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A B S T R A C T   

The interaction performance of the pantograph-catenary is of great importance as it directly 
determines the current collection quality and operational safety of trains. The finite element 
method (FEM) is dominantly used for simulating pantograph-catenary interaction, which is 
normally computationally heavy. In this work, addressing the tremendous computational cost of 
FEM models, a surrogate model for fast simulations of pantograph-catenary interaction is pro
posed using deep learning. A dataset containing 30,000 cases of pantograph-catenary interaction 
is generated by a validated FEM model. A Long-Short-Term-Memory (LSTM) neural network is 
proposed to learn the inherent nonlinearity between the input model parameters and the output 
pantograph-catenary contact force from data. The resulting prediction performance indicates that 
contact forces predicted by the surrogate model are consistent with those simulated by FEM, 
while the computational efforts of the surrogate model are negligible compared with FEM. Pre
diction performances using different network architectures and configurations are compared to 
determine the optimal setting for a pantograph-catenary system. The LSTM-based surrogate 
model shows high efficiency for simulating pantograph-catenary interactions and promising 
practicability in optimising catenary structural parameters for design or upgrade.   

1. Introduction 

In electric railways, the pantograph-catenary system, as schematically shown in Fig. 1, is widely used to transmit continuous 
electric energy to locomotives. The mechanical interaction between the pantograph and catenary is of great importance, as a stable 
sliding contact is the prerequisite of a good current collection quality. With the global booming of high-speed railways, the study of 
pantograph-catenary interaction has attracted ever-increasing attention from both academia and industry [1]. 

1.1. Problem description 

Numerical simulation is the most widely-adopted approach to reproduce the realistic behaviour of pantograph-catenary interaction 
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without huge economic cost [2]. These simulations, often based on the finite element method (FEM), are generally computationally 
heavy. However, the emerging concept of digital twins requires simulations of physical systems to be accurate, efficient, and inter
actable with real-world data. To alleviate the computational burden of complex mathematical models, the approximation or surrogate 
modelling of physical models has been state-of-the-art in rail engineering, as demonstrated in Refs. [3–5]. It provides the opportunity 
to discover the optimal design and upgrade of physical systems economically and timely. The recent and rapid development of artificial 
intelligence (AI) makes it feasible to approximate physical models with high accuracy via surrogate modelling [6]. Unlike a 
fast-integration algorithm, a data-based model has very little computational cost once trained. This paper attempts to investigate the 
possibility of learning a surrogate model from a finite element (FE) model of pantograph-catenary interaction using deep learning. 

1.2. Literature review 

Nowadays, various types of pantograph-catenary numerical models have been developed worldwide. In 2016, Bruni et al. [7] 
compared the results of some mainstream ones to set up a benchmark for the validation of numerical accuracy. The effects of various 
disturbances, such as the carbody vibration [8,9], wind load [10–13], aerodynamics [14], dropper defect [15,16], contact wire ir
regularities [17] and contact wire height gradience [18] were included in the numerical simulation to predict the pantograph-catenary 
interaction performance. But the huge computational cost of numerical simulation is always a big concern for researchers in this field. 
This motivated different scholars to propose efficient simulation approaches [19,20] or reduced models [21] instead of using a full FE 
model of the catenary. To achieve the optimal design strategy, the genetic algorithm was implemented on a pantograph-catenary 
model with the help of a fast integration method for reducing the contact force standard deviation [22]. Based on the sensitivity 
analysis results, an optimisation strategy of the pantograph-catenary system was also proposed in Ref. [23]. Similar work was con
ducted via the combination of an artificial neural network and genetic algorithm on an existing pantograph-catenary system in the 
China high-speed railway network [24]. 

The rapid development of artificial intelligence techniques provides a new opportunity for developing a data-driven model of 
pantograph-catenary interaction. Deep learning, as a branch of neural network-based artificial intelligence, has demonstrated its 
potential in modelling complex systems with strong nonlinearity [25]. It has been widely used to handle the inherent nonlinearities in 
structural health monitoring of rail infrastructures [26–29] and traction power systems [30]. The application of deep learning for the 
surrogate modelling of the physical model can provide an alternative solution for predicting dynamic performance with almost no 
computational cost. The Long-Short-Term-Memory (LSTM) is a classic variant of the standard recurrent neural network architecture 
widely used in long-term time history prediction [31,32]. It has also exhibited excellent performance in building the surrogate model 
for complex objects [33,34]. 

1.3. Scope and contribution 

This paper attempts to build a surrogate model of the physical pantograph-catenary model using deep learning and investigate its 
potential application in the optimisation of the design strategy. A FE model of the pantograph-catenary system that has been validated 
through a benchmark and field test data is presented to generate the training dataset. A deep neural network based on LSTM is 
proposed to capture the nonlinear relationship between the model parameters and the resulting contact force. The effectiveness of the 
proposed surrogate model is evaluated through several case studies, and the effect of neural network architecture on prediction 
performance is investigated. The potential of the proposed surrogate model in the optimisation of a pantograph-catenary system is 
explored. 

2. Physical model of pantograph-catenary 

In this work, a mature FE model of pantograph-catenary is adopted to generate the dataset for training the deep neural network. 
This model has been used in several previous works and has been demonstrated to have sufficient accuracy in approximating the 
realistic behaviours of pantograph-catenary interaction. Its numerical accuracy has been validated via the comparison with the 

Fig. 1. Schematic of a pantograph-catenary system.  
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worldwide benchmark [35], the European standard [36], and the measurement data from both the Norwegian network [37] and the 
China high-speed railway network [38]. In this section, the pantograph-catenary model is briefly described as follows. 

The catenary is modelled by the absolute nodal coordinate formulation (ANCF), as it can efficiently describe the geometric 
nonlinearity of the contact and messenger wires when large deformation occurs. As shown in Fig. 2, the ANCF beam element is used to 
discretise the contact and messenger wires. The dropper slackness is assumed by a cable element with nonlinear axial stiffness. The 
steady arm is assumed to be a truss element, which can rotate around the registration point. Claws and clamps are taken as additional 
lumped masses on the wire. The nodal degree of freedom vector of an ANCF beam element is defined as 

e =

[

xi yi zi
∂xi
∂χ

∂yi
∂χ

∂zi
∂χ xj yj zj

∂xj
∂χ

∂yj
∂χ

∂zj
∂χ

]T

(1)  

where, χ is the local coordinate from 0 to the element length L0. The strain energy from axial and bending deformation can be expressed 
by 

U =
1
2

∫ L0

0

(
EAε2

l +EIκ2)dχ (2)  

where, E is elastic modulus, A is the cross-section area, I is the inertial moment, εl is the longitudinal strain and κ is the curvature. By 
differentiating the strain energy, the generalised elastic force vector can be obtained as 

Q =

(
∂U
∂e

)T

= Kee (3) 

The elastic forces can be written as the product of Ke and e. Ke is the secant stiffness matrix as it is defined upon the absolute 
coordinate of the beam element. In the shape-fining process, the tangent stiffness matrix is more likely to be used to calculate the 
incremental nodal DOF vector Δe and the incremental unstrained length ΔL0. The corresponding tangent stiffness matrices KT and KL 

can be obtained by taking part of Q with respect to e and L0 as follows. 

ΔF =
∂Q
∂e

Δe +
∂Q
∂L0

ΔL0 = KTΔe + KLΔL0 (4) 

Fig. 2. Catenary model based on ANCF beam and cable elements. Red lines denote the ANCF beam element, and blue lines denote the ANCF cable 
element. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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A similar derivation procedure can be used to obtain the tangent stiffness matrices of the ANCF cable elements. The cable elements 
used to model the dropper exhibit unsmooth nonlinearity due to dropper slackness in dynamic simulations, which changes the axial 
stiffness to zero when the dropper works in compression. Then a shape-finding procedure is adopted to compute the catenary 
configuration. The details about the shape-finding method can be seen in Ref. [39]. Then a consistent mass matrix and Rayleigh 
damping matrix are introduced to form the equation of motion for the catenary system, which can be written by 

MG
CÜC(t)+CG

CU̇C(t)+KG
C(t)UC(t)= FG

C(t) (5)  

in which MG
C , CG

C and KG
C are the mass, damping and stiffness matrix for the catenary system, respectively. The damping matrix CG

C is 
given by the Rayleigh damping formulation [40,41]. UC(t) and FG

C(t) are the DOF and external force vectors for the catenary system. 
As illustrated in Fig. 2, the pantograph is assumed to be a lumped-mass representative of three critical modes of a realistic one. The 

vertical interaction of the panhead and the contact wire is described by the penalty function method. Based on the assumption of the 
relative penetration evaluated by vertical displacements of pantograph collector and contact wire, the contact force fc can be calcu
lated by 

fc =

{
ksδ if δ > 0
0 if δ ≤ 0 (6)  

in which ks is the contact stiffness, which should be a large value to avoid contaminating the frequency range of interest. The pene
tration δ is defined by the relative displacements of the panhead and the contact wire in the contact point. 

3. Surrogate model 

The proposed deep-learning approach for learning the surrogate model of the pantograph-catenary model is illustrated in Fig. 3. 
Generally, this approach takes the model parameters of pantograph-catenary interaction as the input for the FE model and a deep 
neural network based on LSTM. Through a number of dedicated numerical simulations, the FE model provides a tremendous amount of 
simulation data with different model parameters. These data are divided into training data and validation data. The training data are 
used to train the neural network to learn the inherent data dependencies between the input model parameters and the output contact 
force. The validation data are used to validate if the digital model can output the results with acceptable accuracy. In this section, the 
details of the neural network adopted to digitalise the pantograph-catenary model are described. 

3.1. LSTM 

For a typical forward neural network, the datasets flow from the input layer to the output layer. The error propagates backwards to 
modify the weights and biases to minimise the discrepancy between predicted results and training data [42]. Given an input matrix X =
[x1,x2,⋯,xn], the output of hidden and output layers can be expressed by 

h = f(UX+ b1) (7)  

o = g(Vh+b2) (8)  

where, U and V are the matrices connecting the input and hidden layers, hidden and output layers, respectively. b1 and b2 are the 
biases vectors in the input and hidden layers, respectively. f and g denote the activation functions in the hidden and output layers, 
respectively. In the traditional forward neural network, the prediction of current output is irrelevant to the previous information, and 

Fig. 3. Framework for the surrogate modelling.  
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its effect on the next-step prediction cannot be considered. To address this issue, the recurrent neural network (RNN) is developed, in 
which the prediction of output at the current step depends on both the current input parameters and the information transferred from 
the formerly hidden layer [44]. Compared with MLP (Multi-Layer Perceptron) and CNN (Convolutional Neural Networks), as shown in 
Table 1, RNN is more suitable for processing the time-series problem, such as time-series forecasting, natural language processing and 
sequential classification [43]. By including a weight matrix W connecting hidden layers at adjacent steps, Eq. (7) is modified to 

ht = f
(
UX+Wht− 1 + b1

)
(9) 

Unlike feedforward neural networks, RNNs have the advantage of history-dependent characteristics that is suitable to handle 
problems with sequential datasets. The output of a pantograph-catenary model, namely the pantograph-catenary contact force, is 
undoubtedly sequential by nature. LSTM network is a representative of RNN, which is easier to remember past data in memory without 
vanishing gradient problems [45]. As shown in Fig. 4, one cell of LSTM has three gates, namely, forget, input and output gates. Forget 
and input gates decide which information is discarded and stored from the memory cell. The output gate gives the ultimate output 
values. The outputs of forget and input gates at the tth step are obtained by 

ft
j = σ

([
Uf Xt]

j +
[
Wf ht− 1]

j +
[
bf
]
j
)

(10)  

it
j = σ

(
[UiXt]j +

[
Wiht− 1]

j + [bi]j

)
(11)  

in which σ is the sigmoid function. σ = 1 or 0 represents all information is kept or discarded, respectively. The memory cell state at the 
tth current step can be updated by 

c̃t
j = tanh

(
[UcXt]j +

[
Wcht− 1]+ [bc]j

)
(12)  

ct = f t ⊙ ct− 1 + it ⊙ c̃t (13)  

where tanh is the activation function. ⊙ is elementwise product. ft ⊙ ct− 1 gives the discarded information. it ⊙ c̃t denotes newly 
selected information. The updated memory cell status with an additional format can avoid the gradients vanishing and exploding. 
Thereafter, the output of the hidden layer at the tth step is obtained by 

ot
j = σ

([
UoXt

j

]

j
+
[
Woht− 1]

j + [bo]j

)

(14)  

ht = ot ⊙ tanh(ct) (15)  

3.2. Neural network architecture 

The proposed network architecture is presented in Fig. 5. The network contains one input layer, one output layer, several LSTM 
layers and one fully connected layer, as shown in Fig. 5. A dropout layer with a dropout ratio of 0.3 is added after every LSTM layer to 
avoid overfitting. Note that the optimal number of LSTM layers is to be determined. For simplicity, Fig. 5 depicts the architecture with 
one LSTM layer and the corresponding dropout layer. The last dropout layer connects with the fully connected layer. This network’s 
deep structure aims to capture the strong nonlinearity of the pantograph-catenary dynamics while preserving the network’s ability to 
approximate pantograph-catenary simulations under various model parameters. As suggested in Refs. [46,47], after an LSTM layer, a 
fully connected (FC) layer is typically added to map the predicted sequence to the desired output size. It is noticed that the input size is 
7, which is extended to a high dimension in the hidden layer. The function of the fully connected layer is to reduce the size of the 
hidden layer to the size of the output, which is only one dimension, contact force time history. 

The main purpose of the surrogate model is to learn the complex nonlinear relationship between the main model parameters and 
the dynamic performance. According to EN 50367 [48], the main indicator to represent the current collection quality is the contact 
force filtered within 0–20 Hz, which is taken as the output in the neural network. The catenary with 15 spans is built in the FE model, 
and the contact forces in the central four spans are adopted to generate the dataset for training the neural network. The contact force is 
discretised into 600 points, which is sufficient to describe the dynamic characteristic within 20 Hz. The main six structural parameters 
of the catenary and the train speed are taken as the input model parameters as follows. Each of them is extended to the same dimension 
as the output contact force. 

Table 1 
Comparison of three types of neural networks [43].  

Type of neural network Main functions 

MLP The basic deep neural network. Most used for overcoming the high computing power of deep learning architecture. 
CNN Used in computer vision, e.g. image classification, face authentication and image semantic segmentation. 
RNN Used in time-series processing, e.g. time-series forecasting, natural language processing, and sequential classification.  

Y. Song et al.                                                                                                                                                                                                           
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• Geometry parameters: span length (Ls), steady arm-dropper distance (Dsd), dropper-dropper distance (Ddd), pre-sag (Psag)  
• Tension parameters: contact wire tension (Tcw), messenger wire tension (Tmw)  
• Operation parameters: speed (v) 

The potential of the surrogate model does not attempt to cover all the cases of pantograph-catenary systems in the world. Normally 
the optimisation of structural parameters is performed at a given speed [49]. Thus, a limited speed range is reasonable for generating 
the dataset. In this work, a high-speed range is considered, and the ranges of all the parameters are defined as follows according to the 
design specification [50]. 

Span length: 50 – 60 m; Steady arm-dropper distance: 4 – 6 m; 
Dropper-dropper distance: 6 – 12 m; Pre-sag: 0 - 1.5‰; 
Contact wire tension: 22,000 – 28,500 N; 
Messenger wire tension: 17,000 – 23,000 N; Speed: 250 – 350 km/h; 
It should be noted that the boundary of each parameter is extended a bit outside of the real value used in a realistic system in the 

world to represent the generality. For instance, the maximum contact wire tension used in the catenary without stitch wire is 27,000 N 
used in the Beijing-Tianjin high-speed line. This is extended up to 28,500 N in generating the dataset, which is helpful for the user to 
investigate the potential of the catenary with a higher tension class. Similarly, the pre-sag used in the current high-speed lines is no 
more than 1‰. This is extended up to 1.5‰ in generating the dataset. 

To ensure the existence of the catenary geometry, the following constraint is applied: 

Ls − 2Dsd

Ddd
= integer (16) 

Fig. 4. Memory cell of LSTM.  

Fig. 5. Network architecture for the surrogate modelling of pantograph-catenary interaction.  
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To avoid the exaggerated difference in the tensions of both messenger and contact wires, the following constraint is applied 

|Tcw − Tmw| < 11000N (17) 

In the numerical simulation, a typical high-speed pantograph, WBL 85, is adopted, of which parameters can be seen in Ref. [37]. 
The mean contact force is regulated to the upper bound of the standard range specified in En 50367 [48], as assumed in many sim
ulations [51,52]. The other parameters of the catenary, such as Young’s modulus, and cross-section area of wires, refer to the Bei
jing–Tianjin passenger special line, which employs a typical high-speed catenary without stitch wires [9]. The catenary with 15 spans 
is adopted in the numerical simulation, and the statistical analysis is performed based on the resulting contact force in the central four 
spans. Based on the above-specified ranges of all model parameters, we randomly performed 30,000 cases of numerical simulation to 
set up a database for training and testing the proposed network. 80% of datasets are used to train the network, while the remaining 
20% of datasets are used to test the network. The typical loss function, mean square error based on a 10-fold cross-validation method, is 
adopted to monitor the training performance. 

MSE =
1

10r
∑10

i=1

∑r

j=1

(
ys

i − yp
i
)2 (18)  

in which ys
i is the simulated result obtained by the FE model at the ith point. yp

i is the predicted result at the ith point. r is a total dataset 
in one cross-validation set. When training the neural network, the number of maximum epochs is chosen as 4000. The minimum batch 
size is defined as 256, and the initial learning rate is 0.0001. The replacement optimisation algorithm for stochastic gradient descent, 
Adam, is selected to train the model. Before training the neural network, all data are normalised according to their categories. 

4. Performance evaluation of surrogate model 

In this section, the performance of the proposed surrogate model is evaluated. Firstly, a neural network with hidden layers of ‘600 
LSTMs + 400 LSTMs’ is trained. Its accuracy in predicting the pantograph-catenary interaction performance is preliminarily analysed. 
Then, the performance is evaluated with different neural network architectures. 

4.1. Preliminary analysis 

Firstly, a neural network with hidden layers of two LSTM layers, ‘600 LSTMs + 400 LSTMs’, is trained by the first 24,000 cases 

Fig. 6. Errors of the predicted contact force standard deviation (a), maximum contact force (b) and mean contact force (c) against the FEM results.  
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obtained by FE simulations. The last 6000 cases are used to check the accuracy of the prediction. The errors of the predicted contact 
forces’ standard deviation, maximum value, and mean value against the FEM results are presented in Fig. 6. Note that the surrogate 
model only takes no more than 0.4 s to compute the contact forces in each case which costs more than 1200s in traditional FEM 
simulation. According to En 50367 [48], the contact force standard deviation is the most important indicator to represent the current 
collection quality. It is seen from Fig. 6(a) that 99.70% of the predicted results have an error of less than 5%. The maximum error of the 
standard deviation reaches 9.393%. According to the benchmark results [7], the contact force standard deviations evaluated by ten 
mainstream software have a deviation of up to 15.4%. Thus, it can be inferred that the results predicted by the surrogate model have 
acceptable accuracy. Speaking of the maximum contact force shown in Fig. 6(b), 99.48% of the predicted results have an error of less 
than 5%. As shown in Fig. 6(c), the mean contact forces evaluated by the surrogate model do not have significant errors against the 
FEM results. 

It is also seen from Fig. 6(a) that the maximum error of contact force standard deviation occurs in case 3346. The contact force 
evaluated by both the surrogate model and FE model in this ’worst case’ is presented in Fig. 7. It is seen that even in such a case, a good 
agreement can still be observed from the contact forces, which further demonstrates the acceptance of the proposed surrogate model. 

To statistically analyse the prediction error, the histograms of the prediction error of contact force standard deviation, maximum 
contact force, and mean contact force are presented in Fig. 8. It is seen that the prediction errors generally follow the normal dis
tribution. In most engineering applications, three-sigma limits are used to set the upper and lower control limits in a statistical quality 
control [53], which means that 99.73% of data observed following a normal distribution lies within three standard deviations of the 
mean. In physics, a more strict criterion of 5 standard deviations is more likely to be used, which ensures an almost 100% (99.99994%) 
confidence. In this analysis, both confidence levels are plotted. As for the contact force standard deviation in Fig. 8(a), 99.73% of 
prediction errors are no more than 3.67%, while almost 100% of cases have an error lower than 5.75%. For the maximum contact force 
in Fig. 8(b), it is seen that 99.73% of prediction errors are no more than 4.56%, while almost 100% of cases have an error lower than 
7.53%. For the mean contact force in Fig. 8(c), almost 100% of cases have an error lower than 1%. 

The previous analyses in Refs. [22,54,55] demonstrate the strong nonlinearity of the pantograph-catenary system, and the response 
does not show a simple change in the system parameters. Even in Ref. [24], the neural network is used to learn a pantograph-catenary 
model, but the output is only the contact force statistics instead of the contact force time history. 

To further demonstrate the necessity of using a complex deep learning network, a simple regression (linear regression) method is 
implemented to represent the pantograph-catenary model with the given database. Note that the regression method can only output 
the contact force statistics (the standard deviation, the maximum contact force and the mean contact force), but not the contact force 
time history. The linear regression can be expressed as follows: 

η =
∑7

n=1
bnvn (19)  

in which η is the output of the linear regression, which is the standard deviation, the maximum contact force or the mean contact force. 
v1-v7 are the variables, namely the span length, steady arm-dropper distance, dropper-dropper distance, pre-sag, contact wire tension, 
messenger wire tension and speed. b1-b6 are the corresponding weight for each variable, respectively. A total of 30,000 cases are used 
here to build the regression model. The obtained weights are shown as follows:  

• For the standard deviation, b1-b6 are − 0.8709, − 2.3867, 0.687, 2.9888×104, − 8.7658×10–4
, − 2.9179×10–4, and 1.3530, 

respectively.  
• For the maximum contact force, b1-b6 are − 1.7817, 5.0639, 1.4595, 6.2805×104, − 0.0047, − 0.001, and 5.1682, respectively.  
• For the mean contact force, b1-b6 are − 0.1035, − 0.5288, − 0.1265, − 1.3122×103, − 2.1251×10–5, − 1.9985×10–4, and 2.0823, 

respectively. 

Fig. 7. The comparison of contact force simulated by the surrogate model and the FE model. This is the worst case that has the largest prediction 
error in the contact force standard deviation. 
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The errors of contact force statistics evaluated by the linear regression model against the FEM results are presented in Fig. 9. It is 
seen that the maximum errors of the maximum contact force, contact force standard deviation and mean contact force reach over 20%, 
50% and 2%, respectively. The prediction performance of the linear regression model is significantly unacceptable. This finding is 
consistent with the common sense that the pantograph-catenary system has strong nonlinearity and cannot be represented or learned 
by a simple linear model. 

4.2. Different network architectures 

In this section, the effect of network architecture on prediction performance is investigated. Determining the neural network ar
chitecture is a very complex topic, which is relevant to the complexity of the problem, the data dimension, the computational capacity 
and other factors. Normally the neural network’s architecture is determined by experience and understanding of the addressed 
problem. For the pantograph-catenary system discussed in this paper, some very simple network architectures that only contain dozens 
of LSTM neurons are tested, but they lead to unacceptable performance, which is consistent with our expectation of a strongly 
nonlinear system. Some very complicated architectures with thousands of LSTM neurons are also tested, but they are significantly 
above the computational capacity of a common work computer and unnecessarily complicated as proven later. With the above 
consideration, seven neural network architectures are defined in Table 2. NN 5 is the network analysed in Section 4.1. From NN 1 to NN 
6, the network architecture becomes more complex in terms of the number of layers and neurons. NN 7 is obtained by slightly adjusting 
the layers’ sequence of NN 6. 

Each of the above networks is trained by 24,000 cases of the FEM result, and the 6000 cases are used to validate the prediction 
accuracy. The mean and maximum errors of predicted contact force statistics against FEM results are presented in Fig. 10(a) and (b), 
respectively. It is seen that amongst the first five NNs, the NN 5 generally has the best prediction performance. A general trend can be 
observed that the increase in the network architecture complexity leads to increased prediction accuracy. The prediction performance 
of NNs 3, 4 and 5 generally does not exhibit a significant variance. When the network architecture complexity reaches a certain level 
(in terms of the number of layers and neurons), the adjustment of the network architecture will no longer primarily affect the pre
diction accuracy. However, a too-complex architecture, such as NNs 6 and 7, may degrade the prediction performance. This may be 
caused by difficulties in convergence or overfitting when too-complex architectures are used. Normally, the determination of a neural 
network architecture should depend on the dataset’s capacity and the task’s complexity [56]. In this study, NNs 3–5 show a good 
performance with the given dataset of 30,000 cases. 

Fig. 8. Histograms of the prediction error of contact force standard deviation (a), maximum contact force (b) and mean contact force (c) against the 
FEM results. 

Y. Song et al.                                                                                                                                                                                                           



Mechanism and Machine Theory 187 (2023) 105386

10

Due to the implementation of the stochastic gradient descent method in the training process [57], the prediction performance of a 
neural network may vary amongst multiple times of training even if the architecture remains the same. Taking NN 5 as an example, the 
mean and maximum prediction errors with four times of training are presented in Fig. 11(a) and (b), respectively. Even though the 
same NN architecture and parameter setup is adopted four times for training, NN 5 exhibits different prediction accuracy. Amongst the 
four times of training, the mean error of the contact force standard deviation varies from 0.79% to 1.03%, while the maximum error 
varies from 8.22% to 11.10%. The 3rd training of the NN 5 has the best perdition accuracy, which is adopted to perform the subsequent 
analysis. 

5. Potential application in catenary optimisation 

This section discusses the potential of the surrogate model in catenary design optimisation. A genetic algorithm method is used to 
obtain the optimal structure of the catenary under given constraints. Normally the design speed and the tension class for a catenary are 
determined before the optimisation is performed. The former depends on the rail network’s commercial demand, while the latter is 
determined by the limitation of wave speed and material property [54]. Here we present two cases as follows based on practical 
experience. To save the economic cost of construction, a long span length is normally preferred [50]. Therefore, the span length is also 
restricted to the upper bound of the specified range of 60 m. 

Fig. 9. Errors of the contact force statistics (standard deviation (a), maximum contact force (b), and mean contact force (c)) predicted by the 
regression model against the FEM results. 

Table 2 
Architectures of LSTM layers.  

Network No. Architecture of LSTM layers 

NN1 200 LSTMs 
NN2 400 LSTMs 
NN3 400 LSTMs + 200 LSTMs 
NN4 600 LSTMs 
NN5 600 LSTMs + 300 LSTMs 
NN6 600 LSTMs + 300 LSTMs + 150 LSTMs 
NN7 300 LSTMs + 600 LSTMs + 300 LSTMs  
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Case 1: v = 350; Tcw = 27 kN; Ls = 60 m 
Case 2: v = 320; Tcw = 23 kN; Ls = 60 m 
In each case, v, TCW and Ls are constrained, and other parameters Dsd, Ddd, Psag and Tmw are taken as the variables that are desired to 

be optimised. The objective function is to minimise the standard deviation of the contact force. Thus, the optimisation problem reads: 

Objective : min σ
(
fc
(
Ls,Dsd,Ddd,Psag, Tmw,Tcw, v

))

Boundary constraints : 4 ≤ Dsd ≤ 6m 6 ≤ Ddd ≤ 12m  

0 ≤ Psag ≤ 1.5%; 17000 ≤ Tmw ≤ 23000N 

Design constraints: v = specified value; Tcw = specified value; Ls = specified value 
Other constraints: Eqs. (16) and (17) 
Then the genetic algorithm is implemented to solve the optimisation problem. Fig. 12 shows the optimisation results of case 1. It 

can be seen from Fig. 12(a) that the best optimal result is achieved after 158 iterations. The optimised parameters for case 1 are Dsd =

5.99 m; Ddd = 9.60 m, Psag = 0.10325‰; Tmw = 18,198.36 N, and the optimised contact force standard deviation is 43.94 N. It only 
takes 692.53 s to finalise the optimisation for this case, which is several days of work when using the traditional FE model. The 
comparison with 10,000 randomly generated case results is presented in Fig. 12(b) to verify the optimised result further. The opti
misation results of case 2 are presented in Fig. 13. The optimised parameters for case 2 are Dsd = 5.6461 m; Ddd = 8.1181 m, Psag =

Fig. 10. Mean (a) and maximum (b) errors of predicted contact force statistics against FEM results.  

Fig. 11. Mean (a) and maximum (b) prediction errors of NN 5 with 4 times of training.  
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0.15667‰; Tmw = 21,185.46 N, and the optimised contact force standard deviation is 36.21 N. It only takes 692.53 s to achieve the best 
result. Similarly, the effectiveness of the optimisation result can be demonstrated by comparison with 10 000 randomly generated case 
results, as presented in Fig. 13(b). 

6. Conclusions and future works 

In this study, a surrogate model based on the LSTM neural network is proposed to approximate a FE model of railway pantograph- 
catenary systems. The presented results indicate that the contact forces predicted by the surrogate model and FEM have a good 
agreement. The computational effort of the surrogate model can be neglected compared with FEM. The statistical analysis points out 
that almost all the predictions have an error of less than 5.75% in terms of the contact force standard deviation. The optimal neural 
network architecture of the surrogate model can be determined when increasing the architecture complexity does not guarantee a 
higher prediction accuracy. The utilisation of the stochastic gradient descent method leads to stochasticity in the network’s prediction 
performance amongst multiple times of training with the same network architecture. Through two optimisation cases, it is demon
strated that the proposed surrogate model can effectively accelerate the optimization of catenary structural parameters with the help of 
a genetic algorithm. In the future, more potential applications of the present surrogate model of the pantograph-catenary system will 
be explored for the life cycle management of the railway infrastructure. 

Note that this paper only presents the surrogate modelling of a pantograph-catenary model with specific parameters. There are 
several angles to be considered in future works. The first is to improve the generality of the present model to cover more variety of 
pantograph-catenary systems. The second is to include measurement data to establish the relationship between the design parameters 
and field test data, which makes the predictions more realistic and potentially useful for maintenance decision-making. The last is to 
investigate the possibility of developing a neural network-based optimisation algorithm with more advanced objectives for the 
pantograph-catenary system. Also, in light of the excellent prediction performance in the presented case study, a surrogate model may 
be trained to achieve real-time simulations in Hardware-in-The-Loop test rigs by adjusting the training strategy. 
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