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Abstract 

Background: High-dimensional prediction considers data with more variables than 
samples. Generic research goals are to find the best predictor or to select variables. 
Results may be improved by exploiting prior information in the form of co-data, 
providing complementary data not on the samples, but on the variables. We consider 
adaptive ridge penalised generalised linear and Cox models, in which the variable-
specific ridge penalties are adapted to the co-data to give a priori more weight to 
more important variables. The R-package ecpc originally accommodated various and 
possibly multiple co-data sources, including categorical co-data, i.e. groups of variables, 
and continuous co-data. Continuous co-data, however, were handled by adaptive 
discretisation, potentially inefficiently modelling and losing information. As continuous 
co-data such as external p values or correlations often arise in practice, more generic 
co-data models are needed.

Results: Here, we present an extension to the method and software for generic 
co-data models, particularly for continuous co-data. At the basis lies a classical linear 
regression model, regressing prior variance weights on the co-data. Co-data vari-
ables are then estimated with empirical Bayes moment estimation. After placing the 
estimation procedure in the classical regression framework, extension to generalised 
additive and shape constrained co-data models is straightforward. Besides, we show 
how ridge penalties may be transformed to elastic net penalties. In simulation stud-
ies we first compare various co-data models for continuous co-data from the exten-
sion to the original method. Secondly, we compare variable selection performance to 
other variable selection methods. The extension is faster than the original method and 
shows improved prediction and variable selection performance for non-linear co-data 
relations. Moreover, we demonstrate use of the package in several genomics examples 
throughout the paper.

Conclusions: The R-package ecpc accommodates linear, generalised additive 
and shape constrained additive co-data models for the purpose of improved high-
dimensional prediction and variable selection. The extended version of the package as 
presented here (version number 3.1.1 and higher) is available on (https:// cran.r- proje ct. 
org/ web/ packa ges/ ecpc/).
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Background
Generalised linear models (GLMs) [1] are the cornerstone of many statistical models 
for prediction and variable selection purposes, modelling the relation between outcome 
data and observed data. When observed data are high-dimensional, with the number 
of variables far exceeding the number of samples, these models may be penalised to 
account for the high-dimensionality. Well known examples include the ridge [2], lasso 
[3] and elastic net penalty [4]. One of the main assumptions underlying generalised lin-
ear models is that all variables are exchangeable. In many high-dimensional settings, 
however, this assumption is questionable [5]. For example, in cancer genomics, variables 
may be grouped according to some biological function. Variables within these groups 
may have a similar effect, while variables from different groups have a different effect. 
Hence, variables are exchangeable within groups, but not between groups. To alleviate 
the exchangeability assumption, shared information may be modelled explicitly in the 
prior distribution of the variables, e.g. by introducing shared group penalties, penalis-
ing variables in a group similarly and penalising more important groups of variables 
relatively less (as done by [6]). The shared prior information may be represented in data 
matrices, called co-data, to distinguish the main, observed data with information on the 
samples from the complementary data with information on the variables. In genomics, 
for example, the co-data matrix columns may contain p values representing the strength 
of association between each variable and outcome from external studies, correlations 
between mRNA and DNA, dummy variables for chromosomes and pathway informa-
tion. When the co-data are related to the effect sizes of variables, these data may be 
exploited to improve prediction and variable selection in high-dimensional data settings.

Various R-packages accommodate approaches to incorporate some form of co-data. 
Early methods such as grplasso [7] and gglasso [8] allow for categorical, or grouped, 
co-data, by using group lasso penalties. As these penalties are governed by one over-
all penalty parameter, these types of penalties may be not flexible enough to model 
the relation between the effect sizes and grouped co-data. To increase this flexibility, 
other methods were developed that estimate multiple, group-specific penalty (or prior) 
parameters, using efficient empirical Bayes approaches. Examples include GRridge [6] 
for group-adaptive ridge penalties (normal priors), graper [9] for group-adaptive spike-
and-slab priors and gren [10] for group-adaptive elastic net priors. Our method ecpc 
[11] presents a flexible empirical Bayes approach to extend the use of grouped co-data 
to various other (and potentially multiple) co-data types, such as hierarchical groups 
(e.g. gene ontologies) and continuous co-data, for multi-group adaptive ridge penalties. 
For continuous co-data, however, the normal prior variances corresponding to the ridge 
penalties are not modelled as a function of the continuous co-data variable, but rather 
as a function of groups of variables corresponding to the adaptively discretised co-data 
variable. When the relation between the prior variance and continuous co-data is non-
constant and/or “simple”, e.g. linear, the adaptive discretisation may lead to a loss of 
information and/or inefficiently model the relation. The package fwelnet [12] develops 
feature-weighted elastic net for continuous co-data specifically (there called “features of 
features”). Regression coefficients are estimated jointly with co-data variable weights, 
modelling the variable-specific elastic net penalties by a normalised, exponential func-
tion of the co-data. For categorical co-data, fwelnet boils down to an elastic net penalty 
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on the group level [12], governed by one overall penalty parameter. Hence, it may lack 
flexibility when compared to empirical Bayes methods estimating multiple penalties. 
The package squeezy [13] presents fast approximate marginal likelihood estimates for 
group-adaptive elastic net penalties, but is available for grouped co-data only.

Here, we present an extension of the R-package ecpc to generic co-data models, in 
particular for continuous co-data such as external p values. First, we show how a clas-
sical linear regression model may be used to regress the (unknown) variable-specific 
normal prior variances on the co-data. This provides a flexible parsimonious framework 
to obtain feature-specific penalties. The co-data variable weights are estimated with an 
empirical Bayes moment estimator, slightly modified from [11]. Then, we present how 
the estimation procedure may be extended straightforwardly to model the relation 
between the prior variances and co-data by generalised additive models [14] for model-
ling non-linear functions and by shape constrained additive models [15], e.g. for positive 
and monotonically increasing functions. This extension benefits the stability and inter-
pretation of the estimated relation between co-data and the prior variances, especially 
when a basic linear model does not represent this relation well. Besides, we use ideas 
from [13] to transform the adaptive ridge penalties to elastic net penalties using the 
package squeezy. Either this approach or the previously implemented posterior selec-
tion approaches [11] may be used for variable selection.

Contributions

The empirical Bayes estimation method [11] is extended to the continuous case. The 
main contributions of this software paper, newly extending the existing R-package ecpc, 
are as follows:

• Co-data are provided to the main function ecpc() in the more generic format of 
a co-data matrix (input argument Z), instead of a list of group sets (input argument 
groupsets). Besides dummy variables for group membership information, a co-
data matrix may contain continuous co-data.

• The empirical Bayes estimates may be additionally penalised with a generalised ridge 
penalty (input argument paraPen, similar to the R-package mgcv) and/or subjected 
to constraints (input argument paraCon). This may be used to model the prior vari-
ances as non-linear and/or shape-constrained function of the co-data.

• The adaptive ridge penalty estimates given by ecpc() may be transformed with 
squeezy() to elastic net penalties to obtain sparse regression coefficient estimates.

Implementation
The main function in the R-package is the eponymous function ecpc(), which fits a 
ridge penalised generalised linear model by estimating the co-data variable weights 
and regression coefficients subsequently. The function outputs an object of the S3-class 
‘ecpc’, for which the methods summary(), print(), plot(), predict() and 
coef() have been implemented. See the index in ?“ecpc-package” for a list of all 
functions, including functions for preparing and visualising co-data, or see Fig. 1 for a 
cheat sheet of the main functions and workflow of the package.
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Data input

The function ecpc() considers the following data. The response data Y ∈ R
n are given 

in input argument Y. The observed high-dimensional data X ∈ R
n×p with p ≫ n , which 

contain information on the n samples of Y  , are given in X. The co-data of possibly mul-
tiple co-data matrices Z(d) ∈ R

p×Gd , d = 1, . . . ,D , which contain prior information on 
the p variables of X, are given in Z. Generally, co-data matrices may include continu-
ous or categorical co-data. For categorical co-data, dummy variables should be provided. 
For categorical co-data with overlapping categories, dummy variables may be weighted 
accordingly to account for multiplicity (see [11]). The helper function createZ-
forGroupset() may be used to create a co-data matrix from a list of (overlapping) 
groups. Co-data should not contain missing values. When the missingness is deemed 
uninformative, existing methods may be used to impute the missing values, e.g. by the 
co-data variable mean. When the missingness is suspected to be informative, missing 
values should be set to 0 and an extra categorical co-data variable (1 for missing 0 else) 
should be included.

Response model and co‑data model

Currently, ecpc() allows for a linear, logistic and Cox survival model (input argu-
ment model). Generally, the response is modelled with a generalised linear (or Cox) 
model with canonical link function g(·) , parameterised with regression coefficients 
β ∈ R

p . Furthermore, the regression coefficients follow a normal prior, with variance 
vk , k = 1, . . . , p, inversely proportional to the variable-specific ridge penalty, in which the 

Fig. 1 Cheat sheet for the main functions and work flow of the R-package ecpc, available as pdf-file on 
https:// github. com/ Mirre lijn/ ecpc

https://github.com/Mirrelijn/ecpc
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prior variance is regressed on the co-data. First, consider the linear co-data model in 
which the prior variance is modelled as a linear function of the co-data:

with X i and Zk the ith and kth row of X and Z respectively, γ (d) ∈ R
G the co-data variable 

weights for co-data matrix d, w the co-data matrix weights and τ 2global a scaling factor 
which may improve numerical computations in practice. The linear co-data model and 
interpretation of the prior parameters are illustrated in Fig. 2. When the data X consist 
of multiple data modalities, like gene expression data, copy number data and methyla-
tion data in genomics, scaling factors specific to the data modalities may be used [16, 17] 
and estimated with ecpc.

Co‑data models

The extension of ecpc implements three types of co-data models, based on a linear 
model, generalised additive model [14] and shape-constrained additive model [15]. 
The flexibility of the additive models is important in case the relation between the co-
data variables and effect sizes is non-linear. A linear co-data model then inadequately 
exploits the co-data, while additive models are able to adapt to the underlying rela-
tion, as illustrated in Fig. 3. For illustration, consider one co-data source with G co-
data variables and set the scaling parameter τ 2global to 1:

(1)

Yi|X i,β
ind.
∼ π(Yi|X i,β), EYi|X i ,β(Yi) = g−1(X iβ), i = 1, . . . , n,

βk
ind.
∼ N (0, vk), vk = τ 2global

D

d=1

wdZ
(d)
k γ (d), k = 1, . . . , p,

Categorical co−data, d=1

v k

Continuous co−data, d=2

v k

Fig. 2 Illustration of the linear co-data model. Given the true effect sizes β2
k  (points), the prior parameters 

may be interpreted as follows: (i) the scaling factor τ 2global (grey dashed line) quantifies the overall expected 
effect size, which is independent of the co-data; (ii) each scaled co-data variable weight τ 2globalγ

(d)
g  (black 

dashed lines) quantifies the expected effect size in a group for categorical co-data or the expected increase 
in effect size for one unit increase in continuous co-data, i.e. the slope of the line; (iii) the co-data weights 
wd , d = 1, 2 , then quantify importance of multiple co-data sets. Note that in practice, the true effect sizes are 
unknown and estimation of the prior parameters is done by the empirical Bayes approach described below
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with Zg extended to continuous co-data, sg a smooth function and cg some shape-con-
strained function, e.g. monotone or convex, both applied element-wise. Generally, the 
larger the variable-specific prior variance, the smaller the corresponding ridge penalty 
and the larger the a priori expected variable effect size.

In practice, the smooth and shape-constrained functions are estimated by using a 
basis expansion to recast the problem into a (constrained) linear model (as originally 
proposed by, for example, [18]). So, for a basis expansion consisting of Jg basis functions 
φg ,j(·) , j = 1, . . . , Jg , for co-data variable Zg:

with �g ∈ R
p×Jg the matrix of co-data variable vector Zg ∈ R

p evaluated in all Jg basis 
functions. Any basis expansion may be used by supplying the corresponding basis 
expansion matrix �g as co-data in input argument Z in ecpc().

Choice of basis expansion

The type and number of basis functions should in general be chosen such that they are 
flexible enough to approximate the underlying function well. To avoid overfitting for too 
many basis functions, the coefficients may be estimated by optimising the likelihood 
penalised by a smoothing penalty. While our software allows the user to supply any basis 
expansion, we focus here on the popular p-splines (see [19] for an introduction). This 
approach combines flexible spline basis functions with a quadratic smoothing penalty 

v =

G
∑

g=1

Zgγg (linear co-data model)

v =

G
∑

g=1

sg (Zg ) (generalised additive co-data model)

v =

G
∑

g=1

cg (Zg ) (shape-constrained additive co-data model)

sg (Zg ) =

Jg
∑

j=1

φg ,j(Zg )γg ,j = �gγ g , v =

G
∑

g=1

�gγ g ,

Continuous co−data

v k

Continuous co−data

v k

Fig. 3 Illustration of the non-linear co-data models. Given the true effect sizes β2
k  (points), a linear co-data 

model may capture the relation insufficiently, making estimation of non-linear relations desirable. A 
generalised additive model estimates a smooth non-linear relation. Additionally, one may further impose 
constraints, e.g. monotonicity (left) or convexity (right), in a shape-constrained additive model
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on the differences of the spline coefficients (difference penalty matrix Sg in Equation (5)). 
The level of smoothness is then automatically tuned by estimation of the smoothing pen-
alty ( �g in Eq. (5)). For shape-constrained functions, we consider a p-spline basis expan-
sion and constrain the spline coefficients [15].

The helper function createZforsplines() may be used to create the p-splines 
expansion matrix �g corresponding to co-data variable Zg for input argument Z. The 
function createS() may be used to create the corresponding difference penalty 
matrix Sg for input argument paraPen. The function createCon() may be used to 
create constraints for functions that are positive, monotonically increasing or decreas-
ing, convex or concave, or any combination thereof.

Model parameters estimation

Prior parameters and regression coefficients are estimated with an empirical Bayes 
approach, following [11]. In short, first the global scaling parameter τ 2global is estimated, 
then the co-data variable weights γ (d) for each co-data matrix d separately and then the 
co-data weights w . To ensure stability and identifiability of the estimates when co-data 
variables or sources are (increasingly) correlated, the co-data variable weights γ (d) may 
be penalised (e.g. see Eq. (5)) and the co-data source weights are estimated subject to the 
constraint w ≥ 0 . After, given the prior parameter estimates, the regression coefficients 
β are estimated by maximising the penalised likelihood (equivalent to maximising the 
posterior).

Here, the empirical Bayes estimation for the co-data variable weights γ (d) [11] is 
extended for continuous co-data. The co-data variable weights are estimated with 
moment estimation by equating theoretical moments to empirical moments. For co-data 
that represent groups of variables [11], the empirical moments are averaged over all vari-
ables in that group, leading to a linear system of G equations and G unknowns. For con-
tinuous co-data, we simply form one group per variable, leading to the following linear 
system of p equations and G unknowns:

with ◦ representing the Hadamard (element-wise) product. C ∈ R
p×p and b ∈ R

p are 
derived in [11] and given by:

with β̃ the maximum penalised likelihood estimate given an initial τ̃ 2global and corre-
sponding constant diagonal ridge penalty matrix �̃ , with W a diagonal weight matrix 
used in the iterative weighted least squares algorithm to fit β̃ , and with ṽ an estimate for 
the variance of β̃ with respect to the response data Y.

Note that storing the matrix C is memory-costly as it is a p× p-dimensional 
matrix with p potentially tens of thousands of variables. C can, however, be writ-
ten as matrix product of two smaller matrices C = LR with L ∈ R

p×n and R ∈ R
n×p . 

Instead of computing and storing C in one go, we compute it per block of b rows to 

(2)(C ◦ C)Zγ = b,

C = (XT
WX + �̃)−1

X
T
WX , b = β̃ .2 − ṽ,

ṽ = diag((XT
WX + �̃)−1

X
T
WX(XT

WX + �̃)−1),
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alleviate memory costs: for each block of rows Cblock we only need to store the elements 
of (Cblock ◦ Cblock)Z ∈ R

b×G.
The main estimating equation boils down to solving a linear system, which is solved as 

is for linear co-data models, penalised with a generalised ridge penalty for generalised 
additive models or solved under constraints plus possibly penalised with a generalised 
ridge penalty for shape-constrained additive co-data models. The penalisation on the 
level of prior parameters ensures stable estimation of the co-data weights.

Linear co‑data model

As the prior variance has to be positive, the resulting prior variance estimate is trun-
cated at 0 after solving the linear system from (2):

In generalised linear models it is common to use a log-link for the response to 
enforce positivity, resulting in positive, multiplicative effects. Note that here, how-
ever, Equation (2) is the result of equating theoretical to empirical moments. Replac-
ing b by log(b) would violate the moment equalities. Also, if we would enforce 
positivity instead by, for example, substituting Zγ directly by v = exp(Zγ ′) , the 
moment equations would not be linear anymore in γ , nor multiplicative, e.g. as 
(C ◦ C) exp(Zγ ) �= exp((C ◦ C)Zγ ) =

∏G
g=1 exp((C ◦ C)Zgγg ) , with Zg the gth co-data 

variable. Hence, the advantage of simply post-hoc truncating Zγ̂ is that the system of 
equations in see Eq. (3) is easily solved. Alternatively, shape constrained co-data models 
may be used to enforce positivity, as explained further on.

Generalised additive co‑data model

For estimating the generalised additive co-data model coefficients in a non-linear co-
data model, the least squares estimate in Eq.  (3) is extended by penalising the coeffi-
cients with a difference penalty matrix Sg with smoothing penalty parameter �g.

with ZGAM = [�1, . . . ,�G] the matrix of spline basis expansions for all G co-data vari-
ables and γGAM = (γ T

1 , . . . , γ
T
G)

T the vector of all spline coefficients. This least-squares 
equation is of a form also known as penalised signal regression [20] and can be solved 
by the function gam() (or bam() for big data) of the R-package mgcv, for example. 
This function also provides fast and stable estimation of the penalties �g [21] for mul-
tiple co-data sources and possibly multiple penalty matrices per co-data source jointly. 
Alternatively, when only one smoothing penalty matrix is provided per co-data source, 
the smoothing penalty and spline coefficients may be estimated per co-data source sepa-
rately by using random splits as proposed in [11]. Our software uses bam() to solve 
γ̂ by default and allows for random splits when only one smoothing penalty matrix is 
provided.

(3)γ̂ = argmin
γ

||(C ◦ C)Zγ − b||22, v̂ = (Zγ̂ )+.

(4)
γ̂GAM = argmin

γ







||(C ◦ C)ZGAMγ − b||22 +

G
�

g=1

�gγ
TSgγ







,

v̂ = (ZGAM γ̂GAM)+,
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Shape‑constrained additive co‑data model

Prior assumptions on the shape of the relation between the prior variance and co-
data, such as monotonicity or convexity, may be imposed by constrained optimisation 
of spline coefficients [15]. The co-data weight estimate is given by subjecting the pos-
sible solution of Eq. (4) to (in)equality constraints given in matrix M(in)eq,g and vector 
b(in)eq,g:

Several shapes may be imposed by choosing Mineq and bineq accordingly [15]: (i) positiv-
ity may be imposed by constraining the spline coefficients to be positive; (ii) monotoni-
cally increasing (decreasing) may be imposed by constraining the first order differences 
γi+1 − γi to be positive (negative); (iii) convexity (concavity) may be imposed by con-
straining second order differences γi+2 − 2γi+1 + γi to be positive (negative); (iv) any 
combination of the shapes i-iii may be imposed by combining the corresponding 
constraints.

In [15] shape-constrained p-splines are developed to handle difficulties in opti-
mising multiple smoothing penalties due to discontinuous gradients. Their R-pack-
age scam, however, cannot be readily used for signal regression, which differs from 
regular regression in that the spline basis matrix is multiplied by the known matrix 
(C ◦ C) . Moreover, the smoothing parameter estimates are estimated using a general-
ised cross-validation (GCV) criterion, which we show below to overfit in the uncon-
strained case. Therefore, we rely on the simple approach of directly constraining the 
spline coefficients as in Equation (5).

We use the approach proposed in [11] to estimate the smoothing penalties: first we 
estimate the smoothing penalties �g separately for each co-data variable Zg using ran-
dom splits of the data. As this optimisation is in one dimension only, we use Brent’s 
algorithm from the general purpose optimisation R-package optim, which should be 
sufficient to handle discontinuous gradients. Then we estimate the spline coefficients 
γ g for each co-data variable Zg and corresponding spline basis function matrix �g.

When at least one of the co-data models is shape-constrained, the software uses the 
random splits in combination with lsqlincon() from the R-package pracma for 
constrained optimisation.

Variable selection

The normal prior in Eq. (1) corresponding to adaptive ridge penalties leads to dense, 
i.e. non-zero, estimates for the regression coefficients β . To obtain sparser solutions, 
the adaptive ridge penalties may be transformed to elastic net penalties by modifying 
results from [13], as detailed below. The ridge penalties resulting from the fit with 
ecpc() are transformed with squeezy() from the R-package squeezy, which 
also estimates the elastic net penalised regression coefficients using the R-package 

(5)







γ̂ g = argmin
γ

�

||(C ◦ C)�gγ − b||22 + �gγ
TS
g γ

�

s.t.Mineq,gγ ≤ bineq,g , Meq,gγ = beq,g



Page 10 of 16van Nee et al. BMC Bioinformatics          (2023) 24:172 

glmnet. Alternatively, ecpc may use posterior selection to select variables, as for-
merly proposed [11]. The two approaches differ in how the level of sparsity is tuned: 
the user may tune the number of variables for posterior selection or tune the elastic 
net sparsity parameter α ∈ [0, 1] when squeezy is used.

Transforming ridge penalties to elastic net penalties

In the proposed model in Eq. (1), the regression coefficients follow a normal prior corre-
sponding to a ridge penalty. Now, suppose that each βk independently follows some other 
prior distribution π(βk) , parameterised by variable-specific prior parameter �k and with 
prior mean 0 and finite variance Var(βk) = Zγ = h(�k) for some known monotonic vari-
ance function h(·):

As example we consider the elastic net prior, corresponding to the elastic net penalty, 
with variable-specific elastic net penalty. Recently, it was shown that when the prior 
parameters are group-specific, the marginal likelihood -as function of �k - is approxi-
mately the same as the marginal likelihood as function of normal prior parameters γ , as 
the prior distribution of the linear predictor η = Xβ is asymptotically normally distrib-
uted [13]:

This result also holds for priors with variable-specific, finite variance [22]. We may use 
this result to obtain approximate method of moment equations for other priors.

Denote by β̂R(Y ) the ridge penalised maximum likelihood estimate as function of the 
observed response data Y  . The method of moments equations are given by equating the 
theoretical marginal moments to the empirical moments [11]:

Using the normal approximation for the marginal likelihood we obtain:

So we may obtain the ridge estimates γ̂ as above to estimate the variable-specific prior 
variances v̂k = (Zk γ̂ )+ , and transform these with the variance function to obtain the 
variable-specific prior parameters:

This transformation can also be used to transform the prior variance estimates for the 
generalised additive co-data model in Equation (4) and for the shape-constrained co-
data model in Eq. (5). Note, however, that the penalisation and constraints are applied to 
γ and not to �.

(6)βk
ind.
∼ π(βk), E(βk) = 0, Var(βk) = h(�k) = Zkγ .

π(Y |X , �) ≈ π(Y |X , γ )

EY |�(β̂
2
k ,R(Y )) = β̂2

k ,R(Y ), for k = 1, . . . , p.

EY |�

(

β̂2
k ,R(Y )

)

=

∫

Y

β̂2
k ,R(Y )π(Y |X , �)dY

≈

∫

Y

β̂2
k ,R(Y )π(Y |X , γ )dY = EY |γ

(

β̂2
k ,R(Y )

)

.

(7)�̂k = h−1(v̂k).
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Results
We include the full analyses with results in three vignettes corresponding to the 
three sections below; short examples (Additional file 1), simulation study (Additional 
file 2) and analysis example (Additional file 3). Here we summarise the main findings.

Short examples

Use of ecpc for linear, generalised additive and shape-constrained additive co-data 
models is demonstrated in short examples. Besides, class-specific methods from 
‘ecpc’ and transformation from ridge to elastic net penalties are illustrated.

Simulation study

Estimation and prediction performance of various co‑data models

The extension to ecpc proposes new co-data models for modelling continuous co-data in 
addition to the adaptive discretisation model proposed in the first version. We compare 
the newly proposed and former co-data models and a co-data agnostic ridge model in a 
simulation study. Figure 4 illustrates the prior variance estimates for the various co-data 
models. Results show that all co-data models lead to improved prediction performance 
compared to the co-data agnostic ridge model when co-data are informative and similar 
performance when co-data are random. The improvement for the newly proposed co-
data models is slightly better than for the former, adaptive discretisation co-data model, 
as it better estimates the relation between the prior variance and co-data. Moreover, 
the newly proposed co-data models are around 3–6 times as fast as the former adaptive 
discretisation.

Besides, we compare robustness of the estimates for generalised additive co-data mod-
els for an increased number of splines and various methods for estimating the smooth-
ing penalty, i.e. using random splits or any of the available methods in bam() in mgcv 
(“ML”, “fREML” and “GCV.Cp”). Using random splits leads to similar estimates as the 
methods “ML” and “fREML”, both for 20 and an increased number of 50 splines, while 
“GCV.Cp” leads to unstable estimates.

Variable selection compared to other methods

We compare variable selection of ecpc using posterior selection 
(ecpc+postselection) and elastic net penalties transformed with squeezy 
(ecpc+squeezy) with a co-data agnostic elastic net model (glmnet [23]) and fea-
ture-weighted elastic net (fwelnet [12]) in a simulation study. Results are shown in 
Fig. 5. Both variable selection methods implemented for ecpc show similar performance, 
besides differences resulting from the different type of tuning the level of sparsity. 
Results show that in the sparse setting, the co-data agnostic model glmnet outperforms 
the other co-data learnt methods when co-data are random, in contrast to the dense set-
ting. When co-data are informative and the relation between the prior variances and 
co-data is monotone, the co-data learnt methods outperform glmnet, with fwelnet 
slightly outperforming ecpc. When co-data are informative and the relation between the 
prior variances and co-data is convex, ecpc outperforms fwelnet as the generalised 
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additive co-data model is able to flexibly adapt to the non-exponential relation, whereas 
fwelnet is not.

Computation time and memory costs

Figure  6 shows the computation time and peak memory used for various numbers of 
samples and variables and for the following models: ecpc with a linear co-data model, 
generalised additive co-data model (20 splines) or shape constrained additive co-data 
model (20 splines plus positivity constraint) and glmnet for a co-data agnostic ridge pen-
alty or lasso penalty. As storing the memory-costly matrix C ∈ R

p×p in Eq. (5) is avoided 
and only blocks of rows are stored, peak memory grows sub-quadratically with p.
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Fig. 4 Simulation study based on 50 training and test sets and random co-data (left) or informative co-data 
(right). Estimated prior variance for various co-data models; (i) linear for linear co-data model; (ii) gam for 
generalised addive co-data model; (iii) scam.p for positive shape constrained co-data model; (iv) scam.
pmi for positive and monotone increasing shape constrained co-data model, and (v) AD for adaptive 
discretisation. The lines indicate the pointwise median and the inner and outer shaded bands indicate the 
25–75% and 5–95% quantiles respectively. Points indicate the true effect sizes (β0

k )
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Analysis example

In [11, 13] we demonstrated the use of co-data to improve standard methods like ridge 
and lasso for several data sets. Here, we focus on a single data set with n = 133 sam-
ples and p = 12838 variables, that includes several types of co-data. We demonstrate 
the software on an application to the classification of lymph node metastasis from other 
types of cancer using high-dimensional RNA expression data. Three sources of co-data 
are available: categorical co-data for known signature genes, continuous co-data for cis-
correlation between RNA and copy number and continuous co-data for p values from an 
external, similar study. More information on the data and details of the results are given 
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Fig. 5 Simulation study for variable selection based on 50 training and test sets for various types of co-data. 
a) Average sensitivity and precision for several methods and various tuning parameters; b) Mean squared 
error prediction performance on the test data. The lines indicate the pointwise average and the inner and 
outer shaded bands indicate the 25–75% and 5-95% quantiles respectively

Fig. 6 Simulation study for computation time and peak memory for varying numbers of samples n (p fixed at 
5000) and number of variables p (n fixed at 200)
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in the vignette. We show results for several settings of co-data models and compare per-
formances of dense and sparse models. Figure 7 shows the results for three settings: 1) a 
GAM, i.e. without constraints; 2) a SCAM with positivity constraints; 3) a SCAM with 
positivity and monotonicity constraints. Among the sparse models, using a generalised 
additive co-data model with 50 splines for the continuous co-data variables and poste-
rior selection leads to the best performance on independent test data, though the sim-
pler lasso model may be preferred as it shows competitive performance. Note, however, 
that lasso may render a rather unstable set of selected variables [24], and that the use of 
co-data improves this stability [11]. Overall, the dense model using a generalised addi-
tive co-data model with 50 splines shows the best prediction performance.

Conclusions
We presented an extension to the R-package ecpc that accommodates linear co-data 
models, generalised additive co-data models and shape constrained additive co-data 
models for the purpose of high-dimensional prediction and variable selection. These 
co-data models are particularly useful for continuous co-data. The newly proposed co-
data models are shown to run faster and lead to slightly better prediction performance 
when compared to adaptive discretisation. Moreover, the estimated variable-specific 
ridge penalties may be transformed to elastic net penalties with the R-package squeezy 
to allow for variable selection. We showed in a simulation study that this approach and 

a

b

Fig. 7 Data analysis example: a Estimated prior variance contributions of each co-data source, before 
multiplying with the co-data specific weight. Note that the p values are shown on the log-scale in Settings 2 
and 3, to clearly show the non-zero peaks at the smallest p values; b corresponding prediction performance 
on the validation set for 20 or 50 spline basis functions. The settings correspond to different co-data models: 
(1) no constrains; (2) positive constrained shape; (3) positive and monotonically constrained shape
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the previously proposed posterior selection approach lead to similar performance, out-
performing other methods when the effect sizes are (non-exponentially) related to the 
co-data. We have provided a vignette with several short examples to demonstrate gen-
eral usage of the code (Additional file 1), a vignette to reproduce the simulation study 
(Additional file 2) and a vignette with an analysis example to a cancer genomics applica-
tion (Additional file 3).

Abbreviations
GLM  Generalised linear models
GAM  Generalised additive model
SCAM  Shape-constrained additive model
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