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■ INTRODUCTION
Reading biomolecular signatures and understanding their role in
health and disease is one of the greatest scientific challenges in
modern biology. Decoding this information is not only
foundational for biology but also a cornerstone for next
generation molecular diagnostics. This calls for novel methods
that can capture the presence and identity of low-abundance
compounds at the individual molecule level. Since its inception
in the 1980s, nanopore sequencing has become an essential part
of the single-molecule sensing toolkit, proving that long, label-
free reads of DNA can be achieved at low cost and high
throughput.1 Despite their huge success in genome sequencing,
reading the linear sequence of proteins is a considerably more
complex task that requires differentiating 20 different amino
acids (as opposed to the 4 DNA bases), as well as their
modifications, during real-time translocation. Deconvoluting
the time-dependent electrical current traces to determine entire
amino acid sequences over long reads is as yet an
unaccomplished milestone.
An alternative strategy is to identify proteins from partial

sequence information obtained via highly sensitive optical
readout schemes, which are well suited to parallel recordings of
thousands of analytes simultaneously using wide-field imaging.2

Bioinformatics studies show that labeling a few subsets of amino
acids is sufficient to enable identification of the majority of
proteins in the human proteome,3,4 with more labeled subsets
providing a less error-prone fingerprint. For instance, 90% of
proteins can be correctly identified with reference to a proteomic
database by the order in which labeled cysteine (C) and lysine
(K) residues appear,3 while this number increases to ∼98%
when C, K, and methionine (M) residues are labeled.4 This
approach has been substantiated by single-molecule fluores-
cence based protein fingerprinting with biological nanopores.5

Attempting to sequence the cellular proteome in a time that is
practically feasible, however, calls for techniques that offer
higher throughput and robustness. Solid-state nanopores are
attractive platforms, lending themselves to scalable production,
and are thereby able to process thousands of single molecules
simultaneously from a single device, while retaining high single-
molecule resolution. We are developing monolithic photonic
nanopores based on hexagonal boron nitride (hBN) crystals that
directly integrate quantum emitters in the sensing region, paving
the way for a single-molecule Förster resonance energy transfer
(smFRET) detection scheme with a novel probe pair. On one
hand, the platform can address fundamental questions on light−

matter interactions in confined nanoscale volumes between
solid-state and biological components, and on the other hand,
hBN photonic nanopores have further research prospects in the
detection of post-translational modifications (PTMs), which are
important protein biomarkers of clinical utility. Due to their
CMOS-compatible fabrication, they can be directly integrated
with microfluidics, electronics, and photonics, and therefore
represent a multifunctional and ultrasensitive analytical tool for
future technologies in, for example, single-molecule liquid
biopsy. Toward this aim, follow-up research directions include
integration of sample preparation units to sort, enrich, and purify
complex media (e.g., serum) in a fully on-chip workflow.
Nanophotonic Biosensing with hBN

Defects in materials can give rise to many intriguing physical
properties. This holds particularly true for hBN, a wide bandgap
2D material, which hosts a broad range of deep-trap crystallo-
graphic defects. These defects can act as ultrabright (∼4000
kcts/s), highly photostable, room-temperature optical emit-
ters,6,7 with experimentally determined quantum efficiencies of
∼87%, among the highest for solid-state emitters.7 Importantly,
hBN optical defects can display narrow spectral line widths and
maintain their outstanding photophysical properties in liquid
and in harsh chemical environments,8 making them robust
optical labels for applications in bioimaging/sensing under
physiological conditions. The fluorescent lifetime (∼3 ns) also
compares favorably with conventionally used organic dyes
(∼0.3−1 ns).7 Endowed with this impressive range of
photophysical properties, crystallographic hBN defects are
being explored as near-perfect solid-state emitters for quantum
sensing and super-resolution imaging of biomolecules. Such
optically active emitters can be deterministically generated in
hBN crystals using various techniques including focused ion
beam (FIB) milling,9 electron irradiation,10 femtosecond (fs)
laser ablation,11 plasma etching,12 and nanoindentation.13

Figure 1a,b shows a proof-of-concept device in the form of a
20 × 20 cavity array produced by FIB milling in a mechanically
exfoliated hBN flake and subsequently imaged with wide-field
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epifluorescence microscopy and dark-field optical microscopy
(Figure 1c). The cavities exhibit strong photoemission at the rim
under 532 nm illumination, indicating the presence of optically
active defects (Figure 1d).

Single-Molecule FRET Based Protein Fingerprinting

Energy transfer based sensing of biomolecules is a widely used
scheme for fast and high-throughput bioimaging and biosensing.
In this field, smFRET has become a popular tool for dynamic
structural biology and a ubiquitous “spectroscopic ruler”,
providing very accurate information about distances at the
single-molecule level with high spatial (nanometer) and
temporal (millisecond) resolution.14 In smFRET measure-
ments, biomolecules of interest are optically labeled with a pair
of probes (donors and acceptors). Non-radiative energy transfer
takes place through dipole−dipole interactions between an
excited donor and an acceptor, leading to changes in the
fluorescence intensity and lifetime of the donor. Designing
optimal probe pairs is thus a key enabling factor for the
implementation of this technique, and smFRET measurements
continue to evolve hand in hand with the development of donor
and acceptor materials. In practice, the selection criteria for
donors and acceptors are brightness, photostability, biocompat-
ibility, room temperature operation, controllable chemistry, ease
of production, and cost. Beyond organic dyes, a range of other
materials are being explored as optical probes, including
fluorescent proteins, inorganic nanoparticles, such as nano-
diamonds and CdSe quantum dots, and more recently 2D
materials.
Among those, 2D crystals of hBN are uniquely placed as a

material fulfilling both the requirements of nanopore mem-
branes and optical nanoprobes. We previously showed the
implementation of hBN nanopores for DNA sensing, where
geometrically defined pore shapes successfully enabled the
distinction of DNA homopolymers.15 The combination of
nanopore defect engineering and generation of on-chip
nanopore arrays for biomolecule translocation ensures a high
number of nanoscale confinement volumes, each with a built-in
optical sensor.
For single-protein analysis, we envisage that linearized

proteins16 translocating through the hBN photonic nanopores
pass in close proximity (<10 nm) to the hBN optical emitters

Figure 1. (a) Schematic of a cavity array fabricated in an hBN flake with
crystal defects formed within the lattice (inset). Top-right inset:
Simplified energy level diagram of an optically active defect in hBNwith
ground and excited states within the bandgap. (b) Optical images of an
hBN flake before and after FIB milling. The scale bar is 50 μm. (c)
Wide-field epifluorescence microscopy image (left, λex = 532 nm) and
dark-field optical microscopy image (right) of an hBN cavity array in
Milli-Q water. The scale bar is 10 μm. (d) Line profile of the
photoemission intensity from the hBN cavity in the dashed region in
part c. Inset: zoomed-in image of the photoactive cavity.

Figure 2. (a) Side view of single-molecule translocation through an hBN photonic nanopore with optical emitters in the rim. (b) Conceptual
measurement of a single-molecule protein fingerprint generated by the sequence of high FRET states. smFRET occurs due to the interaction between
an hBN optical emitter (green) and a labeled amino acid (red). (c) Upper panel: experimentally measured hBN ZPL energies generated using various
techniques including nanoindentation, plasma treatment, fs laser ablation, neutron, electron, and ion irradiation methods. The emission ranges have
been extracted from two comprehensive review papers,7,17 and their occurrence is shown by the intensity of the shaded region. Lower panel: the
excitation and emission spectra for various types of fluorophores.
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located at the nanopore rim, giving rise to a high FRET signal. By
monitoring the FRET efficiency as a function of time, the
nanopore detects a sequence of high FRET states, indicating the
passage of a specific labeled amino acid. The number of high
FRET states and their separation in time (i.e., distance along the
molecule) forms the basis of the biomolecule fingerprint (Figure
2a,b).
Unlocking the vast potential of hBN optical emitters for

single-molecule nanopore fingerprinting is not without
challenges. Exploiting these optical probes requires a better
understanding of their spectral variability and, linked to this, the
reproducible engineering and tuning of defect structures, since it
is the defect crystal structure and composition (impurities,
substitutional atoms, vacancies, and vacancy complexes)7 that
dictate the photophysical properties and, by extension, the
operation as a FRET probe. The top panel in Figure 2c shows
the experimental zero phonon line (ZPL) energies of hBN
optical emitters generated using various nanofabrication
techniques.7,17 The lower panel shows the excitation and
emission spectra of well-known fluorophores (GFP, AF488,
Cy3, Cy3.5, Cy5, AF647), demonstrating their spectral
compatibility as fluorescent labels for smFRET studies with
several types of hBN emitters. This optical approach to single-
molecule fingerprinting also relies on strategies to control the
speed of (reversible) translocations in solid-state nanopores,
which could include integration with optical, optoelectronic,
magnetic, or acoustic tweezers.14,18

■ CONCLUSION
The photonic nanopore platform presented here harnesses the
outstanding properties of hBN optical emitters, which, by virtue
of their high brightness in the visible and high quantum yield and
photostability, represent promising nanoscale probes for
fluorescence imaging of biomolecular features at the nanoscale.
Specifically, solid-state nanopore transport measurements and
single-molecule fluorescence time traces are combined to enable
massively parallel and non-destructive protein fingerprinting.
Given the capability to deterministically position and tune the
optical properties of the emitters, hBN nanopores allow further
opportunities for enhanced sensing, such as multicolor
smFRET, thereby providing more complete and accurate
protein fingerprints. Beyond protein identification, the platform
could detect PTMs, which are of clinical relevance as biomarkers
for molecular diagnostics. This nano-optofluidic platform can
therefore signify an important step forward in enabling our
understanding of the molecular details of proteins and their role
in life.
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