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Benchmarking Behavior Prediction Models
in Gap Acceptance Scenarios
Julian F. Schumann , Jens Kober , and Arkady Zgonnikov

Abstract—Autonomous vehicles currently suffer from a time-
inefficient driving style caused by uncertainty about human be-
havior in traffic interactions. Accurate and reliable prediction
models enabling more efficient trajectory planning could make
autonomous vehicles more assertive in such interactions. However,
the evaluation of such models is commonly oversimplistic, ignoring
the asymmetric importance of prediction errors and the hetero-
geneity of the datasets used for testing. We examine the potential of
recasting interactions between vehicles as gap acceptance scenarios
and evaluating models in this structured environment. To that end,
we develop a framework aiming to facilitate the evaluation of any
model, by any metric, and in any scenario. We then apply this
framework to state-of-the-art prediction models, which all show
themselves to be unreliable in the most safety-critical situations.

Index Terms—Autonomous vehicles, gap acceptance, behavior
prediction, benchmark.

I. INTRODUCTION

SUCCESSFULLY implementing autonomous driving is one
of the key technical challenges faced by the automotive

industry as well as large parts of the research community, with
tens of billions of dollars invested in recent years towards this
goal [1]. The provision of those funds is motivated by several
benefits promised by this technology. The foremost of these is
safer driving, expressed by a significant decrease in accidents
and, correspondingly, a reduction of bodily harm and financial
losses. Additional advantages are also expected, such as more
accessible mobility for people unable to drive or an easing of
road congestion and traffic [2], [3], [4].

But despite all these investments, autonomous vehicles still
suffer from many problems preventing widespread use [5], [6].
One such problem is their timidity in interactions with human
traffic participants, caused by the uncertainty about the future
behavior of those human agents. This uncertainty can prevent the
autonomous vehicle from taking the most time-efficient actions
if the resulting probability of a crash or near-crash is too high,
resulting in the cautious driving style observed. Paradoxically,
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this can also be a safety risk, as such caution by an autonomous
vehicle is often not expected by the surrounding humans, which
can result in accidents such as being rear-ended [5], [7].

To reduce this uncertainty and to allow for a more efficient
driving style without compromising on safety requirements,
behavior prediction models can be used [8], [9], which project
the future position of traffic participants. Those can range from
models able to deal with any kind of traffic participant [10], [11],
[12] to others focused on predicting the behavior of a specific
kind of participant, such as cars [13], [14], [15], [16], [17], [18],
[19] or pedestrians [20], [21], [22], [23], [24].

However, the utility of those models—primarily designed to
minimize the necessary trade-off between safety and efficiency
in trajectory planning—is questionable, as the common methods
for their evaluation diverge from the models’ purpose. First, most
common metrics for evaluating prediction models, such as the
final or average displacement error, ignore that the consequences
of a false prediction are inherently asymmetric [25], [26]. For
example, on a highway, wrong longitudinal predictions are far
less dangerous than wrong lateral predictions, which might
result in an autonomous vehicle reacting to a lane change too late.
Similarly, such metrics also lack the ability to evaluate how good
models are at capturing distinct human behaviors [27], [28].
Second, the common approach of randomly selecting test cases
from datasets [10], [12] is problematic due to the heterogeneity
of those datasets, which typically include samples that can vary
widely in their importance and difficulty. Such samples can range
from a single vehicle following a lane to complex space-sharing
conflicts with multiple agents at unsignalized intersections,
where the behavior of human agents is often multi-modal and can
change rapidly. Rare edge cases, where some traffic participants
are very aggressive or even violate traffic rules and accidents are
far more likely [29], [30], are also possible. But with randomly
selected test cases, potentially poor performance in the most
important situations can be compensated by good performance
in less important but more numerous ones. For these reasons, a
model that is unreliable in actual safety-critical situation might
still appear promising, making the whole evaluation meaningless
and hampering further progress.

One possible approach to overcome these issues is including a
path planning algorithm in evaluations, as suggested by Ivanovic
and Pavone [25]. However, this adds further computational loads
to an evaluation and only addresses the symmetry of common
metrics, neglecting the varying difficulty and importance be-
tween testing samples. To cover both these problems, we suggest
instead narrowing the evaluation to the most critical situations. In
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Fig. 1. The proposed framework allows researchers to evaluate the perfor-
mance of various prediction models for human behavior according to several
metrics on different datasets that include gap acceptance scenarios. In this
work, three datasets, six models, and four metrics (dealing both with binary
and trajectory predictions) are implemented.

particular, we focus the evaluation of behavior prediction models
on gap acceptance scenarios, a concept that encompasses most
of the safety critical interactions between autonomous vehicles
and humans [31]. In a gap acceptance scenario, an autonomous
vehicle follows a particular trajectory over which a second traffic
participant (e.g., a pedestrian or another vehicle) can move either
in front of or behind the autonomous vehicle. Here, the first
option (i.e., the human accepting the gap) would require the
autonomous vehicle to potentially alter its trajectory planning,
while the latter one of rejecting the gap would not. Due to
the narrow focus, estimating the importance and difficulty of a
particular situation can become much more straightforward. Ad-
ditionally, as the human has only two options to decide between,
such gap acceptance scenarios allow the usage of simple binary
prediction models to estimate if the human behavior requires an
adjustment of trajectory planning.

Many binary prediction models have been developed for gap
acceptance scenarios. However, those mostly focus and are
trained on a specific scenario, such as the street crossing behavior
of pedestrians [32], [33], [34], [35], the crossing behavior of cars
at intersections [36], [37], [38], [39], [40], or lane change deci-
sions on high ways [41], [42], [43], [44], [45]. Additionally, the
development of those models still suffers from similar problems
as the trajectory prediction models, such as the anisotropy of
common metrics like accuracy. Likewise, a random selection
of test cases [33], [38] and neglect of the varying importance
of different samples are also common. Additionally, in contrast
to trajectory prediction models, which are commonly compared
to each other on accepted benchmarks (such as on the ETH
dataset [10], [11], [12] when predicting pedestrian crowds),
an equivalent benchmark does not exist for binary prediction

models [46]. Instead, those models are mostly trained and tested
on datasets exclusive to the respective work and are—if at
all—only compared against a small number of other selected
models [32], [33], [38], [39], [40], [47], [48], [49], [50], [51].

Our goal in this work is to overcome these limitations of the
current literature on both binary and trajectory prediction models
and enable a meaningful evaluation of these models in gap
acceptance scenarios. Such an evaluation cannot only make the
development of trajectory prediction models more goal-oriented
but also help determine to what extent the inclusion of special-
ized binary prediction models can improve the performance and
reliability of general trajectory prediction models. To that end,
this article makes three main contributions:
� We develop a formal description of the gap acceptance

process that applies to all possible gap acceptance scenar-
ios. This description includes a detailed timeline of gap
acceptance (Section II), which serves as a foundation for
methods to estimate the criticality concerning the safety
of each sample, which is a fundamental requirement for
selecting meaningful test cases.

� We devise a framework for evaluating behavior prediction
models in gap acceptance scenarios. This novel framework
allows the integration of varied gap acceptance datasets,
models, and evaluation metrics (Section III). It is inspired
by similar works by Müller et al. for computer-based image
retrieval algorithms [52], by Zaffar et al. in the field of
visual place recognition [53], or Cao et al. for evaluating
robustness to adversarial attacks of trajectory prediction
models [54]. This approach would allow one to test and
compare models in a chosen environment more easily,
no matter if they make binary or trajectory predictions.
For example, the proposed framework enables evaluat-
ing trajectory prediction models using binary metrics in
gap acceptance scenarios, something that has not been
previously investigated. Simultaneously, the framework
allows precise control over the splitting of the data into
training and testing samples to comprehensively evaluate
the models’ reliability in the most difficult gap acceptance
situations.

� Using the proposed framework, we compare six predic-
tion models in their performance on three gap acceptance
datasets (Section IV and Fig. 1). First, this demonstrates
the general viability of our proposed method, by including
models making and metrics evaluating both binary and
trajectory predictions. Second, it allows us to test the
reliability of those models specifically in safety-critical
edge cases, which is currently missing from the literature.
Third, it allows the testing of the hypothesis that includ-
ing dedicated binary models for gap acceptance problems
could improve the performance of state-of-the-art trajec-
tory prediction models. Lastly, this gives researchers easy
access to an already implemented baseline to compare their
own behavior prediction models to.

II. DEFINING GAP ACCEPTANCE

To estimate the difficulty and control the importance of pre-
diction tasks over disparate datasets, a coherent formal definition
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Fig. 2. The characteristic time-points of the gap acceptance process—defined by the relation of the agents to the contested space (in purple)—of two different
examples of gap acceptance, intersection crossing (upper panels) and lane changing (lower panels). In both examples, the autonomous vehicle VE (in red) offers
a gap to the human-driven vehicle VT (in blue). In total, three cases are possible (A – C), depending on tA, i.e., the time the target vehicle enters the contested
space. In B, the accepted gap decision by the human is considered to be unsafe, as VE cannot guarantee the avoidance of a crash, having potentially not enough
time for braking. Meanwhile, in C, it might be possible that VT crashes into VE .

of gap acceptance scenarios is needed. Here we propose such a
definition.

In a gap acceptance scenario, an autonomous vehicle VE—
also referred to as the ego-vehicle—plans to follow along a
certain trajectory PE along which it has the right of way. This
trajectory overlaps with the trajectory PT of another, human-
controlled vehicle VT (also named target vehicle). Such an over-
lap might, for example, happen at unsignalized intersections,
where the agents move along crossing streets or on highways,
where VT wants to merge into the faster lane along which VE

is driving. In such situations, VT can decide to move onto PE

either in front of or behind VE , i.e., to accept or reject the gap
offered by VE . We assume that VE has the right of way along
PE , as otherwise, traffic rules would obligate it to preemptively
yield.

Under these conditions, a gap acceptance scenario is char-
acterized by the spatiotemporal relation between the agents to-
wards the so-called contested space [31]. There, the trajectories
PE and PT would start to overlap, making this the location of
a potential collision. An example is the overlap of two crossing
lanes at an intersection. However, in specific scenarios (such as
changing lanes on highways), the exact location of the meeting
point of PE and PT can be at the discretion of the human agent
VT and therefore be unknown before the actual decision. In such
cases, we then place the contested space under the assumption
that VT would decide to accept the gap immediately. For exam-
ple, in the scenario of highway lane changes, the contested space
would therefore move in parallel to VT , only stopping to move
once VT starts to enter the lane of VE .

The following time points then characterize the gap accep-
tance process (illustrated together with the contested space in
Fig. 2):

tS: At the starting time tS , there is no longer any other
vehicle alongPE in between VE and the contested space.
This is primarily the case when the vehicle preceding
VE leaves the contested space, but other options are
imaginable, like the vehicle in front of VE leaving PE .

tC: At tC , VE starts to enter the contested space, closing the
gap.

tC(t): A prediction of tC by the ego vehicle, made at t, needed
to allow gap size estimations during online applications.
While this is scenario-dependent, the following condition
has to be satisfied so that an open gap can still be
characterized as such, even if VE is moving away from
the contested space:

sgn
(
tC(t)− t

)
= sgn (tC − t) .

tcrit: The last time VE can safely prevent a collision even in
the case of malicious behavior by VT ; e.g., at this point,
a safe braking process could bring VE to a stop before
the intersection. tcrit can be formalized in the following
condition:

ΔtD(t) = tC(t)− t− tbrake(t) = 0 (1)

Here, the required braking time tbrake is not based on the
maximum deceleration VE is technically capable of, but
instead, one that is considered safe. The time point tcrit is
also the last time a prediction can be considered useful
for further trajectory planning.

tA: At tA, VT enters the contested space, potentially
accepting the gap.

We count VT as rejecting the gap if VE is allowed to move
first onto the contested space, i.e., if tC ≤ tA. If this is not the
case and the human moves first (tA < tC), the gap is considered
accepted.

III. FRAMEWORK FOR BENCHMARKING GAP ACCEPTANCE

MODELS

After defining the fundamental characteristics of a gap accep-
tance scenario, we will use this groundwork to build a frame-
work for benchmarking gap acceptance models. This framework
should allow for the performance assessment of a prediction
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Fig. 3. Functionalities of the proposed framework. To evaluate a model M on a dataset D with the metric E and splitting method S, a method for determining
the prediction time t0 has to be chosen first (see Section III-A for a detailed description). This method is used to extract input and output trajectories (DI and DO

respectively) from the dataset D (III-B). Those samples are split in training and testing set using the splitting method S (III-C), with the training one (DI,train,
DO,train) used to train a model M (III-D). Subsequently, predictions DOP,test are made for the test samples DI,test with the trained model (III-E). It might be
necessary to transform these predictions into another form (III-F), before the metric E compares them to the true outputs DO,test (III-G). These steps produce two
outcomes (red diamonds): the similarity ζ between training and test data, provided by S, and the model performance F according to metric E.

model M on a dataset D according to evaluation metric E. The
following requirements need to be met for such an assessment
to be both meaningful and possible for as many of the aforemen-
tioned modules as possible:

R 1 The time point t0 of a prediction must be controllable,
as it influences not only the difficulty of the prediction
but also its importance due to changing consequences of
a false prediction.

R 2 To evaluate models in critical situations, the framework
should allow control over splitting all available samples
into training and testing sets.

R 3 Models producing (as well as metrics evaluating) for
example binary or trajectory predictions should fit into
the framework. Therefore, the framework should allow
transformations between those forms of model output.

Considering these requirements, seven functionalities will
constitute the proposed framework. Fig. 3 illustrates these func-
tionalities and their mutual dependencies. These functionalities
are grouped in four modules (dataset D, splitting method S,
model M , and Metric E); in this section we describe them in
the order in which they are employed in the process of a single
evaluation.

A. Setting the Prediction Time — Metric E

To satisfy requirement R 1, this functionality enables the
selection of the time-point t0 at which the prediction has to
be made. As the prediction time influences both the importance
of such predictions and the meaningfulness of different metrics
(Appendix A), this functionality is attached to the metric mod-
ule.

Currently, three methods are implemented into the framework
to determine t0:
� Prediction at the initial opening of the gap: t0 = tS . The

prediction is made when the gap first appears, and this is
the baseline most commonly used in the literature [38],
[42], [47].

� Prediction at gaps with fixed size: t0 = min{t | tC(t)−
t = Δt}. The prediction is made when the gap offered has
a uniform durationΔt, which should make every prediction
equally difficult due to a similar prediction horizon.

� Last useful prediction for critical gaps: t0 = tcrit − tε.
The prediction is made at the last point in time when it
would still be useful, with tε being used to allow time for
calculations.

Here, t0 has to be calculated without hindsight knowledge
for online predictions at a time when tC or tA are not known.
A discussion on the impact of the different approaches on the
resulting datasets can be found in Appendix A.

B. Extracting Input and Output — Dataset D

Next, the input and output data for each sample are extracted
from a given trajectoryXT , which includes positions at different
time points T from different actors V = {VE , VT , V1, · · · }:

XT = {x(t) | t ∈ T } , where IT = [maxT ,minT ]

x(t) = {xi(t) |Vi ∈ V }

xi(t) = (xi(t), yi(t)) ∈ R2

This functionality, requiring access to the raw data from the
scenario and thus being part of the dataset module, consists of
ten consecutive steps:

1) tC and tbrake are estimated at every time point inT , which
is scenario-dependent.

2) The characteristic time points tS , tA and tC are deter-
mined. Using the scenario-specific conditions CS , CC ,
and CA respectively (CS is true if the gap is offered, CC

and CA are true if respectively the ego vehicle VE and
target vehicleVT are inside the contested space), one then
has to to find the specific times TCi

= {t |Ci(t) ∀ t ∈
IT } at which those conditions are true (e.g., TCA

is the
time during whichVT is inside the contested space); from
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this, the characteristic time points are extracted:

tS = TS(XT ) =

{
minT TCS

= ∅

maxTCS
else

tC = TC(XT ) =

{
tC(maxT ) TCC

= ∅

minTCC
else

tA = TA(XT ) =

{
maxT + tε TCA

= ∅

minTCA
else (2)

Here, a sample is excluded from the dataset, if no decision
can be observed (i.e., if TCC

= ∅ ∧ TCA
= ∅).

3) The binary decision a, with a = 1 for accepted gaps
(tA < tC) and a = 0 for rejected gaps, is extracted.

4) tcrit is extracted next, with

tcrit =

⎧⎪⎨
⎪⎩
tS ΔtD(tS) ≤ 0

tA + tε min{ΔtD(t) | tS ≤ t < tA} > 0

tD else

,

where

tD = min {t | t > tS ∧ΔtD(t) = 0}
satisfies both requirements in (1).

5) The time of prediction t0 is calculated accordingly to
the method chosen previously (III-A). Only samples that
meet the condition

tS ≤ t0 < min {tA, tcrit} (3)

are included in the final dataset, to ensure that gaps are
already offered, VT has not made a decision yet, and that
the prediction is still useful.

6) The number of input time-steps nI and the time-step size
δt are chosen.

7) One also has to determine the number of output time
steps nO:

nO =

⌈
tC − t0

δt

⌉
(4)

The resulting prediction horizon nOδt is therefore large
enough to see the outcome of the gap acceptance sce-
nario, i.e. the acceptance or closing of the gap.

8) Based on t0, nI , nO, and δt, the time-steps for input and
output data are selected, named T I andTO respectively:

T I = {t0 + iδt | i ∈ {−nI + 1, · · · , 0}
TO = {t0 + iδt | i ∈ {1, . . . , nO}} (5)

9) For those time-steps, the input trajectories XT I
and

output trajectories XTO
are extracted from XT , using

interpolation if necessary.
10) Certain domain information k is collected, for instance,

the location at which the trajectories XT were collected
or the test subjects involved in gathering the data.

The input data DI then includes from each sample the input
trajectory XT I

and the corresponding time-steps T I . Mean-
while, the output data DO takes the output trajectory XTO

and

the corresponding time-steps TO, as well as the binary decision
a, the time of accepting the gap tA, and the domain information
k from each sample.

C. Creating Training and Testing Set — Splitting Method S

To fulfill requirement R 2, the splitting method S, separating
the given samples created in the previous step (III-B) into
training and testing sets, is a crucial part of the framework. As
this functionality should be independent of the scenario, it is
part of the separate splitting module. Examples for this range
from random splitting to methods taking into account all the
information in DI and DO .

Besides the potential similarity measure ζ of training samples
to the training set, this functionality creates the training data
DI,train and DO,train as well as the test data DI,test and DO,test.

D. Training the Model on the Training Set — Model M

After splitting the samples into training and testing sets
(III-C), the model has to be trained on the training set (DI,train,
DO,train), which is one of the functionalities of the model module
that has to be individually implemented for each model. If the
model, for instance, requires input velocities, extracting those
from the given position data XT I

and XTO
is done here.

E. Making the Predictions for the Testing Set — Model M

For every sample from the input testing set DI,test, a pre-
diction dpred is made by the model trained previously (III-D),
with all dpred constituting the set of predictions DOP ,test. As
such predictions rely on a trained model, this functionality is
also part of the model module. Depending on this model, each
predictiondpred might take different forms. Three different forms
of stochastic predictions are implemented into the framework.
� Binary prediction: dpred = apred, i.e., only the probability
apred ∈ [0, 1] of VT accepting the offered gap is predicted.

� Timing prediction: dpred = {apred, tA,pred}, i.e., not only
apred is predicted but also the time tA,pred at which the gap
acceptance might take place (Appendix A).

� Trajectory prediction: dpred = XTO,pred, i.e., the full tra-
jectory of VT is predicted. This prediction consists of
np trajectories XTO,p—all equally likely—to represent
probabilistic outputs:

XTO,pred =
{
XTO,1, · · · ,XTO,np

}
F. Transforming the Predictions — Dataset D

To fulfill requirement R 3, we then must be able to transform
a prediction dpred from the previous step (III-E) to another
prediction form if necessary. This functionality is a part of a
specific dataset, as this requires the context information to, for
example, classify different trajectories as accepted or rejected
gap.

To facilitate those transformations, three different functions
Ti (exact implementation in Appendix A) are needed, as can be
seen in Table I:
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TABLE I
TRANSFORMATION BETWEEN THE THREE POSSIBLE PREDICTION TYPES dPRED IMPLEMENTED INTO THE PROPOSED FRAMEWORK

TABLE II
THE NUMBER OF ACCEPTED GAPS NA AND REJECTED GAPS N¬A IN THE IMPLEMENTED DATASETS

T1: Takes the trajectory prediction XTO,pred and then pro-
vides {apred, tA,pred}. This is similar to the extraction of
the time points in Section III-B.

T2: Takes the prediction {apred, tA,pred} and then provides
the trajectory prediction XTO,pred, consisting of np tra-
jectories from the predictions of two conditional tra-
jectory prediction models trained only on accepted and
rejected gaps respectively. These are selected so that
T1(XTO,pred) results in the original inputs.

T3: Takes a binary prediction apred and provides the predicted
time of accepting the gap tA,pred, by extracting it from the
prediction of a trajectory prediction model trained only
on accepted gaps.

G. Evaluating the Predictions — Metric E

This functionality—the main part of the metric module—
implements the performance evaluation, comparing the actual
outputsDO,test (from III-C) with the predicted outputsDOP ,test

(III-F). It returns either a combined value F or instead a sepa-
rate value for each sample dpred ∈ DOP ,test, resulting in the
output F .

IV. BENCHMARK IMPLEMENTATION

We implemented the framework described above by linking
together several datasets, models, splitting methods, and metrics.
These were chosen not to comprehensively cover all possible gap
acceptance scenarios and prediction models but to demonstrate
the flexibility and utility of the proposed framework. Still, our
implementation can already serve as a benchmark for new pre-
diction models. This section only presents an overview of the im-
plementation, with full technical specification provided (https:
//github.com/julianschumann/Framework-for-benchmarking-
gap-acceptance/blob/main/Framework/Benchmark-
Implementation.pdf) in the supplementary materials.

A. Datasets

Different datasets are implemented into the framework (Ta-
ble II), including data recorded on real roads as well as data from
a driving simulator study. The naturalistic datasets used here
are captured by drones and distinguished by accurate position
labeling. They cover lane changes on German highways (the
highD dataset [55]) and roundabouts (the rounD dataset [56]).
The L-GAP dataset covers left turns at unsignalized intersec-
tions through oncoming traffic recorded in a driving simula-
tor [38]. It has been chosen due to the simplicity of its environ-
ment, contrasting the more complex scenarios in the naturalistic
datasets.

1) Lane Changes: Here we focus on lane changes of the
target vehicle VT toward a faster lane to the left, along which
the ego vehicle VE driving there has the right of way. While
it could be argued that predictions in such situations could
be simply based on turn signals, one cannot rely on human
drivers to correctly use these [50]. As a source of lane change
data, we used two versions of the highD dataset, full and
restricted.

The full highD dataset, not employing any filters, is heavily
biased toward trajectories without a lane change. This is not a
problem per se, but in such trajectories it is not known whether
the target vehicle VT even had an intention to change lanes (i.e.,
if there was a gap acceptance situation in the first place). For
this reason, in addition to the full highD dataset, we added a
restricted version of it which only included samples for which
it can be inferred that the target vehicle VT indeed considered a
lane change. Criteria are either a lane change of VT after VE has
passed or VT braking to not collide with the preceding vehicle
instead of changing lanes. Still, in both versions of highD, the
gaps are always accepted with large safety margins (Table II).

2) Roundabout: In the rounD dataset, the target vehicle VT

has to enter a roundabout, which it can do in front of or behind
the ego vehicle VE already in the roundabout. As the trajectories
are recorded in Germany, the ego vehicle inside the roundabout
has the right of way. Compared to highD, this dataset is far
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more balanced between accepted and rejected gaps, but still only
includes few critically accepted gaps.

3) Left Turns: In the L-GAP dataset [38], the driver of
the target vehicle VT intends to turn left at an intersection. The
driver had to decide whether to do this in front of or behind the
ego vehicle VE approaching the intersection from the opposite
direction with the right of way. While the number of samples in
this dataset is comparatively small, they are relatively balanced
between accepted and rejected gaps. Also, they include many
gaps accepted after tcrit (Table II). Nonetheless, asVT starts in an
idling position at some distance to the contested area, this might
not be the most challenging dataset, as an onset of movement
before t0 in most cases is an apparent indicator of VT intending
to accept the gap.

B. Test-Train Splitting Methods

Two splitting methods are implemented, without a method
for calculating the similarity measure ζ. Nonetheless, to enable
at least a qualitative approximation of a model’s robustness, the
methods are designed to produce testing sets of varying difficulty
for the prediction models.

The easier variant performs a stratified random splitting, while
the second, more extreme method sorts the most unintuitive
behavior of the target vehicle into the testing set (e.g. accepting
a very small gap or rejecting a very large gap).

In both cases, the testing set includes 20% of the samples and
the training set the remaining 80%.

C. Models

The benchmark includes two state-of-the-art trajectory pre-
diction models
� Trajectron++ (also referred to as T+), a deep-learning

model mainly based on long-short-term memory cells [10].
� AgentFormer (AF), a deep-learning model based on trans-

formers [12]. Compared to T+, it has ten times more
trainable parameters.

For the binary prediction models for gap acceptance, there is,
as mentioned above, a lack of a common benchmark, making
the models’ selection more contentious. Four models have been
selected nonetheless:
� Logistic regression (LR) is commonly used for predicting

human gap acceptance decisions [34] and is therefore
included as a simple baseline.

� Random forests (RF) have been shown to outperform other
approaches such as logistic regression and standard deci-
sion trees in gap acceptance prediction [36].

� Deep belief networks (DB), also used previously to predict
human gap acceptance decisions [42].

� A metaheuristic model based on combining all other five
models above (MH); previously a similar approach for lane
changes has been shown to outperform each of the models
included in it [44].

The benchmark does not include any dedicated timing
prediction models yet, as their primary representative, the
drift-diffusion model [33], [38], can currently not be trained on
datasets with a large number of unique samples in a reasonable

amount of time. Nonetheless, to allow for future expansion of
the benchmark, the framework has been designed with such
models in mind.

D. Evaluation Metrics

We have included several metrics that characterize models
in terms of the quality of binary predictions (accept/reject gap)
as well as full trajectory predictions. The following metrics are
commonly used in the literature:
� Accuracy: This metric is a widespread method to evaluate

the performance for binary prediction models [36], [42],
[44]. However, accuracy is a symmetric metric, i.e. it is
unable to differentiate between false negative and false
positive predictions. Consequently, it is best used in cases
where t0 � tcrit, as the consequences of false predictions
are not too different there (Appendix A).

� AUC: This metric for binary prediction models, the Area
Under Curve of a receiver operating characteristics curve,
addresses one central point of criticism of the accuracy
metric, namely its sensitivity to biases in the testing set.
Nonetheless, like the accuracy metric, it does not con-
sider the potentially differing severity of false predictions.
Hence, we only apply it to rate a prediction model’s per-
formance when t0 � tcrit.

� ADEβ and FDEβ : These metrics, the Average or Fi-
nal Displacement Error of the npβ least erroneous pre-
dicted trajectories, are commonly applied to trajectory
predictions [10], [11], [12], with β = 1 (i.e., average
for all predictions) or β = 0.05 (mimicking the “best-
of-20” metric used in [10]) being used in this work. As
these metrics also does not take into account the sever-
ity of different false predictions [25], [26] and requires
equally long prediction horizons as well, they are only
applied for constant gap sizes (t0 = min{t | tC(t)− t =
Δt} � tcrit). However, due to their similarity, only the
ADE is discussed furhter in this work, while the re-
sult for FDE can instead be found in the supplementary
materials.

Similarly to the FDE, an additional metric, namely the miss
rate (MR) is provided in the supplementary materials as well.
Furthermore, we propose a novel metric that considers the
potential consequences of a wrong prediction.
� TNR-PR: The True Negative Rate under Perfect Recall is a

metric applied to binary predictions, with the explicit goal
to consider the vastly different consequences of false neg-
ative and positive predictions at t0 ≈ tcrit (i.e., a potential
accident vs unnecessary braking, see Appendix A). To that
end, the threshold for classifying a prediction apred as posi-
tive is set as low as necessary to achieve perfect recall on the
test set (i.e., there are no false negative predictions). It then
estimates the usefulness of prediction models in improving
the efficiency of path planning by evaluating their true neg-
ative rate (TNR) under this decision threshold. This metric
is therefore equivalent to the likelihood that a prediction
model can prevent needless braking while guaranteeing
safe interactions. As earlier predictions do not necessitate
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Fig. 4. The results of evaluating behavior prediction models in gap acceptance scenarios on different datasets, with prediction being made either at the initial
opening of the gap (t0 = tS ) or with fixed gap sizes (t0 = min{t | tC(t)− t = Δt}). The color indicates the number of input time-steps nI given to the models,
and the marker type denotes the splitting method, which can be random or extreme. The dashed gray lines indicate the performance Fr of a uniformly random
binary predictor. All results can be found in the form of tables in the supplementary materials.

a model with perfect recall, due to available time to wait
for further data, this metric is only applied to predictions
made at the last possible time (i.e., t0 = tcrit − tε).

V. RESULTS

Our benchmark provides insights into performance of tested
models under different conditions (Figs. 4 and 5). In this section,
we first discuss our findings regarding the prediction perfor-
mance across models depending on specific prediction prob-
lems, which are defined by number of input time steps nI , the
splitting method, the scenarios, and the prediction time t0. We
will then discuss the differences between individual models.

A. Prediction Problem’s Influence on Model Performance

As one may expect, when provided with more input time
steps (nI = 10 vs. nI = 2), i.e., more information is provided
to extract signs of future behavior from, the models’ predic-
tions were generally better. Second, performance of the models
tested on the most unintuitive samples (the extreme splitting
case) was worse than in the random splitting case. There, the

Fig. 5. The true negative rate under perfect recall (TNR-PR) of different
prediction models, using the same visualizations as in Fig. 4, tested on the
last useful predictions (t0 = tcrit − tε).

models have to extrapolate to situations outside the training
domain, a typically far more difficult task than the interpolation
inside the training domain needed for prediction on random test
samples [57]. The poor performance on unintuitive samples is
especially pronounced when looking at the TNR-PR at critical
gaps (Fig. 5), where no model could substantially outperform a
random predictor on both datasets.
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When comparing the predictions of models on the two lane-
change datasets (the two left columns in Fig. 4), it can be
expected that the models’ performance should be better on the
restricted one, due to the removal of many large gaps that were
unintuitively rejected. However, this was only observed in the
AUC metric, while the opposite could be observed for Accuracy
(caused by the exploitation of the larger bias towards rejected
gaps in the unrestricted lane change dataset, an explanation
supported by the high MR ( supplementary materials) in those
cases) and ADE. Therefore, it can be assumed that AUC is the
most reliable metric here, a result which is supported for example
by Huang and Ling [58]; this metric will be our main focus from
here on.

When comparing the difficulty of different scenarios, it can
be seen that, generally, the prediction of human behavior at
roundabouts seems to be the easiest, having the best AUC values
in 30 of 48 cases (each two prediction times, input steps, and
splitting methods on six models). A possible explanation here
might be the short prediction horizon of less than three seconds
(Table II), which leaves less room for the target vehicle to
behave unexpectedly, although scenario-specific reasons cannot
be excluded. This explanation is also supported by the finding
that—at least for nI = 10—the scenario with the next shortest
gap, the left turns, gets the best results out of the remaining three
datasets in 12 of 24 cases. This is not the case for nI = 2, where
the left-turn dataset is the worst of all four datasets in 15 of 24
cases. This can be explained by the fact that in this scenario, the
target vehicle starts in an idling position, from which not much
information can be gained. Technically, predictions from both
nI = 2 and nI = 10 should be made at the same time, but due
to the lack of trajectory data before tS in this dataset, the pre-
dictions are made in fact at t0 > tS + (nI − 1) ∗ δt. Therefore,
prediction for nI = 10 are generally made later, which leaves
more room for the onset of motion, making predictions easier.

When comparing the AUC at different prediction times t0,
it can be observed that on those datasets with a lower median
tC(t0) (Table II) the prediction were better more often than not,
in 59 of 96 cases. This again lends credence to the hypothesis
that earlier predictions with longer prediction horizons are more
challenging. In the case of trajectory prediction models, this
seems logical, as a longer prediction horizon leaves more time
for prediction errors to propagate and compound on each other.
There is also the higher probability that the duration between t0
and the actual human decision is larger, which leads to a higher
probability that there are no indications of that decision in the
human behavior yet.

B. Differences Between Models

Comparing the trajectory prediction models, we found that
the Trajectron++ model (T+) consistently outperforms the
AgentFormer model (AF). This is surprising, as AF previously
outperformed T+ on pedestrian trajectory prediction bench-
marks [12]. This contradiction might be explained by over-fitting
the many trainable parameters for AF on relatively small datasets
here. Meanwhile, the logistic regression (LR) model is often
the most promising approach for binary prediction models (best

AUC value in 18 of 32 cases, and best TNR-PR value in 5 out
of 8 cases), especially when tested on random samples, where
it has the best AUC in all possible sixteen cases. Together, those
results indicate that increasing the complexity of such models
and their number of parameters might not be a panacea, with
simpler models being more promising, especially if datasets are
relatively small.

When we compare binary models against trajectory prediction
models, we can observe differing behavior for different scenar-
ios. On the one hand, the best performance on the lane-change
datasets is generally achieved by a binary prediction model (the
best AUC values come from binary models in all 16 cases), while
on the other hand, similar performance can be observed on the
other two datasets. One main difference here is the prediction
horizon (Δt ≈ 10 s and Δt < 4 s respectively, see Table II),
which might indicate that trajectory prediction models are more
impaired by such longer prediction horizon than binary models.
That the average displacement errors are much more noticeable
in the lane change scenario also supports this explanation, further
showing the difficulties of using trajectory prediction under
those conditions. However, a deeper analysis into the causes for
these observations when comparing models would likely require
a number of ablation studies, which is outside the scope of this
work.

Lastly, when evaluating the promise of including binary pre-
diction models into trajectory prediction models (relying on
the transformation function T2 from Table I), we can hold that
the benefits are mostly negligible if existent at all, except at
roundabout and left turns, where some improvements can be
seen in average displacement errors. Nonetheless, due to the
problems with that metric, more than those results are needed
to render a final judgment. However, due to the small size of
datasets and the low number of models, the results discussed
here should be treated with care.

VI. CONCLUSION

We proposed a framework that connects previously disparate
datasets, models, and metrics in the benchmark for testing
behavior prediction models in gap acceptance scenarios. We
demonstrated its potential and flexibility by comparing two
state-of-the-art trajectory prediction models with several binary
gap acceptance models. Additionally, we showed that relying
on the characteristic time points of gap acceptance scenarios to
select the most unintuitive samples in the splitting module is a
promising approach to analyzing model generalization, as seen
by the general decrease in performance for models trained on
those samples. Our framework is open-source and specifically
designed in a modular way to simplify adding new datasets,
splitting methods, models, and evaluation metrics, which allows
researchers to easily expand it in future. This can speed up
the testing of new models, only requiring the adaption of the
models’ implementation to the format of our framework, while
previously one would need to write separate code for every
model applied to every scenario.

One particularly important addition to the benchmark would
be datasets containing more critically accepted gaps, as this
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would allow for an increased meaningfulness of metrics applied
to last useful predictions. Additionally, a metric better aligned
with the main purpose of a prediction model as a part of an
autonomous vehicle is still needed. Likewise, currently there
exists no method for calculating the similarity between testing
and training set ζ; the future addition of this would permit a quan-
titative comparison of a model’s robustness against unintuitive
test samples. Lastly, one could expand the framework to provide
scenario-independent inputs similar to tC , which would enable
training a model on two unrelated datasets simultaneously, lead-
ing to a better estimation of the models generalizability.

We acknowledge that testing a model in gap acceptance
scenarios alone is necessary, but not sufficient for justifying its
usage in actual vehicles. Consequently, expanding the frame-
work to non-gap-acceptance scenarios is an important avenue for
future research. This will enable more holistic testing, although
only for models predicting (and metrics evaluating) trajectories.
Nonetheless, we argue that performance of models on non-gap
acceptance scenarios should still be given lower priority com-
pared to gap acceptance scenarios which are more safety-critical.

Our results resonate with the recent literature on hybrid
AI [59], [60], showing that including binary prediction models
in specific scenarios might make data-driven trajectory predic-
tion models more reliable, especially in accurately predicting
dangerous situations. However, especially for the unintuitive
and safety-critical edge cases, most models often performed
only slightly better than a random predictor at best. Therefore,
there currently seems to be no model that a trajectory-planning
algorithm can rely on to substantially increase the effectiveness
of an autonomous vehicle’s driving style in every scenario,
necessitating further research into such models.

APPENDIX A
APPENDIX DETAILING THE FRAMEWORK FOR BENCHMARKING

GAP ACCEPTANCE MODELS

A. Influence of t0 on the Importance of Predictions

Due to the differing consequences of false negative and false
positive predictions when using binary predictions apred, there
are limitations on which metrics are usable at certain t0. For
t0 � tcrit, the consequences of a wrong prediction are generally
minor, as time is left to wait for future information before
more significant changes to trajectory planning are necessary.
Furthermore, even if the target vehicle would immediately ac-
cept the gap after t0, the necessary response is likely neither
uncomfortable nor risky. Consequently, symmetric metrics can
be used here.

For t0 ≈ tcrit however, no more time for further observations
is left, resulting in far more severe consequences for both false
positive and false negative predictions. A false positive predic-
tion would unnecessarily result in a harsh and uncomfortable
braking maneuver. Meanwhile, a wrong negative prediction
leads to an unsafe gap acceptance maneuver, with the safety
of the interaction between VE and VT no longer in the control of
the autonomous vehicleVE . Accidents or the need for dangerous
emergency maneuvers, which could result in material damage
or even bodily harm, are then possible. As the latter should be

avoided at all costs, a false negative prediction at this time is far
more consequential, which should be reflected in the evaluation
metric.

B. Influence of t0 on the Size of the Dataset

The method for determining the time t0 can impact the size of
the resulting dataset (Table II) due to the condition from Equa-
tion (3). Namely, for constant gap size (t0 = min{t | tC(t)−
t = Δt}), the number of available samples will be reduced, as
all gaps with an initial smaller gap size (tC(tS)− tS < Δt)
will be excluded. The same is the case for gaps already accepted
before t0. For critical gap sizes instead (i.e., t0 = tcrit − tε), all
gaps accepted before tcrit will be excluded, leading to extremely
biased datasets, sometimes even removing all accepted gaps.

C. Detailing the Timing Prediction

The predicted time tA,pred is expressed using the decile values:

tA,pred = Q9(TA) = {QTA(p) | p ∈ {0.1, 0.2, · · · , 0.9}} ∈ R9

(A.6)
Here, QTA is the quantile function associated with this under-
lying distribution of TA, which might for example be expressed
as a set of individual time points tA. This means that with a
likelihood of p, tA < QTA(p) will be the case, if the human
decides to accept the gap (tA < tC):

P (tA < QTA(p) | tA < tC) = p

As the likelihood of accepting the gap is given by apred, one can
get:

P (tA < QTA(p)) = P (tA < QTA(p) | tA < tC) P (tA < tC)

= p apred

As tA is predicted under the assumption that the gap is accepted,
every decile value in tA,pred should be smaller than tC and larger
than tS .

D. Transforming the Predictions

When implementing the transformation of a prediction dpred

into another form, two instances of the trajectory prediction
model Trajectron++ [10] are used, namely MA, trained on
all samples from the specific dataset D (DI and DO) where
a = 1, andM¬A, trained on the remaining samples where a = 0.
Furthermore, the function fa is defined, which extracts the gap
acceptance decision from a single predicted trajectory, using
TA from (2) (assuming tC ≈ maxTO based on Equations (4)
and (5)).

fa (XTO,p) =

{
1 TA (XTO,p) < maxTO

0 else
(A.7)

T1: The use of fa and Equation (A.6) results in

apred =
1

np

∑
p

fa (XTO,p)

tA,pred = Q9 ({TA (XTO,p) | fa (XTO,p) = 1}) .
(A.8)
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T2: MA and M¬A are used to respectively predict two sets of
trajectories, namely XTO,pred,A and XTO,pred,¬A. The
final set of trajectoriesXTO,pred is assembled from select
trajectories out of these two sets:

XTO,pred = {XTO,p,¬A|p ∈ R¬A}∩
{XTO,p,A|p ∈ RA} .

This selection is based on the random selection function
R(m,M ,W ), which randomly selects m samples from
a setM , with the probabilities of selection being propor-
tional to the the weights W . Only samples that actually
represent the desired decision are viable (e.g., in samples
from XTO,p,A, the gap must be accepted):

R¬A = R(np(1− apred), {p | fa(XTO,p,¬A) = 0},1)
RA = R(npapred, {p | fa(XTO,p,A) = 1},WA) .

Here, WA is chosen so that the distribution of tA de-
scribed by the decile values tA,pred,i of tA,pred (Equa-
tion (A.6)) is maintained:∑

{p|tA,pred,i<TA(XTO,p)<tA,pred,i+1}
wA,p = 1 ∀i

This approach of using conditional trajectory prediction
models is inspired by Xie et al. [42] and Hu et al. [40].

T3: Here, one uses MA to get generate XTOpred,A, based on
which one can get

tA,pred = Q9 ({TA (XTO,p,A) | fa (XTO,p,A) = 1}) .
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