dimensional Relevance Models

2014-43 Kevin Vlaanderen (UU) Supporting Process Im-
provement using Method Increments

2014-44 Paulien Meesters (UvT) Intelligent Blauw. Met
als ondertitel: Intelligence-gestuurde politiezorg in gebiedsge-
bonden eenheden.

2014-45 Birgit Schmitz (OUN) Mobile Games for Learn-
ing: A Pattern-Based Approach

2014-46 Ke Tao (TUD) Social Web Data Analytics: Rele-
vance, Redundancy, Diversity

2014-47 Shangsong Liang (UVA) Fusion and Diversifica-
tion in Information Retrieval

==== 2015 ====
2015-01 Niels Netten (UvA) Machine Learning for Rele-

vance of Information in Crisis Response
2015-02 Faiza Bukhsh (UvT) Smart auditing: Innovative

Compliance Checking in Customs Controls
2015-03 Twan van Laarhoven (RUN)Machine learning for

network data
2015-04 Howard Spoelstra (OUN) Collaborations in Open

Learning Environments
2015-05 Christoph Bösch (UT) Cryptographically En-

forced Search Pattern Hiding
2015-06 Farideh Heidari (TUD) Business Process Quality

Computation - Computing Non-Functional Requirements to
Improve Business Processes

2015-07 Maria-Hendrike Peetz(UvA) Time-Aware Online
Reputation Analysis

2015-08 Jie Jiang (TUD) Organizational Compliance: An
agent-based model for designing and evaluating organiza-
tional interactions

2015-09 Randy Klaassen(UT) HCI Perspectives on Behav-
ior Change Support Systems

2015-10 Henry Hermans (OUN) OpenU: design of an in-
tegrated system to support lifelong learning

2015-11 Yongming Luo(TUE) Designing algorithms for
big graph datasets: A study of computing bisimulation and
joins

2015-12 Julie M. Birkholz (VU) Modi Operandi of Social
Network Dynamics: The Effect of Context on Scientific Collab-
oration Networks

2015-13 Giuseppe Procaccianti(VU) Energy-Efficient Soft-
ware

2015-14 Bart van Straalen (UT) A cognitive approach to
modeling bad news conversations

2015-15 Klaas Andries de Graaf (VU) Ontology-based
Software Architecture Documentation

2015-16 Changyun Wei (UT) Cognitive Coordination for
Cooperative Multi-Robot Teamwork

2015-17 André van Cleeff (UT) Physical and Digital Secu-
rity Mechanisms: Properties, Combinations and Trade-offs

2015-18 Holger Pirk (CWI) Waste Not, Want Not! - Man-
aging Relational Data in Asymmetric Memories

2015-19 Bernardo Tabuenca (OUN) Ubiquitous Technol-
ogy for Lifelong Learners

2015-20 Loïs Vanhée (UU) Using Culture and Values to
Support Flexible Coordination

2015-21 Sibren Fetter (OUN) Using Peer-Support to Ex-
pand and Stabilize Online Learning

015-22 Zhemin Zhu (UT) Co-occurrence Rate Networks
2015-23 Luit Gazendam (VU) Cataloguer Support in Cul-

tural Heritage
2015-24 Richard Berendsen (UVA) Finding People, Papers,

and Posts: Vertical Search Algorithms and Evaluation
2015-25 Steven Woudenberg (UU) Bayesian Tools for

Early Disease Detection
2015-26 Alexander Hogenboom (EUR) Sentiment Analy-

sis of Text Guided by Semantics and Structure
2015-27 Sándor Héman (CWI) Updating compressed

colomn stores
2015-28 Janet Bagorogoza(TiU) KNOWLEDGE MAN-

AGEMENT AND HIGH PERFORMANCE; The Uganda Finan-
cial Institutions Model for HPO

2015-29Hendrik Baier (UM)Monte-Carlo Tree Search En-
hancements for One-Player and Two-Player Domains

2015-30 Kiavash Bahreini(OU) Real-time Multimodal
Emotion Recognition in E-Learning

2015-31 Yakup Koç (TUD) On the robustness of Power
Grids

2015-32 Jerome Gard(UL) Corporate Venture Manage-
ment in SMEs

2015-33 Frederik Schadd (TUD) Ontology Mapping with
Auxiliary Resources

2015-34 Victor de Graaf(UT) Gesocial Recommender Sys-
tems

2015-35 Jungxao Xu (TUD) Affective Body Language of
Humanoid Robots: Perception and Effects in Human Robot In-
teraction

==== 2016 ====
2016-01 Syed Saiden Abbas (RUN) Recognition of Shapes

by Humans and Machines
2016-02 Michiel Christiaan Meulendijk (UU) Optimizing

medication reviews through decision support: prescribing a
better pill to swallow

2016-03 Maya Sappelli (RUN) Knowledge Work in Con-
text: User Centered Knowledge Worker Support

2016-04 Laurens Rietveld (VU) Publishing and Consum-
ing Linked Data

2016-05 Evgeny Sherkhonov (UVA) Expanded Acyclic
Queries: Containment and an Application in Explaining Miss-
ing Answers

2016-06 Michel Wilson (TUD) Robust scheduling in an
uncertain environment

2016-07 Jeroen de Man (VU) Measuring and modeling
negative emotions for virtual training

2016-08Matje van de Camp (TiU) A Link to the Past: Con-
structing Historical Social Networks from Unstructured Data

2016-09 Archana Nottamkandath (VU) Trusting Crowd-
sourced Information on Cultural Artefacts

2016-10 George Karafotias (VUA) Parameter Control for
Evolutionary Algorithms

2016-11 Anne Schuth (UVA) Search Engines that Learn
from Their Users

2016-12 Max Knobbout (UU) Logics for Modelling and
Verifying Normative Multi-Agent Systems

2016-13 Nana Baah Gyan (VU) The Web, Speech Tech-
nologies and Rural Development in West Africa - An ICT4D
Approach



2016-14 Ravi Khadka (UU) Revisiting Legacy Software
System Modernization

2016-15 Steffen Michels (RUN) Hybrid Probabilistic Log-
ics - Theoretical Aspects, Algorithms and Experiments

2016-16 Guangliang Li (UVA) Socially Intelligent Au-
tonomous Agents that Learn from Human Reward

2016-17 Berend Weel (VU) Towards Embodied Evolution
of Robot Organisms

2016-18 Albert Meroño Peñuela (VU) Refining Statistical
Data on the Web

2016-19 Julia Efremova (Tu/e) Mining Social Structures
from Genealogical Data

2016-20 Daan Odijk (UVA) Context & Semantics in News
& Web Search

2016-21 Alejandro Moreno Celleri (UT) From Traditional
to Interactive Playspaces: Automatic Analysis of Player Behav-
ior in the Interactive Tag Playground

2016-22 Grace Lewis (VU) Software Architecture Strate-
gies for Cyber-Foraging Systems

2016-23 Fei Cai (UVA) Query Auto Completion in Infor-
mation Retrieval

2016-24 BrendWanders (UT) Repurposing and Probabilis-
tic Integration of Data; An Iterative and data model indepen-
dent approach

2016-25 Julia Kiseleva (TU/e) Using Contextual Informa-
tion to Understand Searching and Browsing Behavior

2016-26 Dilhan Thilakarathne (VU) In or Out of Control:
Exploring Computational Models to Study the Role of Human
Awareness and Control in Behavioural Choices, with Applica-
tions in Aviation and Energy Management Domains

2016-27 Wen Li (TUD) Understanding Geo-spatial Infor-
mation on Social Media

2016-28 Mingxin Zhang (TUD) Large-scale Agent-based
Social Simulation - A study on epidemic prediction and control

2016-29 Nicolas Höning (TUD) Peak reduction in decen-
tralised electricity systems -Markets and prices for flexible
planning

2016-30 Ruud Mattheij (UvT) The Eyes Have It
2016-31 Mohammad Khelghati (UT) Deep web content

monitoring
2016-32 Eelco Vriezekolk (UT) Assessing Telecommuni-

cation Service Availability Risks for Crisis Organisations
2016-33 Peter Bloem (UVA) Single Sample Statistics, exer-

cises in learning from just one example
2016-34 Dennis Schunselaar (TUE) Configurable Process

Trees: Elicitation, Analysis, and Enactment
2016-35 Zhaochun Ren (UVA) Monitoring Social Media:

Summarization, Classification and Recommendation
2016-36 Daphne Karreman (UT) Beyond R2D2: The de-

sign of nonverbal interaction behavior optimized for robot-
specific morphologies

2016-37 Giovanni Sileno (UvA) Aligning Law and Action
- a conceptual and computational inquiry

2016-38 Andrea Minuto (UT) MATERIALS THAT MAT-
TER - Smart Materials meet Art & Interaction Design

2016-39 Merijn Bruijnes (UT) Believable Suspect Agents;
Response and Interpersonal Style Selection for an Artificial
Suspect

2016-40 Christian Detweiler (TUD) Accounting for Val-
ues in Design

2016-41 Thomas King (TUD) Governing Governance: A
Formal Framework for Analysing Institutional Design and En-
actment Governance

2016-42 Spyros Martzoukos (UVA) Combinatorial and
Compositional Aspects of Bilingual Aligned Corpora

2016-43 Saskia Koldijk (RUN) Context-Aware Support for
Stress Self-Management: From Theory to Practice

2016-44 Thibault Sellam (UVA) Automatic Assistants for
Database Exploration

2016-45 Bram van de Laar (UT) Experiencing Brain-
Computer Interface Control

2016-46 Jorge Gallego Perez (UT) Robots to Make you
Happy

2016-47 Christina Weber (UL) Real-time foresight - Pre-
paredness for dynamic innovation networks

2016-48 Tanja Buttler (TUD) Collecting Lessons Learned
2016-49 Gleb Polevoy (TUD) Participation and Interac-

tion in Projects. A Game-Theoretic Analysis
2016-50 Yan Wang (UVT) The Bridge of Dreams: To-

wards a Method for Operational Performance Alignment in IT-
enabled Service Supply Chains

==== 2017 ====
2017-01 Jan-Jaap Oerlemans (UL) Investigating Cyber-

crime
2017-02 Sjoerd Timmer (UU) Designing and Understand-

ing Forensic Bayesian Networks using Argumentation
2017-03 Daniël Harold Telgen (UU) Grid Manufacturing;

A Cyber-Physical Approach with Autonomous Products and
Reconfigurable Manufacturing Machines

2017-04 Mrunal Gawade (CWI) MULTI-CORE PARAL-
LELISM IN A COLUMN-STORE

2017-05 Mahdieh Shadi (UVA) Collaboration Behavior
2017-06 Damir Vandic (EUR) Intelligent Information Sys-

tems for Web Product Search
2017-07 Roel Bertens (UU) Insight in Information: from

Abstract to Anomaly
2017-08 Rob Konijn (VU) Detecting Interesting Differ-

ences:Data Mining in Health Insurance Data using Outlier De-
tection and Subgroup Discovery

2017-09 Dong Nguyen (UT) Text as Social and Cultural
Data: A Computational Perspective on Variation in Text

2017-10 Robby van Delden (UT) (Steering) Interactive
Play Behavior

2017-11 Florian Kunneman (RUN) Modelling patterns of
time and emotion in Twitter #anticipointment

2017-12 Sander Leemans (TUE) Robust Process Mining
with Guarantees

2017-13 Gijs Huisman (UT) Social Touch Technology - Ex-
tending the reach of social touch through haptic technology

2017-14 Shoshannah Tekofsky (UvT) You Are Who You
Play You Are: Modelling Player Traits from Video Game Be-
havior

2017-15 Peter Berck, Radboud University (RUN)Memory-
Based Text Correction

2017-16 Aleksandr Chuklin (UVA) Understanding and
Modeling Users of Modern Search Engines

2017-17 Daniel Dimov (UL) Crowdsourced Online Dis-
pute Resolution

2017-18 Ridho Reinanda (UVA) Entity Associations for
Search

2017-19 Jeroen Vuurens (TUD) Proximity of Terms, Texts
and Semantic Vectors in Information Retrieval

2017-20 Mohammadbashir Sedighi (TUD) Fostering En-
gagement in Knowledge Sharing: The Role of Perceived Bene-
fits, Costs and Visibility

2017-21 Jeroen Linssen (UT) Meta Matters in Interactive
Storytelling and Serious Gaming (A Play on Worlds)

2017-22 Sara Magliacane (VU) Logics for causal inference
under uncertainty

2017-23 David Graus (UVA) Entities of Interest— Discov-
ery in Digital Traces

2017-24 Chang Wang (TUD) Use of Affordances for Effi-
cient Robot Learning



2017-25 Veruska Zamborlini (VU) Knowledge Represen-
tation for Clinical Guidelines, with applications to Multimor-
bidity Analysis and Literature Search

2017-26 Merel Jung (UT) Socially intelligent robots that
understand and respond to human touch

2017-27 Michiel Joosse (UT) Investigating Positioning
andGaze Behaviors of Social Robots: People’s Preferences, Per-
ceptions and Behaviors

2017-28 John Klein (VU) Architecture Practices for Com-
plex Contexts

2017-29 Adel Alhuraibi (UVT) From IT-BusinessStrategic
Alignment to Performance: A Moderated Mediation Model of
Social Innovation, and Enterprise Governance of IT

2017-30Wilma Latuny (UVT)The Power of Facial Expres-
sions

2017-31 Ben Ruijl (UL) Advances in computational meth-
ods for QFT calculations

2017-32 Thaer Samar (RUN) Access to and Retrievability
of Content in Web Archives

2017-33 Brigit van Loggem (OU) Towards a Design Ra-
tionale for Software Documentation: A Model of Computer-
Mediated Activity

2017-34 Maren Scheffel (OUN) The Evaluation Frame-
work for Learning Analytics

2017-35 Martine de Vos (VU) Interpreting natural science
spreadsheets

2017-36 Yuanhao Guo (UL) Shape Analysis for Phenotype
Characterisation from High-throughput Imaging

2017-37 Alejandro Montes García (TUE) WiBAF: A
Within Browser Adaptation Framework that Enables Control
over Privacy

2017-38 Alex Kayal (TUD) Normative Social Applications
2017-39 Sara Ahmadi (RUN) Exploiting properties of the

human auditory system and compressive sensing methods to
increase noise robustness in ASR

2017-40 Altaf Hussain Abro (VUA) Steer your Mind:
Computational Exploration of Human Control in Relation
to Emotions, Desires and Social Support For applications in
human-aware support systems”

2017-41 Adnan Manzoor (VUA) Minding a Healthy
Lifestyle: An Exploration of Mental Processes and a Smart En-
vironment to Provide Support for a Healthy Lifestyle

2017-42 Elena Sokolova (RUN) Causal discovery from
mixed and missing data with applications on ADHD datasets

2017-43 Maaike de Boer (RUN) Semantic Mapping in
Video Retrieval

2017-44 Garm Lucassen (UU) Understanding User Stories
- Computational Linguistics in Agile Requirements Engineer-
ing

2017-45 Bas Testerink (UU) Decentralized Runtime Norm
Enforcement

2017-46 Jan Schneider (OU) Sensor-based Learning Sup-
port

2017-47 Yie Yang (TUD) Crowd Knowledge Creation Ac-
celeration

2017-48 Angel Suarez (OU) Collaborative inquiry-based
learning

==== 2018 ====
2018-01 Han van der Aa (VUA) Comparing and Aligning

Process Representations
2018-02 Felix Mannhardt (TUE) Multi-perspective Pro-

cess Mining
2018-03 Steven Bosems (UT) Causal Models For Well-

Being: Knowledge Modeling, Model-Driven Development of
Context-Aware Applications, and Behavior Prediction

2018-04 Jordan Janeiro (TUD) Flexible Coordination Sup-
port for Diagnosis Teams in Data-Centric Engineering Tasks

2018-05 Hugo Huurdeman (UVA) Supporting the Com-
plex Dynamics of the Information Seeking Process

2018-06 Dan Ionita (UT) Model-Driven Information Secu-
rity Risk Assessment of Socio-Technical Systems

2018-07 Jieting Luo (UU) A formal account of oppor-
tunism in multi-agent systems

2018-08 Rick Smetsers (RUN) Advances in Model Learn-
ing for Software Systems

2018-09 Xu Xie (TUD) Data Assimilation in Discrete
Event Simulations

2018-10 JulienkaMollee (VUA)Moving forward: support-
ing physical activity behavior change through intelligent tech-
nology

2018-11Mahdi Sargolzaei (UVA) Enabling Framework for
Service-oriented Collaborative Networks

2018-12 Xixi Lu (TUE) Using behavioral context in pro-
cess mining

2018-13 Seyed Amin Tabatabaei (VUA) Using behavioral
context in process mining: Exploring the added value of com-
putational models for increasing the use of renewable energy
in the residential sector

2018-14 Bart Joosten (UVT) Detecting Social Signals with
Spatiotemporal Gabor Filters

2018-15 Naser Davarzani (UM) Biomarker discovery in
heart failure

2018-16 Jaebok Kim (UT) Automatic recognition of en-
gagement and emotion in a group of children

2018-17 Jianpeng Zhang (TUE) On Graph Sample Cluster-
ing

2018-18 Henriette Nakad (UL) De Notaris en Private
Rechtspraak

2018-19 Minh Duc Pham (VUA) Emergent relational
schemas for RDF

2018-20 Manxia Liu (RUN) Time and Bayesian Networks
2018-21 Aad Slootmaker (OUN) EMERGO: a generic plat-

form for authoring and playing scenario-based serious games
2018-22 Eric Fernandes de Mello Araújo (VUA) Conta-

gious: Modeling the Spread of Behaviours, Perceptions and
Emotions in Social Networks

2018-23 Kim Schouten (EUR) Semantics-driven Aspect-
Based Sentiment Analysis

2018-24 Jered Vroon (UT) Responsive Social Positioning
Behaviour for Semi-Autonomous Telepresence Robots

2018-25 Riste Gligorov (VUA) Serious Games in Audio-
Visual Collections

2018-26 Roelof de Vries (UT) Theory-Based And Tailor-
Made: Motivational Messages for Behavior Change Technol-
ogy

2018-27Maikel Leemans (TUE) Hierarchical Process Min-
ing for Scalable Software Analysis

2018-28 Christian Willemse (UT) Social Touch Technolo-
gies: How they feel and how they make you feel

2018-29 Yu Gu (UVT) Emotion Recognition from Man-
darin Speech

2018-30 Wouter Beek (VU) The ”K” in ”semantic web”
stands for ”knowledge”: scaling semantics to the web

==== 2019 ====
2019-01 Rob van Eijk (UL) Web privacy measurement in

real-time bidding systems. A graph-based approach to RTB
system classification

2019-02 Emmanuelle Beauxis- Aussalet (CWI, UU) Statis-
tics and Visualizations for Assessing Class Size Uncertainty

2019-03 Eduardo Gonzalez Lopez de Murillas (TUE) Pro-
cess Mining on Databases: Extracting Event Data from Real
Life Data Sources

2019-04 Ridho Rahmadi (RUN) Finding stable causal
structures from clinical data



2019-05 Sebastiaan van Zelst (TUE) Process Mining with
Streaming Data

2019-06 Chris Dijkshoorn (VU) Nichesourcing for Im-
proving Access to Linked Cultural Heritage Datasets

2019-07 Soude Fazeli (TUD) Recommender Systems in So-
cial Learning Platforms

2019-08 Frits de Nijs (TUD) Resource-constrained Multi-
agent Markov Decision Processes

2019-09 Fahimeh Alizadeh Moghaddam (UVA) Self-
adaptation for energy efficiency in software systems

2019-10 Qing Chuan Ye (EUR) Multi-objective Optimiza-
tion Methods for Allocation and Prediction

2019-11 Yue Zhao (TUD) Learning Analytics Technology
to Understand Learner Behavioral Engagement in MOOCs

2019-12 Jacqueline Heinerman (VU) Better Together
2019-13 Guanliang Chen (TUD) MOOC Analytics:

Learner Modeling and Content Generation
2019-14 Daniel Davis (TUD) Large-Scale Learning Ana-

lytics: Modeling Learner Behavior & Improving Learning Out-
comes in Massive Open Online Courses

2019-15 Erwin Walraven (TUD) Planning under Uncer-
tainty in Constrained and Partially Observable Environments

2019-16 Guangming Li (TUE) Process Mining based on
Object-Centric Behavioral Constraint (OCBC) Models

2019-17 Ali Hurriyetoglu (RUN) Extracting actionable in-
formation from microtexts

2019-18 Gerard Wagenaar (UU) Artefacts in Agile Team
Communication

2019-19 Vincent Koeman (TUD) Tools for Developing
Cognitive Agents

2019-20 Chide Groenouwe (UU) Fostering technically
augmented human collective intelligence

2019-21 Cong Liu (TUE) Software Data Analytics: Archi-
tectural Model Discovery and Design Pattern Detection

2019-22 Martin van den Berg (VU) Improving IT Deci-
sions with Enterprise Architecture

2019-23 Qin Liu (TUD) Intelligent Control Systems:
Learning, Interpreting, Verification

2019-24 Anca Dumitrache (VU) Truth in Disagreement-
Crowdsourcing Labeled Data for Natural Language Processing

2019-25 Emiel van Miltenburg (UVT) Pragmatic factors
in (automatic) image description

2019-26 Prince Singh (UT) An Integration Platform for
Synchromodal Transport

2019-27 Alessandra Antonaci (OUN) The Gamification
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