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ABSTRACT: Spatially targeted proteomics analyzes the proteome of specific cell
types and functional regions within tissue. While spatial context is often essential to
understanding biological processes, interpreting sub-region-specific protein profiles can
pose a challenge due to the high-dimensional nature of the data. Here, we develop a
multivariate approach for rapid exploration of differential protein profiles acquired
from distinct tissue regions and apply it to analyze a published spatially targeted
proteomics data set collected from Staphylococcus aureus-infected murine kidney, 4 and
10 days postinfection. The data analysis process rapidly filters high-dimensional
proteomic data to reveal relevant differentiating species among hundreds to thousands
of measured molecules. We employ principal component analysis (PCA) for
dimensionality reduction of protein profiles measured by microliquid extraction
surface analysis mass spectrometry. Subsequently, k-means clustering of the PCA-
processed data groups samples by chemical similarity. Cluster center interpretation
revealed a subset of proteins that differentiate between spatial regions of infection over two time points. These proteins appear
involved in tricarboxylic acid metabolomic pathways, calcium-dependent processes, and cytoskeletal organization. Gene ontology
analysis further uncovered relationships to tissue damage/repair and calcium-related defense mechanisms. Applying our analysis in
infectious disease highlighted differential proteomic changes across abscess regions over time, reflecting the dynamic nature of host−
pathogen interactions.
KEYWORDS: Staphylococcus aureus, mass spectrometry, bioinformatics, abscess formation, host−pathogen interface, microLESA,
spatially targeted proteomics, proteomics, computational proteomics, machine learning

■ INTRODUCTION
The field of proteomics has sought to develop methods to
separate, purify, identify, and quantify proteins1−6 and assess
overall proteomic coverage and spatial specificity. Liquid
chromatography with tandem mass spectrometry (LC-MS/
MS) provides deep proteomic coverage on the order of
thousands of proteins and is often performed on homogenized
tissue but generally has little spatial context.7,8 It can accurately
identify proteins and their post-translational modifications and
has been used to describe the proteomic landscape in
biomedical research areas such as cancer,9−11 diabetes,12−15

and heart disease.16−19 Alternatively, spatially targeted assays,
such as matrix-assisted laser desorption/ionization imaging
mass spectrometry (MALDI IMS),20−24 describe proteomic
variation for many hundreds of species simultaneously25,26 at
relatively high spatial resolution of ∼10−50 μm. Although
MALDI IMS provides an unmatched combination of high
plexity and high spatial resolution molecular imaging, the
overall protein coverage and confidence in identifications is
lower than that of LC-MS/MS.27,28

Bridging the gap between bulk analysis and tissue imaging
approaches are hybrid technologies that allow for histology-
directed spatially localized sampling coupled to LC-MS/MS
platforms. These technologies offer deeper molecular coverage
than other spatial analyses from a limited number of sampled
regions. One example is nanodroplet processing in one pot for
trace samples (nanoPOTS),29−31 a spatially targeted method
that uses a laser capture microdissection and a customized
sample preparation technique to obtain samples for subsequent
processing with LC-MS/MS.32,33 NanoPOTS can provide
approximately 2000 protein identifications at a 100 μm
sampling location size.31 Another such hybrid technology is
microliquid extraction surface analysis (microLESA), which
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provides targeted extraction of analytes from ∼100 μm sized
regions, as compared to a traditional LESA experiment that is
limited to 1−2 mm.34−37 Regions of tissue are selected for
extraction by image-guided robotic spotters that deposit
picoliters of a proteolytic enzyme solution on the region of
interest (ROI), providing localized microdigestions at these
specific histological foci. Following an incubation period,
proteolytic peptides are extracted and analyzed using LC-MS/
MS.
However, spatially targeted LC-MS/MS methods bring a

unique set of challenges. By targeting smaller tissue regions, the
amount of material sampled is reduced, leading to a decrease in
the total number of proteins detected. As such, microLESA
experiments provide fewer identifications than bulk proteomics
and can lead to differing coverage from sample to sample. For
example, within this study, the number of missing values
postprotein identification ranged from 31 to 77% of all
proteins detected across localized samples.37,38 Additionally,
molecular heterogeneity between biologically distinct tissue
regions leads to differences in both the total number and
specific protein families being detected from each ROI. During
the postacquisition data analysis, mass spectral measurements
are processed using a protein identification software such as
MaxQuant,39,40 which cross-references the mass spectra with
reference databases, performs quantification, and provides
protein identifications for each sample. It is at this stage that
missing values may be introduced because a protein
concentration is below the limit of detection, is filtered
based on user-defined criteria, or is missing randomly due to
technical issues or a borderline signal-to-noise ratio.
Existing methods for analyzing protein data tend to be

univariate in nature�for instance, focusing on particular
proteins that are differentially expressed among samples.41−49

These approaches do not lend themselves well to capturing
systems-level trends or panels of molecules working in unison,
limiting their effectiveness at retrieving the most information
from complex multivariate data. This is especially the case with
spatially targeted protein data where, due to the common
occurrence of missing values, these data are not easily
amenable to one-on-one protein comparisons without first
removing proteins from the analysis that were not measured
consistently across all samples or alternatively, imputing
missing values.50−52 Furthermore, supervised methods are
also commonly employed for protein studies; most often to
categorize diseased and nondiseased tissue or differentiate
among tissue regions.53−55 However, the advantage of an
unsupervised approach is that the analysis is not focused on
recognizing specific predetermined categories, but rather the
data are allowed to separate into underlying trends, some of
which will be nonbiological and others biological. Here, we
address the above challenges by developing a rapid automated
unsupervised multivariate method using principal component
analysis (PCA) and k-means clustering to discover molecular
differentiators within a publicly available microLESA data set
investigating Staphylococcus aureus infection in a murine kidney
on a spatial scale and over two time points.38 This model was
chosen to provide insight into the profound protein changes
within tissue containing bacterial abscesses as a result of
staphylococcal infection,38,56 while maintaining broad multi-
variate protein coverage and avoiding prior focus on specific
tissue classes of protein species.

■ METHODS

Sampling and Data Acquisition
Data used in the murine case study are stored on the
ProteomeXchange Consortium database by the PRIDE118
partner repository with the data set identifier PXD019920 and
were reanalyzed from the original publication.38 From this
publication, we briefly report the methods used for sample
preparation and technical aspects for microLESA, and LC-MS/
MS (Figure 1A).38 Six- to eight-week-old mice were retro-
orbitally inoculated with S. aureus (strain USA300 LAC)
constitutively expressing sfGFP.38 Infections were allowed to
progress until 4 or 10 days postinfection (DPI) before animals
were humanely euthanized and kidneys excised for analysis. All
animal experiments were approved by the Vanderbilt Medical
Center Institutional Animal Care and Use Committee. This
work consisted of cryosectioning 10 μm thick tissue sections,
thaw-mounting onto glass microscope slides, and imaging the
sections with autofluorescence microscopy (Carl Zeiss
Microscopy, White Plains, NY)) to determine ROIs for
microLESA sampling. Trypsin dissolved in ddH2O to a final
concentration of 0.048 μg/mL was applied to each ROI using a
robotic piezoelectric spotter (sciFLEXARRAYER S3, Prince-
ton, NJ); slides were incubated at 37 °C for 3 h in 300 μL
ammonium bicarbonate, and proteolytic peptides were
extracted using a TriVersa NanoMate (Advion Inc., Ithaca,
NY) with the LESAplusLC modification. To mitigate batch
effects, samples were run in a single batch in a randomized
order by both region and infection status. Samples were stored
at −4 °C prior to analysis. Samples were collected and
analyzed by LC-MS/MS in positive ion mode using an
Orbitrap Fusion Tribrid mass spectrometer (Thermo
Scientific, San Jose, CA) at 120,000 resolving power at m/z
200 with a mass range of m/z 400−1600 and an automatic
gain control target of 1.0 × 106.
Data Analysis
We performed protein identification and quantitation using
MaxQuant40 as follows (Figure 1A). Raw LC-MS/MS files
were processed using the label-free quantification method in
MaxQuant version 1.6.7. Spectra were simultaneously searched
against Mus musculus and S. aureus (strain USA300 LAC)
reference databases downloaded from UniProt KB,57 and the
resultant peptide and subsequent protein identifications
include the name of the species. These labeled identifications
can later be used to separate the proteins by species. These
were supplemented with the reversed sequences and common
contaminants for quality control purposes. Acetyl (protein N-
term) and oxidation (M) were set as variable modifications.
Match between runs was not used and the LFQ min ratio
count was set to 1. Minimal peptide length was seven amino
acids. Peptide and protein false discovery rates (FDRs) were
both set at 1%.
The resultant protein groups file containing label-free

quantitation (LFQ) intensity values from MaxQuant, was
used for the subsequent data analysis. In this file, each row
contains the group of proteins that could be reconstructed
from a set of peptides; proteins in each protein group are
sorted based on the number of identified peptides in
descending order. This protein groups file was analyzed for
outliers using a z-score anomaly detection calculation. Briefly,
z-scores were calculated based on the number of protein
groups identified and samples with z-scores > |2| were
excluded. Based on this calculation, 3 samples out of 42 total
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were excluded (Figures S1 and S2). Proteins identified as
“reverse”, “only identified by site”, or “potential contaminants”
were also removed, as well as proteins with fewer than two
unique peptides identified. As a result of this filtering process
and of the molecular heterogeneity between samples, there are
many missing (LFQ) values in the data set. For the primary
analysis in the paper, proteins with missing values in any of the
samples were excluded from the subsequent data analysis,
resulting in a data set comprising only 287 proteins (rather
than the 3613 protein rows from the start). To also assess
broader coverage, a secondary (inclusive) analysis was also
conducted, where instead of removal, the missing values were
zero-filled and analyzed using the same subsequent data
analysis method. The latter results are reported in the
Supporting Information.
Using Python version 3.7, we applied Scikit-learn’s principal

component analysis with a randomized solver58 to generate an
array of 39 ranked components (the maximum, given that
there are 39 samples). This array of PCA-transformed data (of
size 39 × 39 instead of the original 39 × 287) was then used
for k-means clustering using Scikit-learn’s KMeans implemen-
tation (Figure 1B and Figure 3D). A range of k values from 2
to 15 was tested using silhouette scores59 as a performance
metric59 to determine the optimal k number of clusters. Upon
determining the optimal k value to be 4 (Figure S3), the k-
means clustering algorithm was deployed to assign cluster
membership to each sample; aside from setting the random_-
state parameter to a fixed but randomly selected integer (42) to
maintain reproducibility across runs, the default parameters
were used. Cluster centroids for each cluster, which represent
the average for all points belonging to the cluster, were used for
biological interpretation with 10% of proteins (n = 29) with
highest absolute values labeled (Figure 4 and Table S2). Since
the k-means clustering was performed on PCA-transformed
data, the resultant cluster centroids are in the form of 4 rows
(one per cluster) and 39 columns (one for each principal
component). To interpret the cluster centroids in terms of the
protein groups, we cast the centroids back to the original
measurement space by performing matrix multiplication

between the centroid table (of size 4 × 39) and the PCA
scores table (of size 39 × 287), thereby generating a final
matrix of size 4 × 287 (Figure 1B). For the secondary
(inclusive) analysis as a supplement to the original analysis, we
also performed the PCA and k-means clustering on the full
proteomic data set, zero-filling the missing values, which
resulted in a total feature set of 3613 proteins. For this analysis,
a k of 5 was selected and the resultant cluster centroids were
extracted in the same way as described above, with the note
that the final centroid matrix was in that case of size 5 × 3613
(Figures S4 and Figure S5 and Table S3).
The absolute centroid values were summed per cluster and

the 100 and 175 proteins for the nonimputed and zero-
imputed data sets, respectively, with highest accumulated
centroid values were selected for gene ontology analysis. The
original LFQ intensity values for those top proteins were
extracted for each sample and their intensity was standardized
per protein by removing the mean and scaling to unit variance.
These standardized protein intensity values were averaged per
cluster, and proteins with a standardized intensity greater than
zero were selected for gene ontology enrichment analysis,
which was performed using the protein analysis through
evolutionary relationships (PANTHER) classification system
(version 16.0) for each set of proteins per cluster.60 Only
murine proteins were used for the gene ontology analysis since
PANTHER does not include the S. aureus strain USA300 LAC
in their databases. The resultant protein classes were
summarized (Figure 5, Figure S6, Table S4, and Table S5).
Figures were generated using Matplotlib,61 circlize,62 and

Numbers for iOS, except the schematic for Figure 1, Figure 2A,
and the TOC graphic, which were created with BioRender.-
com. All code for data analysis can be found at https://github.
com/kavyasharman/microlesa (Supporting Information 1 and
Supporting Information 2).

■ RESULTS AND DISCUSSION
S. aureus is a Gram-positive pathogen that is known to cause
skin and soft tissue infections.63 A hallmark of S. aureus
infection is the formation of soft-tissue abscesses. Development

Figure 1. Pipeline for spatially targeted proteomics data acquisition and analysis. (A) Protein data were acquired from tissue samples using spatially
targeted sample acquisition and then peptides were analyzed using LC-MS/MS. Data preprocessing involved protein identification and quantitation
using MaxQuant software. (B) PCA was applied for dimensionality reduction and grouping of correlated and anticorrelated proteins among regions
and time points. The PCA-processed data were clustered by k-means and cluster centers examined for protein identifications.

Journal of Proteome Research pubs.acs.org/jpr Article

https://doi.org/10.1021/acs.jproteome.2c00206
J. Proteome Res. 2023, 22, 1394−1405

1396

https://pubs.acs.org/doi/suppl/10.1021/acs.jproteome.2c00206/suppl_file/pr2c00206_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jproteome.2c00206/suppl_file/pr2c00206_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jproteome.2c00206/suppl_file/pr2c00206_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jproteome.2c00206/suppl_file/pr2c00206_si_002.xlsx
https://pubs.acs.org/doi/suppl/10.1021/acs.jproteome.2c00206/suppl_file/pr2c00206_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jproteome.2c00206/suppl_file/pr2c00206_si_003.xlsx
https://pubs.acs.org/doi/suppl/10.1021/acs.jproteome.2c00206/suppl_file/pr2c00206_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jproteome.2c00206/suppl_file/pr2c00206_si_004.xlsx
https://pubs.acs.org/doi/suppl/10.1021/acs.jproteome.2c00206/suppl_file/pr2c00206_si_005.xlsx
https://github.com/kavyasharman/microlesa
https://github.com/kavyasharman/microlesa
https://pubs.acs.org/doi/suppl/10.1021/acs.jproteome.2c00206/suppl_file/pr2c00206_si_006.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jproteome.2c00206/suppl_file/pr2c00206_si_007.pdf
https://pubs.acs.org/doi/10.1021/acs.jproteome.2c00206?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jproteome.2c00206?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jproteome.2c00206?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jproteome.2c00206?fig=fig1&ref=pdf
pubs.acs.org/jpr?ref=pdf
https://doi.org/10.1021/acs.jproteome.2c00206?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


of these three-dimensional structures are accompanied by
changes in architecture as well as cellular and molecular
compositions of host tissue.38,56,63,64 Understanding the
formation of these structures, including the molecular changes
across different regions of, and in proximity to, the abscess is
particularly relevant to understand how S. aureus interacts with

the host immune system and how staphylococcal infections
progress.
In this original experiment,38 mice were infected with

fluorescently labeled strains of S. aureus and their kidneys were
isolated for analysis with microLESA at 4 or 10 DPI (Figure
1). Three regions were selected for analysis:38 the staph-

Figure 2. S. aureus-infected murine kidney. (A) Graphical depiction of the host−pathogen interface of S. aureus infection within a murine kidney.
SAC: staphylococcal abscess community. (B) Summary of the total number of host and pathogen proteins detected.

Figure 3. Principal component analysis and k-means clustering results of proteins of an S. aureus-infected murine kidney. (A) PCA was performed
on protein LFQ intensity values acquired from 3 regions and 2 time points. This unsupervised approach separates the SAC and interface (left) from
the cortex samples with no visible infection (right). (B) Samples also seem to cluster based on biological replicate within the PCA space. (C) There
is a separation among the samples 4 and 10 days postinfection within samples acquired from region of infection; this separation is not seen from
samples acquired from the cortex where there was no visible infection. (D) k-Means clustering was used to cluster the samples after PCA; k = 4 was
determined using silhouette scores as a metric. To aid in interpretation, clusters are labeled by the regions and time points from which samples were
collected.
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ylococcal abscess community (SAC), the nonabscessed cortex,
and the interface between the abscess and the surrounding
nonabscessed cortex (Figure 2A). Of the 42 samples, 20 were
measured at 4 DPI (5 from the interface, 7 from nonabscessed
cortex, and 8 from the SAC) and 22 at 10 DPI (6 from the
interface, 7 from nonabscessed cortex, and 9 from the SAC).
There were 3 biological replicates for each DPI category,
making for 6 mice total (3 mice at 4 DPI and 3 mice at 10
DPI). Multiple ROIs from each of the 3 regions were sampled
for analysis.
Protein Identification and Quantitation

An average of 1500 proteins were detected from each sample.
Proteins that were not identified within a sample but detected
in another sample or that were below the limit of detection
were not reported, generating a missing value. Missing values
from each sample ranged from 31 to 77% (Table S1, Figure S1,
and Figure S2). There are multiple options for handling
missing values, including imputation or removing proteins not
detected consistently across samples. For our primary
(nonimputing) analysis, proteins with missing values in one
or more samples were excluded, resulting in a remaining total
of 287 proteins detected and quantified across all samples.
After protein identification and quantitation, the resultant

protein groups containing LFQ intensity values were analyzed
for outliers by calculating z-scores for each sample based on
the number of protein groups identified in each and excluding
samples with a z-score > |2|. From this preprocessing, we
generated a table containing protein group versus LFQ
intensity, consisting of 39 samples total representing 3 regions
(SAC, interface, cortex), 2 time points (4 DPI, 10 DPI), and
287 total protein groups (cross section across all 39 samples).
Of these proteins, all 287 were identified as murine using the
MaxQuant database search as explained above (Figure 2B). It
is important to note that although in this paper and case study
MaxQuant LFQ was used as the input data, other value types
such as iBAQ intensities or raw ion intensities can also be
provided as input data for this PCA + k-means workflow,
without it requiring substantial changes. The choice of which
input type to supply depends on what is most appropriate for
the data set and analysis at hand.
Next, we sought to develop an unsupervised multivariate

method that would allow us to capture the unique proteomic
signature from each of the distinct ROIs, but without focusing
on a specific protein species and instead providing broad
coverage across a panel of proteins. The entire data set of
protein group measurements, excluding those with missing
values, for each of the protein groups (n = 287) was used for
the analysis and each sample was annotated by time point (4
DPI (n = 20) and 10 DPI (n = 19)) and region (SAC (n = 17),
interface (n = 11), or cortex (n = 11)). The data were not
pooled by technical or biological replicates in order to provide
as many measurements as possible for the unsupervised
learning and to avoid an “averaging out” of information, which
could underpower the analysis given the already low number of
samples (n = 39).
Principal Component Analysis Followed by k-Means
Clustering

The first part of our analytical process consists of PCA to
address the “curse of dimensionality”, which broadly
summarizes the myriad challenges in analyzing and identifying
patterns in high-dimensional data. PCA groups correlating and
anticorrelating features into a series of orthogonal components.

In doing so, the data are transformed from a high-dimensional
space into a lower-dimensional space while attempting to
minimize the loss of information.
PCA with a randomized solver58 was applied to reduce the

dimensionality of the complete data set and group correlated/
anticorrelated samples based on the protein LFQ intensity
values. In doing so, the dimensions of the data set were
reduced, from a matrix of dimensions [39 × 287] to that of [39
× 39]. All components were retained to avoid information loss.
We found that the first and second principal components
accounted for 81.35 and 10.61% of the explained variance,
respectively, and together, these components separated the
data by region and time point (Figure 3A). We further labeled
the data by regions and time points to explore variation present
among these subsets (Figure 3A,C). In terms of region (Figure
3A), samples collected from the (uninfected) cortex cluster
seem to separate away (to the right in the figure) from those
collected from the interface and SAC, suggesting similarity
between the interface and SAC proteomics, which is expected
since both contain regions of infection. There is also a degree
of protein similarity among the biological replicates because
samples within the PCA seem to cluster similarly based on
biological replicate (Figure 3B).
Examining the PCA results as a function of time points

reveals a clear distinction between samples collected 4 and 10
DPI (Figure 3C), suggesting that infection time is a key
differentiator among the protein patterns in both interface and
SAC regions. Some interface samples that were collected 10
DPI overlap closely with SAC samples collected 10 DPI,
suggesting that, after 10 DPI, the interface proteome could
potentially start resembling that of the SAC. This observation
is indicative of interface heterogeneity and a differential impact
of infection among regions of tissue surrounding bacterial
abscesses. It may also imply spatial expansion of the immune
response and expanding tissue damage as result of the
progressing infection, but this would require subsequent
follow-up study and validation. Conversely, samples acquired
from the cortex where there was no infection visibly present do
not show a separation between 4 and 10 DPI.
While PCA tends to group the data based on the protein

(LFQ) content of each sample, a secondary step is required to
identify and interpret protein patterns. We hypothesized that
an automated unsupervised clustering method could provide
further insight into the spatial patterns of staphylococcal
infection over early and late time points. Clustering is a
common approach for interpreting high-dimensional data and
works by grouping similar samples together based on variation
among measured features. Within a protein data set, samples
that contain similar protein expression patterns can be grouped
and the underlying variation among the groups can potentially
represent biologically relevant information. Of the myriad
methods for clustering,65−67 k-means clustering68−70 (with a
Euclidean distance metric) was chosen because the cluster
centroids that represent the average protein pattern for each
group can provide rapid and straightforward protein-level
insight.
We applied k-means clustering to the PCA-transformed data.

Silhouette scores59 were used as a performance metric (Figure
S3); 3, 4, and 5 were relatively equally good choices so a k of 4
was chosen as it lies at the center of this equally good range.
Each sample was then assigned membership to one of four
clusters (Figure 3D). Descriptors of samples in each cluster
were added to the figure to aid in interpretation (Figure 3D).
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Samples from the nonabscessed cortex regions are grouped
into cluster 3, comprising samples from both 4 and 10 DPI.
However, the k-means clustering led to varied cluster
membership for the samples extracted from areas of infection.
For instance, cluster 4 consists of samples collected from the
cortex and interface 4 DPI and 10 DPI, suggesting that the
proteome of the interface early in the infection is more like the
cortex than the proteome of other interface samples or the
SAC. Cluster 2 consists of interface samples 4 and 10 DPI as
well as SAC samples 4 and 10 DPI. Cluster 1 only consists of
samples 10 DPI from both interface and SAC. The clustering
patterns of interface and SAC samples reveal two interesting
observations. First, that the SAC samples can be categorized
into two different clusters is consistent with findings of
previously observed abscess heterogeneity38,56 and indicates
that there can still be changes in abscesses that are seemingly
fully formed. Second, abscess formation and mounting
immune response may take up to 10 DPI to manifest
proteomic changes in the interface even though abscesses
can be seen at the 4 DPI mark. The distinction in the
proteome between the early and late interface is especially
evident as interface samples are seen clustering with cortex and
SAC samples at varying time points. In summary, these
observations from the k-means clustering analysis reveal
patterns of staphylococcal infection progression and hetero-
geneity in the proteome among specific regions of infection.
Cluster Interpretation

Our multivariate analysis provides broad proteomic insight
based on underlying proteomic (LFQ) variations. The method
provides a high-level understanding into protein differences
between time points and regions within an S. aureus infection
model. To identify a subset of relevant proteins from the 287
total measured proteins used for this analysis, we interpreted
the average centroids of each cluster. Using PCA followed by
k-means clustering, we can automatically rank proteins that
significantly contribute to the clustering model; proteins with
high absolute centroid values contribute more as differentiators
to the clustering model than those with low absolute centroid
values, and therefore are more likely to reveal biological
insight. Average centroids for each of the four clusters were
extracted, with 287 proteins or protein groups as observations
and absolute cluster centroid values as variables. All proteins
are represented in each centroid and the centroid value for
each protein indicates the degree to which that protein is
relevant to that cluster. Proteins with high absolute values are
more relevant to a given cluster than those with low values.
Of the 287 proteins analyzed, the top 10% with highest

absolute centroid values were labeled for interpretation (Figure
4). α-Globin 1, cytoplasmic actin, and β-globin have the
highest absolute centroid values and distinguish clusters
comprising samples from infected regions (interface and
SAC) versus those from the cortex. Among the 29 highest
ranked proteins are mitochondrial ATP synthase subunits α
and β and pyruvate kinase, which are involved in the
tricarboxylic acid cycle. We also note proteins involved in
maintaining cell structure and facilitating tissue repair/
remodeling such as myosin-9, cytoplasmic actin, filamin, and
fibrinogen.
Given the low number of samples (n = 39) encompassing

multiple time points and regions, eliminating proteins with
missing values in one or more samples resulted in eliminating a
substantial amount of measured protein data. As a comparison,

we reanalyzed the data, this time using all the proteomics data
with an imputation approach to handle the missing values.
Imputation has been systematically evaluated and successfully
implemented for mass spectrometry data sets and studies in
the past.50,58,71 A recent study found that techniques such as
local least-squares, random forest, and Bayesian PCA missing
value estimation worked well for label-free data-independent
acquisition mass spectrometry (DIA-MS) data sets.51 How-
ever, this study among others has shown that for an imputation
to be helpful in the final analysis, it must model actual observed
phenomena. For the case of microLESA data where proteins
are sampled from small, biologically heterogeneous regions of

Figure 4. Molecular differentiators among regions of S. aureus-
infected kidney. (A) All four cluster centers are overlaid with 10% of
proteins (n = 29) with highest absolute values labeled. Underlined are
the three proteins with overall highest absolute centroid values; * =
proteins involved in the tricarboxylic acid cycle, ** = proteins
involved in maintaining cell structure and facilitating tissue repair/
remodeling.
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tissue, the probability that a protein was not detected when its
value is missing is higher than if we were to impute a value
based on an imputation method. Therefore, for this analysis,
we chose a simple model with the assumption that if a protein
was not measured, it was below the limit of detection or not
present in the sample. As such, missing values were zero-filled.
This type of imputation is a common approach for handling
missing value, as opposed to our primary approach, where
columns with missing values were removed such that only
globally present proteins are used for the analysis.50,51,71

Upon analyzing the data set with zero-filled values,
comprising 3,613 proteins in total, we found that the PCA
and k-means clustering results remained largely the same
(Figure S4). The key differences are in the PCA explained
variance (components 1 and 2 now respectively represent
77.26 and 10.3% of the data as compared to the 81.35 and
10.61% previously, Figure S4A−C), the number of k clusters
(silhouette score analysis revealed a k of 5 to be optimal for

this larger richer data set with imputed values, Figure S4D),
and resultant cluster membership of samples. When analyzing
the zero-filled larger proteomics data set, there is a new cluster
intermediately situated between the cortex and interface/SAC
4 and 10 DPI clusters. This new cluster comprises samples
from the cortex 4 and 10 DPI as well as interface 4 DPI.
Samples that were originally organized into a single cluster
comprising cortex 4 and 10 DPI split into two clusters, with
two samples acquired from the cortex at 4 DPI comprising one
cluster and six samples acquired from the cortex at 4 and 10
DPI comprising a second cluster. This indicates that with the
inclusion of all proteins and zero-filling those with missing
values, we can observe more perceived separation among the
samples. The cluster with interface and SAC samples 10 DPI
remains unchanged.
In analyzing the cluster centroids, we found that cluster

membership is largely driven by the same proteins, such as α-
globin 1, cytoplasmic actin, and β-globin (Figure S5).

Figure 5. Gene ontology analysis. Gene ontology analysis was performed using the 100 proteins with highest accumulated absolute centroid values.
The LFQ intensity for these proteins were normalized across all samples and those with values above 0 were analyzed using the PANTHER
classification system based on protein class. Panels A−D are sorted from no infection (cortex 4 DPI and 10 DPI) to most infection (interface 10
DPI and SAC 10 DPI). The total number of proteins in each cluster are as follows: (A) 31, (B) 28, (C) 47, and (D) 48. Panel E shows three
protein classes with differences among regions of infection versus no infection, and the total number of proteins in each class.
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However, notably present in this list are several immune-
response related factors such as S100-A9 and prothymosin α.72
Although the primary drivers of cluster membership remained
the same, the same analytical process applied to the larger
imputed data set provided a broader description of the host−
pathogen interface, uncovering additional target proteins that
can be further validated.
It is important to note that interpreting the PCA

pseudoprotein signature must be done carefully because it
represents combinations of protein LFQ data that capture as
much of the observed variance as possible. For example, the
PCA result might be be skewed by high-intensity values for
proteins that may not be biologically relevant, or miss low-
intensity valued proteins that nevertheless may hold biological
significance, but whose importance is mathematically hard to
discern in the presence of proteins with higher intensity values.
Although the MaxQuant software performs normalization
across the entire sample set during the LFQ intensity
calculation, differences in overall protein intensity values may
still affect the final output. This relays a fundamental concern
in proteomics, which is the extremes in dynamic range of signal
and biological abundance for detected proteins.
PCA is also vulnerable to proteins that may describe non-

Gaussian distributions in the LFQ intensity domain, going
against a key assumption for PCA.67 As such, we refrain from
attempting to overinterpret the pseudoprotein signatures, and
limit ourselves to exploring in each cluster only the highest
absolute centroid values. In doing so, we only claim to find a
focused subset of interesting proteins that merit further
investigation, from among the hundreds that were measured
over the entire experiment, thereby providing a means of
efficiently identifying candidates for future investigation.
Similarly, alternative clustering methods such as hierarchical
clustering can also be used to analyze the dimensionality
reduced proteomics data. In this study, k-means was selected
due to the ease of interpretation of the cluster centroids, which
represent the average protein pattern for each cluster. In
summary, this unsupervised multivariate method provides a
way to efficiently analyze highly complex spatially targeted
proteomics data and provide an effective way of highlighting a
panel of potential drivers of biological differences among
regions of interest.
Gene Ontology Analysis

While identifying individual proteins from thousands measured
is an important output of this biocomputational process,
understanding the functional categories of each protein can
provide additional biological insight. We used the PANTHER
classification system60 to perform a gene ontology analysis of
the proteins driving the clustering algorithm. The absolute
centroid values were summed across all four clusters, and the
top 100 and 175 proteins for the nonimputed and zero-
imputed data sets, respectively, with highest accumulated
centroid values selected for gene ontology analysis. For a
broader or more narrow biological interpretation, more or
fewer proteins can be selected at this stage of the analysis.
Original LFQ intensity values for the selected proteins were
retrieved, and their LFQ intensity was standardized per protein
by removing the mean and scaling to unit variance. The
standardized protein intensity values were averaged per cluster
and proteins with positive values per cluster were extracted.
These proteins per cluster were analyzed using PANTHER for

a gene ontology analysis, and the resultant protein classes
found in each cluster were determined (Figures 5 and S5).
Results indicate that the proteins driving the clustering

model comprise 13 protein classes, including cytoskeletal and
metabolic processes (Figure 5). Panels A−D are sorted from
regions distant from the abscess with no visible bacteria
present (cortex 4 DPI and 10 DPI) to those in proximity to
abscesses at the later time point (interface/SAC 10 DPI), and
panel E shows three protein classes (cytoskeletal, metabolite
interconversion enzyme, and calcium binding) with distinct
changes between regions of infection (interface/SAC) and no
infection (cortex/early interface).
Our study identified cytoskeletal proteins that are enriched

at the site of infection (abscess and interface), particularly at
the later time point. These findings are indicative of extensive
tissue damage resulting from S. aureus residing and
proliferating within the tissue, as well as subsequent repair
and remodeling efforts by the host.73 Additionally, we detected
an enrichment of established immune factors, such as calcium-
binding proteins, comprising different Annexins, which have
been recently implicated in the defense against Gram-positive
infections.74−76 Specifically, Annexins A2 and A3 were
increased in two clusters: (i) interface 4 DPI and 10 DPI,
SAC 4 DPI and 10 DPI, and (ii) interface 10 DPI, SAC 10
DPI. Further, Annexin A5 showed increased abundance in the
Interface 10 DPI, SAC 10 DPI cluster. Recent studies suggest
that Annexin A2 interacts with staphylococcal clumping factors
A and B, facilitating attachment to epithelial cells.75,76 Another
study concluded that binding of Annexin A2 allows S. aureus to
anchor onto vascular endothelial cells, establishing this host
protein as an important factor for initiating staphylococcal
interaction with its host.77 In contrast, little is known about the
roles of Annexins A3 and A5 during infection with S. aureus. A
transcriptomics study revealed that Annexin A3 expression is
restricted to neutrophils and is increased in the blood of
patients with sepsis.78 Annexin A5, which was increased in the
Interface 10 DPI, SAC 10 DPI cluster, has been shown to aid
survival in a murine sepsis model by inhibiting HMGB1-
mediated proinflammation and coagulation.79 Despite these
findings, it is not clear how Annexins A3 and A5 affect the
host−pathogen interplay, particularly in the context of S.
aureus soft-tissue infections. While our study relies on a
relatively small sample size, our data clearly show that
Annexins A2, A3, and A5 are highly abundant at the site of
infection. The data presented here and previous studies on
Annexins allow us to speculate that while A2 may be
facilitating staphylococcal anchoring in the tissue, A3 and A5
may confer varying degrees of host protection during
staphylococcal infection.
We also performed a gene ontology analysis using the larger,

zero-filled data set (Figure S6). As with the centroid analysis
above, the protein classes remained largely the same, with the
addition of defense/immunity proteins present in clusters with
infected samples as well as additional calcium-binding proteins
such as the major immune component calprotectin.
This systems-level summary of a complex biological model

demonstrates the utility of the data generated through our
method and presents the potential for future biology-driven
investigation and experimentation. The gene ontology analysis
demonstrated here is one of many potential interpretations of
the cluster centers. Another way of interpreting the cluster
centroids can include building protein−protein interaction
networks using proteins with high accumulated absolute
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centroid values as seeds. We also acknowledge that the samples
chosen in this study belonged to biologically distinct locations
with profound protein changes. While we cannot directly speak
to the performance of this method on a different data set with
more nuanced protein heterogeneity, there are multiple
opportunities to tune the pipeline to be more robust or
sensitive to the protein changes within the study. There would
need to be some prior knowledge about the source of protein
variation, but those changes could be used to inform the PCA,
the number of k-means clusters, and the approach to cluster
interpretation.
Though this method was applied to spatially targeted

proteomics data acquired by microLESA, it can be extended to
multiomics data involving metabolites, lipids, and peptides
acquired using other spatially targeted approaches such as
liquid extraction surface analysis,34,36,80 liquid microjunc-
tion,81,82 nanoPOTS,29−31 tissue punch biopsies,83,84 laser
capture microdissection,42−45,85 and hydrogel extractions.86−88

■ CONCLUSION
We have developed a rapid automated unsupervised method
for analyzing high-dimensional spatially targeted proteomics
data utilizing PCA followed by k-means clustering. Here, we
applied this multivariate analysis to study S. aureus infection in
murine kidney. The k-means clustering results revealed
molecular heterogeneity in the abscesses and the interface
region between areas of infection and noninfection that goes
beyond what can be seen by microscopy alone. Proteins that
were driving the clustering algorithm, and thereby likely to play
a role in staphylococcal infection, were extracted from cluster
centroids; these were found to be involved in key metabolic
processes and cytoskeletal reorganization. The subsequent
gene ontology analysis of proteins with high accumulated
absolute centroid values revealed that proteins involved in
calcium-dependent, metabolite interconversion, and cytoskele-
tal processes were enriched in sites of infection, especially at
the 10 DPI time point. Collectively, we identified both key
proteins and processes that are enriched at the site of
staphylococcal infection. These findings demonstrate that
this multivariate approach is a powerful method that provides
a means of rapidly filtering complex biological data to
determine the most relevant species from hundreds to
thousands of measured proteins in the form of ranked protein
lists and pathway enrichments, thereby providing a systems-
level view into complex molecular biological processes.
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