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ORIGINAL RESEARCH ARTICLE

An Improved Cellular Automata Solidification Model
Considering Kinetic Undercooling

XIAOHUI LIANG, CORNELIS BOS, MARCEL HERMANS, and IAN RICHARDSON

A cellular automata (CA) model has been developed for solidification simulation considering
the kinetic undercooling at the interface. The state-of-the-art model incorporates a decentered
growth algorithm to suppress the grid anisotropy and a generalized height function method to
calculate the curvature accurately. To develop a CA model which is independent of the mesh
size, a new diffusion term is proposed to handle the diffusion between the interface cells and
liquid cells. The developed CA model is employed to simulate the single-dendritic solidification
of an Al–3Cu (wt pct) alloy. The simulated tip velocities agree with the prediction of the
Kurz–Giovanola–Trivedi (KGT) model. Further studies show that the developed CA model
converges to an equilibrium model with increasing kinetic mobility values. Moreover, it is found
that the virtual liquid cell assumption which is commonly used in existing CA models may lead
to a deviation in the mass balance. The mass balance error has been resolved by redistributing
solutes from neighboring liquid cells in each time step. The developed CA model could be
potentially used in solidification simulations with a high undercooling, which is common in
welding and additive manufacturing.

https://doi.org/10.1007/s11663-023-02742-3
� The Author(s) 2023

I. INTRODUCTION

DENDRITE formation is commonly observed dur-
ing solidification of welding or casting. Solidification
simulation is important for a better understanding of
dendrite formation and a better control of welding or
casting processes, as it can provide in situ information
which is inaccessible through an experimental
approach.[1] Various models including phase field mod-
els,[2–5] cellular automata (CA) models[6–9] and level set
models[10–12] have been employed for solidification
simulations. Compared to other approaches, CA models
require only moderate computational resources and are
widely used for solidification simulations.

Most CA models[13–15] assume local equilibrium at the
interface and calculate the growth velocity with a
diffusion-controlled method. Nastac[13] developed a
time-dependent CA model where the interface velocity
v is calculated with a flux balance at the interface

v ¼ 1

cl;eqð1� kÞ rcl �rcs
� �

�~n; ½1�

where cl;eq is the equilibrium liquid concentration at the
interface, k the partitioning coefficient, ~n the interface
normal unit vector, cl and cs the liquid and solid concen-
tration, respectively. This method is called front velocity
method by Reuther and Rettenmayr.[1] Following this
approach, Beltran-Sanchez and Stefanescu[16,17] proposed
a virtual front tracking method to capture liquid cells
within a CA simulation. The stable tip velocity obtained
from their CA simulations agreed with prediction from
the Lipton–Glicksman–Kurz model.[18] Later, Michelic
et al.[19] extended the virtual front tracking model to sim-
ulate solidification in a multi-component system. Zhang
et al.[20] employed a CALPHAD approach to calculate
the equilibrium concentrations and the growth velocity in
3D solidification simulations of an Al–Cu–Mg melt.
Apart from the approach of Nastac,[13] Zhu and

Stefanescu[21] proposed a cellwise mass balance method
to calculate the growth velocity in a CA model assuming
local equilibrium condition. Assuming the liquid con-
centration of the interface cells is always equal to the
equilibrium concentration, the solid fraction change Dfs
in a time increment is given by a lever rule[21]
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Dfs ¼
cl;eq � cl

cl;eqð1� kÞ : ½2�

This approach has been employed by Pan and Zhu[22]

to simulate the solidification in a 3D case. Yin et al.[23]

coupled a cellwise mass balance CA model with a lat-
tice Boltzmann model to simulate solidification under
a melt flow.

For the rapid solidification encountered in welding
and additive manufacturing, consideration of non-equi-
librium effects is necessary. According to the interface
attachment kinetics, the interface velocity v is related to
the kinetic undercooling DTk by[24]

v ¼ v0 1� exp �DSDTk

RT

� �� �
; ½3�

where R the gas constant, T the temperature, DS the
entropy change and v0 a constant which is of the order
of the velocity of sound for pure metals. When v � v0,
this relationship can be simplified to

v ¼ lDTk; ½4�

where l is the kinetic mobility.
Several CA models[15,25,26] have been developed which

consider non-equilibrium effects during solidification.
Zhao et al.[27] developed a 3D CA model which
calculated the growth velocity based on Eq. [3] and
simulated the solidification of a Fe–1.5C (wt pct) alloy
in a 3D case. Burbelko et al.[25] calculated the growth
velocity as a linear function of the kinetic undercooling
and studied the formation of the primary austenite and
globular eutectic grains during the solidification of a
ductile iron in a thin wall casting process. Zhu et al.[15]

developed a two-dimensional CA model to predict the
microstructures and micro-segregation in a solidified
ternary alloy. Geng et al.[26] used a non-equilibrium CA
model to simulate the dendrite growth along the fusion
boundary of a laser beam weld.

To improve the quantitativeness of the CA model, a
number of works have been published in different areas
including curvature calculation,[28,29] grid aniso-
tropy,[30,31] and mesh size dependency.[16,19,21] For a
quantitative solidification simulation, curvature at the
CA interface cells needs to be calculated accurately. In
early CA models, a cell counting method[13,30] or a level
set method[16,19,21] was employed to calculate the cur-
vature at the interface cells based on the solid fraction
field. Previously, Reuther and Rettenmayr[28] compared
the performance of the cell counting method, the level
set method and a height function method in two
benchmark problems and concluded that the height
function method calculates curvature more accurately
than the other two methods. Wei et al.[29] adopted a
modified height function method to calculate curvature
in a eutectic solidification simulation.

Grid anisotropy is commonly observed when a simple
capture rule is used for dendrite growth.[31] Without any
crystal anisotropy, dendrite arms tend to form in the
grid directions when a von Neumann capture rule is
employed, whereas dendrite arms tend to form in the

diagonal directions of the grid when a Moore capture
rule is employed. To suppress the grid anisotropy,
different growth algorithms have been developed. Zhu
and Stefanescu[21] employed a virtual front tracking
method to capture liquid cells. The decentered growth
algorithm proposed by Gandin and Rappaz[32] has been
widely used to simulate formation of dendrites with
different orientations in 2D[30,33] and 3D[34] simulations.
The decentered growth algorithm exhibited a good
performance in suppressing the grid anisotropy.
A quantitative CA model should be independent of

the mesh size. In most equilibrium CA models,[16,19,21]

convergence analyses have been performed. The growth
velocity at the dendrite tip in single-dendritic solidifica-
tion simulations converges to a stable value with
decreasing mesh size. However, no convergence analysis
has been found in any non-equilibrium CA model. In
this case, existing non-equilibrium CA models must be
regarded as qualitative.
Moreover, a quantitative CA model should be mass

conserved. In most CA models,[16,19] diffusion within the
liquid and solid regions are solved separately. To handle
the discontinuity at the interface, interface cells are
virtually treated as liquid cells. The virtual liquid
assumption neglects the solid fraction of the interface
cells and may lead to a mass balance deviation in CA
models with a front velocity method, as mentioned by
Michelic et al.[19] Reuther and Rettenmayr[1] indicated
that CA models based on a cellwise mass balance offer a
better solutes conservation compared to CA models
with a front velocity method. To develop a quantitative
CA model, further study on the influence of the virtual
liquid cell assumption is necessary.
In this work, we describe a quantitative non-equilib-

rium CA model. A decentered growth algorithm[32] is
employed to suppress the grid anisotropy and a gener-
alized height function method[35] is adopted to calculate
the curvature accurately. To make a CA model which is
independent of the mesh size, a new diffusion term is
proposed to handle the diffusion between interface cells
and liquid cells. In addition, the influence of the virtual
liquid cell assumption is studied within a multi-dendritic
solidification simulation. A correction term is defined
and applied to ensure a mass balance within the CA
simulation.

II. CA MODEL SETUP

A. Basics

In the CA model, the domain to be studied is
discretized into many square cells. Each cell has state
variables including phase state (to which phase it
belongs), grain index (to which grain it belongs), solid
fraction fs and concentration c. For a solidification
problem, possible phase states and solid fraction are
liquid (fs ¼ 0), interface (0<fs<1) and solid (fs ¼ 1)
states. The interface cells also have additional state
variables including growth velocity v, growth length l
and interface normal vector ~n.
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Solidification within the CA model is simulated by
updating the solid fraction and the phase status of the
cells near the solidification interface, which is performed
based on following transition rules:

� a liquid cell transforms into an interface cell when it is
captured by a growing interface cell with a decentered
growth envelope capture algorithm;

� an interface cell transforms into a solid cell, when it
has no liquid neighbor in its von Neumann neigh-
borhood.

B. The Decentered Growth Algorithm

The decentered growth algorithm developed by
Gandin and Rappaz[32] is employed in the current
model. The growth of each interface cell is described by
a growth envelope, which is a quadrangle in the 2D case.
Each growth envelope is orientated with its half diag-
onals parallel with the h10i preferential growth direc-
tions of the solid grain. The length of the envelope half
diagonal is defined as the growth length l, which records
dendrite growth in the preferential growth direction. In
each time increment, the growth length of each interface
cell is updated according to

Dl ¼ ltþDt � lt ¼ vDt; ½5�

where v is the growth velocity in the interface cell, Dl
the increase in the growth length and Dt the time
increment.

The capture rule of the decentered growth algorithm
is shown in Figure 1. If the center of a liquid cell falls in
the growth envelope of an interface cell, then this liquid
cell is captured and transforms into a new interface cell.
Within the new interface cell, a new growth envelope is
formed with one of its vertices overlapping with the
nearest vertex of the parent growth envelope. The new
growth envelope inherits the orientation of the parent
growth envelope. Its initial growth length is defined as a
ratio (a) of the growth length of the parent growth
envelope. If we denote the coordinates of the center and
the nearest vertex of the parent growth envelope with
(xc; yc) and (xv; yv), then the center of the new growth
envelope is given by 1� að Þxc þ axv; 1� að Þyc þ ayvð Þ.

C. Calculation of the Growth Velocity

At the interface, the thermodynamic equilibrium is
given by[24]

DT ¼ T0 � T ¼ DTk þ DTc þ DTr; ½6�

where DT is the local undercooling, T0 the liquidus
temperature, DTk the kinetic undercooling, DTc the
constitutional undercooling and DTr the curvature
undercooling. The kinetic undercooling DTk;

[24] the
constitutional undercooling DTc and the curvature
undercooling DTr

[21] are given by

DTk ¼ v

l
; ½7�

DTc ¼�mðcl;� � c0Þ; ½8�

DTr ¼Cjfð/; hÞ; ½9�

where cl;� is the liquid concentration of the interface
cell, m the slope of liquidus line in the linearized phase
diagram, c0 the nominal concentration, C the
Gibbs–Thomson coefficient, j the curvature and
fð/; hÞ the anisotropic function for the interfacial
energy, which is given by[21]

f /; hð Þ ¼ 1� 15e cos 4ð/� hÞð Þ; ½10�

where e is the anisotropy coefficient of the interfacial
energy, h the angle between the preferential growth
direction and the x axis and / the angle between the
interface normal ~n and the x axis. The interface nor-
mal vector ~n is determined by[19]

~n ¼ rfs
jrfsj

: ½11�

The interface velocity v is then given by

v ¼ l T0 � Tþmðcl;� � c0Þ � Cjfð/; hÞ
� �

: ½12�

After reformulation, the interface velocity v is given
by

v ¼ lmðcl;� � cl;eqÞ; ½13�

with the equilibrium concentration cl;eq under a
Gibbs–Thomson effect given by

cl;eq ¼ c0 � T0 � T� Cjfð/; hÞ
m

: ½14�

In some cases, the interface concentration cl;� might be
larger than the equilibrium concentration cl;eq, which
leads to a negative interface velocity for an alloy with
m<0. This is because the partitioned solutes in previ-
ous time steps does not have enough time to diffuse
out of the interface cell. As we are simulating a solidi-
fication problem without considering remelting, the
interface velocity is limited with

Fig. 1—Illustration of the capturing rule in the decentered growth
algorithm.
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v ¼ maxðv; 0Þ: ½15�

After several time steps, the interface concentration
drops to a value below the equilibrium concentration
due to diffusion, which brings the interface velocity
back to a positive value.

The solid fraction of each interface cell is updated in
each time increment with[33]

Dfs ¼
vDt

Dxð cos hj j þ sin hj jÞ ; ½16�

where Dt is the time increment.
The interface solid concentration cs;� is given by

cs;� ¼ kcl;�: ½17�

The solid concentration cs of each interface cell is cal-
culated by averaging the interface solid concentration
cs;� over different time increments[21]

cs ¼
P

cs;�n DfsP
Dfs

; ½18�

where cs;�n is the solid concentration at the interface in
increment n.

D. Calculation of the Curvature

In this work, the generalized height function method
proposed by Popinet[35] is adopted to calculate the
curvature of each interface cell.

Consider an interface cell with index (m; n), as shown
in Figure 2. To calculate the curvature, an adaptive
stencil consisting of three columns is constructed in the
direction of the largest component of the interface
normal n!. A column is called consistent if it has a base
cell (fs ¼ 1) and a top cell (fs ¼ 0) and the solid fraction
decreases monotonically from the base cell to the top
cell. The indices of the base cell and the top cell within
the column are b and t, respectively. If all columns in

this stencil are consistent, then the height of each
column is calculated by summing up the solid fraction
from the base cell to the top cell. If the largest
component of the interface normal n! is in the y
direction, then the height of each column is written as[35]

hi ¼ bi þ Dx
Xj¼ti

j¼bi

fs i; jð Þ; for i ¼ m� 1;m;mþ 1: ½19�

A height function H(x) is defined between the heights
of the three columns and their distances to the central
column. Curvature is calculated based on the deriva-
tives of the height function,[35]

j ¼ � Hxx

1þH2
x

� �3
2

; ½20�

where Hx and Hxx are the first and the second deriva-
tive of the height function, which are calculated with a
central finite difference.
If it is not possible to construct a consistent stencil,

then curvature is determined by fitting the interface with
a parabola.[35] First, the interface segments in the
considered interface cell and neighboring interface cells
are determined with a piecewise linear interface calcu-
lation.[17] Then, the barycenter of the interface segments
in the considered interface cell and neighboring interface
cells are fitted with a parabola in a rotated coordinate
system which is defined with its y axis parallel with the
interface normal ~n of the considered interface cell. The
parabola function is[35]

y ¼ a0 þ a1xþ a2x
2; ½21�

where a0, a1 and a2 are fitting parameters. Curvature
at the considered interface cell is then given by[35]

j ¼ � 2a2

1þ a21
� �3

2

: ½22�

Fig. 2—Illustration of the GHF curvature calculation method: (a) when it is possible to establish an adaptive stencil with three consistent
columns, generalized height function is employed for curvature calculation, and (b) when it is not possible to establish an adaptive stencil with
three consistent columns in any principal direction, curvature is evaluated by fitting the barycenter of the interface segments.
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E. Diffusion and Partitioning

In the current CA model, diffusion is solved for the
solid and liquid regions separately. The governing
equations for the diffusion between the liquid cells and
the diffusion between the solid cells are given by

@cl

@t
¼r � Dlrcl

� �
; ½23�

@cs

@t
¼r � Dsrcsð Þ; ½24�

where Dl and Ds are the diffusion coefficients in the
liquid and solid, respectively.

In traditional CA models,[17,19,20] partitioning at the
interface is considered by adding a source term on the
right-hand side of Eq. [23],

@cl

@t
¼ r � Dlrcl

� �
þ @fs

@t
cl;� � cs;�
� �

; ½25�

where cl;� and cs;� are the interface concentration in
the liquid and solid. However, as will be shown in Sec-
tion III–A, directly using Eq. [25] in a non-equilibrium
CA model leads to a large mesh size dependency. In
order to avoid this, the diffusion between interface
cells and the liquid cells are handled with a new equa-
tion,

@cl

@t
¼ r � Dlrcl �~n

� �
þ @fs

@t
cl;� � cs;�
� �

: ½26�

With Eq. [26], the sum of the projections of the diffu-
sion fluxes out of the interface cells onto the interface
normal direction are calculated.

Equation [25] or [26] is solved with a finite difference
method and a Euler forward discretization. Meanwhile,
the virtual liquid cell assumption has been employed, in
which the interface cells within the CA model are
virtually treated as liquid cells.[17,19,20] The virtual liquid
cell assumption avoids extremely large concentration
changes when the liquid fraction of the interface cell is
close to 0. However, it introduces a deviation into the
mass balance. Although the mass balance deviation

problem may be insignificant in a single time step, the
error adds up over numerous time steps as reported by
Michelic et al.[19]

Consider an interface cell in a CA simulation using a
virtual liquid cell assumption. In a time increment, the
concentration change of the interface cell is Dc, which is
calculated as the product of time step Dt and the
right-hand side of the diffusion equation (Eq. [25] or
[26]). The value of Dc corresponds to the concentration
change in a liquid cell. The solid fraction of the interface
cell is neglected, although it has a value which is larger
than or equal to 1. In this case, an error of �fsDc is
introduced in the mass balance. Note Dc is equal to the
sum of the concentration change due to diffusion Dcd and
the concentration change due to solutes partitioning Dcp,
which are calculated by the first and the second term on
the right-hand side of the diffusion equation. In this case,
Dc can either be positive or negative, depending on the
relative value of the Dcd and Dcp. If Dc is positive, then
solutes are artificially lost and the average concentration
of the system decreases. If Dc is negative, then solutes are
artificially added and the average concentration of the
system increases. To redress the mass balance error, the
concentration of the neighboring liquid cells is modified

by fsDc
nl
, where nl is the number of liquid cells in the Moore

neighborhoodof the considered interface cell. In this case,
the artificially lost or added solutes are added or removed
from neighboring liquid cells to keep a mass balance.

F. Time Increment

In the CA model, the time increment is determined by

Dt ¼ min 0:2
Dx
vmax

; 0:2
Dx2

Dl

� �
; ½27�

where vmax is the maximum growth velocity within the
simulation domain and Dx the mesh size.

G. Material Parameters

The presented model can be applied for the solidifi-
cation simulation of any binary and (with small mod-
ification) multi-component alloys. Here, the

Table I. Material Properties of an Al–3Cu (Wt Pct) Alloy[36]

Symbol Description Value Unit

c0 nominal concentration 3.0 wt pct
Dl liquid diffusion coefficient 3:0� 10�9 m2=s
Ds solid diffusion coefficient 3:0� 10�13 m2=s
k partitioning coefficient 0.17 1
m liquidus slope �2:6 K/(wt pct)
T0 liquidus temperature 650:6 	C
C Gibbs–Thomson coefficient 2:4� 10�7 K/m
e anisotropy coefficient 0.0267 1
l kinetic mobility (default) 1� 10�3 m s�1 K�1
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performance of the model is illustrated by simulation of
solidification in a Al–3Cu (wt pct) alloy which has been
well studied in literature.[17,36] The parameters of the
Al–3Cu (wt pct) alloy are given in Table I.

III. RESULTS AND DISCUSSION

A. Mesh Convergence Tests

To test the mesh size dependency of the developed CA
model, single dendritic growth of the Al–3Cu (wt pct)
alloy has been simulated with different mesh sizes under
a constant undercooling of 3 K. Due to the discretiza-
tion of the CA model, the velocity at the dendrite tip
does not change monotonically. To smooth the tip
velocity curve, the tip velocity is averaged between two
tip cell advancements. The averaged tip velocity
decreases with increasing time and eventually converges
to a stable value. The stable tip velocity is evaluated at
time 0.3 seconds.

The mesh size convergence test has been performed for
the CAmodel with Eq. [25] (D1) and Eq. [26] (D2). In the
D1 simulation, the diffusion between interface cells and
liquid cells is calculated by summing up themagnitudes of
all the diffusion fluxes, whereas in the D2 simulation, the
diffusion between interface cells and liquid cells is
calculated by summing up the projections of the diffusion
fluxes onto the interface normal~n direction. The choice of
diffusion equation has an influence on the mesh size
convergence behavior. As shown in Figure 3, with
decreasing mesh size, the stable tip velocity in the D1
simulations first increases and then decreases. In the D2
simulations, the stable tip velocity converges to a value
around 150 lm/s, indicating that simulations without a
mesh size effect can be performed if Eq. [26] is applied.

The different mesh size convergence behaviors can be
explained by considering the interface cell at a dendrite
tip in an isothermal solidification simulation. Discretiz-
ing the diffusion equation gives

Dcl ¼ � JDt
Dx

þ Dfsðcl;� � cs;�Þ; ½28�

where J is the effective diffusion flux out of the tip cell
and is equal to Dlrcl in a D1 simulation and Dlrcl �~n
in a D2 simulation. Substituting Eq. [16] into Eq. [28]
with h ¼ 0 gives

Dcl ¼ � JDt
Dx

þ vDt
Dx

ðcl;� � cs;�Þ: ½29�

In the steady state, the liquid concentration of the tip
cell is constant Dcl ¼ 0, which indicates a balance
between the solutes addition due to partitioning and
solutes removal due to diffusion. This means that the
dendrite growth is diffusion-limited in the steady state.
From Eq. [29], the growth velocity at the steady-state
dendrite tip in a D1 simulation can be written as

v ¼ Dlrcl

cl;� � cs;�
; ½30�

while the growth velocity at a steady-state dendrite tip
in a D2 simulation can be written as

v ¼ Dlrcl �~n
cl;� � cs;�

: ½31�

It is clear that Eq. [31] is in the same form as the
equation proposed by Nastac.[13] In the D1 simula-
tions, the tip velocity v is proportional to the sum of
the magnitude of all the diffusion fluxes out the inter-
face cell, while in the D2 simulation, the tip velocities
v is proportional to the diffusion flux in the interface
normal direction ~n. In this case, the tip velocity tends
to be overestimated especially when the tip cell is sur-
rounded by three liquid cells in its von Neumann
neighborhood, as indicated by Reuther and Retten-
mayr.[1] This explains that the stable tip velocities in
the D1 simulations are larger than the stable tip
velocities in Figure 3. As we decrease the mesh size,
the dendrite tip is discretized with more cells. In this
case, the overestimation of tip velocity in the D1 sim-
ulations becomes weaker. Thus, the stable tip velocity
in the D1 simulations decreases with a decreasing
mesh size.

Fig. 3—The stable tip velocity in the mesh convergence tests for the
CA model using D1 and D2.

Fig. 4—The stable tip velocity in the simulations with different
kinetic mobility l values.
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B. Influence of the Kinetic Mobility

In the current CA model, the growth velocity is
calculated as a product of the kinetic mobility l and
the kinetic undercooling DTk. To test the influence of
the kinetic mobility, single dendritic growth of the
Al–3Cu (wt pct) alloy has been simulated with
different mobility values under a constant undercool-
ing of 3 K with a mesh size of 0.5 lm. The stable tip
velocities are plotted in Figure 4. With increasing
kinetic mobility, the stable tip velocity increases and
tends to converge. As the kinetic mobility increases,
the kinetic undercooling DTk decreases and the
simulation approaches a fully diffusion-controlled
solidification simulation. Moreover, the Cu concentra-
tion cl;� at the dendrite tip approaches the equilibrium
concentration cl;eq with increasing kinetic mobility, as
shown in Figure 5. This is reasonable, as the
non-equilibrium effect becomes less significant with
increasing kinetic mobility l. When the kinetic mobil-
ity is infinite, local equilibrium is achieved at the
interface.
Increasing the kinetic mobility makes the simulation

more computationally expensive. A large kinetic mobil-
ity means that a small deviation of the interface
concentration can lead to a large interface velocity. This
results in a smaller time step, since the time step is
limited by the maximum interface velocity in the system
according to Eq. [27]. As the time step is decreased, the
number of time steps to finish a simulation increases,
which means the computational cost increases.

C. Comparison with the KGT Model

The developed CA model is verified by comparing with
theKGTmodel.[18,37] TheKGTgives an analytical solution
for a dendrite growing into an infinite melt in the steady
state. It ismodified here to include the kinetic undercooling.
At the interface, the total undercooling DT is given by[24]

DT ¼ DTk þ DTc þ DTr: ½32�

The kinetic undercooling DTk is given by[24]

DTk ¼ v

l
: ½33�

The constitutional undercooling is given by[37]

DTc ¼ mc0 1� 1

1� ð1� kÞIvðPeÞÞ

� �
; ½34�

where IvðPeÞ is the Ivantsov function and Pe the Peclet
number given by[37]

Pe ¼
rv

2D
; ½35�

where r is the tip radius and v the tip velocity. The 2D
Ivantsov function is given by[37]

IvðPeÞ ¼
ffiffiffiffiffiffiffiffiffi
PPe

p
expðPeÞerfcð

ffiffiffiffiffi
Pe

p
Þ: ½36�

The curvature undercooling DTr is given by[37]

DTr ¼
C
r
: ½37�

The tip radius is determined with a stability crite-
rion[37]

�m
vcl;�ð1� kÞ

Dl
¼ 1

r�
C
r2
; ½38�

where cl;� the liquid concentration at the interface and
r� the stability factor. The stability factor r� here is
0.10654.[38]

The stable tip velocities in the CA simulations with
different undercoolings and different kinetic mobility l
are compared with the predictions of the modified KGT
model, as shown in Figure 6. As the kinetic mobility l
increases, the stable tip velocities predicted by the CA
model and KGT model under different undercoolings
increases. When the undercooling is larger than 2 K, the
stable tip velocities simulated by the CA model with
different kinetic mobility l agree well with the KGT
model. However, at the 2 K undercooling, the simulated
tip velocities in the CA simulations with different kinetic
mobility l are larger than the predictions of the
modified KGT model. Besides, the stable tip velocity
in the CA simulation with a 6 K undercooling and a

5� 10�3 m s�1 K�1 kinetic mobility is smaller than the
prediction of the modified KGT model. The reason for
the mismatch is that a constant stability factor r� is used
in the KGT model. However, this factor varies with
different nominal concentration c0 and undercooling
DT, as indicated by Ramirez and Beckermann.[39]

D. Influence of the Virtual Liquid Cell Assumption

In the current CA model, interface cells are virtually
treated as liquid cells to solve for diffusion between
interface cells and liquid cells. As explained in Sec-
tion II–E, such an assumption neglects the solid amount
of the interface cells and may lead to a deviation in the
mass balance. To study the influence of the virtual liquid

Fig. 5—The Cu concentration at the dendrite tip in the simulations
with different kinetic mobility l values.
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cell assumption on the mass balance, multi-dendritic
solidification of the Al–3Cu (wt pct) alloy has been
simulated with and without the mass balance correction.
The simulation domain size is 300� 300 lm2 and the
mesh size is 0:5 lm. A periodic boundary condition is
employed for the simulation. The cooling rate is 50 K/s.
The simulation finishes after 62,000 steps and takes 13
minutes with 24 cores of Intel XEON E5-6248R at
3.0 GHz. The concentration profiles at times 0.10, 0.15
and 1.0 seconds in the simulations with and without the
mass balance correction are given in Figure 7.

Initially, 12 nuclei with random orientations are
placed randomly within the simulation domain. Those
nuclei grow and develop dendrite arms in their prefer-
ential growth directions, as shown in Figures 7(a) and
(d). This shows that dendrites with different orientations
can be well simulated with the decentered growth
algorithm. As solidification proceeds, the growth of
the primary arms is suppressed by nearby dendrites.
Secondary dendrite arms form, as shown in Figures 7(b)
and (e). Most liquid in the inter-dendritic regions is
enriched to the equilibrium concentration. With further
solidification, the dendrite arms coarsen and the liquid
concentration increases with increasing undercooling, as
shown in Figures 7(c) and (f). At this stage, the growth
velocity and the kinetic undercooling in the interface
cells are very small. In this case, the liquid concentration
at the interface cells is close to the equilibrium liquid

concentration and the solidification can be approxi-
mated by the Scheil–Gulliver solidification condition.[40]

Comparing Figures 7(a) through (c) with Figures 7(d)
through (f), the grain morphology difference between
the simulations with and without the mass balance
correction is insignificant. Circles have been employed
to highlight the small differences between Figures 7(c)
and (f). Compared to Figure 7(c), the liquid channels in
Figure 7(f) are smaller and more coalescence is
observed, which indicates that the solid fraction in the
simulation without the mass balance correction (Fig-
ure 7(f)) is larger than the solid fraction in the
simulation with the mass balance correction (Fig-
ure 7(c)). Besides, the small difference between the two
different simulations indicates that the mass balance
correction has little influence on the growth kinetics.
Figure 8 shows the evolution of the average concen-

tration in the simulations with and without the mass
balance correction. The average concentration in the
simulation with the mass balance correction remains
constant, while the average concentration in the simu-
lation without the mass balance correction decreases
continuously. This indicates that solutes are lost in the
simulation without the mass balance correction. In the
multi-dendritic solidification simulation, the tempera-
ture drops continuously, which leads to an increase in
the equilibrium liquid concentration. As shown in
Section III–B, the interface concentration is close to

Fig. 6—Comparison between the stable tip velocities predicted by the CA model and KGT model with different undercooling and different
kinetic mobility l: (a) l ¼ 5� 10�3 m s�1 K�1; ðbÞl ¼ 1� 10�3 m s�1 K�1; ðcÞl ¼ 5� 10�4 m s�1 K�1; and ðdÞ l ¼ 1� 10�4 m s�1 K�1.
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the equilibrium liquid concentration. Thus, the interface
concentration tends to increase with decreasing temper-
ature over numerous time steps. In this case, the sign of
concentration change Dc of the interface cell is positive,
which leads to a loss of the solutes. With the solutes
artificially lost, the solid fraction in the simulation
without the mass balance correction (Figure 7(f)) is thus
larger than the solid fraction in the simulation with the
mass balance correction (Figure 7(c)).

The results from the CA simulations are then com-
pared with the Scheil–Gulliver equation. The
Scheil–Gulliver equation[40] describes the solute redistri-
bution during solidification of an alloy in a continuously

cooling condition. It assumes the diffusion within the
liquid is infinitely fast and the interface is always at a
thermodynamic equilibrium. The liquid concentration cl

can be obtained as a function of the solid fraction of the
system fs

[40]

cl ¼ c0ð1� fsÞk�1: ½39�

The relation between temperature T and the system
solid fraction fs is given by

T ¼ T0 þm c0ð1� fsÞk�1 � c0
� �

: ½40�

Note that the Scheil–Gulliver equation assumes a ther-
modynamic equilibrium at the interface, whereas the
current CA model considers a non-equilibrium effect
with the kinetic undercooling. However, due the
employment of a relatively large kinetic coefficient

(1� 10�3 m s�1 K�1), the interface concentration is
close to the equilibrium liquid concentration, as shown
in Figure 5. Moreover, the solidification condition at
the late stage can be approximated by the Scheil–Gul-
liver solidification condition due to the small growth
velocity. In this case, the current CA model is compa-
rable with the Scheil–Gulliver equation.
The relations between temperature T and the solid

fraction fs in the CA simulations with and without the
mass balance correction are compared with the
Scheil–Gulliver equation in Figure 9. In the early stage
of the solidification, the solid fraction predicted by the
different CA simulations differs from the solid fraction
predicted by the Scheil–Gulliver equation. This is
because the liquid diffusion coefficient in the CA
simulation is finite, which leads to a hump in the
concentration profile in front of the interface. At the

Fig. 7—The concentration profiles at time 0.10 s (a, d), 0.15 s (b, e) and 1.0 s (c, f) in the multi-dendritic solidification simulations with (a
through c) and without (d through f) the mass balance correction.

Fig. 8—The evolution of the average concentration in the
multi-dendritic solidification simulations with and without the mass
balance correction.
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interface, the Cu concentration is smaller than but close
to the equilibrium concentration due to the non-equi-
librium effect of the kinetic undercooling DTk. In the
liquid far from the interface, the Cu concentration is
much smaller than the equilibrium concentration. In this
case, the average Cu concentration in the liquid is
smaller than the equilibrium concentration, which leads
to a solid fraction smaller than the equilibrium solid
fraction. As solidification proceeds, coarsening and
coalescence of dendrites occurs. Liquid remains in the
inter-dendritic region and the diffusion distance is much
smaller, which decreases the required diffusion time.
Moreover, the non-equilibrium effect introduced by the
kinetic undercooling DTk is negligible, as the interface
velocity is very small in this stage. In this case, the
diffusion condition can be approximated by the
Scheil–Gulliver condition. The solid fraction in the CA
simulation approaches the equilibrium solid fraction
predicted by the Scheil–Gulliver equation. At a temper-
ature of 600 	C, the solid fraction in the CA simulation
with the mass balance correction is close to the
prediction of the Scheil–Gulliver equation, while the
solid fraction in the CA simulation without the mass
balance correction is around 3 wt pct larger. This agrees
with the observations in Figure 7. The reason is that the
solutes within the CA simulation without the mass
balance correction are artificially lost, which leads to a
larger equilibrium solid fraction. Moreover, the rela-
tions between the average liquid concentration and the
solid fraction fs in the CA simulations and predicted by
the Scheil–Gulliver equation are given in Figure 10. For
the same solid fraction, the liquid concentration in the
CA simulation without the mass balance correction is
smaller than the liquid concentration in the CA simu-
lation with the mass balance correction and the
Scheil–Gulliver calculation. This shows that solute
segregation may be underestimated by the CA simula-
tion without the mass balance correction.

IV. CONCLUSIONS

In this work, a non-equilibrium CA model has been
developed. The growth velocity is calculated as a linear
function of the kinetic undercooling. To construct a CA
model which is independent of the mesh size, a new
diffusion term is proposed to handle the diffusion
between the interface cells and the liquid cells, in which
the diffusion out of an interface cell is calculated by
summing up the projections of diffusion fluxes onto the
interface normal direction. With the new diffusion term,
the stable tip velocity is proportional to the diffusion
flux in the interface normal direction, which agrees with
Nastac’s equation for growth velocity calculation.
Moreover, it minimize the overestimation of tip velocity
when the tip cell is surrounded by three liquid cells in its
von Neumann neighborhood and improves the behavior
in mesh size convergence tests.
The developed CA model has been employed to

simulate single dendritic growth under different under-
cooling conditions. The simulated stable tip velocity
agrees well with the prediction of a modified KGT
model. With increasing kinetic mobility, the stable tip
velocity tends to converge and the interface concentra-
tion at the dendrite tip approaches the equilibrium
liquid concentration.
Moreover, the influence of the virtual liquid cell

assumption has been studied in a multi-dendritic solid-
ification simulation. In a continuously cooling solidifi-
cation simulation, solutes are artificially lost due to the
virtual interface cell assumption, which leads to a
decrease in the average concentration. The mass balance
error is removed by redistributing the lost solutes to
neighboring liquid cells. With the mass balance correc-
tion, the average concentration remains constant
throughout the simulation. Comparison with the pre-
diction by the Scheil–Gulliver equation shows a good
agreement in the final stage of the solidification.

Fig. 9—The relation between temperature and the solid fraction in
the multi-dendritic solidification simulations with and without the
mass balance correction compared with the Scheil–Gulliver equation.

Fig. 10—The relation between the average liquid concentration and
the solid fraction in the multi-dendritic solidification simulations
with and without the mass balance correction compared with the
Scheil–Gulliver equation.
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