

Delft University of Technology

Algorithms for partially robust team formation

Schwind, Nicolas; Demirović, Emir; Inoue, Katsumi; Lagniez, Jean Marie

DOI
10.1007/s10458-023-09608-7
Publication date
2023
Document Version
Final published version
Published in
Autonomous Agents and Multi-Agent Systems

Citation (APA)
Schwind, N., Demirović, E., Inoue, K., & Lagniez, J. M. (2023). Algorithms for partially robust team
formation. Autonomous Agents and Multi-Agent Systems, 37(2), Article 22. https://doi.org/10.1007/s10458-
023-09608-7

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1007/s10458-023-09608-7
https://doi.org/10.1007/s10458-023-09608-7
https://doi.org/10.1007/s10458-023-09608-7

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

Vol.:(0123456789)

Autonomous Agents and Multi-Agent Systems (2023) 37:22
https://doi.org/10.1007/s10458-023-09608-7

1 3

Algorithms for partially robust team formation

Nicolas Schwind1 · Emir Demirović2 · Katsumi Inoue3,4 · Jean‑Marie Lagniez5

Accepted: 29 March 2023
© Springer Science+Business Media, LLC, part of Springer Nature 2023

Abstract
In one of its simplest forms, Team Formation involves deploying the least expensive team
of agents while covering a set of skills. While current algorithms are reasonably successful
in computing the best teams, the resilience to change of such solutions remains an impor-
tant concern: Once a team has been formed, some of the agents considered at start may be
finally defective and some skills may become uncovered. Two recently introduced solution
concepts deal with this issue proactively: 1) form a team which is robust to changes so
that after some agent losses, all skills remain covered, and 2) opt for a recoverable team,
i.e., it can be "repaired" in the worst case by hiring new agents while keeping the overall
deployment cost minimal. In this paper, we introduce the problem of partially robust team
formation (PR–TF). Partial robustness is a weaker form of robustness which guarantees a
certain degree of skill coverage after some agents are lost. We analyze the computational
complexity of PR-TF and provide two complete algorithms for it. We compare the perfor-
mance of our algorithms with the existing methods for robust and recoverable team forma-
tion on several existing and newly introduced benchmarks. Our empirical study demon-
strates that partial robustness offers an interesting trade-off between (full) robustness and
recoverability in terms of computational efficiency, skill coverage guaranteed after agent
losses and repairability. This paper is an extended and revised version of as reported by
(Schwind et al., Proceedings of the 20th International Conference on Autonomous Agents
and Multiagent Systems (AAMAS’21), pp. 1154–1162, 2021).

Keywords Team formation · Robustness · Partial robustness · Resilience · Facility
location · Computational complexity · Anytime algorithm

 * Nicolas Schwind
 nicolas-schwind@aist.go.jp

1 National Institute of Advanced Industrial Science and Technology, Tokyo, Japan
2 Delft University of Technology, Delft, The Netherlands
3 National Institute of Informatics, Tokyo, Japan
4 The Graduate University for Advanced Studies, SOKENDAI, Tokyo, Japan
5 CRIL-CNRS UMR8188, Université d’Artois, rue Jean Souvraz, 62307 Lens, France

http://orcid.org/0000-0001-7972-5984
http://crossmark.crossref.org/dialog/?doi=10.1007/s10458-023-09608-7&domain=pdf

 Autonomous Agents and Multi-Agent Systems (2023) 37:22

1 3

 22 Page 2 of 45

1 Introduction

In this paper, we focus on the Team Formation problem (TF). One of its simplest and most
abstract forms consists in forming a team of agents with minimum cost that meets a given
set of requirements. The problem is equivalent to the set covering and hitting set problems
[1]. We are given a set of agents, where each agent is associated with a set of skills and
a deployment/hiring cost. The TF problem consists in finding a team T (i.e., a subset of
agents) of minimal overall cost that is efficient, i.e., such that each skill is possessed by at
least one agent from T. This problem is well-known to be NP-hard [1, 2].

In realistic settings, there may be uncertainty about agents, in particularly after deploy-
ment: agents previously deemed capable may become unable to perform their duties, e.g.,
due to illness. Thus it is important to consider resilience properties in TF, i.e., proactively
seek to form an efficient team that is robust to unexpected changes.

Robustness [2] and recoverability [3] are complementary notions in TF, both with their
own advantages and disadvantages. A team is said to be k-robust if it remains efficient
even in the event that any k agents are removed from it [2]. Robust TF consists in finding
an optimal k-robust team of minimal deployment cost. Interestingly, computing an optimal
robust team is not harder than computing an optimal efficient team without considering
robustness [2]. However, the deployment cost of a robust team may be prohibitively high,
as providing such strong guarantees is only possible by introducing a high degree of redun-
dancy, i.e., each skill must be covered by at least k + 1 agents.

An alternative to robustness is recoverability: a team is considered k-recoverable if after
losing any k agents, it can be “easily repaired” by hiring new agents at low cost. Demirović
et al. [3] empirically showed that the overall deployment cost is effectively lower than the
initial deployment cost of a robust team, providing a trade-off: the cost of the team may be
lower at the expense of allowing that the team may be dysfunctional for some period after
disruption. However, the problem of computing a recoverable team is ��

�
-hard [3], making

it difficult, if not inapplicable, in practice. Moreover, recoverability does not provide cover-
age guarantee during the disaster phase. As a result, a large number of critical skills may
become uncovered for a certain amount of time during which the system loses most of its
functionality. Depending on the application, this may be highly undesirable.

Let us introduce an example illustrating the problem and notions.

Example 1 The organizers of a special exhibition have a budget of 900 to hire professional
guides. The attendees are expected to be from China (50%), Japan (40%), and France
(10%). To enhance attendee experience, the organizers plan to hire proficient Chinese, Jap-
anese and French speakers so that the exhibits could be explained to the attendees in their
native language. A number of guides (called agents in the following) are available for hire.
Type 1 agents are monolingual. It costs 100 to hire a type 1 Chinese-speaking or Japanese-
speaking agent, and 150 for a French-speaking agent. Let us denote by C, J, and F a type 1
Chinese-, Japanese-, and French-speaking agent, respectively. Type 2 agents are bilingual,
and are denoted respectively by CJ, CF, and FJ. It costs 180 to hire CJ, and 230 for CF or
FJ. Agents are paid in advance and should be contacted at least one day ahead of the event,
otherwise the agents may only attend the afternoon session whilst charging the same price.

A minimum-cost alternative (Plan I) is is to hire the team {C,FJ} . By doing so, agent
C may help Chinese speakers, whereas agent FJ may help French and Japanese speakers.
This plan corresponds to an optimal team for the standard TF problem and costs 330, i.e.,
it only considers covering the required skills (language proficiency) while minimizing cost,

Autonomous Agents and Multi-Agent Systems (2023) 37:22

1 3

Page 3 of 45 22

without considering robustness. In the unfortunate case where both of these agents fall ill
on the day of the event, two new agents may be hired as an emergency at the cost of 330.

However, under the same circumstances a slightly cheaper solution exists (Plan II),
which consists in initially hiring the team {C,F, J} . At an initial cost of 350, in the worst
case where two agents including F are absent on the day of the exhibition, one can hire for
the afternoon a type 2 agent possessing the two languages skills that have been lost, e.g.,
if we lack agents F and J from the hired team, one could ask for help from an FJ agent.
Plan II is slightly more expensive than Plan I (350 vs. 330), but the recovery cost is 230
instead of 330, making this alternative arguably preferable over the first one. Plan II cor-
responds to an optimal 2-recoverable team.

However, in both Plans I and II, if we were to lose two agents in the last minute, then the
event would be without support for two languages the whole morning (no support for any
language in the case of Plan I).

Assuming we would like to be robust to a loss of two agents, an alternative plan would
be to form the team {C, CJ, CF, FJ, FJ} (Plan III): since each language is spoken by at
least three agents, losing any two agents would still result in a team that can provide sup-
port in all three languages. Plan III corresponds to an optimal 2-robust team. However,
Plan III is quite expensive: it costs 970, which exceeds the initial budget of 900 and the
organizers cannot afford it.

The organizers would be happy with an alternative that is more affordable than Plan III,
while still being “robust” to potential losses. Noteworthy, only 10% of the attendees are
expected speak only French, and French translators are more costly than the other ones.
Thus a reasonable alternative is to hire the team {CJ,CJ,CJ,F} (Plan IV) at the cost of
690. Losing two agents from the team would still guarantee the Chinese and Japanese
languages are covered by the remaining team members, while losing agent F would only
result in a coverage loss of 10% among the attendees. In addition, repairing the team would
not cost more than 150 in the worst case (one would need to hire an F agent), so the overall
cost of 840 would still remain under the budget constraints.

Our paper aims to introduce the solution concept illustrated above in Plan IV. A team T
is said to be ⟨k, t⟩-partially robust (t ∈ [0, 1]) if whenever k agents are removed from team
T, some “proportion” (reflected by t) of the overall set of skills remains covered. Partially
Robust TF (PR-TF) is the problem to form an optimal ⟨k, t⟩-partially robust team. Plan IV
in the above example corresponds to an optimal ⟨2, 0.9⟩-partially robust team. This notion
generalizes (full) robustness: a team is ⟨k, 1⟩-partially robust if and only if it is k-robust.
Computationally speaking, we show that the decision problem related to PR-TF is ��

�
-com-

plete, thus it lies “in-between” robust TF and recoverable TF. We empirically show that
forming an optimal partially robust team has the advantages of both robustness and recov-
erability. Indeed, on the one hand, a partially robust team may be computed significantly
more efficiently than a recoverable one, and by definition it provides a skill coverage guar-
antee in the disaster phase. On the other hand, the overall cost of a partially robust team
may be cheaper than the initial deployment cost of a “fully” robust team in the general
case.

We empirically study the benefits of our novel partial robustness notion on a number of
existing benchmarks used in [3]. We also introduce a new set of benchmarks related to the
facility location problem. This problem consists in deploying a set of facilities (e.g., health
centers, antennas, schools, shelters) on a populated map to maximize a certain population
coverage while minimizing the overall deployment cost [4]. The notion of partial robust-
ness is of particular importance for these type of problems. When facilities are interpreted

 Autonomous Agents and Multi-Agent Systems (2023) 37:22

1 3

 22 Page 4 of 45

as agents and population as (weighted) skills, the goal is to guarantee that a high percent-
age of the population still can access to a fully functional facility after some of the facilities
break down.

This article is an extended and revised version of [5], a paper in which we introduced
the notion of partial robustness, reported the computational complexity of the correspond-
ing decision problem, presented a complete algorithm (PR) and reported some empirical
results. This present article extends the results reported in [5] in several aspects:

– In addition to our initial algorithm PR, we introduce another complete algorithm
(PR_A) that is anytime. While algorithm PR needs termination to return a partially
robust solution, algorithm PR_A starts with a sub-optimal partially robust solu-
tion (sub-optimal in terms of deployment cost) and improves it over time. Interest-
ingly, algorithm PR_A empirically outperforms algorithm PR in terms of runtime to
reach optimality on a large set of instances. Our empirical evaluation shows that we
may obtain near-optimal solutions after a very few number of iterations. Despite the
high theoretical complexity of achieving partial robustness, algorithm PR_A allows
one to compute satisfactory partially robust solutions in a very short amount of time
on instances of reasonable size. This is particularly interesting for large instances, for
which algorithm PR does not compute any solution within 3600 s. Both algorithms are
presented and detailed in Sect. 5.

– We introduce two new “cuts” (named cut and cut+ in this paper) that allow one to
learn from counter-examples and prune the search space, improving the efficiency of
both algorithms PR and PR_A (cf. Sect. 5.3). These cuts improve over the single cut
reported in our conference paper.

– We provide software to generate facility location instances discussed above, whose
structure and size can be tuned by a number of parameters. This was used to generate
four sets of benchmarks of different sizes, described briefly in Sect. 6 and in more detail
in Appendix B. We made our instance generator, together with the implementation of
our algorithms, publicly available [6].

– We have extended our empirical analysis beyond the conference version.This includes
both the evaluation of algorithms PR and PR_A, the comparison of our different cuts,
and the additional set of benchmarks. These results further show the advantages of our
novel anytime algorithm PR_A.

– The proofs of our formal propositions are available in Appendix A.

2 Related work

Team formation (TF) has received an ever-growing interest from practitioners and research-
ers over the past two decades, e.g., see [7] for a recent overview on applications, com-
putational complexity, and resolution methods on TF. In particular, notions of resilience
and robustness in multiagent systems, both separately and in combination, have recently
attracted attention in a variety of contexts, including the design of new solution concepts,
their formalization in the underlying multiagent frameworks, and the computational issues
that follow.

From the conceptual perspective, robustness is the ability to withstand adversarial con-
ditions without negative impact on performance [8, 2]. Recoverability, on the other hand, is
the capability to restore the functionality of the system after disturbance [9]. Both notions

Autonomous Agents and Multi-Agent Systems (2023) 37:22

1 3

Page 5 of 45 22

have been separately formalized in TF and analyzed from the computational viewpoint
[3, 2]: the decision problems related to robust TF and recoverable TF have been shown
to be respectively NP-complete and ��

�
-complete. It turns out that recoverability can be

seen as a generalization of robustness in TF, as pointed out in [3]. Alternative solution
concepts, although derived from robustness and resilience, have been recently consid-
ered in TF, including team diversity [10], a key concept for the formation of synergistic
teams; or when skills are replaced by (complex) tasks [11], team stabilizability [12]. The
notion of robustness has also been imported in some variants of coalition formation includ-
ing Hedonic games [13] and multi-team formation [14, 15]. Uncertainty issues have also
been considered in the redundant multi-agent task allocation problem [16] that involves
uncertain agents-task assignment costs, and in cooperative games with other failure mod-
els [17–21]. These frameworks depart from TF in both their structure and the underlying
goals, which involve notions of stability and fairness, e.g., when some underlying team
utility or value is distributed among the agents.

Closely related to TF is the framework of Coalition Structure Generation (CSG) [22], in
which a number of solution concepts considering agent failure have also been formalized
in the recent years. In CSG, we are given a set of agents and a characteristic function that
associates every subset of agents with a value representing its utility. The goal is to form
a coalition structure, i.e., a partition of the given agents into a set of teams such that the
sum of the utilities of all teams is maximized. This problem is known to be NP-hard in the
general case [23] and many algorithms have been proposed for solving, both in the cases
when the characteristic function is provided extensively (i.e., as a table with 2n entries, n
being the number of agents) [24–27], or when concise representation languages for charac-
teristic functions are considered, such as marginal contribution networks (MC-nets) [28],
synergy coalition groups (SCGs) [29], skilled-based representations [30], agent-type repre-
sentations [31], and coalition resource games [32], among others. Robustness and stochas-
tic notions have recently been investigated in CSG. Robustness in CSG was first introduced
in [33] and is a notion similar to robust TF: a coalition structure is k-robust if its global
performance is kept above a certain threshold value in any case where at most k agents are
removed from it. It has been proved that the underlying decision problem for robust CSG
is ��

�
-complete in the general case [33], and that ��

�
-harness still holds when the charac-

teristic function is represented by means of a coalition resource game [34]. Forming coali-
tion structures under uncertainty has also been considered in the so-called probabilistic
CSG framework [35, 36], where the attendance of agents is of stochastic nature. In [36]
the problem was shown to be NPPP-hard in the general case, but remains in NP for some
natural classes of problems where the characteristic function is represented by means of
an MC-net. CSG and TF share obvious similarities in that in both cases the goal is to form
teams (in the case of TF, a single team) to accomplish a certain (set of) task(s). However,
CSG and TF depart from each other in their core structure: in TF, a single team is formed
out of a pool of agents and the selection of each agent involves a cost, whereas in CSG a
set of agents is already preselected and must be split into different teams, each of which is
implicitly associated with a certain task to perform. Indeed, while the standard CSG and
TF decision problems can be viewed as equivalent from the theoretically computational
viewpoint (they are both NP-complete), the same cannot be stated for their robust coun-
terpart: robust TF is NP-complete [2], whereas robust CSG is ��

�
-complete [33]. One of

the direct consequence of this observation is that results in robust CSG cannot be directly
adapted to TF.

Noteworthy, TF is equivalent to the well-known set cover problem (SCP) [37], which is
intrinsically connected to the facility location problem (FLP) [38]. There is a vast literature

 Autonomous Agents and Multi-Agent Systems (2023) 37:22

1 3

 22 Page 6 of 45

investigating extensions and variants of this problem (see [39] for a survey), a number of
which deal with uncertainties [40–47]. In all of these works, different uncertainty aspects
are considered such as the reliability of the service provided by a facility, or when reli-
ability decays with the distance from a facility to a customer. All of these considerations
are of stochastic nature, and the main goal is to find a input set / facilities that maximize
some expected coverage. Thus, these notions depart from the robustness notions focused in
this paper, that are based on worst-case scenarios given k agent losses. In [48] the authors
consider a variant of the FLP called maximal covering location problem (MCLP). In the
MCLP, the goal is to maximize the amount of demand covered within an acceptable ser-
vice distance by locating a given fixed number of facilities. Similar to our considerations
of skill coverage, in MCLP the key assumption is that coverage is binary: each customer
is either fully covered if there is a facility within acceptable distance, otherwise it is not
covered at all. Such an assumption has been released in subsequent works, leading to the
alternative notion of partial covering problem [49–52]. These notions are intended to maxi-
mize a coverage degree in the initial deployment step, and thus do not account for potential
damaging events after deployment. More closely related to our notion of partial robustness,
are similar notions introduced for FLPs in [53, 54]. In [54], the authors introduced the
r-interdiction covering problem, in which facilities and services can be lost due to natural
or man-made disasters. The problem to be solved takes place from the viewpoint of the
attacker: from some predefined facility deployment, the goal is to find a subset of r facili-
ties, which when removed, maximizes the resulting drop in coverage. The notion can be
viewed as some inverse problem of the standard FLP/SCP. Indeed, the problem still lies in
NP . In [53] the defensive maximal covering problem is introduced. The notion is defined
for a specific type of facility location problems where the coverage of facilities is induced
by “weighted links”, connecting the candidate facility nodes in a network. The authors then
consider a leader-follower formulation of the problem: the leader wants to locate facilities
to maximize demand coverage while the follower’s goal is to disconnect the most damag-
ing links once the facilities are deployed. While the notion bears similarity with our notion
of partial robustness, in [53] the potential loss is not considered in the facilities but on
the links between the candidate facility locations. Moreover, the underlying leader-follower
model is formulated as a pair of independent problems, which are designed to be solved
sequentially; this makes both problems in NP and thus departs from our work.

From the algorithmic viewpoint, our approach to compute optimal partial robust teams
is similar to Counter-Example-Guided Abstraction Refinement (CEGAR) [55–57], one of
the most successful approaches for QBF (Quantified Boolean Formulae) solving. Indeed,
as will be shown in Sect. 4, the decision problem related to our notion of partial robust-
ness is in ��

�
 (cf. Prop. 4), so it is similar in structure to a 2QBF problem ∃X∀Y� , where

Var(�) = X ∪ Y [58]. Such problems have a natural interpretation as a two-person game
between an “existential” player and a “universal” player [59]: the goal of the existential
player is to find out a valuation of X that cannot be refuted by the universal player through
a valuation of Y. In a CEGAR-based algorithm, computing a solution �X is done by itera-
tively searching for a solution of an “abstracted”, simplified problem. If such an “abstract”
solution is found, one needs to check whether it is an actual solution of the original prob-
lem by searching for a certificate �Y showing that �X is a counter-example. If no such
certificate �Y is found for the abstract solution �X , then �X is a solution of the original
problem. Otherwise, �X is blocked by taking advantage of the certificate �Y to refine the
abstracted problem. Our algorithms for computing optimal partially robust teams are simi-
lar in essence. Initially a simplified problem is considered, and the algorithm iteratively
computes a new candidate team. If a certificate is found showing that the candidate team

Autonomous Agents and Multi-Agent Systems (2023) 37:22

1 3

Page 7 of 45 22

is a counter-example, i.e., it is does not meet the partial robustness constraints, then a new
constraint is generated to prune the search space, and the process iterates until an optimal
partially robust team is found. In this context, a certificate consists in a removal of some
agents of the candidate team resulting in a violation of the partial robustness constraints.

3 Preliminaries

This section recalls some preliminaries about basic notions of computational complexity, the
Team Formation (TF) problem, and its extensions to Robust TF [2] and Recoverable TF [3].

3.1 Computational complexity

We assume that the reader is familiar with the complexity class NP (see [60] for more
details). Higher complexity classes are defined using oracles. In particular, ��

�
= NP

NP
(resp. ��

�
) corresponds to the class of decision problems that are solved in polynomial time

by non-deterministic Turing machines using an oracle for NP (resp. ��

�
).

3.2 Team formation

Let us formalize the (standard) TF problem [2].

Definition 1 (TF Problem Description) A TF problem description is a tuple ⟨A, S, f , �⟩
where A = {a1,… , an} is a set of agents, S = {s1,… , sm} is a set of skills, f ∶ A ↦ ℕ is a
deployment cost function, and � ∶ A ↦ 2S is an agent-to-skill function.

A team is a subset of agents T ⊆ A . It is possible to extend the cost function f to teams
T as f (T) =

∑
ai∈T

f (ai) . Likewise, the agent-to-skill function � is extended to teams T as
�(T) =

⋃
ai∈T

�(ai) . A standard expected property in Team Formation is efficiency: a team
T ⊆ A is efficient if all skills from S are covered by T, i.e., when �(T) = S . An optimal
team for TF is an efficient team minimizing the cost function. The corresponding decision
problem ��-�� asks, given as input a TF problem description ⟨A, S, f , �⟩ where f and � are
computed in polynomial time and a threshold c ∈ ℕ , whether there exists an efficient team
T such that f (T) ≤ c . This problem is equivalent to the well-known set cover problem [1]:

Proposition 1 ([2]) ��-�� is NP-complete.

3.3 Robust TF

Definition 2 (Robust Team [2]) Given a TF problem description ⟨A, S, f , �⟩ and k ∈ ℕ , a
team T is said to be k-robust if for every set of agents T ′ ⊆ T such that |T ′| ≤ k , the team
T ⧵ T ′ is efficient.

Robustness generalizes efficiency: a team is 0-robust if and only if it is efficient. Interest-
ingly, despite this generalization, computing an optimal k-robust team (for any k ≥ 0) does
not lead to a computational shift. Indeed, the decision problem for robustness (labeled ��

 Autonomous Agents and Multi-Agent Systems (2023) 37:22

1 3

 22 Page 8 of 45

-�����) asks, given as input a TF problem description ⟨A, S, f , �⟩ where f and � are com-
puted in polynomial time and c, k in ℕ , if there exists a k-robust team T ⊆ A such that
f (T) ≤ c . Then:

Proposition 2 ([2]) ��-����� is NP-complete.

This problem still lies in NP because checking whether a given team T is k-robust,
despite its combinatorial nature, is equivalent to checking whether each skill from S is pos-
sessed by at least k + 1 agents from T; and this task can be performed in polynomial time.
The goal of robust TF (RobTF) is to find an optimal k-robust team, i.e., a k-robust team T
such that f(T) is minimal.

3.4 Recoverable TF

Recoverable TF (RecTF) consists in finding a team that can be repaired after k agents
are removed from it. The notion is based on an extension of a TF problem description
(cf. Def. 1):

Definition 3 (RecTF Problem Description [3]) A RecTF problem description is a tuple
⟨A, S, f , �, h⟩ where ⟨A, S, f , �⟩ is a TF problem description and h ∶ A ↦ ℕ ∪ {+∞} is a
recovery cost function.

A RecTF problem description considers in addition a recovery cost function h that
defines the cost of deploying a “rescue” team. It adds more flexibility to the frame-
work: some agents ai may be deployed at a higher cost later in an emergency situation
(h(ai) > f (ai)) or not be available at all (h(ai) = +∞). Similar to f, for any team T one sets
h(T) =

∑
ai∈T

h(ai) . Given a team T ⊆ A and T ′ ⊆ T , rcS(T ,T �) is defined as the cost of the
cheapest team Trec such that (T⧵T �) ∪ Trec is efficient:

The k-recovery cost of T is then defined as the highest value rcS(T ,T �) for any set T ′ of size
lower or equal to k:

Definition 4 (Recoverable Team [3]) Given a RecTF problem description ⟨A, S, f , �, h⟩ and
non-negative integers k, r, a team T is said to be ⟨k, r⟩-recoverable if T is efficient and
rc(T , k) ≤ r.

Recoverability generalizes robustness: if h(ai) > 0 for any ai ∈ A , any team T is ⟨k, 0⟩
-recoverable if and only if T is k-robust. The decision problem for recoverability (labeled
��-�����) asks, given as input a TF problem description ⟨A, S, f , �, h⟩ where f, � and h
are computed in polynomial time and c, r in ℕ , if there exists a ⟨k, r⟩-recoverable team
T ⊆ A such that f (T) ≤ c . It turns out that this problem is much harder than the robustness
counterpart:

rcS(T , T �) = min
Trec⊆A⧵T ,(T⧵T

�)∪Trec is efficient
h(Trec).

rc(T , k) = max
T �⊆T ,|T �|≤k

rcS(T , T �).

Autonomous Agents and Multi-Agent Systems (2023) 37:22

1 3

Page 9 of 45 22

Proposition 3 ([3]) ��-����� is ��

�
-complete.

The goal of RecTF is, given a fixed non-negative integer k, to compute an optimal
k-recoverable team. As opposed to RobTF, optimality in RecTF can be defined in several
ways. Indeed, after fixing the robustness parameter k, one is left with two functions to min-
imize for a team T: its deployment cost f(T) and its k-recovery cost rc(T, k), bounded by
the input parameters c and r, respectively, in the decision problem ��-����� . For instance,
in [3] the authors defined optimality as a single objective problem: an optimal k-recover-
able team is therein defined as a team T that is ⟨k, r⟩-recoverable and whose overall cost
f (T) + rc(T , k) is minimal.

4 Partial robustness in TF

We introduce a new solution concept for TF called partial robustness. Intuitively, a team
is partially robust if it is efficient, and if after removing a certain number of agents from it,
the residual team covers a certain proportion of the set of all skills. Thus, it makes sense to
associate each skill with a weight to emphasize its relative importance:

Definition 5 (Weighted TF Problem Description) A weighted TF problem description
is a tuple ⟨A, S, f ,w, �⟩ where ⟨A, S, f , �⟩ is a TF problem description and w ∶ 2S ↦ [0, 1]
is a skill weight function such that w(S) = 1 and w is monotone, i.e., ∀S1, S2 ⊆ S ,
w(S1) ≤ w(S1 ∪ S2).

For every sj ∈ S , w({sj}) is simply denoted by w(sj) . A natural way to define w is to con-
sider a normalized weighted sum function wΣ , satisfying wΣ(S

�) =
∑

sj∈S
� wΣ(sj) for each

S′ ⊆ S , and
∑

sj∈S
wΣ(sj) = 1 . Accordingly, it satisfies the conditions from Def. 5 and we

used it in all benchmarks presented in Sect. 6.
The coverage of a team T, denoted by cov(T) is defined as:

The k-partial coverage of a team, denoted by pc(T, k), is defined as:

We are ready to define formally the notion of partially robust team:

Definition 6 (Partially Robust Team) Given a weighted TF problem description
⟨A, S, f ,w, �⟩ , k ∈ ℕ and a rational number t ∈ [0, 1] , a team T is said to be ⟨k, t⟩-partially
robust if T is efficient and pc(T , k) ≥ t.

A team is ⟨k, t⟩-partially robust if whenever k agents are removed from it, the coverage
of the residual team is not lower than t. For instance, if one wants to guarantee that 95%
of the weighted sum of all skills is covered after a loss of k agents, one simply considers
a normalized weighted sum function w = wΣ and sets t = 0.95 . Whereas k-robustness only
essentially reports a binary value (either the team is k-robust or it is not), partial robustness
provides in a sense more information regarding the team’s robustness. Noteworthy, partial

cov(T) = w(�(T)).

pc(T , k) = min
T �⊆T ,|T �|≤k

cov(T ⧵ T �).

 Autonomous Agents and Multi-Agent Systems (2023) 37:22

1 3

 22 Page 10 of 45

robustness generalizes robustness since a team is k-robust if and only if it is ⟨k, 1⟩-partially
robust.

The decision problem for partial robustness (labeled ��-��-��) asks, given a weighted
TF problem description ⟨A, S, f ,w, �⟩ where f, w and � are computed in polynomial time,
non-negative integers c, k, and rational number t ∈ [0, 1] , if there exists a ⟨k, t⟩-partially
robust team T ⊆ A such that f (T) ≤ c . We show below that the computational complexity
of this problem lies “in-between” the robustness and recoverability counterparts1:

Proposition 4 ��-��-�� is ��

�
-complete.

Optimality is defined similar to the efficient and robust TF cases: T is an optimal ⟨k, t⟩
-partially robust team if T is ⟨k, t⟩-partially robust and f(T) is minimal.

Before concluding this section, let us illustrate the notions introduced so far on our
introductory example of organizing a special exhibition and hiring of professional guides
(cf. Sect. 1):

Example (continued) Table 1 summarizes the deployment cost, recovery cost, overall cost
and coverage of the teams T1,… , T4 , which correspond to plans I, ..., IV, respectively,
described in the introductive example.2 The team T1 is an optimal efficient team: it has the
lowest deployment cost f (T1) among all possible efficient teams. Likewise, the team T3 is
an optimal 2-robust team and team T4 is an optimal ⟨2, .9⟩-partially robust team. The team
T2 is an optimal 2-recoverable team: it has the lowest overall cost f (T2) + rc(T2, 2) . Note
that the criterion of optimality in RecTF slightly differs from the other notions since it also
considers the recovery cost.

The optimal ⟨2, .9⟩-partially robust team T4 has the following interesting features com-
pared to the other teams: (i) by definition it provides a 2-partial coverage of 0.9, which is
much higher than T1 and T2 ; (ii) while covering 90% of the weighted sum of skills if two
agents are lost in the worst case, its deployment cost is only 690∕970 = 71% of the one of
the optimal 2-robust team T3 ; and (iii) its overall cost f (T4) + rc(T4, 2) remains cheaper
than the deployment cost of T3 (f (T3)).

Table 1 Comparison in terms of deployment cost, recovery cost, overall cost and coverage of the teams
T1,… ,T4 corresponding to plans I, ..., IV in the introductive example

T1 (plan I) T2 (plan II) T3 (plan III) T4 (plan IV)
{C,FJ} {C,F, J} {C,CJ,CF, JF, JF} {CJ,CJ,CJ,F}

f (Ti) 330 350 970 690
rc(Ti, 2) 330 230 0 150
f (Ti) + rc(Ti, 2) 660 580 970 840
pc(Ti, 2) 0 0.1 1 0.9

1 One does not need to make any assumption about the way f, w, and � are represented for our result to
hold. However, one must assume that the corresponding mappings are computed in polynomial time.
2 The precise formalization in terms of weighted TF problem description is rather straightforward, it is not
provided here to avoid the introduction of heavy notations.

Autonomous Agents and Multi-Agent Systems (2023) 37:22

1 3

Page 11 of 45 22

5 Algorithms

This section provides two procedures to compute an optimal ⟨k, t⟩-partially robust team,
given a weighted TF problem description ⟨A, S, f ,w, �⟩ , a non-negative integer k and a
rational number t ∈ [0, 1] . Both approaches follow a similar idea as Counter-Example-
Guided Abstraction Refinement (CEGAR) [55–57], briefly described in the related work
section (Sect. 2).

The first method, referred to as PR in the following text, iterates over the set of optimal
efficient teams (the “abstract” candidate solutions chosen by an existential player). For each
such candidate team T, one tries to “break” it by removing k agents from it so that the
coverage of the residual team is strictly lower than t. If T cannot be broken, then it is ⟨k, t⟩
-partially robust. Otherwise, one generates a constraint that safely removes a set of teams
from the search space (including T), and one proceeds to the next iteration step. Stated oth-
erwise, all optimal efficient teams that are potentially ⟨k, t⟩-partially robust are computed
and tested for partial robustness in an increasing deployment cost order. The process is
iterated until a candidate team that cannot be broken is found. This first procedure provides
a guarantee to find an optimal partially robust team in a finite amount of steps.

With our first method, no ⟨k, t⟩-partially robust team is provided before the procedure
terminates. However, because of time limitations one may be interested in being given
a sub-optimal ⟨k, t⟩-partially robust team in a short amount of time (a team with a non-
minimal deployment cost), that improves over time. This motivates our second method,
an anytime algorithm named PR_A. It first starts with a k-robust team, which can be com-
puted in a single call to an NP oracle (cf. Proposition 2). Accordingly, a k-robust team
is ⟨k, t⟩-partially robust for any value t ∈ [0, 1] , and thus can be considered as a sub-opti-
mal output. The procedure then searches for a sub-optimal efficient team T, i.e., such that
f (T) < c , where c is the deployment cost of the team computed at the previous step. It tries
to “break” the team similarly to the first method, updates c when the break attempt fails,
and in such a case proceeds to search for another efficient team with the updated threshold
c. While PR_A is anytime, it also provides a guarantee to eventually find an optimal par-
tially robust team.

5.1 Algorithm PR

The outline of our first method (PR) is given in Algorithm 1. Let us first explain the core of
the algorithm (the details of the procedures initConstraints in line 2, solveTF in lines 3 and 9,
breakTeam in line 5 and generateConstraint in line 8 are detailed later in this section.) Initially,
one computes an efficient team Tcur of minimal cost, i.e., an optimal efficient team (cf. proce-
dure solveTF in line 3). In line 5, the procedure breakTeam searches for a set T ′ ⊆ Tcur such
that |T ′| ≤ k and cov(Tcur ⧵ T �) < t , that is, it seeks to remove k agents from Tcur so that the
coverage degree of the residual team is less than the input threshold t. If such a set T ′ does not
exist, it means that Tcur is an optimal ⟨k, t⟩-partially robust team and the algorithm returns it
(line 7). Otherwise, T ′ serves as a certificate that Tcur is not ⟨k, t⟩-partially robust. In line 8, a
constraint is generated based on Tcur and T ′ to prune a set of non ⟨k, t⟩-partially robust teams

 Autonomous Agents and Multi-Agent Systems (2023) 37:22

1 3

 22 Page 12 of 45

(including Tcur) from future consideration. The procedure then searches for another efficient
team of minimal cost under the new set of constraints. The same process is iterated until one
of the following conditions occurs: the procedure breakTeam returns null, which means that
the team Tcur computed at the corresponding iteration is ⟨k, t⟩-partially robust and returned in
line 7; or the procedure solveTF in line 9 returns null, which means that there is no ⟨k, t⟩-par-
tially robust team, and null is returned in line 10.

Let us now explain in more details the procedures initConstraints, solveTF, breakTeam,
and generateConstraint involved in the algorithm. Our model considers a set X of n binary
variables X = x1,… , xn , n being the total number of agents in A. An assignment of values to
the variables from X corresponds to a team T where ai ∈ T if and only if xi = 1.

initConstraints(⟨A, S, f ,w, �⟩, k, t) . This procedure initializes a set of linear contraints C on
X characterized by:

This set of constraints precisely encodes the conditions of team efficiency, i.e., an assign-
ment of X satisfies the set C if and only if it corresponds to an efficient team.

solveTF(C). This procedure is called in lines 3 and 9 and simply searches for an assignment
of X that minimizes the cost of the corresponding team under the set of constraints C:

breakTeam(T, k, t) This procedure searches for a set T ′ ⊆ T , |T ′| ≤ k , such that
cov(T⧵T �) < t . This is done by generating a new model on a set X′ of |T| binary variables
X� = {x�

i
∣ ai ∈ T} , so that an assignment of values to the variables from X′ represents a

subset of agents T ′ ⊆ T to be removed from T, i.e., ai ∈ T � if and only if x�
i
= 1 . The proce-

dure finds an assignment of X′ satisfying a set of constraints characterized by the following
pair of equations:

(1)∀sj ∈ S
∑

xi∈X,sj∈�(ai)

xi ≥ 1

(2)minimize
∑

xi∈X

f (ai) ⋅ xi

Autonomous Agents and Multi-Agent Systems (2023) 37:22

1 3

Page 13 of 45 22

Equation 3 requires that |T ′| ≤ k , and Eq. 4 requires that cov(T⧵T �) < t . So accordingly,
breakTeam(T, k, t) returns such a subset T ′ if it exists, otherwise it returns null.

The procedures solveTF and breakTeam both involve solving optimization problems that
are NP-hard in the general case, and thus rely on an underlying integer programming opti-
mization solver. Notably, these procedures can be implemented using any state-of-the-art
solver, the choice of which may only have an effect the computational efficiency of the whole
procedure.

generateConstraint(T ,T �) . When this procedure is called, its input teams T, T ′ are such
that T is efficient, |T ′| ≤ k and cov(T ⧵ T �) < t . That is, T is an efficient team and T ′ can be
viewed as a certificate proving that T is not ⟨k, t⟩-partially robust. The procedure aims to gen-
erate a constraint based on T and T ′ to discard a set of teams from the search space, such that
the two following conditions are satisfied: (i) at least team T must be discarded; and (ii) all
teams from the discarded set must be non ⟨k, t⟩-partially robust teams. Condition (i) ensures
that Algorithm 1 terminates, and condition (ii) ensures that no potentially ⟨k, t⟩-partially robust
team is discarded, so that the ⟨k, t⟩-partially robust team eventually returned by the algorithm
is optimal. Such a constraint can be specified in a number of ways. We first present here its
simplest alternative, which consists in discarding T only.

Doing so, one forbids the previously computed candidate team T to be selected again in any
future search iteration. The corresponding constraint states that a candidate team must contain
at least one agent that does not belong to T:

Since the constraint formalized in Eq. 5 discards T only, it does not take advantage of
potentially additional information provided by the certificate T ′ . However, in the next sec-
tion (Sect. 5.3), we will introduce two cuts, i.e., two alternatives that exploit team T ′ and
improve computational efficiency.

To summarize, Algorithm 1 explores a set of efficient teams by increasing deployment cost
order, checking for each one of them whether it is ⟨k, t⟩-partially robust, and returns it as soon
as one such team is found. Accordingly, it returns an optimal ⟨k, t⟩-partially robust team, if it
exists.

5.2 Algorithm PR_A

While PR (cf. Algorithm 1) has the guarantee to compute an optimal partially robust team
after a finite number of steps, it does not provide any output before the procedure terminates.
However, one may be interested in a procedure that provides one with a sub-optimal partially
robust team first, and that iteratively searches for another “better” partially robust candidate
over time, with a lower deployment cost. This motivates our second method PR_A, an any-
time algorithm whose outline is given in Algorithm 2.

(3)
∑

x�
i
∈X�

x�
i
≤ k

(4)w

⎛
⎜
⎜⎝

�

x
�
i
∈X� ,x�

i
=0

𝛼(a
i
)

⎞
⎟
⎟⎠
< t

(5)
∑

xi∈X,ai∈A⧵T

xi ≥ 1

 Autonomous Agents and Multi-Agent Systems (2023) 37:22

1 3

 22 Page 14 of 45

This algorithm takes advantage of the procedures initConstraints, breakTeam and gen-
erateConstraint also used in Algorithm 1, and uses two new procedures solveRobTF and
solveTF-thr whose details are given later in this section.

The initialization phase goes from lines 2 to 8 and is divided into two sub-steps. First,
one checks if the team formed of all available agents (Tcur = A , line 2) is ⟨k, t⟩-partially
robust (line 3). If not, then obviously enough no ⟨k, t⟩-partially robust team can exist, and
null is returned in line 5. Otherwise, Tcur is a first ⟨k, t⟩-partially robust candidate that one
seeks to improve in terms of deployment cost. Second, as another potential, better can-
didate, one computes an optimal k-robust team Tnew (line 6). If such a team is found and
is different from the initial team Tcur = A , this team is set to be the new improved candi-
date (line 8): since it is k-robust, it is necessarily ⟨k, t⟩-partially robust as well; and since
Tnew ≠ A (cf. line 7), this team is necessarily strictly improved compared to Tcur , i.e.,
f (Tnew) < f (Tcur) . Starting from a k-robust team instead of the set of all agents serves as
a search space pruning: if a k-robust team exists, there is no need to search for teams with
a higher deployment cost. This step is also “almost free” computationally speaking, since
computing an optimal k-robust team is not harder than computing an optimal efficient team
(cf. Proposition 2).

At this point, one proceeds to iteratively improve the current candidate Tcur , with the
procedure solveTF-thr being now the main tool. Similar to Algorithm 1, one starts with
a set of constraints C that encodes the conditions of team efficiency (line 10). One then

Autonomous Agents and Multi-Agent Systems (2023) 37:22

1 3

Page 15 of 45 22

searches using solveTF-thr (line 11) for any efficient team Tnew whose deployment cost
is strictly lower than the one of the current candidate Tcur , i.e., such that f (Tnew) < c
with c = f (Tcur) . If no such team exists, then no partially ⟨k, t⟩-partially robust team can
be found with deployment cost strictly lower than c, i.e., Tcur is an optimal ⟨k, t⟩-partially
robust team and is returned in line 19. Otherwise, similar to line 3 one checks whether
Tnew is partially robust, by seeking to “break” it (line 13). If Tnew is not found to be a
counter-example, then it is a new ⟨k, t⟩-partially robust candidate with a deployment cost
improved compared to the one of Tcur . In this case, Tcur and the new cost threshold are
updated accordingly (lines 15 and 16). Otherwise, T ′ serves as a certificate that Tnew is
not ⟨k, t⟩-partially robust, and a constraint is generated based on Tnew and T ′ (line 17).
In both cases, Tnew is removed from the search space and a new efficient candidate is
sought for (line 18).

The procedures solveRobTF and solveTF-thr are characterized as follows:
solveRobTF(⟨A, S, f ,w, �⟩, k) . This procedure is called in line 6 and computes an opti-

mal k-robust team. It searches for an assignment of X that minimizes the cost of the cor-
responding team (cf. Eq. 2) under the following set of constraints:

That is, solveRobTF consists in calling the procedure solveTF used in Algorithm 1, but
under a set of constraints that strengthen the ones given in Eq. 1. This set of constraints
precisely encodes the conditions of team robustness, i.e., a team is k-robust if and only if
each skill is covered by least k + 1 agents from the team [2].

solveTF-thr(C, c). This procedure is called in lines 11 and 18. It is a modified version
of the procedure solveTF: instead of searching for an efficient team of minimal deploy-
ment cost, solveTF-thr(C, c) consists in restricting the search space (currently character-
ized by the set of constraints C) to teams whose deployment cost is strictly lower than a
threshold c. The set of corresponding constraints is characterized by:

PR_A is anytime, since one is always given a partially robust team Tcur that is updated over
time if another better candidate is found. It is also complete, since it is guaranteed to return
an optimal team after a finite number of steps.

5.3 Cut generation

The constraint added by the procedure generateConstraint(T ,T �) used in both algorithms
can be specified in various ways, as long as it safely discards from the search space a set
of teams that are guaranteed not to be ⟨k, t⟩-partially robust, including T. In the previous
section, we have introduced one of its simplest forms that simply removes T from the
search space, and thus does not exploit any potentially useful information provided by
the certificate T ′ (cf. Eq. 5). To fill the gap, we now present two cuts, i.e., two alterna-
tive implementations of this procedure that exploit T ′ to prune from the search space a
larger set of spurious teams.

These cuts are based on the following useful result:

(6)∀sj ∈ S
∑

xi∈X,sj∈�(ai)

xi ≥ k + 1

(7)
∑

xi∈X

f (ai) ⋅ xi < c

 Autonomous Agents and Multi-Agent Systems (2023) 37:22

1 3

 22 Page 16 of 45

Proposition 5 Given a weighted TF problem description ⟨A, S, f, w, �⟩ , k ∈ ℕ and a
rational number t ∈ [0, 1] , a team T ⊆ A is ⟨k, t⟩-partially robust if and only it is efficient
and for each S′ ⊆ S such that w(S ⧵ S�) < t , we have that |{ai ∈ T ∣ �(ai) ∩ S� ≠ �}| ≥ k + 1

.

Proposition 5 above states that a necessary and sufficient condition for any team T to
be ⟨k, t⟩-partially robust is that for any subset of skills S′ such that the weight of S ⧵ S′
is strictly lower than t, T must contain at least k + 1 agents that possess at least one of
the skills from S′ . Our cuts, simply named cut and cut+ in the following, are based on
this result: they both consist in generating a (set of) constraint(s) that exclude(s) teams
which do not satisfy this condition, based on the counter-example T ′ found in line 5 of
Algorithm 1 and line 13 of Algorithm 3.

cut (first version). Taking advantage of a certificate T ′ , one seeks for the smallest (in
terms of cardinality) subset of skills filter(�(T �)) (simply denoted by S′) covered by T ′
such that w(S ⧵ S�) < t . To this end, one sorts the skills �(T �) in a non-increasing order
w.r.t. w, and from the resulting ordered list (s1, s2,…) with w(si) ≥ w(si+1) for each i, one
selects the sublist S� = (s1,… , sj) such that w(S⧵S�) < t and w((S⧵S�) ∪ {sj}) ≥ t . Obvi-
ously enough, the set S′ is computed in polynomial time in the number of agents in T ′.

This cut is implemented in the procedure generateConstraint(T ,T �) in line 8 of PR
(Algorithm 1) and line 17 of PR_A (Algorithm 3), that computes S′ as described above
and generates a constraint characterized by the following equation:

Doing so, one prunes only teams that are not ⟨k, t⟩-partially robust, which also includes the
team T last computed. The idea is an improved version of the cut considered in [3] to com-
pute a recoverable team, which consists in excluding those that do not include at least one
agent from a certain set of skills without which the team cannot be recovered (or otherwise
would be suboptimal).

Notably, in Eq. 8 one could simply choose �(T �) instead of its preprocessed subset
of skills S� = filter(�(T �)) . However, the equation using S′ generates a constraint strictly
stronger than using �(T �) (when S� ⊊ 𝛼(T �)), resulting in an improved pruning of the
search space.

cut+. We also considered a slightly modified version of the cut introduced above, by
generating a set of constraints based on the counter-example T ′ . The idea is similar to the
first version of the cut, i.e., by sorting the skills �(T �) in a non-increasing order w.r.t. w.
However, instead of focusing only on its smallest subset S� = filter(𝛼(T �)) ⊆ 𝛼(T �) one
considers a set of such subsets S = {S�

1
,…} , recursively computed as:

– S�
1
= filter(�(T �))

– for each S�
i
∈ S , i > 1 , S�

i
= filter(�(T �)⧵(S�

1
∪… ∪ S�

i−1
)),

and such that for each S�
i
∈ S , w(S⧵S�

i
) < t.

This modified cut is implemented in the procedure generateConstraint(T ,T �) that now
computes S as described above and generates a set of constraints characterized by the
following set of equations:

(8)
∑

xi∈X,�(ai)∩S
�≠�

xi ≥ k + 1

Autonomous Agents and Multi-Agent Systems (2023) 37:22

1 3

Page 17 of 45 22

The choice of this modified cut is motivated by the observation that the constraints from
the generated set all bear on disjoint set of skills S′

i
 . Indeed, this potentially increases the

diversity of the set of generated contraints given a single certificate T ′ , i.e., it intends to
increase the pairwise symmetrical difference between the set of agents appearing in these
constraints, thus pruning different areas of the search space at once.

In the empirical results section, these two cuts (cut and cut+) will be compared and
shown to significantly reduce the runtime of the base procedures.

6 Benchmarks

In this section, we empirically compare our algorithm for finding optimal partially robust
teams to other solution concepts, namely efficiency, robustness and recoverability, on
a wide range of instances. This section also describes the generation protocol of these
instances, which can be divided into two sets. The first set consists of existing instances
found in previous works on TF and set covering [61, 62, 2, 63]. These instances were pre-
cisely the ones considered in [3] to compare the computational efficiency of TF, RobTF
and RecTF. Since none of these instances considered weighted skills (the notion being
relevant only to partially robust TF), we have artifically extended them to weighted TF
problem descriptions (see Sect. 6.1 below). The second set consists of original, structured
weighted TF instances generated following a protocol we introduce in Sect. 6.2.

6.1 Existing benchmarks (rtf30, cire100, cire150, scp1000)

First, we have considered all sets of instances (40 instances in total) that have been consid-
ered in [3]:

– rtf30 a set of ten small instances (30 agents / 11 skills) which correspond to the robust
TF instances given in [2];

– cire100 / cire150 two sets of ten medium-sized instances (100 agents / 20 skills for the
cire100 set and 150 agents / 30 skills for the cire150 set), that are set covering instances
used in [62, 63];

– scp1000 a set of ten large instances (1000 agents / 200 skills), that are classical
instances found in the OR Library [61] under the scp4x package, used in set covering
works (e.g., [64–66]).

All of these instances fully specify a TF problem description as in Definition 1, i.e., no
weight was initially associated with the skills. Therefore, for all of these instances we set
by default a weight of w(sj) = 1∕|S| for each skill, and we used a normalized weighted sum
function w = wΣ (cf. Sect. 4), i.e., every S′ ⊆ S , w(S�) =

∑
sj∈S

� w(sj).
These instances were randomly generated following different and simple protocols.

For example, the protocol used to generate each rtf30 instance [2] consisted in associat-
ing with each agent ai ∈ A a random cost f (ai) within range [1000, 2000], and a random
set of skills with set size randomly chosen within range [1, 10]. Similarly, the cire100 and
cire150 instances consisted of agents with a random cost and a random set of skills. As to

(9)∀S�
i
∈ S

∑

xi∈X,�(ai)∩S
�
i
≠�

xi ≥ k + 1

 Autonomous Agents and Multi-Agent Systems (2023) 37:22

1 3

 22 Page 18 of 45

the scp1000 instances, for each cost value c ranging over [1, 100], ten agents were associ-
ated with c, and a small randomly chosen set of skills was associated with each agent (four
skills per agent in average). Table 2 summarizes some characteristics of these instances.

6.2 New benchmarks (map‑r1, map‑r2, map‑r3, map‑r4)

One of the drawbacks of the instances presented in the previous section is that they lack
structure and may not reflect real-world situations. In particular, in all of these instances
the cost of each agent has no link with the amount or rarity of skills it is associated with.
As a consequence, these instances are not prevented from the presence of agents ai domi-
nated by some other agent aj , i.e., such that f (aj) < f (ai) and 𝛼(ai) ⊆ 𝛼(aj) . In addition,
all skills have the same importance since we assigned by default the same weight value
for each skill; doing otherwise, i.e., associating each skill with a random value, would not
solve the issue about the lack of structure.

To fill the gap, we have developed a software that allows one to generate structured
instances modeling facility deployment problem instances3. Our software is publicly avail-
able [6] and allows for the generation of various types of instances according to a set of
parameters. The facility deployment problem consists in deploying a set of facilities (e.g.,
health centers, antennas, schools, shelters) on a populated map so as to maximize a certain
population coverage while minimizing the overall deployment cost [4]. The problem is of
particular importance, e.g., for mobile phone operators which aim to deploy a set of cell
towers in an urban environment. In this context, finding an optimal efficient team corre-
sponds to finding a facility deployment solution of minimal cost while providing a service
coverage over the whole population: facilities correspond to agents and the population to
be covered in a certain area corresponds to a weighted skill, where the weight depends on

Table 2 Description of instances for each type

In order: type of instance, number of instances, number of agents per instance on average, number of skills
per instance on average, sum of skill weights (wΣ(A)) per instance on average, maximum number of skills
per agent per instance on average, average number of skills per agent per instance on average

Type #instances #agents #skills Sum of max #skills avg #skills
skills weights per agent per agent

rtf30 10 30 11 11 10 4.63
cire100 10 100 20 20 8 2.00
cire150 10 150 30 30 10 2.00
scp1000 10 1000 200 200 12 3.98

map-r1 100 15.78 5.51 17 7 2.09
map-r2 100 100.62 19.88 65.94 16 3.99
map-r3 100 537.05 75.32 259.89 37 7.19
map-r4 100 1534.84 284.91 1030.97 61 12.54

3 Publicly available benchmark generation protocols related to facility deployment can be found at http://
old. math. nsc. ru/ AP/ bench marks/ engli sh. html. However, to the best of our knowledge, none of these pro-
tocols includes the generation of skill weights. Adapting any of these protocols to fit our setting would be
necessary, but this falls outside the scope of this paper.

http://old.math.nsc.ru/AP/benchmarks/english.html
http://old.math.nsc.ru/AP/benchmarks/english.html

Autonomous Agents and Multi-Agent Systems (2023) 37:22

1 3

Page 19 of 45 22

the density of the population at that specific location. Indeed, this type of problems is per-
fectly suitable from the partial robustness analysis viewpoint: when a number of cell towers
suddenly becomes unfunctional, one wants to ensure that a certain high percentage (if not
100%) of the population is still provided with an access to the network before recovery.

Each populated map was synthesized according to a number of parameters, e.g., size,
variation in terms of elevation, and total population. We only provide below a rough
description of the generation protocol, but the detailed list of the parameters and their role
are available in Appendix B.

First, one generates an elevation map made of water parts, lands and mountains. A grid
of numbers is created using Perlin noise [67], a procedural texture primitive commonly
used by visual effects artists to increase the appearance of realism in computer graphics.
The grid is then converted into a hexagonal grid for which each cell is associated with a
“type” depending on the range of its value in the grid. A low (resp., mid, high) value is
interpreted as a water cell (resp., a land cell, a mountain cell).

Second, the map is populated by iteratively adding an individual on the grid. Initially,
a few individuals are added in different land cells randomly chosen, provided that the cell
is next to a water cell. Then, a new individual is added at random following a probability
distribution. The closer to an already populated cell, the higher its probability to welcome
a new individual. The water cells and the cells that already host a maximum number of
individuals cannot host a new individual. The process is repeated a number of times which
at last corresponds to the total population in the map. Figure 1a represents a populated
map generated using this method: blue (resp. brown, white) cells are of water type (resp.
land, mountain type). Different scales of brown correspond to different elevation degrees
of land, only used to tune the probability of adding an individual to a land cell. The gray
scales represent the number of individuals in a cell. The darker a cell, the more densely
populated, so a pitch black cell contains a maximum number of individuals.

Third, a populated map is translated into a weighted TF problem description
⟨A, S, f ,wΣ, �⟩ as follows. We consider different types of agents type1, type2,… . Each type
typei of agent corresponds to a facility that has a deployment cost equal to i and a cover
range equal to i − 1 . For instance, a cell tower of type type3 has a deployment cost equal to
3, and when it is deployed in a certain cell C on the grid, it provides the required service to
anyone that is in a cell C′ such that the distance between C and C′ is at most 2; the distance
between two cells on the grid corresponds to the length of the shortest path between C
and C′ . So for each type of facility typei and each grid cell C that is not of water type, one
considers an agent aC

i
 of cost f (aC

i
) = i which corresponds to a facility of type typei to be

potentially deployed in the cell C. This defines the set A of agents and the cost function f.
The set of skills S and the skill weight function wΣ (note that we considered a normalized
weighted sum function) are simply defined as follows. One associates with each populated
grid cell P (i.e., a cell that hosts at least one individual) a skill sP ; and the weight of each
skill wΣ(sP) is defined as the number of individuals in the grid cell P. Then, the agent-to-
skill mapping � is defined as follows. An agent aC

i
 has the skill sP if the grid cell P is within

the reach of the facility aC
i
 , i.e., if the distance between the grid cells C and P is less than

or equal to i − 1 . Lastly, we have added for each instance a set of constraints forbidding
the joint deployment of two facilities aC

i
 , aC

j
 located at the same cell C. Thus, given such

an instance ⟨A, S, f ,wΣ, �⟩ , a team T corresponds to a set of facilities to be deployed on the
corresponding map.

We have focused on four sets of 100 map instances of different sizes by varying their
“resolution” r from 1 to 4, and with default values for the remaining parameters. These
resulted in the four sets of instances map-r1, map-r2, map-r3 and map-r4. The map depicted

 Autonomous Agents and Multi-Agent Systems (2023) 37:22

1 3

 22 Page 20 of 45

in Fig. 1a represents an instance of the set map-r3. Considering four such sets allowed us to
focus on weighted TF instances on different sizes in terms of number of agents and skills.

Fig. 1 Optimal teams for different solution concepts (efficiency, robustness and partial robustness)

Autonomous Agents and Multi-Agent Systems (2023) 37:22

1 3

Page 21 of 45 22

For instance, the map-r3 set was formed of instances with an average of 537 agents / 75
skills, while the map-r4 set consisted of instances with an average of 1535 agents / 285
skills. Table 2 summarizes the characteristics of each set.

Figure 1 depicts for a given map instance from the set map-r3 an optimal team, that is
respectively efficient (Fig. 1b), 1-robust (Fig. 1c), ⟨1, .99⟩-partially robust (Fig. 1d), ⟨1, .95⟩
-partially robust (Fig. 1e), and ⟨1, .90⟩-partially robust (Fig. 1f). For instance, the optimal
efficient team (Fig. 1b) is formed of eight agents corresponding to four facilities of type
type4 and four facilities of type type1 . Each such facility is represented by a label on the cor-
responding grid cell, corresponding to its type / deployment cost. The circle drawn around
each deployed facility represents the populated area that is covered by it, i.e., the set of
skills possessed by the corresponding agent.

7 Empirical results

We have implemented our algorithms PR and PR_A (cf. Algorithms 1 and 2) to compute
partially robust solutions, as well as algorithms to compute solutions related to the exist-
ing solution concepts of optimal efficiency (denoted by TF for short), (full) robustness
(RobTF), and recoverability (RecTF). The notion of optimality for RecTF (i.e., given k,
one seeks for a ⟨k, r⟩-recoverable team T whose overall cost f (T) + rc(T , k) is minimal)
and the corresponding encodings were the same ones as described and used in [3]; TF
was computed using Eq. 2 under the set of constraints given in Eq. 1; and RobTF through
Eqs. 2 and 6.

All the solution concepts and algorithms were empirically evaluated and compared on
the benchmarks described in the previous section. The evaluation was performed from the
viewpoint of computational efficiency (runtime), but also in terms of solution quality: more
precisely, we compared for each instance the deployment cost of the computed solution,
its skill coverage when k agents are lost, and its recovery cost afterwise. We also analyzed
how the parameter t in ⟨k, t⟩-partially robustness impacts those results, and focused on val-
ues t ∈ {0.99, 0.95, 0.90}.

We used CPLEX as the constraint solver in all our experiments. The version of CPLEX
used was IBM(R) ILOG(R) CPLEX(R) Interactive Optimizer 12.10 with the option set
parallel 1. All experimentations have been conducted on Intel Xeon E52643 (3.30GHz)
processors with 64Gb memory on Linux CentOS. Time-out was set to 3600 s for each run
of the algorithm and for each instance; memory-out was set to 32 Gb for each such run.

7.1 Computational efficiency

Table 3 shows the number of instances solved within the time limit of 3600 s for each
method, except for TF and RobTF for which all instances were solved. In the particu-
lar case of the anytime algorithm PR_A, an instance is considered to be solved when an
optimal team is found, i.e., the algorithm terminates without being interrupted. We also
measured the time in seconds required for each solution concept and algorithm. Figure 2
shows four cactus plots for different values of k in {1, 2, 3, 4} (the results for PR and PR_A
are shown using cut+). Each plot gives for each notion the number of instances solved
in a given amount of time. Figures 3, 4 and 5 provide through scatter plots some addi-
tional insights on the relative efficiency between (i) an implementation of PR with (our first

 Autonomous Agents and Multi-Agent Systems (2023) 37:22

1 3

 22 Page 22 of 45

version of) the cut and without the cut (Fig. 3); (ii) an implementation of PR with our first
version of the cut and cut+ (Fig. 4); (iii) PR and PR_A, both using cut+ (Fig. 5).

First, it can be seen in Table 3 that both PR and PR_A are proved to be much more
efficient than RecTF: for example, no RecTF solution could be found for any of the map-
r3 instances, whereas PR and PR_A could find one for a reasonable proportion of these
instances, using any of our cuts (cut / cut+) presented in Sect. 5. Note that all map-r2
instances were solved using PR or PR_A for k ∈ {3, 4} , whereas none of them was solved
for RecTF.

Table 3 also shows how our cuts play a crucial role in the efficiency of both algorithms
PR and PR_A, as few instances overall were solved without exploiting them. The impact
of the cut even on instances that were solved without using it is also seen in Fig. 3. The
reason why the cut did not impact the runtime efficiency of scp1000 instances for t = .90
is because for these instances, optimal efficient teams were all optimal ⟨k, .90⟩-partially
robust teams (see Fig. 8 which we discuss later): an optimal team was always found at the
first iteration step (line 3 of Algorithm 1), so the cut was simply not used.

Table 3 Number of solved instances with a time out of 3600 s, for each set of instances and each solution
concept

Type #instances k
#solved

RecTF PR · PR A (no cut-cut-cut+)
t = .90 t = .95 t = .99

rtf30 10

1 �-�-� · �-�-� �-�-� · �-�-� �-�-� · �-�-�
2 8-�-� · �-�-� 3-�-� · 6-�-� 3-�-� · 6-�-�
3 4-�-� · 6-�-� 0-�-� · 2-�-� 0-�-� · 2-�-�
4 0-�-� · 3-�-�

cire100 10

1 � 9-�-� · �-�-�
2
3 4
4 0

cire150 10

1
�

�-�-� · �-�-� 0-�-� · 0-�-�
2
3 04 0-�-� · 0-9-9

scp1000 10

1 �
�-�-� · �-�-�2 3

0-0-0 · 0-0-03 0 1-9-9 · 0-6-6
4

map-r1 100

1

�

99-�-� · �-�-� 86-�-� · 99-�-� 86-�-� · 99-�-�
2 41-�-� · 84-�-� 33-�-� · 75-�-� 33-�-� · 75-�-�
3 11-�-� · 89-�-� 11-�-� · 89-�-� 11-�-� · 89-�-�
4 11-�-� · 99-�-� 11-�-� · �-�-� 11-�-� · �-�-�

map-r2 100

1 99 39-�-� · 42-�-� 14-�-� · 15-�-�
2 1

0-�-� · 0-�-�3

0

4

map-r3 100

1
2 0-61-70 · 0-83-84 0-66-69 · 0-83-82
3 0-32-28 · 0-41-43 0-29-31 · 0-46-49
4 0-14-15 · 0-22-21 0-22-22 · 0-31-29

map-r4 100

1 0-91-99 · 1-�-� 0-39-48 · 0-56-58 0-12-17 · 0-28-32
2 0-0-1 · 0-1-2

0-0-0 · 0-0-0
0-0-1 · 0-1-1

3
4

The symbol ⋆ means that all instances were solved. When three values p-q-r are given, p denotes the results
without cut, q with the first version of the cut, and r with the second version of the cut (cut+)

Autonomous Agents and Multi-Agent Systems (2023) 37:22

1 3

Page 23 of 45 22

One can also see from Table 3 that in the majority of cases, the use of cut+ instead of
the first version of our cut allows one to solve slightly more instances. As shown in Fig. 4,
when considering the instances that were solved in both cases, using cut+ in PR was more
efficient for t = .99 compared to t = .90 . For t = .90 , the impact was lower, as the solver
required more time to preprocess the additional constraints provided by our cut+ with-
out gaining significant efficiency in the solving phase. This can be attributed to the fact
that these instances were relatively small, and our cut+ did not provide much benefit. For
instance, instances with approximately 100 agents could be solved almost instantly even
without using our cut+. However, it can be seen that adding more constraints learned from
a single counter-example is more beneficial for higher values of t. Indeed, the closer t is to
1, the more teams a cut prunes. It is actually easy to see that if t = 1 , PR only performs two
iterations to reach optimality: Eqs. 6, 9 and 8 coincide, i.e., they all ensure that each skill is
covered by at least k + 1 agents, i.e., that the team is k-robust.

The phenomenon described above can also be seen in the cactus plots in Fig. 2. For
higher values of k, the optimal partially robust teams could be found more efficiently for
t = .99 than for lower values of t: indeed, in those settings optimal partially robust teams
are typically “far” from optimal efficient ones in terms of deployment cost, suggesting an

Fig. 2 Time results on all instances for k ∈ {1, 2, 3, 4}

 Autonomous Agents and Multi-Agent Systems (2023) 37:22

1 3

 22 Page 24 of 45

Fig. 3 Comparison between the implementation of PR with the first version of the cut, and without

Autonomous Agents and Multi-Agent Systems (2023) 37:22

1 3

Page 25 of 45 22

Fig. 4 Comparison between the use of (the first version of the) cut and cut+ for PR

 Autonomous Agents and Multi-Agent Systems (2023) 37:22

1 3

 22 Page 26 of 45

Fig. 5 Comparison between PR and PR_A in terms of solving time (in seconds), both implemented with
cut+

Autonomous Agents and Multi-Agent Systems (2023) 37:22

1 3

Page 27 of 45 22

increasing impact of pruning the search space through our cut+. When k = 1 , optimal par-
tially robust teams could be found slightly more efficiently for lower values of t: indeed,
those teams where close to the optimal efficient ones, and only few iterations were neces-
sary to compute them without the need for pruning the search space. In contrast, for higher
values of k the optimal partially robust teams could be found more efficiently when t = .99
compared to lower values of t: indeed, for higher values of k and t, optimal partially robust
teams are typically far from optimal efficient ones, suggesting that more iterations are typi-
cally required to compute them, and thus increasing the impact of an efficient pruning of
the search space implemented through our cut+.

As to the comparison between PR and PR_A, Table 3 shows that in most of the bench-
marks, PR_A could solve more instances than PR. However, through Fig. 5, PR is shown
to be generally more efficient than PR_A for instances solved by both of them. This is
explained by the fact that PR, as opposed to PR_A, iteratively computes the candidate effi-
cient teams in an increasing order. Hence, for those partially robust teams whose cost is
close to an optimal efficient team, PR performs better than PR_A. However, as the number
of iterations increases, the chances of PR to fail to compute a solution within the time limit
increase as well, and in these cases the success rate of PR_A is higher.

7.2 Solution Quality

Let us start with a short analysis of the results in the map instance example provided in
Fig. 1. Similar to our introductory example, one can see on these figures the advantages
of forming partially robust teams instead of efficient or (fully) robust teams. For instance,
the optimal ⟨1, .99⟩-robust team has only a deployment cost of 30 and a recovery cost of 4,
whereas a 1-robust team has a deployment cost of 41: thus allowing 1% of coverage loss in
the worst case during a disaster phase of the same scale (i.e., k = 1 in both cases) leads the
deployed solution to be 1 − 30∕41 = 27% cheaper in the initial phase, and 1 − 34∕41 = 17%
cheaper overall (in the initial and recovery phases). The 1-partial coverage of the optimal
efficient team (Fig. 1b) is only 20% , since a single, large facility is deployed to provide the
necessary service for a densely populated area; its overall cost is, however, comparable to
the overall cost of all three depicted partially robust teams.

Figure 6 shows an instance of the map-r4 set that was not solved by PR and for which
a sub-optimal solution was found using PR_A. The difference in terms of deployment cost
between an optimal 2-robust team (f (T �

2
) = 194 , cf. Fig. 6c) and a sub-optimal ⟨2, .90⟩-par-

tially robust team found by PR_A (f (T �
3
) = 95 , cf. Fig. 6d) clearly shows the advantage of

our anytime algorithm: even when an optimal solution is not found, its deployment cost
appears to be quite satisfactory compared to the (fully) robust deployment solution, while
providing a reasonable guarantee of population coverage in the disaster phase.

The advantages of the concept of partial robustness are made even clearer through
Fig. 7 and 8, which show the deployment and overall cost on average for the gener-
ated facility location instances (map-r2 to map-r4 sets), and for the cire100, cire150 and
scp1000 instances, respectively. The results for partially robust teams were the ones
computed by PR_A after termination or currently found within the time limit, and thus
some of the reported results may include sub-optimal teams. The percentage above each
TF bar corresponds to the k-partial coverage value pc(T, k) on average. It shows that the
comparative behavior between optimal efficient teams, robust teams and partially robust
teams described previously in Figs. 1 and 6 extends to all benchmarks on average. On the
one hand, the overall costs of ⟨k, t⟩-partially robust teams remain below the deployment

 Autonomous Agents and Multi-Agent Systems (2023) 37:22

1 3

 22 Page 28 of 45

of k-robust teams, even for high values of t. As an example, one can see that the overall
deployment cost of ⟨4, .95⟩-partially robust teams for the map-r4 set (cf. Fig. 7) is about
only 60% of the deployment cost of 4-robust teams on average; note that for this bench-
mark and parameters, all of the solutions found by PR_A are sub-optimal (see Table 3). On
the other hand, these costs remain arguably reasonable in comparison with optimal efficient
teams, while efficiency can only guarantee a very low k-partial coverage, especially for the
more structured set of facility location instances (e.g., below 50% on average for k ≥ 2).

Figure 9 also clearly shows the advantage of sub-optimal partially robust teams found
with PR_A compared to robust ones in terms of deployment cost. This time, the results
are shown instance-wise through a scatter plot, and only for those instances for which PR
could not find a solution within the time limit. Lastly, Fig. 10 shows the evolution with time
execution of the deployment cost of the currently found solution using PR_A, for some
randomly selected instances and parameters. The focus was given for instances for which
an optimal solution was found in more than 100 s, after more than 3 iterations (lines 12
to 18 in Algorithm 2). This clearly shows how on these instances a near-optimal solution
can be quickly found in the first iteration steps, and suggests that one can fairly extend this
conclusion to the cases when an optimal solution is not found within a certain time limit.

Fig. 6 Optimal efficient and 2-robust teams and sub-optimal ⟨2, .90⟩-partially robust team

Autonomous Agents and Multi-Agent Systems (2023) 37:22

1 3

Page 29 of 45 22

8 Conclusion

We introduced the notion of partial robustness in Team Formation (PR-TF): given an
integer k and a rational number t ∈ [0, 1] , a deployed team is ⟨k, t⟩-partially robust if
whenever k agents are removed from it, the “ratio” of skills covered by the team formed
of the remaining agents is kept higher than t. We formalized PR-TF and analyzed its
computational complexity. We then provided two complete algorithms à la CEGAR
[55–57], named PR and PR_A, to compute optimal partially robust teams, i.e., par-
tially robust teams of lowest deployment cost. While PR searches for candidate teams
in an increasing deployment cost order, PR_A is an anytime algorithm: starting from
a sub-optimal candidate, it iteratively seeks for subsequent partially robust candidate
teams with lower deployment costs. To empirically evaluate this new notion and our

TF Rob90 95 99

0

5

10

r2, k=1

34%

TF 90 95 99 Rob

0

5

10

15

20

r2, k=2

5%

TF 90 95 99 Rob

0

5

15

20

25

30

r2, k=3

1%

TF 90 95 99 Rob

0

5

10

15

20

25

30

35

40

r2, k=4

0%

TF Rob90 95 99

0

10

20

30

r3, k=1

57%

TF 90 95 99 Rob

0

10

20

30

40

50

r3, k=2

29%

TF 90 95 99 Rob

0

10

20

30

40

50

60

70

r3, k=3

14%

TF 90 95 99 Rob

0

20

40

60

80

r3, k=4

5%

TF Rob90 95 99

0

20

40

60

80

100

r4, k=1

72%

TF 90 95 99 Rob

0

30

60

90

120

150

r4, k=2

54%

TF 90 95 99 Rob

0

50

100

150

200

r4, k=3

41%

TF 90 95 99 Rob

0

50

100

150

200

250

r4, k=4

30%

Fig. 7 Deployment and overall cost on average for the generated facility location instances. The percentage
above each TF bar corresponds to the k-partial coverage value pc(T) on average

 Autonomous Agents and Multi-Agent Systems (2023) 37:22

1 3

 22 Page 30 of 45

algorithms PR and PR_A, we compared with existing solution concepts and encodings
for team efficiency (TF), robustness (RobTF) and recoverability (RecTF) on existing
benchmarks, but also on new structured instances. For this purpose, we have devel-
oped a benchmark generation software publicly available [6]. Our software allows one
to create instances modeling facility location problems on populated elevation maps.
The structure of these maps can be adjusted through various parameters related to for
example granularity and Perlin noise [67]. This type of instances is more structured
than some existing benchmarks previously used in Team Formation [3, 2], since they
are closer to real-world situations, and thus are arguably suitable to evaluate teams from
the (partial) robustness viewpoint: a deployed team consists of a set of facilities, and the

Fig. 8 Deployment and overall cost on average for the cire100, cire150 and scp1000 instances (values are
divided by 100). The percentage above each TF bar corresponds to the k-partial coverage value pc(T) on
average

Autonomous Agents and Multi-Agent Systems (2023) 37:22

1 3

Page 31 of 45 22

Fig. 9 Deployment cost of sub-optimal partially robust teams computed using PR_A compared with
k-robust teams. Only instances not solved by PR are shown

 Autonomous Agents and Multi-Agent Systems (2023) 37:22

1 3

 22 Page 32 of 45

goal is to find the least expensive set of facilities that provides an acceptable degree of
population coverage, even in the case when some of them become out of service.

Our contribution reveals that PR-TF exhibits a number of interesting properties
from several perspectives, when compared to the existing notions. First, we proved
that the decision problem corresponding to PR-TF is ��

�
-complete. On the one hand,

Fig. 10 Evolution in time execution of the deployment cost for some randomly selected instances (cire150,
scp1000, r3 and r4 instances), using PR_A

Autonomous Agents and Multi-Agent Systems (2023) 37:22

1 3

Page 33 of 45 22

the counterpart problems for TF and RobTF are both NP-complete, which makes the
partial robustness issue harder, computationally speaking. However, PR-TF is easier
than RecTF since the latter was proved to be ��

�
-complete [3]. Given the ever-increasing

efficiency of modern constraint-based solvers, and since our algorithms are based on a
approach that makes iterative use of such solvers, computing optimal partially robust
teams could be done quite efficiently for instances of reasonable size: for instance, for
one of our facility deployment benchmark consisting of instances with more than 500
agents and 75 skills in average (map-r3), our algorithms could compute an optimal
solution for a majority of instances within one hour whereas the existing encodings for
RecTF could not solve a single instance. Second, PR-TF provides by definition a guar-
antee of skill coverage in case of some agent losses. In comparison, the notions of TF
and RecTF do not provide any such guarantee. In particular, we have empirically shown
that the coverage loss in a disaster phase can be substantial for optimal efficient teams,
even after losing a few agents from the team.

Third, we have evaluated the deployment cost of optimal partially robust teams and
compared it with the other solution concepts. For most of the benchmarks, we found
that there is a substantial gap between the deployment cost of ⟨k, t⟩-partially robust
teams and the one of “fully” robust teams (RobTF), even for high values of t.

PR-TF is thus a new solution concept that can reasonably seen as an interesting trade-
off between the existing notions of team efficiency, robustness and recoverability, both
in terms of computational efficiency, skill coverage in the case of agent losses, and over-
all deployment cost.

This work opens a number of perspectives for further research. Considering other
heuristics to quickly compute interesting cuts and determining how many can be added
depending on the instance at hand will deserve to be investigated.

It could be also interesting to evaluate the practical benefits of considering the nature
of the graph representing the problems. Because the TF problem is equivalent to the
hitting set problem, all the parameterized complexity results that stand for the hitting
set problem also stand for the team formation problem. In particular, it is well known
that the hitting set problem parameterized by the size of the solution is a W[2]-complete
problem in parameterized complexity theory [68], which shows the difficulty of com-
puting one TF solution. Nevertheless, as shown in [69], it could be possible to inves-
tigate other parameters such as the cyclomatic number of the graph to obtain efficient
algorithms. Because all our algorithms are based on the elementary brick that consists
in computing TF solutions, improving this basic brick will lead to a reduction of the
required time needed to obtain solutions for all the other tasks.

To deal with the particular structure of our map instances, we could also consider
coarse-grained methods that would take into account regions of different sizes. More
precisely, it could be possible to divide the maps into squares that can be handled effi-
ciently. The challenging part is then to combine local solutions in order to get a global
one.

Another perspective for further research consists in evaluating other solving para-
digms such as SAT [58] or CSP [70]. In this respect, we plan to analyse the results
obtained by the state-of-the-art SAT solvers during the last SAT competition on our TF
benchmarks [71].

From an application point of view, we also plan to investigate if our framework can be
used in combination with smart city energy models. For instance, we could consider the
simulator proposed in [72] to evaluate the different team formation notions presented in
this paper in a well controlled environment. Such experiments could be helpful in order to

 Autonomous Agents and Multi-Agent Systems (2023) 37:22

1 3

 22 Page 34 of 45

estimate what is the good compromise between threshold values and the number of pos-
sibly defective agents.

Appendix A: Proofs of propositions

Proposition 4 ��-��-�� is ��

�
-complete.

Let us first prove that ��-��-�� is in ��

�
:

Proof (membership to ��

�
) Consider the following algorithm:

1. Guess a set of agents T ⊆ A;
2. Check that T is efficient and f (T) ≤ c;
3. Check using an ��-oracle that there does not exist a team T ′ ⊆ T such that |T ′| ≤ k and

cov(T ⧵ T �) < t;

Obviously enough, this non-deterministic algorithm with a �� oracle runs in polynomial
time and decides ��-��-�� , which shows that ��-��-�� is in ��

�
. ◻

Before proving that ��-��-�� is ��

�
-hard, let us first consider the following intermediate

decision problem, ������-��� [73]:

Definition 7 (������-���)

• Input A tuple ⟨X, Y ,�, p⟩ , where X = {x1,… , xn} and Y = {y1,… , ym} are two dis-
joint sets of propositional atoms, � is a 3-CNF propositional formula such that
Var(�) = X ∪ Y , and p is a non-negative integer.

• Question For every truth-assignment to X, is there a truth-assignment to Y making at
least p clauses in � true?

������-��� has been proven to be ��

�
-hard in [73], where ��

�
= co��

�
.

We now consider a variant of the ������-��� problem, which we call ������-
���:

Definition 8 (������-���)

• Input A tuple ⟨X, Y ,�, p⟩ , where X = {x1,… , xn} and Y = {y1,… , ym} are two dis-
joint sets of propositional atoms, � is a 3-CNF propositional formula such that
Var(�) = X ∪ Y , and p is a non-negative integer.

• Question For every truth-assignment to X, is there a truth-assignment to Y making at
most p clauses in � true?

Let us prove that ������-��� is ��

�
-hard:

Proof (������-��� is ��

�
-hard) We provide a polynomial-time reduction to ������

-��� from ������-��� . The reduction is defined as follows. Let ⟨X, Y , �, p⟩ be an
instance of ������-��� , i.e., X = {x1,… , xn} and Y = {y1,… , ym} are two dis-
joint sets of propositional atoms, � is a 3-CNF formula consisting of q clauses such that

Autonomous Agents and Multi-Agent Systems (2023) 37:22

1 3

Page 35 of 45 22

Var(�) = X ∪ Y , and p is a non-negative integer. The formula � can be viewed as a set of
clauses written as (li, lj, lk) , where li, lj, lk are literals from X ∪ Y .

With each clause cr ∈ � we associate two fresh propositional atoms zr
1
, zr

2
 and define the

set Z = {zr
1
, zr

2
∣ cr ∈ �} (note that Z is disjoint from X and Y). Now, for each clause

cr = (li, lj, lk) from � we associate the set of three clauses
Cr = {(li, z

r
1
, zr

2
), (lj, z

r
1
, zr

2
), (lk, z

r
1
, zr

2
)} . Lastly, let us define the 3-CNF formula � made of

the set of clauses ⋃
cr∈�

Cr
 . Note that Var(�) = X ∪ Y ∪ Z.

Let us show that ⟨X, Y ,�, p⟩ is a “yes” instance for ������-��� if and only if
⟨X, Y ∪ Z, �, ��� − p⟩ is a “yes” instance for ������-��� , where |�| is the number of
clauses in �.

(Only if part) Assume that ⟨X, Y ,�, p⟩ is a “yes” instance for ������-��� . Let �X be
any assignment of X. Since ⟨X, Y ,�, p⟩ is a “yes” instance for ������-��� , this means
that there exists an assignment �Y of Y such that the assignment �X ∪ �Y makes at least p
clauses in � true. Now, for each clause cr = (li, lj, lk) from � that is made true by the assign-
ment �X ∪ �Y , let us define the assignment �r

Z
 of the two variables zc

1
, zc

2
 as follows. Since

at least one of the literals li , lj , lk is true in cr , if li is true in cr , one sets zc
1
= zc

2
= 0 ; other-

wise if lj is true in cr , one sets zc
1
= 0 and zc

2
= 1 ; and otherwise, if lk is true in cr , one sets

zc
1
= 1 and zc

2
= 0 . Doing so, one can verify that the assignment �X ∪ �Y ∪ �r

Z
 makes at

least one clause from Cr false. Thus for each clause cr ∈ � that is made true by the assign-
ment �X ∪ �Y , one can find an assignment �Z of Z so that the assignment �X ∪ �Y ∪ �Z
makes one clause from Cr false.4 Yet we know that the assignment �X ∪ �Y makes at
least p clauses in � true. Thus the assignment �X ∪ �Y ∪ �Z makes at least p clauses from
Cr false, or equivalently it makes at most |�| − p clauses from Cr true. This means that
⟨X, Y ∪ Z, �, ��� − p⟩ is a “yes” instance for ������-���.

(If part) Assume now that ⟨X, Y ,�, p⟩ is a “no” instance for ������-��� . So let �X
be an assignment of X, then we know that for any assignment �Y of Y, the assignment
�X ∪ �Y makes at most p − 1 clauses true in �.

Now, let cr be any clause from � , and let �Y be any assignment of Y. One can easily
see that for any assignment �r

Z
 of the two variables zc

1
, zc

2
 , the assignment �X ∪ �Y ∪ �r

Z
 (i)

makes at most one clause from Cr false if cr is made true by �X ∪ �Y , (ii) makes no clause
from Cr false if cr is made false by �X ∪ �Y . But since we know that for any assignment �Y
of Y, the assignment �X ∪ �Y makes at most p − 1 clauses true in � , this means that for any
assignment �Y of Y and for any assignment �Z of Z, the assignment �X ∪ �Y ∪ �Z makes at
most p − 1 clauses from Cr false, or equivalently it makes at least |�| − p + 1 clauses from
Cr true. This means that ⟨X, Y ∪ Z, �, ��� − p⟩ is a “no” instance for ������-���.

We have shown that ⟨X, Y ,�, p⟩ is a “yes” instance for ������-��� if and only if
⟨X, Y ∪ Z, �, ��� − p⟩ is a “yes” instance for ������-��� . Since ������-��� is ��

�

-hard, this proves that ������-��� is ��

�
-hard. ◻

We are now ready to provide the proof of Proposition 4:

Proof (of Proposition 4) We intend to show that ��-��-�� is ��

�
-hard, by providing a poly-

nomial-time reduction to its complementary problem from ������-���.

4 Note that all pairs of sets {zr
1
, zr

2
} and {zr�

1
, zr

�

2
} are pairwise disjoint when r ≠ r

′ , so that all assignments
{�r

Z
∣ c

r
∈ �} can be defined independently of each other.

 Autonomous Agents and Multi-Agent Systems (2023) 37:22

1 3

 22 Page 36 of 45

Let ⟨X, Y ,�, p⟩ be an instance of ������-��� , i.e., X = {x1,… , xn} and
Y = {y1,… , yn} are two disjoint sets of propositional atoms, � is a 3-CNF formula consist-
ing of q clauses such that Var(�) = X ∪ Y , and p is a non-negative integer. Note that with-
out loss of generality, we have here |X| = |Y| = n . Assume also without loss of generality
that p < |𝜑| (the case where p = |�| makes the instance trivially a “yes” one).

Let us associate with it a set of agents A, a set of skills S, a deployment cost func-
tion f ∶ A ↦ ℕ , a skill weight function w ∶ 2S ↦ [0, 1] , and a skill-to-agent function
� ∶ S ↦ 2A . Note that these objects are not exactly the components of a weighted TF prob-
lem description, since one considers a skill-to-agent function � ∶ S ↦ 2A instead of an
agent-to-skill function � ∶ A ↦ 2S . Intuitively, the function � associates with every skill
from S the set of agents that possess the skill. This is made for simplicity in the reduc-
tion, however given A and S, an agent-to-skill function � can simply be derived from � as
�(a) = {s ∈ S ∣ a ∈ �(s)} for every agent a ∈ A . Then for instance, a skill s ∈ S is covered
by a team T ⊆ A if and only if there is an agent a ∈ T such that a ∈ �(s) ; and a team is effi-
cient if for all skills s ∈ S , �(s) ∩ T ≠ �.

Let us now define these objects in detail.
We define the set A of 4n + 1 agents as A = {a0} ∪ {ai, ai, bi, bi ∣ i ∈ {1,… , n}}.
The cost function f is defined as f ({a0}) = 0 , and for every agent a ∈ A⧵{a0} , f (a) = 1.
The set S is formed of 4n + |�| skills, where |�| is the number of clauses in � , and

is divided in two parts S = S∗ ∪ S� , with |S∗| = 4n and |S�| = � : the set S� depends on
the clauses of � , as opposite to the set S∗ which only depends on A. So S∗ is defined as
S∗ = {sI

i
, sII

i
, sIII

i
, sIV

i
∣ i ∈ {1,… , n}} , and S� is defined as S� = {s

�

1
,… , s�

q
} , where q = |�|.

The skill weight function w ∶ 2S ↦ [0, 1] is characterized as follows. For every skill
s ∈ S , one sets w(s) = 1∕|S| . In addition, for every subset of skills S′ ⊆ S , one defines
w(S�) = 1 if there exists i ∈ {1,… , n} such that {ai, bi} ⊆ S� or {ai, bi} ⊆ S� , or if S𝜑 ⊆ S′ ;
otherwise w(S�) =

∑
s∈S� w(s) . Note that while the domain of w is in size exponential in |S|,

the representation of w is in size polynomial in n + |�| , i.e., in |S|.
Lastly, the skill-to-agent function � ∶ S ↦ 2A is defined as follows. For each

i ∈ {1,… , n}:

– �(sI
i
) = {ai, ai}

– �(sII
i
) = {bi, bi}

– �(sIII
i
) = {ai, bi}– �(sIV

i
) = {ai, bi}

.

And for each skill s�
r
∈ S� , one identifies �(s�

r
) depending on the clause cr = (li, lj, lk) from

� . Beforehand, let us first consider the mapping � associating any literal over X ∪ Y with a
pair of elements of A, defined for every (possibly negated) literal li as

Now, for each clause cr = (li, lj, lk) from � , we define �(s�
r
) as

�(s�
r
) = {a0} ∪ �(li) ∪ �(lj) ∪ �(lk).

Example 2 For the sake of illustration, let us give an example of how the skill-to-agent
function � ∶ S ↦ 2A is constructed from an instance ⟨X, Y ,�, p⟩ of ������-��� , for

�(li) = {ai, bi} ifliis a positive literal overX,

{ai, bi} ifliis a negative literal overX,

{ai, ai} ifliis a positive literal overY ,

{bi, bi} ifliis a negative literal overY .

Autonomous Agents and Multi-Agent Systems (2023) 37:22

1 3

Page 37 of 45 22

skills from S� . Let X = {x1, x2, x3, x4} , Y = {y1, y2, y3, y4} , and � is formed of the set of
four clauses {(x1, x2, x3), (x1, x4, y1), (x2, y2, y3), (y1, y2, y3)} . Since � has four clauses, S� is
formed of four skills s�

1
, s

�

2
, s

�

3
, s

�

4
 (one skill for each clause from �), and for each one of

these skills s�
i
 , �(s�

i
) is defined as follows:

Let us associate now the skill-to-agent function � with the agent-to-skill function
� ∶ A ↦ 2S as �(a) = {s ∈ S ∣ a ∈ �(s)} for every agent a ∈ A.

So, we have associated with any instance ⟨X, Y ,�, p⟩ of ������-��� a weighted TF
problem description ⟨A, S, f ,w, �⟩ in time polynomial in the size of ⟨X, Y ,�, p⟩ (with in
addition � serving as an intermediate function to characterize �).

Let us now show that ⟨X, Y ,�, p⟩ is a “yes” instance of ������-��� if and only if
there does not exist a ⟨k, t⟩-partially robust team T ⊆ A such that T is efficient and f (T) ≤ c ,
with k = n + 1 , t = (2n + p + 1)∕|S| , and c = 2n.

(Only if part) Assume that ⟨X, Y ,�, p⟩ is a “yes” instance for ������-��� . So for any
assignment �X of X, there exists an assignment �Y of Y such that the assignment �X ∪ �Y
makes at most p clauses in � true. Now, let T ⊆ A be any team such that T is efficient
and f (T) ≤ 2n . We need to show that T is not ⟨k, t⟩-partially robust, with k = n + 1 and
t = (2n + p + 1)∕|S|.

First, let us remark that if a0 ∉ T , since T is efficient and f (T) ≤ 2n , the team T ∪ {a0} is
also efficient and f (T ∪ {a0}) ≤ 2n ; in addition, T is ⟨k, t⟩-partially robust only if T ∪ {a0}
is ⟨k, t⟩-partially robust. This means that we can assume that a0 ∈ T without any harm. Sec-
ond, each agent from A except a0 has a unit cost, i.e., for each a ∈ A⧵{a0} , f (a) = 1 . So if
|T⧵{a0}| = m < 2n , then any addition of 2n − m agents T ′ ⊆ A⧵T to T can be done without
any harm. That is to say, we still have that T ∪ T � is efficient, f (T ∪ T �) ≤ 2n , and T is ⟨k, t⟩
-partially robust only if T ∪ T � is ⟨k, t⟩-partially robust. So overall, let us assume that a0 ∈ T
and |T⧵{a0}| = 2n , and it is enough to prove that T is not ⟨k, t⟩-partially robust. Lastly,
since T is efficient, it necessarily covers all skills from S = S∗ ∪ S� . On the one hand, all
skills from S� are trivially covered by T since a0 ∈ T and for each s

�

i
∈ S� , a0 ∈ �(s

�

i
).

On the other hand, all skills from S∗ = {sI
i
, sII

i
, sIII

i
, sIV

i
∣ i ∈ {1,… , n}} are covered as

well by T. So for each i ∈ {1,… , n} , �(sIi) ∩ T ≠ � , �(sIIi) ∩ T ≠ � , �(sIII
i
) ∩ T ≠ � , and

�(sIV
i
) ∩ T ≠ � . By construction of those �(sI

i
) , �(sII

i
) , �(sIII

i
) , �(sIV

i
) , for i ∈ {1,… , n} , and

since |T⧵{a0}| = 2n , it means that for each i ∈ {1,… , n} , one has either (i) {ai, bi} ⊆ T
and {ai, bi} ∩ T = � , either (ii) {ai, bi} ⊆ T and {ai, bi} ∩ T = �.

Let us now show that T is not ⟨k, t⟩-partially robust, i.e., one can find a set T ′ ⊆ T ,
|T ′| ≤ k , and such that cov(T ⧵ T �) < t . Let us now define the assignment �X of X from
T as follows: for each i ∈ {1,… , n} , �X(xi) = 1 if and only if {ai, bi} ⊆ T . In particular,
from this definition of �X and because of the structure of T we know that (i) �X(xi) = 1
if and only if ({ai, bi} ⊆ T and {ai, bi} ∩ T = �), and (ii) �X(xi) = 0 if and only if
({ai, bi} ⊆ T and {ai, bi} ∩ T = �). Yet we know that ⟨X, Y ,�, p⟩ is a “yes” instance for
������-��� . This means that there is an assignment �Y of Y such that the assignment
�X ∪ �Y makes at most p clauses in � true. We associate with such an assignment �Y
a set of agents T ′ to remove from T as follows. First, let a0 ∈ T � (i.e., one removes a0
from T). Second, for each i ∈ {1,… , n} , if �X(yi) = 1 then one removes either ai or ai

�(s
�

1
) = {a0, a1, b1, a2, b2, a3, b3} (clause (x1, x2, x3))

�(s
�

2
) = {a0, a1, b1, a4, b4, b1, b1} (clause (x1, x4, y1))

�(s
�

3
) = {a0, a2, b2, a2, b3, b3} (clause (x2, y2, y3))

�(s
�

3
) = {a0, a1, a1, b2, b2, a3, a3} (clause (y1, y2, y3)) .

 Autonomous Agents and Multi-Agent Systems (2023) 37:22

1 3

 22 Page 38 of 45

from T depending on whether ai or ai is in T; and if �X(yi) = 0 then one removes either
bi or bi from T depending on whether bi or bi is in T. At this stage, we can remark that
(i) T ′ contains a0 and exactly one element of {ai, bi, ai, bi} for each i ∈ {1,… , n} ; and (ii)
T ⧵ T ′ contains exactly one element of {ai, bi, ai, bi} for each i ∈ {1,… , n} . Accordingly,
|T �| = n + 1 , so |T ′| ≤ k . It remains to show that cov(T ⧵ T �) < t.

By definition of T and T ′ , we have that T ⧵ T ′ covers exactly 2n skills from the set
S∗ . And it can be verified by construction of the �(s�

r
) , cr ∈ � , that for each clause cr

from � , cr is made true by the assignment �X ∪ �Y if and only if �(s�
r
) ∩ (T ⧵ T �) ≠ � , if

and only if the skill s�
r
 is covered by T ⧵ T ′ . Thus the number of skills from S� that are

covered by T⧵T ′ is equal to the number of clauses in � that are made true by �X ∪ �Y .
Yet from the initial assumption, �X ∪ �Y makes at most p clauses in � true. This means
that at most p skills from S� are covered by T ⧵ T ′ . To summarize, since on the one
hand T ⧵ T ′ covers exactly 2n skills from the set S∗ , and on the other hand T ⧵ T ′ cov-
ers at most p skills from S� , we get that T ⧵ T ′ covers at most 2n + p skills from S, i.e.,
|�(T ⧵ T �)| ≤ 2n + p.

Let us compute w(T ⧵ T �) . We already know that T⧵T ′ contains exactly one element
of {ai, bi, ai, bi} for each i ∈ {1,… , n} . So by definition of the skill weight function
w ∶ 2S ↦ [0, 1] , we have that w(�(T⧵T �)) =

∑
sj∈T⧵T

� w(sj) : indeed, we do not fall in the
case where w(�(T⧵T �)) = 1 since for each i ∈ {1,… , n} , {ai, bi} ⊈ 𝛼(T⧵T �) and
{ai, bi} ⊈ 𝛼(T⧵T �) , and S𝜑 ⊈ 𝛼(T⧵T �) (recall that p is initially assumed to be strictly
lower than |�| = |S�|).

So we got that |�(T ⧵ T �)| ≤ 2n + p and w(�(T ⧵ T �)) =
∑

sj∈T⧵T
� w(sj) . Thus

∑
sj∈T⧵T

� w(sj) = (2n + p)∕�S� . Hence, cov(T⧵T �) = w(�(T⧵T �)) = (2n + p)∕|S| . Yet
t = (2n + p + 1)∕|S| , thus cov(T⧵T �) < t.

We have proved that for any team T such that T is efficient and f (T) ≤ c , one can
find a set T ′ ⊆ T , |T ′| ≤ k , such that cov(T ⧵ T) < t , with c = 2n , k = n + 1 , and
t = (2n + p + 1)∕|S| . This means that there does not exist a ⟨k, t⟩-partially robust team
T ⊆ A such that T is efficient and f (T) ≤ c , with k = n + 1 , t = (2n + p + 1)∕|S| , and
c = 2n . This concludes the (Only if) part of the proof.

(If part) Assume that there does not exist a ⟨k, t⟩-partially robust team T ⊆ A such
that T is efficient and f (T) ≤ c , with k = n + 1 , t = (2n + p + 1)∕|S| , and c = 2n . Let �X
be any assignment of X. We need to show that there is an assignment �Y of Y such that
�X ∪ �Y makes at most p clauses in � true.

Let us associate with �X the team T ⊆ A as follows:

One can check that T is efficient: all skills from S� are covered by a0 , all for each
i ∈ {1,… , n}:

– the skill sI
i
 is covered by either ai or ai;

– the skill sII
i

 is covered by either bi or bi;

– the skill sIII
i

 is covered by either ai or bi;

– the skill sIV
i

 is covered by either ai or bi.

T = {a0}

∪ {ai, bi ∣ �X(xi) = 1, xi ∈ X}

∪ {ai, bi ∣ �X(xi) = 0, xi ∈ X}.

Autonomous Agents and Multi-Agent Systems (2023) 37:22

1 3

Page 39 of 45 22

Yet from our initial assumption, we know that T is not ⟨k, t⟩-partially robust. This means
that there exists a set T ′ ⊆ T , |T ′| ≤ k , such that cov(T ⧵ T �) < t . Yet we know that t < 1 ,
since |S| = 4n + |�| , t = (2n + p + 1)∕|S| , and we initially assumed that p < |𝜑| . So we
know that w(T ⧵ T �) < 1 , thus by definition of the skill weight function w, this means that:

 (i) for each i ∈ {1,… , n} , {ai, bi} ⊈ 𝛼(T⧵T �) and {ai, bi} ⊈ 𝛼(T⧵T �) ; and
 (ii) S𝜑 ⊈ 𝛼(T ⧵ T �).

From (ii) above, since a0 covers all skills from S� and a0 ∈ T , this means that a0 must
necessary be removed from T and thus T ′ necessary contains a0 . Yet |T �| ≤ k = n + 1 . So
from (i) above and by contruction of T, this means that for each i ∈ {1,… , n} , one needs
to remove from T exactly one element among {ai, bi} (in the case where {ai, bi} ⊆ T), or
exactly one element among {ai, bi} (in the case where {ai, bi} ⊆ T). So to summarize the
structure of T ′:

– T ′ contains a0;
– for each i ∈ {1,… , n} , T ′ contains either exactly one element from {ai, ai} , or exactly

one element from {bi, bi}.

And as a consequence, to summarize the structure of T ⧵ T ′:

– T ⧵ T ′ does not contain a0;
– for each i ∈ {1,… , n} , T ⧵ T ′ contains either exactly one element from {ai, bi} , or

exactly one element from {ai, bi}.

Now, we associate with T ′ the assignment �Y of Y defined for each i ∈ {1,… , n} as
�Y (yi) = 0 in the case where {ai, ai} ∩ T � ≠ � , and thus �Y (yi) = 1 in the other case where
{bi, bi} ∩ T � ≠ �.

At this point, from the sole structure of T ⧵ T ′ we know that for each i ∈ {1,… , n} ,
exactly one skill among {sI

i
, sII

i
} and exactly one skill among {sIII

i
, sIV

i
} is covered

by T ⧵ T ′ . Thus exactly 2n skills from S∗ are covered by T ⧵ T ′ . And by definition
of the skill weight function w, w(�(T⧵T �)) =

∑
s∈�(T⧵T �) w(s) = ��(T⧵T �)�∕�S� . Yet

w(𝛼(T⧵T �)) = cov(T⧵T �) < t = (2n + p + 1)∕|S| . Since |�(T⧵T �)| ∩ S∗ = 2n , thus means
that at most p skills from S� are covered by T ⧵ T ′ , i.e., |𝛼(T⧵T �)| < p . Yet it can be verified
by construction of T⧵T ′ and by definition of �(s�

r
) for each clause cr from � that T ⧵ T ′ cov-

ers a skill s�
r
 if and only if the assignment �X ∪ �Y makes the clause cr true. This precisely

means that the assignment �X ∪ �Y makes at most p clauses from � true.
We have proved that for any assignment �X of X, there is an assignment �Y of Y that

makes at most p clauses from � true. This means that ⟨X, Y ,�, p⟩ is a “yes” instance for
������-��� and concludes the (If) part of the proof.

We have proved that ⟨X, Y ,�, p⟩ is a “yes” instance of ������-��� if and only if
there does not exist a ⟨k, t⟩-partially robust team T ⊆ A such that T is efficient and f (T) ≤ c ,
with k = n + 1 , t = (2n + p + 1)∕|S| , and c = 2n . This provides a reduction from ������

-��� to the complementary problem of ��-��-�� . Yet ������-��� is ��

�
-hard. There-

fore, ��-��-�� is ��

�
-hard.

This concludes the proof of Prop. 4.3. ◻

 Autonomous Agents and Multi-Agent Systems (2023) 37:22

1 3

 22 Page 40 of 45

Proposition 5 Given a weighted TF problem description ⟨A, S, f, w, �⟩ , k ∈ ℕ and a
rational number t, a team T ⊆ A is ⟨k, t⟩-partially robust if and only it is efficient and for
each S′ ⊆ S such that w(S ⧵ S�) < t , we have that |{ai ∈ T ∣ �(ai) ∩ S� ≠ �}| ≥ k + 1.

Proof (Only if part) We show the contrapositive of the statement. If T ⊆ A is not
efficient, it is trivially not ⟨k, t⟩-partially robust. Now, let S′ ⊆ S , w(S⧵S�) < t , let
T � = {ai ∈ T ∣ �(ai) ∩ S� ≠ �} and assume that |T ′| ≤ k . By definition of T ′ , for each agent
ai ∈ T⧵T � , �(ai) ∩ S� = � . Thus 𝛼(T⧵T �) ⊆ S⧵S� . Since w(S ⧵ S�) < t and w is monotone,
w(𝛼(T⧵T �)) < t . Hence, cov(T ⧵ T �) < t , and so pc(T , k) < t , which precisely means that T
is not ⟨k, t⟩-partially robust.

(If part) We show the contrapositive of the statement. Let T ⊆ A , and assume
that T is not ⟨k, t⟩-partially robust and efficient. By definition, pc(T , k) < t , i.e., there
exists T ′ ⊆ T , |T ′| ≤ k , cov(T ⧵ T �) < t , so w(𝛼(T⧵T �)) < t . Let S� = S⧵�(T⧵T �) .
Accordingly, w(S⧵S�) = w(S⧵(S⧵𝛼(T⧵T �))) = w(𝛼(T⧵T �)) < t . And by defini-
tion of S′ , for each ai ∈ T ⧵ T � , �(ai) ∩ S� = � . Hence, since |T ′| ≤ k , we get that
|{ai ∈ T ∣ �(ai) ∩ S� ≠ �}| ≤ k . ◻

Appendix B: Parameters involved in the generation protocol
of the populated map instances

In this section, we provide more details on the list of parameters involved in the generation
protocol of our populated map instances. This protocol has been implemented into a soft-
ware program that is publicly available [6].

In the first step, one generates an elevation map made of water parts, lands and moun-
tains using Perlin noise [67]. This elevation map is created according to the following
parameters:

– resolution r: an integer within range [1, 7] that determines the size of the map;
– complexity c: an integer within range [1, 4]. The higher the value c, the shorter the vari-

ation of the map in terms of elevation.

Given these two parameters, an n x n grid of numbers is created using Perlin noise, with
n = 2r+1 . The grid is then converted into a hexagonal grid for which each cell is associated
with a “type” depending on the range of its value in the grid. A low (resp., mid, high) value
is interpreted as a water cell (resp., a land cell, a mountain cell).

In the second step, the map is populated by iteratively adding an individual on the grid.
This step is characterized by the following parameters:

– number of seeds s: an integer specifying the number of “starting cities”, i.e., the num-
ber of cells used as a starting point for populating;

– total population p: the total number of inhabitants in the map;
– maximum density l: the maximum number of inhabitants in the same cell;
– sparse degree d: the distance within which a new inhabitant can be added nearby an

already populated cell. The higher the value d, the more spread out the population on
the map.

Autonomous Agents and Multi-Agent Systems (2023) 37:22

1 3

Page 41 of 45 22

Thus, initially s individuals are added in s different land cells randomly chosen, provided
that the cell is next to a water cell. Then, a new individual is added at random following
a probability distribution that depends on d and such that the closer to an already popu-
lated cell, the higher its probability to welcome a new individual. The water cells and the
cells that already host l individuals cannot host a new individual. The process is repeated p
times which at last corresponds to the total population in the map. Figure 11 depicts some
examples of populated maps using this method. Note that the values of s, p, l and d, when
unspecified in the software program, are chosen by default according to r, e.g., for s = r ,
we set d = r − 1 and p = 4r+1 . Blue (resp. brown, white) cells are of water type (resp. land,
mountain type). Different scales of brown correspond to different elevation degrees of land,
only used to tune the probability of adding an individual to a land cell. The gray scales rep-
resent the number of individuals in a cell. The darker a cell, the more densely populated, so
a pitch black cell contains l individuals.

In the third step, a populated map is translated into a weighted TF problem description
⟨A, S, f ,wΣ, �⟩ . This step uses the following parameter:

Fig. 11 Examples of generated maps with different values for the resolution r and the complexity c. The
values of the remaining parameters were chosen by default

 Autonomous Agents and Multi-Agent Systems (2023) 37:22

1 3

 22 Page 42 of 45

– set of facility types a ⊆ {type1,… , type10} : each type typei of agent corresponds to a
facility that has a deployment cost equal to i and a cover range equal to i − 1.

The values of these parameters used to generate each one of our four sets of map instances
were set as follows:

– map-r1: r = s = 1 , c = 1 , p = 16 , l = 20 , d = 1 , a = {type1, type2};
– map-r2: r = s = 2 , c = 1 , p = 64 , l = 20 , d = 2 , a = {type1, type2, type3};
– map-r3: r = 3 , c = 1 , s = 4 , p = 256 , l = 20 , d = 3 , a = {type1, type2, type3, type4};
– map-r4: r = 4 , c = 1 , s = 7 , p = 1024 , l = 20 , d = 4 , a = {type1, type3, type5}.

Acknowledgements This work has benefited from the support of the JSPS KAKENHI Grant Number
JP20K11947, the JSPS KAKENHI Grant Number JP21H04905 and the JST CREST Grant Number JPM-
JCR22D3, Japan.

References

 1. Garey, M. R., & Johnson, D. S., Freeman W. H (1979). Computers and Intractability: A Guide to the
Theory of NP-Completeness.

 2. Okimoto, T., Schwind, N., Clement, M., Ribeiro, T., Inoue, K., & Marquis, P. (2015). How to form a
task-oriented robust team. In: Proceedings of the 14th international conference on autonomous agents
and multiagent systems (AAMAS’15), pp. 395–403.

 3. Demirović, E., Schwind, N., Okimoto, T., & Inoue, K. (2018). Recoverable team formation: Building
teams resilient to change. In: Proceedings of the 17th international conference on autonomous agents
and multi-agent systems (AAMAS’18), pp. 1362–1370.

 4. Ahmadi-Javid, A., Seyedi, P., & Syam, S. S. (2017). A survey of healthcare facility location. Comput-
ers & Operations Research, 79, 223–263.

 5. Schwind, N., Demirović, E., Inoue, K., Lagniez, J. (2021). Partial robustness in team formation: Bridg-
ing the gap between robustness and resilience. In: Proceedings of the 20th international conference on
autonomous agents and multiagent systems (AAMAS’21), pp. 1154–1162.

 6. Schwind, N., Demirović, E., Inoue, K., & Lagniez, J. (2022) TF-map-solver. https:// github. com/ nicol
as- schwi nd/ TF- map- solver

 7. Juárez, J., Santos, C. P., & Brizuela, C. A. (2021). A comprehensive review and a taxonomy proposal
of team formation problems. ACM Computing Surveys, 54(7), 1–33.

 8. Bruneau, M., Chang, S. E., Eguchi, R. T., Lee, G. C., O’Rourke, T. D., Reinhorn, A. M., Shinozuka,
M., Tierney, K., Wallace, W. A., & von Winterfeldt, D. (2003). A framework to quantitatively assess
and enhance the seismic resilience of communities. Earthquake Spectra, 19, 733–752.

 9. Schwind, N., Magnin, M., Inoue, K., Okimoto, T., Sato, T., Minami, K., & Maruyama, H. (2016). For-
malization of resilience for constraint-based dynamic systems. Journal of Reliable Intelligent Environ-
ments, 2(1), 17–35.

 10. Andrejczuk, E., Bistaffa, F., Blum, C., Rodríguez-Aguilar, J. A., & Sierra, C. (2019). Synergistic
team composition: A computational approach to foster diversity in teams. Knowledge-Based Systems,
182(104), 799.

 11. Kurtan, C., Yolum, P., & Dastani, M. (2020). An ideal team is more than a team of ideal agents. In:
Proceedings of the 24th European conference on artificial intelligence (ECAI’20), vol. 325, pp. 43–50.

 12. Barambones, J., Richoux, F., Imbert, R., & Inoue, K. (2020). Resilient team formation with stabilis-
ability of agent networks for task allocation. ACM Transactions on Autonomous and Adaptive Systems,
15(3), 1–24.

 13. Igarashi, A., Ota, K., Sakurai, Y., & Yokoo, M. (2019). Robustness against agent failure in hedonic
games. In: Proceedings of the 28th international joint conference on artificial intelligence (IJCAI’19),
pp. 364–370.

 14. Okimoto, T., Ribeiro, T., Bouchabou, D., & Inoue, K. (2016). Mission oriented robust multi-team
formation and its application to robot rescue simulation. In: Proceedings of the 25th international
joint conference on artificial intelligence (IJCAI’16), pp. 454–460.

https://github.com/nicolas-schwind/TF-map-solver
https://github.com/nicolas-schwind/TF-map-solver

Autonomous Agents and Multi-Agent Systems (2023) 37:22

1 3

Page 43 of 45 22

 15. Terazawa, R., & Fujita, K. (2022) Allocation considering agent importance in constrained robust
multi-team formation. In: Proceedings of the 14th international conference on agents and artificial
intelligence (ICAART’22), pp. 131–138.

 16. Malencia, M., Kumar, V., Pappas, G. J., & Prorok, A. (2021). Fair robust assignment using redun-
dancy. IEEE Robotics and Automation Letters, 6(2), 4217–4224.

 17. Bachrach, Y., & Shah, N. (2013). Reliability weighted voting games. In B. Vöcking (Ed.), Algorith-
mic Game Theory (pp. 38–49). Springer.

 18. Bachrach, Y., Meir, R., Feldman, M., & Tennenholtz, M. (2011). Solving cooperative reliability
games. In: Proceedings of the 27th conference on uncertainty in artificial intelligence (UAI’11), p.
27-34.

 19. Bachrach, Y., Kash, I., & Shah, N. (2012). Agent failures in totally balanced games and convex
games. In P. W. Goldberg (Ed.), Internet and Network Economics (pp. 15–29). Springer.

 20. Kaminka, G. A., & Tambe, M. (2000). Robust agent teams via socially-attentive monitoring. Jour-
nal of Artificial Intelligence Research, 12, 105–147.

 21. Kwak, J.y., Yang, R., Yin, Z., Taylor, M.E., & Tambe, M. (2011). Towards addressing model uncer-
tainty: Robust execution-time coordination for teamwork. In: 2011 IEEE/WIC/ACM international
conferences on web intelligence and intelligent agent technology, vol. 2, pp. 204–207

 22. Rahwan, T., Michalak, T. P., Wooldridge, M., & Jennings, N. R. (2015). Coalition structure genera-
tion: A survey. Artificial Intelligence, 229, 139–174.

 23. Sandholm, T., Larson, K., Andersson, M., Shehory, O., & Tohmé, F. (1999). Coalition structure
generation with worst case guarantees. Artificial Intelligence, 111(1–2), 209–238.

 24. Michalak, T. P., Rahwan, T., Elkind, E., Wooldridge, M., & Jennings, N. R. (2016). A hybrid exact
algorithm for complete set partitioning. Artificial Intelligence, 230, 14–50.

 25. Rahwan, T., Ramchurn, S. D., Jennings, N. R., & Giovannucci, A. (2009). An anytime algorithm
for optimal coalition structure generation. Journal of Artificial Intelligence Research, 34, 521–567.

 26. Rothkopf, M. H., Pekeč, A., & Harstad, R. M. (1998). Computationally manageable combinatorial
auctions. Management Science, 44(7), 1131–1147.

 27. Yeh, D. (1986). A dynamic programming approach to the complete set partitioning problem. BIT
Computer Science and Numerical Mathematics, 26(4), 467–474.

 28. Ieong, S., & Shoham, Y. (2005). Marginal contribution nets: a compact representation scheme for
coalitional games. In: Proceedings of the 6th ACM conference on electronic commerce (EC’05),
pp. 193–202.

 29. Conitzer, V., & Sandholm, T. (2006). Complexity of constructing solutions in the core based on
synergies among coalitions. Artificial Intelligence, 170(6–7), 607–619.

 30. Ohta, N., Iwasaki, A., Yokoo, M., Maruono, K., Conitzer, V., & Sandholm, T. (2006). A compact
representation scheme for coalitional games in open anonymous environments. In: Proceedings of
the 21st national conference on artificial intelligence (AAAI’06), pp. 697–702.

 31. Shrot, T., Aumann, Y., & Kraus, S. (2010). On agent types in coalition formation problems. In:
Proceedings of the 9th international conference on autonomous agents and multiagent systems
(AAMAS’10), pp. 757–764.

 32. Bachrach, Y., Kohli, P., Kolmogorov, V., & Zadimoghaddam, M. (2013). Optimal coalition struc-
ture generation in cooperative graph games. In: Proceedings of the 27th AAAI conference on artifi-
cial intelligence (AAAI’13), pp. 81–87.

 33. Okimoto, T., Schwind, N., Demirović, E., Inoue, K., & Marquis, P. (2018). Robust coalition struc-
ture generation. In: Proceedings of the 21st international conference on principles and practice of
multi-agent systems (PRIMA’18), pp. 140–157.

 34. Ismaili, A., Hazon, N., Watanabe, E., Yokoo, M., & Kraus, S. (2019). Complexity and approxima-
tions in robust coalition formation via max-min k-partitioning. In: Proceedings of the 18th interna-
tional conference on autonomous agents and multiagent systems (AAMAS’19), p. 2036-2038

 35. Schwind, N., Okimoto, T., Inoue, K., Hirayama, K., Lagniez, J., & Marquis, P. (2018). Probabilistic
coalition structure generation. In: Proceedings of the 16th international conference on principles of
knowledge representation and reasoning (KR’18), pp. 663–664.

 36. Schwind, N., Okimoto, T., Inoue, K., Hirayama, K., Lagniez, J., & Marquis, P. (2021). On the com-
putation of probabilistic coalition structures. Autonomous Agents and Multi Agent Systems, 35(1),
14.

 37. Karp, R. M. (1972). Reducibility among combinatorial problems (pp. 85–103). Springer.
 38. Basu, S., Sharma, M., & Ghosh, P. S. (2015). Metaheuristic applications on discrete facility loca-

tion problems: A survey. OPSEARCH, 52, 530–561.
 39. Farahani, R. Z., Asgari, N., Heidari, N., Hosseininia, M., & Goh, M. (2012). Covering problems in

facility location: A review. Computers & Industrial Engineering, 62(1), 368–407.

 Autonomous Agents and Multi-Agent Systems (2023) 37:22

1 3

 22 Page 44 of 45

 40. Beraldi, P., & Ruszczynski, A. (2002). The probabilistic set-covering problem. Operations
Research, 50(6), 956–967.

 41. Chiang, C., Hwang, M., & Liu, Y. (2005). An alternative formulation for certain fuzzy set-covering
problems. Mathematical and Computer Modelling, 42(3), 363–365.

 42. Daskin, M. S. (1995). Network and Discrete Location: Models, Algorithms, and Applications. John
Wiley and Sons.

 43. Fischetti, M., & Monaci, M. (2012). Cutting plane versus compact formulations for uncertain (inte-
ger) linear programs. Mathematical Programming Computation, 4(3), 239–273.

 44. Hwang, M., Chiang, C., & Liu, Y. (2004). Solving a fuzzy set-covering problem. Mathematical and
Computer Modelling, 40(7), 861–865.

 45. Lutter, P., Degel, D., Büsing, C., Koster, A. M., & Werners, B. (2017). Improved handling of uncer-
tainty and robustness in set covering problems. European Journal of Operational Research, 263(1),
35–49.

 46. Pereira, J., & Averbakh, I. (2013). The robust set covering problem with interval data. Annals of
Operations Research, 207(1), 217–235.

 47. Snyder, L. V., & Daskin, M. S. (2005). Reliability models for facility location: The expected failure
cost case. Transportation Science, 39(3), 400–416.

 48. Church, R. L., & Revelle, C. S. (1974). The maximal covering location problem. Papers of the
Regional Science Association, 32, 101–118.

 49. Berman, O. (1994). The p maximal cover - p partial center problem on networks. European Journal
of Operational Research, 72(2), 432–442.

 50. Berman, O., & Krass, D. (2002). The generalized maximal covering location problem. Computers
& Operations Research, 29(6), 563–581.

 51. Bläser, M. (2003). Computing small partial coverings. Information Processing Letters, 85(6),
327–331.

 52. Nozick, L. (2001). The fixed charge facility location problem with coverage restrictions. Transpor-
tation Research Part E: Logistics and Transportation Review, 37(4), 281–296.

 53. Berman, O., Drezner, T., Drezner, Z., & Wesolowsky, G. O. (2009). A defensive maximal covering
problem on a network. International Transactions in Operational Reseach, 16(1), 69–86.

 54. Church, R. L., & Scaparra, M. P. (2004). Identifying critical infrastructure: The median and cov-
ering facility interdiction problems. Annals of the Association of American Geographers, 94(3),
491–502.

 55. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., & Veith, H. (2000). Counterexample-guided abstrac-
tion refinement. In: Proceedings of the 12th international conference on computer aided verification
(CAV’00), pp. 154–169.

 56. Janota, M., & Silva, J.P.M. (2011). Abstraction-based algorithm for 2QBF. In: Proceedings of the
14th International conference on theory and applications of satisfiability testing (SAT’11), pp.
230–244.

 57. Janota, M., Klieber, W., Marques-Silva, J., & Clarke, E. M. (2016). Solving QBF with counterex-
ample guided refinement. Artificial Intelligence, 234, 1–25.

 58. Kleine Büning, H., & Bubeck, U. (2009). Theory of quantified boolean formulas. In A. Biere, M.
Heule, H. van Maaren, & T. Walsh (Eds.), Handbook of satisfiability, frontiers in artificial intelligence
and applications (Vol. 185, pp. 735–760). IOS Press.

 59. Goultiaeva, A., Gelder, A.V., & Bacchus, F. (2011). A uniform approach for generating proofs and
strategies for both true and false QBF formulas. In: Proceedings of the 22nd international joint con-
ference on artificial intelligence (IJCAI’11), pp. 546–553.

 60. Papadimitriou, C. H. (1994). Computational complexity. Addison-Wesley.
 61. Beasley, J. E. (1990). OR-library: Distributing test problems by electronic mail. Journal of the

Operational Research Society, 41(11), 1069–1072.
 62. Bergman, D., & Ciré, A.A. (2016). Multiobjective optimization by decision diagrams. In: Proceed-

ings of the 22nd international conference on principles and practice of constraint programming
(CP’16), pp. 86–95.

 63. Stidsen, T. R., Andersen, K. A., & Dammann, B. (2014). A branch and bound algorithm for a class
of biobjective mixed integer programs. Management Science, 60(4), 1009–1032.

 64. Gao, C., Yao, X., Weise, T., & Li, J. (2015). An efficient local search heuristic with row weighting
for the unicost set covering problem. European Journal of Operational Research, 246(3), 750–761.

 65. Kadioglu, S., & Sellmann, M. (2009). Dialectic search. In: Proceedings of the 15th International con-
ference on principles and practice of constraint programming (CP’09), pp. 486–500.

Autonomous Agents and Multi-Agent Systems (2023) 37:22

1 3

Page 45 of 45 22

 66. Musliu, N. (2006). Local search algorithm for unicost set covering problem. In: Proceedings of the
19th international conference on industrial, engineering and other applications of applied intelligent
systems, Advances in Applied Artificial Intelligence (IEA/AIE’06), pp. 302–311.

 67. Perlin, K. (1985). An image synthesizer. In: Proceedings of the 12th annual conference on computer
graphics and interactive techniques (SIGGRAPH’85), pp. 287–296.

 68. Downey, R.G., & Fellows, M.R. (2013) Fundamentals of parameterized complexity. Texts in Com-
puter Science, Springer.

 69. Jansen, B. M. P. (2017). On structural parameterizations of hitting set: Hitting paths in graphs using
2-SAT. Journal of Graph Algorithms and Applications, 21(2), 219–243.

 70. Rossi, F., van Beek, P., Walsh, T. (eds) (2006). Handbook of constraint programming, foundations of
artificial intelligence, vol. 2. Elsevier.

 71. Balyo, T., Heule, M. J., Iser, M., Järvisalo, M., & Suda, M. (Eds.). (2022). SAT Competition 2022:
Solver and Benchmark Descriptions. Department of Computer Science: University of Helsinki.

 72. Karnouskos, S., & de Holanda, T.N. (2009). Simulation of a smart grid city with software agents. In:
Al-Dabass D, Katsikas SK, Koukos I, Zobel RN (eds) Proceedings of the 3rd UKSim european sympo-
sium on computer modeling and simulation (EMS’09), pp. 424–429.

 73. Meyer, A.R., & Stockmeyer, L.J. (1972). The equivalence problem for regular expressions with squar-
ing requires exponential space. In: Proceedings of the 13th annual symposium on switching and
automata theory (SWAT’72), pp. 125–129.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

	Algorithms for partially robust team formation
	Abstract
	1 Introduction
	2 Related work
	3 Preliminaries
	3.1 Computational complexity
	3.2 Team formation
	3.3 Robust TF
	3.4 Recoverable TF

	4 Partial robustness in TF
	5 Algorithms
	5.1 Algorithm PR
	5.2 Algorithm PR_A
	5.3 Cut generation

	6 Benchmarks
	6.1 Existing benchmarks (rtf30, cire100, cire150, scp1000)
	6.2 New benchmarks (map-r1, map-r2, map-r3, map-r4)

	7 Empirical results
	7.1 Computational efficiency
	7.2 Solution Quality

	8 Conclusion
	Appendix A: Proofs of propositions
	Appendix B: Parameters involved in the generation protocol of the populated map instances
	Acknowledgements
	References

