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Abstract

In this article, we study the effect of small-cut elements on the critical time-step size in an immersogeometric explicit
ynamics context. We analyze different formulations for second-order (membrane) and fourth-order (shell-type) equations, and
erive scaling relations between the critical time-step size and the cut-element size for various types of cuts. In particular,
e focus on different approaches for the weak imposition of Dirichlet conditions: by penalty enforcement and with Nitsche’s
ethod. The conventional stability requirement for Nitsche’s method necessitates either a cut-size dependent penalty parameter,

r an additional ghost-penalty stabilization term. Our findings show that both techniques suffer from cut-size dependent critical
ime-step sizes, but the addition of a ghost-penalty term to the mass matrix serves to mitigate this issue. We confirm that
his form of ‘mass-scaling’ does not adversely affect error and convergence characteristics for a transient membrane example,
nd has the potential to increase the critical time-step size by orders of magnitude. Finally, for a prototypical simulation of
Kirchhoff–Love shell, our stabilized Nitsche formulation reduces the solution error by well over an order of magnitude

ompared to a penalty formulation at equal time-step size.
2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license

http://creativecommons.org/licenses/by/4.0/).

eywords: Immersogeometric analysis; Explicit dynamics; Critical time step; Finite cell method; Ghost penalty; Mass scaling

1. Introduction

Explicit analysis forms the backbone of impact and crash-test simulation software. In these highly non-linear,
hort time-span simulations, the structure that is impacted is often comprised of shell-type components [1–3].
sogeometric analysis has emerged as a framework that streamlines the design-to-analysis pipeline for these types of
imulations [4–6]. In isogeometric analysis, the spline-based geometry representation from CAD drawings is used
irectly in the analysis software [4]. The higher-order continuity of the spline basis functions makes them particularly
ell-suitable for handling the higher-order partial differential equations that arise in shell-type formulations

6–8]. Additionally, for higher polynomial orders and non-open knot vectors, the increased regularity of splines

∗ Corresponding author.
E-mail addresses: K.F.S.Stoter@tue.nl (S.K.F. Stoter), S.C.Divi@tue.nl (S.C. Divi), E.H.v.Brummelen@tue.nl (E.H. van Brummelen),

ats.Larson@umu.se (M.G. Larson), F.d.Prenter@tudelft.nl (F. de Prenter), C.V.Verhoosel@tue.nl (C.V. Verhoosel).
ttps://doi.org/10.1016/j.cma.2023.116074
045-7825/© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.
rg/licenses/by/4.0/).

http://www.elsevier.com/locate/cma
https://doi.org/10.1016/j.cma.2023.116074
http://www.elsevier.com/locate/cma
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cma.2023.116074&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:K.F.S.Stoter@tue.nl
mailto:S.C.Divi@tue.nl
mailto:E.H.v.Brummelen@tue.nl
mailto:Mats.Larson@umu.se
mailto:F.d.Prenter@tudelft.nl
mailto:C.V.Verhoosel@tue.nl
https://doi.org/10.1016/j.cma.2023.116074
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


S.K.F. Stoter, S.C. Divi, E.H. van Brummelen et al. Computer Methods in Applied Mechanics and Engineering 412 (2023) 116074

e
h
F
m
s
s

w

s
t
o
t
a

b
r
m

Fig. 1. Effect of the small-cut elements (characterized by the element size fraction χ that is illustrated in Fig. 1(a)) on the eigenvalues of
a rod discretized with the six basis functions depicted in Fig. 1(a), for consistent and row-sum lumped mass matrices.

suppresses the overprediction of the maximum eigenvalues that plague standard (C0-continuous) finite elements
for fully-integrated mass-to-stiffness generalized eigenvalue problems [9,10]. The frequency spectra obtained for
lower-order continuous basis functions exhibit (a multitude of) so-called optical branches [11], which exacerbate
the approximation mismatch in the high-frequency segment of the spectrum and negatively affect the permissible
time-step size of explicit time-stepping methods.

The spline geometry representation from CAD drawings often involves trimmed edges, where the physical
domain boundary cuts through the computational background mesh. These “immersed boundary” methods, referred
to as immersogeometric methods in the context of isogeometric analysis, have been extensively studied in recent
years [12–17]. An example of a one-dimensional immersogeometric discretization is shown in Fig. 1(a), where
the B-spline basis functions are not confined to the physical domain. The size of the cut is characterized by the
elements size fraction χ . The presence of basis functions with small support within the physical domain, i.e., with
small χ , negatively impacts the stability characteristics of the numerical scheme. In implicit analysis, these issues
manifest themselves as poor conditioning of the resulting system of equations [18]. For explicit analysis, a primary
concern is the effect of small cut elements on the maximum eigenvalue, λh

max, of the mass-to-stiffness generalized
igenvalue problem. Indeed, for a one-dimensional rod example with the basis functions from Fig. 1(a), the cut-size
eavily affects the maximum eigenfrequency, as can be observed from the diverging open markers in Fig. 1(b).
or explicit time-stepping methods, an increase in the maximum eigenfrequency leads to a tighter bound on the
agnitude of the permissible time step. The specific relation between λh

max and this so-called “critical time-step
ize”, ∆tcrit, depends on the explicit time-integration technique that is employed. A typical example for undamped
tructural dynamics is

∆tcrit =
2√
λh

max

, (1)

hich holds for the Newmark-type central difference method [19, p. 493].
The diverging results of the open markers in Fig. 1(b) are obtained for a “full” or “consistent” mass matrix (in the

ense of [20]) in the formulation of the eigenvalue problem. In explicit analysis, the practice of mass diagonalization
hrough some form of mass lumping is the gold standard [19], as this is essential to attaining a fast solver. As can be
bserved from the filled marker in Fig. 1(b), the use of such a (row-sum) lumped mass matrix completely mitigates
he detrimental impact of small cuts. This was first observed by Leidinger et al. [21], where this behavior is explored
nalytically in one dimension, and numerically in two dimensions.

The non-boundary fitted nature of immersed methods also requires specialized techniques for enforcing essential
oundary conditions. Often, penalty-based methods are employed. In the context of explicit dynamics, not only the
elation between the penalty parameter and the solution quality needs to be understood, but also its impact on the

aximum eigenvalue. This is explored in the immersogeometric framework in [5,21], where the authors report that
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Fig. 2. Definitions of the different meshes and domains in the immersed setting.

sufficient solution accuracy can be attained with a penalty parameter that is small enough to avoid affecting the
largest eigenvalue. When the penalty parameter exceeds a certain limit, the maximum eigenvalue scales linearly
with the penalty parameter. The same linear scaling is observed for Nitsche’s method in [22].

The current work aims to study the impact of small cuts on the critical time-step size in a wider range of scenarios,
by investigating second- and fourth-order partial differential equations, regardless of the spatial dimension and poly-
nomial order of the discretization, and considering various penalty- and Nitsche-based formulations for enforcing
Dirichlet conditions. We also explore the use of ghost-penalty-based stabilization of the stiffness [23,24] and/or
mass matrix [25,26]. Our goal is to identify the appropriate formulations in the explicit immersogeometric setting,
and to evaluate the potential benefits of the alternative formulations in typical explicit dynamics computations.

The remainder of this article is structured as follows. In Section 2, we present the theory and nomenclature
relevant to the topic of immersogeometric methods. We then focus on a linear wave equation in Section 3, where
we systematically collect the contributions to the mass and stiffness matrices for various immersed boundary
formulations. Once the general formulation is derived, we analytically derive minimal scaling-orders of the
maximum eigenvalue with respect to the cut-element size. This analysis is repeated for a linear fourth-order equation
in Section 4. The results obtained are experimentally verified in Section 5, where we also perform convergence
studies for the linear wave equation, and transient simulations of a linear Kirchhoff–Love shell model. Finally, in
Section 6, we present our concluding remarks.

2. Immersogeometric methods

Consider a physical domain Ω ⊂ Rd (d ∈ {2, 3}) and its boundary ∂Ω , immersed in an ambient domain A ⊃ Ω ,
as shown in Fig. 2(a). The ambient mesh T h

A is a structured mesh covering the ambient domain A. The “background
esh” is then defined as the collection of elements from the ambient mesh that intersect the physical domain:

T h
:=

{
K ∈ T h

A : K ∩ Ω ̸= ∅
}
. (2)

oth the ambient mesh and the background mesh are illustrated in Fig. 2(b).
We also define a set of “ghost faces” as the collection of faces of elements from the background mesh that are

ntersected by the domain boundary:

Fghost =
{
∂K ∩ ∂K ′

: K ∈ G, K ′
∈ T h, K ̸= K ′

}
, (3)

here G := {K ∈ T h
| K ∩ ∂Ω ̸= ∅}. The ghost faces are illustrated in Fig. 2(c).

.1. Non-boundary fitted B-spline basis functions

The structured nature of the ambient mesh allows for the straightforward construction of multivariate B-spline

asis functions as tensor products between univariate B-spline functions. The left column in Fig. 3 depicts various

3
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Fig. 3. Immersed C p−1-continuous B-splines (left), C0-continuous B-splines (middle) and standard C0-continuous Lagrange basis functions
(right).

orders of univariate B-spline functions of maximum regularity, while the middle column shows C0-continuous
univariate B-spline functions. An important property of these B-spline basis functions is their non-negativity,
meaning that the integral value of each of these functions on any arbitrary subdomain is naturally non-negative
as well. The same is not true for the conventional C0-continuous Lagrange basis functions, as shown in the right
olumn of Fig. 3. This non-negativity property is particularly important in the context of explicit dynamics, as it
uarantees positivity of the diagonal components of the row-sum lumped mass matrix, which will be addressed in
ection 3.1.2.

In this article, we focus on maximum regularity B-splines and address lower-order regularity cases only in
emarks. For maximum regularity B-splines, each multivariate basis function Bi (x) (i = 1, . . . , J ) on the background
esh is a member of C p−1(A), where p is the polynomial order of the B-spline. The precise construction of the

ensor product B-spline functions can be found, for example, in [4]. To obtain the approximation space only on the
hysical domain, we first identify a subset of the maximum regularity B-splines that have non-zero support in the
nterior of the domain:

S =
{

N ∈ {Bi (x)}J
i=1 : suppΩ (N ) ̸= 0

}
. (4)

e then number the remaining functions in this set from i = 1 to Ndofs, and define the Ndofs-dimensional
pproximation space V h as their span:

V h
= span (S) = span

{
Ni (x)

}Ndofs
i . (5)

nder the assumption that the approximation functions evolve smoothly from time t = 0 to time t = T , the
ime-dependent functions belong to the following semi-discrete function space:

V h
T = V h

⊗ C∞(0, T ) . (6)

.2. Integration of cut elements

For immersed finite element methods, integration procedures are crucial for capturing the physical geometry in

he discrete formulation. The octree subdivision integration strategy, described in [27], is a widely used approach

4
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Fig. 4. Volumetric (squares) and surface (circles) quadrature rules obtained by the octree integration procedure with tessellation at the lowest
bisectioning level.

due to its simplicity and robustness. However, the resulting large number of integration points may cause a
significant computational cost increase during operation. A myriad of techniques to enhance octree-subdivision has
been developed [28]. A few prominent techniques include error-estimate-based adaptive octree-subdivision [29],
moment-fitting [30], equivalent polynomial methods [31], and the merged sub-cell technique [32].

In this article, we make use of the octree subdivision algorithm augmented with a tessellation step [33]. This
approach consists of the following steps, as illustrated in Fig. 4: elements in the background mesh that intersect the
boundary of the computational domain are bisected into 2d sub-cells. If a sub-cell lies entirely within the domain,
t is retained in the partitioning of the cut-cell, whereas it is discarded if it lies entirely outside the domain. This
isectioning procedure is recursively applied to the sub-cells that intersect the boundary, until ϱmax-times bisected
ub-cells are obtained. At the lowest bisectioning level, a boundary tessellation procedure is applied to construct
O(h2/22ϱmax ) accurate parametrization of the interior volume [33]. This tessellation procedure also provides a

arametrization for the trimmed surface. The employed tessellation procedure is further detailed in [28].
The octree procedure results in integration rules on each of the sub-cells and each of the surface triangles.

ut-element volumetric integration is then performed by agglomerating all sub-cell quadrature points, and cut-
lement surface integration by collecting all triangulated surface quadrature points. The accuracy of the cut-element
ntegration scheme can be controlled through the selection of the octree depth ϱmax and the quadrature rules on
he sub-cells. A two-dimensional illustration of the cut-element integration scheme is shown in Fig. 4, with the
olumetric integration points represented by dark-green squares and the surface integration points depicted as orange
ircles.

. Critical time-step analysis for a second-order problem

We center the exposition of our critical-timestep study for second-order initial/boundary-value problems around
he linear wave equation:

ρ
∂2

∂t2 φ − ∇ · (κ∇φ) = f in Ω × (0, T ) , (7a)

−κ∇φ · n = g on ∂ΩN × (0, T ) , (7b)

φ = φD on ∂ΩD × (0, T ) , (7c)

φ = φ0 on Ω × {0} , (7d)
∂

∂t
φ = φ̇0 on Ω × {0} , (7e)

where φ is the unknown field, ρ and κ are parameters of the propagating medium, f , g, φD , φ0 and φ̇0 are the
rescribed body force, Neumann data, Dirichlet data and initial state, respectively, Ω ⊂ Rd and T > 0 are the
patial domain and final time, and ∂ΩN and ∂ΩD = ∂Ω \ ∂ΩN are the Neumann and Dirichlet segments of the
omain boundary.
5
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This equation describes, for example, the out-of-plane displacement of a pre-stressed vibrating string or
embrane in one, respectively two, dimensions, and the propagation of pressure waves in one, two or three

imensions. A weak formulation of this initial–boundary value problem reads [34]:

For a.e. t ∈ (0, T ), find φ ∈ H 1
φD

(Ω ) and
∂2

∂t2 φ ∈ H−1(Ω ) s.t. ∀ v ∈ H 1
0 Ω :

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
⟨ ∂2

∂t2 φ, ρ v
⟩
+

∫
Ω

κ∇φ · ∇v dΩ =

∫
Ω

f v dΩ −

∫
∂ΩN

g v dS ,

φ
⏐⏐
t=0 = φ0 ,

∂

∂t
φ
⏐⏐
t=0 = φ̇0 ,

(8)

where H 1
φD

(Ω ) = {φ ∈ H 1(Ω ) : φ
⏐⏐
∂ΩD

= φD}, H−1(Ω ) is the corresponding dual space, and
⟨
·, ·

⟩
denotes the

airing between them. If the second time derivative of φ is a member of L2(Ω ), then
⟨

∂2

∂t2 φ, ρ v
⟩
=

∫
Ω ρ ∂2

∂t2 φ v dΩ .

3.1. Semi-discrete formulation

With the aim of constructing a stable explicit finite element approximation for the weak formulation of Eq. (8)
on a non-boundary-fitted isogeometric mesh, we consider the (semi-)discrete spaces V h and V h

T , from Eqs. (5) and
6), as our test and trial spaces, respectively. V h is defined as the span of basis functions, such that any test function
n V h , for example vh

∈ V h , can be represented as a linear combination of the basis functions:

vh(x) =

Ndofs∑
i=1

v̂i Ni (x) = v̂TN(x) . (9)

imilarly, any trial function in V h
T , for example φh

∈ V h
T , can be written as a linear combination of the basis

unctions with time-dependent weighting coefficients:

φh(t, x) =

Ndofs∑
i=1

φ̂i (t) Ni (x) = ϕ̂T(t) N(x) with φ̂i (t) ∈ C∞(0, T ) . (10)

In the following subsections, we provide a comprehensive overview of the individual components that comprise
he mass and stiffness matrices of the semi-discrete formulation.

.1.1. Neumann formulation
First, we consider a pure Neumann problem, i.e., ∂Ω = ∂ΩN and ∂ΩD = ∅. Then, for any t ∈ (0, T ), a finite

lement approximation produces the following semi-discrete formulation:

Find φh
∈ V h

T s.t. ∀ vh
∈ V h

:∫
Ω

ρ
d2

dt2 φhvh dΩ +

∫
Ω

κ∇φh
· ∇vh dΩ =

∫
Ω

f vh dΩ −

∫
∂ΩN

g vh dS . (11)

Substitution of the representation of φh and vh from Eqs. (9) and (10) into Eq. (11) results in the following
ystem of ordinary differential equations

M
d2

dt2 ϕ̂+ K ϕ̂ = F , (12)

ith: [
M

]
i j = M

(
Ni (x), N j (x)

)
=

∫
Ω

ρNi (x)N j (x) dΩ , (13a)[
K

]
i j = K

(
Ni (x), N j (x)

)
=

∫
Ω

κ∇Ni (x) · ∇N j (x) dΩ , (13b)[
F

]
i = F

(
Ni (x)

)
=

∫
f (x) Ni (x) dΩ −

∫
g(x) Ni (x) dS . (13c)
Ω ∂ΩN

6
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For this Neumann problem, the immersogeometric framework primarily impacts the selection of the discrete
approximation space V h as the span of non-boundary fitted B-spline basis functions, and the procedure for carrying
out the integrals in Eq. (13).

3.1.2. Row-sum mass lumping
A fully-discrete formulation of Eq. (12) typically follows from a finite-difference type approximation to the

time-derivative. When an explicit time-stepping scheme is adopted, such as a second-order Newmark-type central
difference method or a higher-order explicit Runge–Kutta scheme, then the time-marching does not necessitate
an inverse of the stiffness matrix. It does, however, require an inverse of the mass matrix. To avoid significant
computational expense (both in terms of storage and operation count), the mass matrix is often manipulated to
attain a diagonal matrix, which can be inverted trivially. This manipulation process is referred to as “mass lumping”
and various methods exist, such as diagonal scaling [35], manifold-based methods [36] and lumping by nodal
quadrature [37,38]. In this article, we focus on row-sum lumping, where the diagonal value is set to the sum-total
of the row. This sum-total of the row corresponds to the multiplication of the row by a vector of ones. For a partition
of unity basis, such as the employed B-spline basis, the vector of ones represents a field of unit value. Consequently,
the lumped mass matrix can be written as:

[
MD

]
i j =

{
0 if i ̸= j
M

(
1, Ni (x)

)
=

∫
Ω ρNi dΩ if i = j

. (14)

Ensuring that the diagonal entries of MD are positive is of crucial importance: negative components would cause
negative eigenvalues, inducing exponential growth of the corresponding eigenmode. As pointed out in Section 2.1,
the non-negativity property of the B-spline basis-functions guarantees positivity of

∫
Ω Ni (x) dΩ , and thus of the

diagonal entries of MD , irrespective of how elements are cut. The same cannot be guaranteed for, for example,
more classical C0-continuous Lagrange basis functions.

Remark 1. In the analysis in Sections 3.2 and 4.2 we require evaluations of the vector–matrix–vector product
v̂TMDv̂ for various v̂. Unlike the consistent mass matrix (for which v̂TMv̂ =

∫
Ω ρ vhvh dΩ ), the ad-hoc nature

of the mass-lumping procedure implies that the operation v̂TMDv̂ does not permit an integral-based bilinear form.
However, for those particular functions whose vector of coefficients (v̂ in Eq. (9)) exclusively consists of ones and
zeros ([v̂]i ∈ {0, 1}), the following integral evaluation of the vector–matrix–vector product is valid:

v̂TMDv̂ = M
(
1, vh(x)

)
=

∫
Ω

ρvh(x) dΩ =: MD
(
vh(x)

)
. (15)

.1.3. Dirichlet condition enforcement by penalization
The remaining challenge in solving Eq. (8) in an immersed setting, is the imposition of Dirichlet boundary

onditions. In Eq. (8), these are essential conditions, and they are imposed on the function space itself. For boundary-
tted methods, this can be mimicked by strongly prescribing nodal values. For immersed methods, however, the
odes are no longer placed on the domain boundary and the conventional procedure is not feasible. However,
e can still integrate along this immersed boundary, as described in Section 2.2. Hence, boundary conditions can
e incorporated weakly; through the addition of integral terms in the weak formulation targeted at enforcing the
onstraints.

The most common approach for weak imposition of Dirichlet conditions in explicit analysis is by penalty
nforcement [5]:

Find φh
∈ V h

T s.t. ∀ vh
∈ V h

:

M(
d2

dt2 φh, vh) + K (φh, vh) +

∫
∂ΩD

κβ φh vh dS  
Kβ

(
φh, vh)

= F(vh) +

∫
∂ΩD

κβ φD vh dS  
Fβ

(
vh)

, (16)
7
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where β > 0. The additional contributions to the stiffness matrix and force vector read:[
Kβ

]
i j = Kβ

(
Ni (x), N j (x)

)
=

∫
∂ΩD

κβ Ni (x)N j (x) dS (17a)

[
Fβ

]
i = Fβ

(
Ni (x)

)
=

∫
∂ΩD

κβ φD(x)Ni (x) dS . (17b)

o be dimensionally consistent, β−1 needs to have unit length. Suitable scaling of the eigenvalues associated to
he penalty term is achieved when the penalty is chosen to scale inversely with the size of the elements of the
ackground mesh hK [5,39–41]:

β
⏐⏐

K = β̄ h−1
K , (18)

here β̄ is a dimensionless global constant.
The penalty method offers a number of advantages, such as the absence of stringent restrictions on the penalty

arameter to ensure positivity of eigenvalues, owing to the positive semi-definiteness of the contribution to the
tiffness matrix, and its ease of implementation. A significant drawback is its variationally inconsistent nature (in
he sense of [37]), which leads to a loss of optimal convergence rate that may result in error increases of orders of

agnitude. The optimal convergence rate may be retrieved by choosing a penalty scaling stronger than h−1 [42]
r by means of a projection-based penalty approach [43]. These are, however, not viable options in the context
f explicit analysis, as the larger effective penalty value would soon increase the largest eigenvalue, and hence
egatively affects the critical time-step size. Moreover, the solution quality is sensitive to the choice of penalty
arameter, for which rigorous estimates are not available. Also in this regard, one must exercise caution not to
hoose the penalty values too large to avoid impacting the critical time-step size [5].

.1.4. Dirichlet condition enforcement by Nitsche’s method
The penalty method can be augmented by terms to make it variationally consistent, mitigating many of the just

entioned drawbacks. When this is done in a symmetric manner, this is called Nitsche’s method [44]:

Find φh
∈ V h

T s.t. ∀ vh
∈ V h

:

M(
d2

dt2 φh, vh) + K (φh, vh) + Kβ(φh, vh) −

∫
∂ΩD

κ∇φh
· n vh dS −

∫
∂ΩD

κ∇vh
· n φh dS  

Kcs
(
φh, vh)

= F(vh) + Fβ(vh) −

∫
∂ΩD

κφD∇ vh
· n dS  

Fs
(
vh)

.

(19)

The new matrix and vector contributions originating from the consistency and symmetry terms may be identified
as: [

Kcs
]

i j = Kcs
(
Ni (x), N j (x)

)
= −

∫
∂ΩD

κ∇Ni · n N j dS −

∫
∂ΩD

κ∇N j · n Ni dS , (20a)

[
Fs

]
i = Fs

(
Ni (x)

)
= −

∫
∂ΩD

κφD ∇Ni · n dS . (20b)

Due to the added terms, the stiffness matrix is no-longer unconditionally positive definite. When β is chosen
too small, the stiffness matrix may include negative eigenvalues. Negativity of eigenvalues carries over to the mass-
to-stiffness generalized eigenvalue problem, again leading to detrimental exponential growth of the corresponding
eigenmodes in time. The restriction on β to ensure positive definiteness has been studied extensively [45–47], and
follows in each element K from a local inverse estimate. We make use of the following choice:

β
⏐⏐

K = 2 sup
vh∈V h

||∇vh
· n||

2
∂ΩD∩K

||∇vh ||2
Ω∩K

∝
1
hc

⏐⏐⏐
K

, (21)

here h is a length-scale associated to the cut element.
c

8
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The element size for cut elements is not unambiguously defined. The inverse estimate in Eq. (21) can be bound
y a size-independent factor multiplied by the ratio of the area of the Dirichlet surface to the volume of the cut-
lement [48,49]. This length parameter provides a suitable size measure for small-cut elements, however it does
ot limit to hK for (nearly) uncut cases. In what follows, we make use of the following definition of hc, which is

consistent for both small and large cuts:

hc
⏐⏐

K = min
{ ∫

Ω∩K dΩ∫
∂ΩD∩K dS

,

[∫
Ω∩K

dΩ
] 1

d }
=: χhK . (22)

he element size fraction χ that implicitly follows from this definition as χ = hc/hK represents the central quantity
n our study on the cut-sensitivity of the largest eigenvalues later on. For sliver cuts, χ equates to the cut element

volume fraction η =
∫
Ω∩K dΩ/

∫
K dΩ (used in earlier analysis [18]), and for shape-regular cut elements they relate

as χ ∝ η
1
d .

We define the constant of proportionality in Eq. (21) as β̄
⏐⏐

K , such that, by definition, we can make use of the
following expression for β

⏐⏐
K :

β
⏐⏐

K = β̄
⏐⏐

K (χ hK )−1 . (23)

3.1.5. Ghost-stabilized stiffness
For elements with vanishing support in the physical domain, the coefficient β required to ensure positive

definiteness of the complete stiffness matrix can become arbitrarily large, as is reflected by the requirement in
Eq. (21). For implicit and steady analysis, such a large penalty factor has negative consequences on the stability
and conditioning of the ensuing system [49]. To mitigate this issue, the support of small-cut basis functions must be
extended into the domain interior. Doing so strongly, for example by adopting weighted extended basis B-splines
(WEB-splines) [50], or by performing cell aggregation [51], requires manipulation of the basis functions. If this is
undesirable, then a potential alternative is the addition of “ghost-penalty” stabilization [23,24]:

Find φh
∈ V h

T s.t. ∀ vh
∈ V h

:

M(
d2

dt2 φh, vh) + K (φh, vh) + Kβ(φ, vh) + Kcs(φ, vh) +

∫
Γg

κγK [[∂k+1
n φh]][[∂k+1

n φh]] dS  
Kγ

(
φh, vh)

= F(vh) + Fβ(vh) + Fcs(vh) ,

(24)

where Γg =
⋃

Fghost is the union of the ghost faces from Eq. (3) and Fig. 2(c), [[·]] is the jump operator, and ∂k+1
n

is the normal gradient of order k + 1, with k the order of continuity of the B-spline basis functions. In a more
general sense, Kγ

(
·, ·

)
should include jump-terms of the normal derivatives of order 1 until the polynomial order

p. Since we only consider maximum order of continuity splines, for which k = p − 1, all but the highest normal
derivatives vanish on element interfaces. The contribution to the stiffness matrix is:[

Kγ

]
i j = Kγ

(
Ni (x), N j (x)

)
=

∫
Γg

κγK [[∂k+1
n Ni ]][[∂k+1

n N j ]] dS . (25)

The new penalty between the domain interior elements and the cut elements effectively adds a stiffness to the
eflection of weakly supported degrees of freedom. More technically, the ghost-penalty term extends coercivity from
he domain interior to the background mesh [52]. When the parameter γK is large enough and scales with h2p−1

K ,
is permitted to scale with the background-element size hK rather than with the cut-element size hc = χ hK :

γK
⏐⏐

K = γ̄K h2p−1
K , (26a)

β
⏐⏐

K = β̄ h−1
K . (26b)

he minimal permitted values of the pre-factors γ̄K and β̄ is still an open research question [52,53]. In the current
ork, we choose a sufficiently large γ̄K to enable the use of a small β̄, and experimentally verify that the ensuing

tiffness matrix is positive definite.
9
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3.1.6. Ghost-stabilized mass
The final ingredient that we choose to add to our explicit immersogeometric formulation is a “ghost-mass” term.

e propose this term as a type of consistent mass scaling, with the intent of reducing the maximum eigenvalues that
re caused by small-cut elements. The following additional component is introduced to the mass matrix [25,26,54]:

Mγ (
d2

dt2 φh, vh) =

∫
Γg

ργM [[∂k+1
n

d2

dt2 φh]][[∂k+1
n φh]] dS , (27)[

Mγ

]
i j = Mγ

(
Ni (x), N j (x)

)
. (28)

f lower-order regularity B-splines are used, Mγ (·, ·) should include penalties on the jumps of all lower-order normal
erivatives as well. These jumps vanish for the C p−1-continuous B-splines considered herein.

The ghost-mass term adds inertia to the acceleration of the deflection of the weakly supported degrees of freedom.
s Mγ represents a positive semi-definite contribution to the mass matrix, it serves to reduce the eigenvalues
f modes that excite the Mγ (·, ·) term, i.e., those with derivative changes across boundaries of elements with
mall interior support. At the same time, the term is consistent for sufficiently smooth solutions, such that it
oes not introduce a modeling error. In particular, the term does not adversely affect the modes and frequencies
t the low-frequency range of the spectrum that originates from the mass-to-stiffness generalized eigenvalue
roblem [25,26].

The required scaling of the penalty parameter γM is different than that of γK in the stiffness matrix, as already
ollows from a dimensional consistency argument. We make use of the following scaling:

γM = γ̄M h2p+1
K . (29)

where the appropriate choice of γ̄M is investigated in Section 3.2.

Remark 2. The matrix that follows from the ghost-mass term is not amendable to standard row-sum lumping.
Recall from Section 3.1.2 that the row-sum represents the action of the corresponding bilinear form on a field of
unit value, and, as can be observed from Eq. (27), Mγ (1, vh) = 0. When the immersed boundary elements make

p a relatively small portion of the mesh, the computational expense involved in inverting the mass matrix may
ot cause a bottleneck (especially when the LU-factorization is stored and reused). Nevertheless, various strategies
ould be considered to efficiently approximate an inverse to the scaled mass matrix. One could reduce the number
f ghost faces in such a way that Mγ becomes block-diagonal [55], or approximate the inverse in a (block) Jacobi
ense, or attempt row-sum lumping of the absolute values of the matrix components, or consider different classes
f discrete extension operators altogether [56]. However, since the primary focus of this work is the analysis of the
xplicit immersogeometric formulations, we consider the development of such optimized implementation strategies
eyond the scope of this article, and we exclusively consider Mγ in its full form.

.2. Analysis of the critical time-step size

The various stiffness terms proposed in the previous section can be collected in the total stiffness bilinear
orm K̃ (·, ·), to produce the total stiffness matrix K̃. Similarly, the total inertial bilinear form M̃(·, ·) and mass
atrix M̃ follow from the chosen combination of a consistent or lumped mass matrix, and potentially a ghost-mass

ontribution. The general semi-discrete form then reads:

Find φh
∈ V h

T s.t. ∀ vh
∈ V h

:

M̃( d2

dt2 φh, vh) + K̃ (φh, vh) = F̃(vh) ,
⇔ M̃

d2

dt2 ϕ̂+ K̃ ϕ̂ = F̃ . (30)

s addressed in the introduction, the critical time-step size of an explicit time-stepping treatment of Eq. (30) is
nversely related to the maximum eigenvalue of the generalized eigenvalue problem:

K̃ (ξ h, vh) = λM̃(ξ h, vh) ∀ vh
∈ V h

⇔ K̃ ξ̂ = λM̃ ξ̂ . (31)

For symmetric matrices, the maximum eigenvalue is the largest value of the generalized Rayleigh quotient:

λmax ≥ R(K̃, M̃, ξ̂) =
ξ̂T K̃ ξ̂
ˆT ˜ ˆ

=
K̃ (ξ h, ξ h)
˜ h h

∀ ξ̂ ∈ RN , ξ h
=

N∑
ξ̂n Nn(x) , (32)
ξ M ξ M(ξ , ξ ) n=0

10
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where the equality holds for ξ̂ = ξ̂max. Due to the bilinearity of the forms, the various components separate into
ndividual contributions:

R(K̃, M̃, ξ̂) =
K (ξ, ξ ) + Kcs(ξ, ξ ) + Kβ(ξ, ξ ) + Kγ (ξ, ξ )

M(ξ, ξ ) + Mγ (ξ, ξ )
. (33)

We now wish to analyze whether λmax, and by induction, the critical time-step size, is sensitive to the size and
shape of the cut elements, as characterized by the parameter χ in Eq. (22). For χ → 0, the generalized Rayleigh
quotient approaches the ratio of the lowest-order scaling of each of the components in the numerator divided by
the lowest-order scaling of each of the components in the denominator. For some ξ̂, we can then characterize the
scaling of the generalized Rayleigh quotient as:

R(K, M, ξ̂) = O
(
χq) . (34)

If there exists any ξ̂ such that q < 0, then, by Eq. (32), the maximum eigenvalue can become arbitrarily large
for arbitrarily small cuts, resulting in an unfeasibly small critical time-step size. Those ξ̂ for which q = 0 cause
ut-shape dependent eigenvalues that may turn out to be dominant. Those corresponding to q > 0 are suppressed
s the cut becomes small.

Our study on the impact of the cut elements on the time-step estimate thus revolves around the examination
f the generalized Rayleigh quotient for selected examples of problematic cut cases. In this regard, we consider
wo distinct types of cuts: corner cuts and sliver cuts. These are two extreme cases that may arise even when the
ackground mesh is sufficiently refined to resolve small-scale geometric features. On these cut elements, we consider
wo different functions: one predominantly supported in the domain interior and one predominantly supported in
he domain exterior. All four functions are depicted for the example of a two-dimensional domain in Fig. 5(a) to
ig. 5(d). In one dimension, the four cases reduce to the two functions plotted in Figs. 5(e) and 5(f). For all functions
onsidered, the coefficient vector consists exclusively of ones and zeros, whereby the condition of Remark 1 is
atisfied, and ξ̂TMD ξ̂ may be evaluated as MD(ξ ).

We determine the generalized Rayleigh quotient for different collections of components to the mass and stiffness
atrix, i.e., for different finite element formulations. For the stiffness matrix, we consider a pure Neumann boundary,
pure penalty method with β = β̄h−1

K , Nitsche’s method with β = β̄h−1
c = β̄(χ hK )−1, and Nitsche’s method

ombined with a ghost-penalty term and the choices β = β̄h−1
K and γK = γ̄K h2p−1

K . For the mass matrix, we consider
he consistent mass matrix of Eq. (13a), a consistent mass matrix with ghost stabilization with γM = γ̄M h2p+1

K , a
umped mass matrix per Eq. (14), and a lumped mass matrix with (non-lumped) ghost stabilization.

Carrying out all the generalized Rayleigh quotients computations for the corner-cut functions of Figs. 5(a) and
(b) results in the scalings detailed in Tables 1 and 2, respectively, and for the sliver functions depicted in Figs. 5(c)
nd 5(d) results in Tables 3 and 4, respectively. Cells in the tables marked in red indicate formulations and cut-
ases for which the generalized Rayleigh quotient increases for decreasing cut-size, i.e., for χ → +0. Green cells
ignify formulations and cut-cases for which the generalized Rayleigh quotient decreases for decreasing cut-size,
epresenting stable cases. The beige and yellow cells denote conditionally stable cases: there are restrictions on the
olynomial order, spatial dimension and/or the penalty parameter for which the generalized Rayleigh quotient may
r may not dominate and/or increase with decreasing cut-size.

Table 5 provides a comprehensive summary of findings that follow from the scaling relations detailed in
ables 1–4. The following conclusions stand out:

• The first column of Table 5 is fully colored red, expressing that the use of a consistent mass matrix without
a form of mass scaling is not applicable for explicit immersed computation. A consistent mass matrix is
unconventional for explicit analysis due to the implied cost of inversion, but in an immersed setting the largest
eigenvalue may also become arbitrarily large for small cut elements, causing unfeasibly small critical time-step
sizes.

• The light-red coloring of the first two rows of the second column in Table 5 indicates that lumping the mass
matrix can mitigate the problematic cut-size dependent scaling of the maximum eigenvalue, but only when
the polynomial order of the basis function is at least quadratic. This was first observed in [21].

• To enable the use of linear basis functions, ghost-stabilized mass must be added to ensure that the critical
time-step sizes remain independent of the cut-size. This formulation corresponds to the last column in Table 5,

which is the only column with green cells.
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Fig. 5. Functions under consideration for cut-size scaling. Green represents the domain interior and red the domain exterior.

• When a penalty method is used for the enforcement of Dirichlet constraints, the maximum eigenvalue scales
linearly with the non-dimensionalized penalty parameter β̄, as is indicated by the light-red and beige cells in
the second row of Table 5. This is a known issue [5], and this undesirable scaling cannot be fixed by adding
a ghost-mass term, nor by raising the polynomial order.

• A Nitsche formulation with local penalty parameter (i.e., without the ghost-stiffness term) does not yield a
cut-size independent critical time-step size. The resulting scaling reminds of the degenerative error bounds
due to sliver cuts proven in [49].

• To adopt Nitsche’s method in a stable manner, one requires both a ghost-mass term and a ghost-stiffness term.
Both penalty terms must scale with the uncut-element size hK . To keep the maximum eigenvalue small, the
ghost-mass penalty γ̄M must be of the same order of magnitude as the ghost-stiffness penalty γ̄K , and the
Nitsche penalty β̄ must be as small as possible. In contrast to a penalty method, using a small β̄ does not

adversely impact solution quality, and hence we color this bottom-right box green.

12
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Table 1
Resulting scaling with cut size for the first corner-cut function for the second-order problem.

Consistent mass
(Eq. (13a))

Lumped mass
(Eq. (14))

Consistent/lumped mass
and ghost mass (Eq. (28))
with γM = γ̄M h2p+1

⧹O(M̃)
χ2pd+d χ pd+d γ̄Mχ0

O(K̃ )⧹

Neumann (Eq. (11)) χ2pd+d−2 χ−2 ∗ χ pd−2 γ̄ −1
M χ2pd+d−2

Penalty (Eq. (16))
with β = β̄h−1

K

χ2pd+d−2 χ−2 ∗ χ pd−2 γ̄ −1
M χ2pd+d−2

Nitsche (Eq. (19))
with β = β̄(χhK )−1

β̄χ2pd+d−2 β̄χ−2 ∗∗ β̄χ pd−2 β̄γ̄ −1
M χ2pd+d−2

Nitsche and ghost
(Eq. (24))
β = β̄h−1

K , γK = γ̄K h2p−1

γ̄K χ0 γ̄K χ−2pd−d γ̄K χ−pd−d γ̄K γ̄ −1
M χ0

*: Unstable for d = 1 and p = 1.
**: Unstable for d = 1 and p = 1, and may dominate for d = 2 and p = 1.

Table 2
Resulting scaling with cut size for the second corner-cut function for the second-order problem.

Consistent mass
(Eq. (13a))

Lumped mass
(Eq. (14))

Consistent/lumped mass
and ghost mass (Eq. (28))
with γM = γ̄M h2p+1

⧹O(M̃)
χ0 χ0 χ0

O(K̃ )⧹

Neumann (Eq. (11)) χ0 χ0 χ0 χ0

Penalty (Eq. (16))
with β = β̄h−1

K

β̄χ0 ∗ β̄χ0 ∗ β̄χ0 ∗ β̄χ0

Nitsche (Eq. (19))
with β = β̄(χhK )−1

β̄χd−2 ∗∗β̄χd−2 ∗∗β̄χd−2 ∗∗β̄χd−2

Nitsche and ghost
(Eq. (24))
β = β̄h−1

K , γK = γ̄K h2p−1

β̄χ0 ∗∗∗ β̄χ0 ∗∗∗ β̄χ0 ∗∗∗ β̄χ0

*: Adverse scaling with β̄.
*: Unstable for d = 1.
**: Adverse scaling with β̄, but only small β̄ is required for sufficient accuracy.

Table 3
Resulting scaling with cut size for the first sliver-cut function for the second-order problem.

Consistent mass
(Eq. (13a))

Lumped mass
(Eq. (14))

Consistent/lumped mass
and ghost mass (Eq. (28))
with γM = γ̄M h2p+1

⧹O(M̃)
χ2p+1 χ p+1 γ̄Mχ0

O(K̃ )⧹

Neumann (Eq. (11)) χ2p−1 χ−2 χ p−2 γ̄ −1
M χ2p−1

Penalty (Eq. (16))
with β = β̄h−1

K

χ2p−1 χ−2 χ p−2 γ̄ −1
M χ2p−1

Nitsche (Eq. (19))
with β = β̄(χhK )−1

β̄χ2p−1 β̄χ−2 β̄χ p−2 β̄γ̄ −1
M χ2p−1

Nitsche and ghost
(Eq. (24))
β = β̄h−1

K , γK = γ̄K h2p−1

γ̄K χ0 γ̄K χ−2p−1 γ̄K χ−p−1 γ̄K γ̄ −1
M χ0
13
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Table 4
Resulting scaling with cut size for the second sliver-cut function for the second-order problem.

Consistent mass
(Eq. (13a))

Lumped mass
(Eq. (14))

Consistent/lumped mass
and ghost mass (Eq. (28))
with γM = γ̄M h2p+1

⧹O(M̃)
χ0 χ0 χ0

O(K̃ )⧹

Neumann (Eq. (11)) χ0 χ0 χ0 χ0

Penalty (Eq. (16))
with β = β̄h−1

K

β̄χ0 ∗ β̄χ0 ∗ β̄χ0 ∗ β̄χ0

Nitsche (Eq. (19))
with β = β̄(χhK )−1

β̄χ−1 β̄χ−1 β̄χ−1 β̄χ−1

Nitsche and ghost
(Eq. (24))
β = β̄h−1

K , γK = γ̄K h2p−1

β̄χ0 ∗∗ β̄χ0 ∗∗ β̄χ0 ∗∗ β̄χ0

*: Adverse scaling with β̄.
*: Adverse scaling with β̄, but only small β̄ is required for sufficient accuracy.

Table 5
Overview of the stability characteristics for the second-order problem. Worst-case scaling of the cut scenarios considered
in Tables 1–4.

Consistent mass
(Eq. (13a))

Lumped mass
(Eq. (14))

Consistent/lumped mass
and ghost mass (Eq. (28))
with γM = γ̄M h2p+1

Neumann (Eq. (11)) Unstable for p = 1 Unnecessary for p ≥ 2

Penalty (Eq. (16))
with β = β̄h−1

K

Unstable for p = 1
Scales with β̄

Scales with β̄

Nitsche (Eq. (19))
with β = β̄(χhK )−1

Nitsche and ghost (Eq. (24))
β = β̄h−1

K , γK = γ̄K h2p−1
Requires γ̄M ∼ γ̄K
and small β̄

Remark 3. The utilization of maximum regularity B-spline basis functions in the analysis reduces the number of
cut functions that need to be considered. As demonstrated in the subfigures of the left column of Fig. 3, all basis
functions are identical up to affine transformation. The adoption of lower-order continuous basis functions, such as
the C0-continuous functions depicted in Figs. 3(b), 3(f) and 3(h), necessitates the examination of a more extensive
ollection of cut functions. In particular, as χ → +0, the C0-continuous B-spline basis functions with small support
ocally approach lower-order polynomial functions, as is illustrated in Fig. 6. The lower-order polynomial functions
re the critical cases in the first three rows of the middle column in Tables 1 and 4. For lower-order continuous
-splines, the polynomial order in those scaling relations should thus be replaced by k + 1, with k the order of

continuity. This corroborates the conclusion from [21] that a sufficiently high regularity is required to mitigate the
cut-size dependency of the critical time-step size.

Remark 4. The scaling relations documented in Tables 3 and 4 are precisely those of Tables 1 and 2, with d = 1.
This concurrence is anticipated, as the cut functions depicted in Figs. 5(c) and 5(d) are effectively one-dimensional.
Thus, for an arbitrary d-dimensional domain, one only needs to determine the scaling relations for the d-dimensional
cut functions (e.g., those in Figs. 5(a) and 5(b)), and the scaling relations for the lower-dimensional cut functions
can then be deduced by successively replacing d by the positive lower integer values below d.

4. Critical time-step analysis for a fourth-order problem

While the wave equation studied in the previous section is a prototypical model equation for explicit analysis,

its second-order nature limits the relevance of the conclusions from Section 3.2 when considering higher-order
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Fig. 6. Cut basis functions for a quadratic C0-continuous B-spline.

ormulations, such as shell formulations. To understand how the conclusions translate, we repeat the analysis of
ection 3 in brief for the following fourth-order problem:

ρ
∂2

∂t2 φ + ∆(κ∆φ) = f in Ω × (0, T ) ⊂ Rd
× [0, T ] , (35a)

∇(κ∆φ) · n = q on ∂Ωq × (0, T ) , (35b)

−κ∆φ = m on ∂Ωm × (0, T ) , (35c)

∇φ · n = g on ∂Ω N × (0, T ) , (35d)

φ = φD on ∂ΩD × (0, T ) , (35e)

φ = φ0 on Ω × {0} , (35f)
∂

∂t
φ = φ̇0 on Ω × {0} . (35g)

This equation describes the bending of an Euler–Bernoulli beam in one spatial dimension and is a shell-type analog
in two dimensions [57,58]. Eqs. (35d) and (35e) are essential boundary conditions, describing displacement and
rotation at the edge, respectively. Eqs. (35b) and (35c) are natural conditions. A more direct link to shell formulations
requires different forms of the natural boundary conditions, to represent the applied bending moment and shear
force [58,59], but the expressions of Eqs. (35b) and (35c) are applicable for arbitrary spatial dimension, making
them more suitable for a general time-step stability analysis. Note that, due to the fourth-order parabolic nature of
the PDE, two boundary conditions must be prescribed at any location on the boundary.

4.1. Semi-discrete formulation

The weak formulation for the fourth-order problem of Eq. (35) reads:

For a.e. t ∈ (0, T ), find φ ∈ H 2
φD ,g(Ω ) and

∂2

∂t2 φ ∈ H−2(Ω ) s.t. ∀ v ∈ H 2
0,0(Ω ) :⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⟨ ∂2

∂t2 φ, ρv
⟩
+

∫
Ω

κ∆φ ∆v dΩ = −

∫
∂Ωq

q v dS −

∫
∂Ωm

m ∇v · n dS ,

φ
⏐⏐
t=0 = φ0 ,

∂

∂t
φ
⏐⏐
t=0 = φ̇0 ,

(36)

ith H 2
φD ,g(Ω ) the H 2(Ω ) Sobolev space for which each member satisfies the trace equalities from Eqs. (35d) and

35e), H−2(Ω ) is the corresponding dual space, and
⟨
·, ·

⟩
denotes the pairing between them. If ∂2

∂t2 φ ∈ L2(Ω ), then
∂2

∂t2 φ, ρv
⟩
=

∫
Ω ρ ∂2

∂t2 φ v dΩ .
In an immersed setting, both essential constraints need to be enforced weakly. A semi-discrete formulation may

gain be written in the general form of:

M̃
d2

ϕ̂+ K̃ ϕ̂ = F̃ , (37)

dt2
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where, as in the second-order case, the mass matrix may or may not be lumped and may or may not contain a
ghost-penalty term. The stiffness matrix, in its most generic form, consists of the following terms:[

K
]

i j =

∫
Ω

κ∆Ni∆N j dΩ +

∫
Γg

κγK [[∂k+1
n Ni ]][[∂k+1

n N j ]] dS

+

∫
∂ΩD

κβφ Ni N j dS +

∫
∂ΩN

κβg ∇Ni · n ∇N j · n dS

+

∫
∂ΩD

∇
(
κ∆Ni

)
· n N j dS +

∫
∂ΩD

∇
(
κ∆N j

)
· n Ni dS

−

∫
∂ΩN

∇N j · n κ∆Ni dS −

∫
∂ΩN

∇Ni · n κ∆N j dS .

(38)

The second term is the ghost-penalty term, the third and fourth term are penalty terms for the enforcement of the
two essential boundary conditions, and the last four terms are the consistency and symmetry terms to complete the
Nitsche formulations.

For the penalty formulation, the following parameter scalings are applicable:

βφ

⏐⏐
K = β̄φh−3

K , (39a)

βg
⏐⏐

K = β̄gh−1
K . (39b)

For the Nitsche formulation without ghost-penalty stabilization on the stiffness matrix, the positive definiteness
(coercivity) requirement necessitates a minimum penalty value. We make use of:

βφ

⏐⏐
K = 3 sup

vh∈V h

||∇(∆vh) · n||
2
∂ΩD∩K

||∆vh ||2
Ω∩K

=: β̄φ

⏐⏐
K (χ hK )−3 , (40a)

βg
⏐⏐

K = 3 sup
vh∈V h

||∆vh
||

2
∂ΩN ∩K

||∆vh ||2
Ω∩K

=: β̄g
⏐⏐

K (χ hK )−1 . (40b)

When the stiffness matrix includes ghost-penalty stabilization, then we use the following parameters scalings, which
satisfy the dimensional consistency requirement:

γK
⏐⏐

K = γ̄ h2p−3
K (41a)

βφ

⏐⏐
K = β̄φh−3

K , (41b)

βg
⏐⏐

K = β̄gh−1
K . (41c)

4.2. Analysis of the critical time-step size

By following the methodology outlined in Section 3.2, we derive the scaling relations for the four cut functions
depicted in Fig. 5. The results for the various formulations are collected in Tables 6 and 7 for the two corner-cut
functions, and in Tables 8 and 9 for the two sliver-cut functions. The results for all four cut cases are combined and
summarized in Table 10. The main conclusions drawn for the second-order equation carry over to this fourth-order
problem:

• The use of a consistent mass matrix without mass scaling results in an undesirable cut-size dependent critical
time-step size for all formulations.

• Lumping the mass matrix is insufficient to yield a cut-size independent scheme for spline basis functions of
order p = 2 or even p = 3. To ensure a cut-size independent critical time-step size, either p = 4 basis
function need to be used or ghost-stabilized mass needs to be added.

• For both penalty formulations, the maximum eigenvalue scales linearly with the non-dimensionalized penalty
parameter β̄, irrespective of the order of the basis functions and/or the use of mass scaling.

• Both Nitsche formulations with local penalty parameters (i.e., without a ghost-stiffness term) are inapplicable.
• Both Nitsche formulations require a ghost-mass term as well as a ghost-stiffness term to ensure a cut-size

independent critical time-step size.
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Table 6
Resulting scaling with cut size for the first corner-cut function for the fourth-order problem.

Consistent mass
(Eq. (13a))

Lumped mass
(Eq. (14))

Consistent/lumped mass
and ghost mass (Eq. (28))
with γM = γ̄M h2p+1

⧹O(M̃)
χ2pd+d χ pd+d γ̄Mχ0

O(K̃ )⧹

Neumann χ2pd+d−4 χ−4 ∗ χ pd−4 γ̄ −1
M χ2pd+d−4

Penalty on φ

βφ = β̄φh−3
K

χ2pd+d−4 χ−4 ∗ χ pd−4 γ̄ −1
M χ2pd+d−4

Nitsche on φ

βφ = β̄φ (χhK )−3
β̄φχ2pd+d−4 β̄φχ−4 ∗ β̄φχ pd−4 β̄φ γ̄ −1

M χ2pd+d−4

Penalty on ∇φ · n
βg = β̄gh−1

K

χ2pd+d−4 χ−4 ∗ χ pd−4 γ̄ −1
M χ2pd+d−4

Nitsche on ∇φ · n
βg = β̄g(χhK )−1

β̄gχ2pd+d−4 β̄gχ−4 ∗ β̄gχ pd−4 β̄g γ̄ −1
M χ2pd+d−4

Nitsche on φ, βφ = β̄φh−3
K

on ∇φ · n, βg = β̄g(χhK )−1

and ghost γK = γ̄K h2p−1

γ̄K χ0 γ̄K χ−2pd−d γ̄K χ−pd−d γ̄K γ̄ −1
M χ0

*: Unstable for d = 1 and p = 2.
**: Unstable for d = 1 and p = 2, and may dominate for d = 2 and p = 2.

Table 7
Resulting scaling with cut size for the second corner-cut function for the fourth-order problem.

Consistent mass
(Eq. (13a))

Lumped mass
(Eq. (14))

Consistent/lumped mass
and ghost mass (Eq. (28))
with γM = γ̄M h2p+1

⧹O(M̃)
χ0 χ0 χ0

O(K̃ )⧹

Neumann χ0 χ0 χ0 χ0

Penalty on φ

βφ = βφh−3
K

βφχ0 ∗ βφχ0 ∗ βφχ0 ∗ βφχ0

Nitsche on φ

βφ = βφ (χhK )−3
βφχd−4 βφχd−4 βφχd−4 βφχd−4

Penalty on ∇φ · n
βg = βgh−1

K

βgχ0 ∗ βgχ0 ∗ βgχ0 ∗ βgχ0

Nitsche on ∇φ · n
βg = βg(χhK )−1

βgχd−2 ∗∗ βgχd−2 ∗∗ βgχd−2 ∗∗ βgχd−2

Nitsche on φ, βφ = βh−3
K

on ∇φ · n, βg = β(χhK )−1

and ghost γK = γ̄K h2p−1

βχ0 ∗∗∗ βχ0 ∗∗∗ βχ0 ∗∗∗ βχ0

*: Adverse scaling with β̄.
*: Unstable for d = 1.
**: Adverse scaling with β̄, but only small β̄ is required for sufficient accuracy.

he only difference compared to the results of the second-order problem, is that, in the case of mass lumping without
ass scaling, this fourth-order problem requires at least quartic basis functions. For the analogous formulation for the

econd-order problem, quadratic basis functions were sufficient. This appears to hint at the more general condition
p ≥ s (or, following Remark 3, k + 1 ≥ s), with s the order of the spatial partial differential operator.

. Numerical experiments

In this section, we present the results of our numerical experiments, which are designed to accomplish two

bjectives. First, in Section 5.1, we verify the derived scaling relations and conclusions from Sections 3 and 4.
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Table 8
Resulting scaling with cut size for the first sliver-cut function for the fourth-order problem.

Consistent mass
(consistentmass)

Lumped mass
(Eq. (14))

Consistent/lumped mass
and ghost mass (Eq. (28))
with γM = γ̄M h2p+1

⧹O(M̃)
χ2p+1 χ p+1 γ̄Mχ0

O(K̃ )⧹

Neumann χ2p−3 χ−4 χ p−4 γ̄ −1
M χ2p−3

Penalty on φ

βφ = βφh−3
K

χ2p−3 χ−4 χ p−4 γ̄ −1
M χ2p−3

Nitsche on φ

βφ = βφ (χhK )−3
βφχ2p−3 βφχ−4 βφχ p−4 βφ γ̄ −1

M χ2p−3

Penalty on ∇φ · n
βg = βgh−1

K

χ2p−3 χ−4 * χ p−4, βgχ p−3 γ̄ −1
M χ2p−3

Nitsche on ∇φ · n
βg = βg(χhK )−1

βgχ2p−3 βgχ−4 βgχ p−4 βg γ̄ −1
M χ2p−3

Nitsche on φ, βφ = βφh−3
K

on ∇φ · n, βg = βg(χhK )−1

and ghost γK = γ̄K h2p−1

γ̄K χ0 γ̄K χ−2p−1 γ̄K χ−p−1 γ̄K γ̄ −1
M χ0

*: Even though the (p − 4)-scaling is more severe, the (p − 3)-scaling may dominate for small χ and/or large β̄g .

Table 9
Resulting scaling with cut size for the second sliver-cut function for the fourth-order problem.

Consistent mass
(Eq. (13a))

Lumped mass
(Eq. (14))

Consistent/lumped mass
and ghost mass (Eq. (28))
with γM = γ̄M h2p+1

⧹O(M̃)
χ0 χ0 χ0

O(K̃ )⧹

Neumann χ0 χ0 χ0 χ0

Penalty on φ

βφ = βφh−3
K

βφχ0 ∗ βφχ0 ∗ βφχ0 ∗ βφχ0

Nitsche on φ

βφ = βφ (χhK )−3
βφχ−3 βφχ−3 βφχ−3 βφχ−3

Penalty on ∇φ · n
βg = βgh−1

K

βgχ0 ∗ βgχ0 ∗ βgχ0 ∗ βgχ0

Nitsche on ∇φ · n
βg = βg(χhK )−1

βgχ−1 βgχ−1 βgχ−1 βgχ−1

Nitsche on φ, βφ = βh−3
K

on ∇φ · n,
βg = β(χhK )−1

and ghost γK = γ̄K h2p−1

βχ0 ∗∗ βχ0 ∗∗ βχ0 ∗∗ βχ0

*: Adverse scaling with β̄.
*: Adverse scaling with β̄, but only small β̄ is required for sufficient accuracy.

econdly, we assess whether the presence of the ghost-stabilized mass negatively impacts the error behavior and
onvergence characteristics of the explicit scheme. To this end, we examine a linear vibrating drum in Section 5.2
nd a linear Kirchhoff–Love shell in Section 5.3.

.1. Verification of time-step size scaling

To numerically verify the scaling relations collected in Tables 1–4 and 6–9, we consider the two-dimensional
omain illustrated in Fig. 7. The figure shows the mesh that is used for all subsequent computations, with the ghost

aces highlighted. The domain cut-out involves straight edges, curved edges and positive and negative corner cuts,
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Table 10
Overview of the stability characteristics for the fourth-order problem. Worst-case scaling of the cut scenarios
considered in Tables 6, 8 and 9.

Consistent mass
(Eq. (13a))

Lumped mass
(Eq. (14))

Consistent/lumped mass
and ghost mass
(Eq. (28))
with γM = γ̄M h2p+1

Neumann Unstable for p ∈ {2, 3}

Penalty on φ

βφ = βφh−3
K

Unstable for p ∈ {2, 3}

Scales with β

Scales with βφ

Nitsche on φ

βφ = βφ (χhK )−3

Penalty on ∇φ · n
βg = βgh−1

K

Unstable for p ∈ {2, 3}

Scales with β

Scales with βg

Nitsche on ∇φ · n
βg = βg(χhK )−1

Nitsche on φ, βφ = βh−3
K

on ∇φ · n, β = βg(χhK )−1

and ghost γK = γ̄K h2p−1

Requires γ̄M ∼ γ̄K
and small β

Fig. 7. Domain, cut-out, mesh and ghost faces.

such that a wide variety of cut configurations may occur. To generate different cases, we randomly displace the
cut-out within the domain by a distance between −hK and hK in the x and y directions. For each new domain,
we compute the critical time-step, as defined in Eq. (1), for the different formulations and polynomial orders.
All computations are performed with row-sum mass-lumped mass matrices (apart from the ghost-mass term, as
addressed in Remark 2).

5.1.1. Neumann boundaries
Figs. 8 and 9 present the results for the case where the entire cut-boundary is a Neumann boundary, for the

second- and fourth-order equation, respectively. Figs. 8(a) and 9(a) involve basis functions with the lowest permitted
polynomial order (p = 1, respectively p = 2), and in Figs. 8(b) and 9(b) this order is incremented by one. The blue

ashed lines in these figures correspond to the case without a cut-out, representing the optimal achievable value.
e note that these ‘optimal’ values do still suffer from the usual boundary outliers due to the repeating knots at

he exterior boundary [21,54,60], but believe that this represents the relevant comparison. The black dotted lines

ndicate the anticipated scaling relations derived in the preceding analysis sections.
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Fig. 8. Neumann formulation of the second-order equation: first row in Tables 1–5. Critical time-step size dependency on the minimal
element size fraction for 100 perturbations of the domain of Fig. 7.

Fig. 9. Neumann formulation of the fourth-order equation: first row in Tables 6–10. Critical time-step size dependency on the minimal
element size fraction for 100 perturbations of the domain of Fig. 7.

For a row-sum lumped mass matrix without ghost-stabilized mass, the scaling of the maximum eigenvalue is
predicted to be χ p−s , according to Tables 3 and 8, where s ∈ {2, 4} is the order of the spatial differential operator.

he critical time-step size relates to the maximum eigenvalue according to ∆tcrit ∝ (λh
max)−

1
2 , and should thus scale

as χ
1
2 (s−p). As the black dotted lines indicate, this is indeed the trend that the bottom green diamonds follow. Not

ll data points follow this trend, since the smallest χ in the domain (on the horizontal axis) may correspond to a
orner-cut function instead, which, according to Tables 1 and 6, does not cause adverse scaling.

According to the results presented in Tables 5 and 10, the cut-size dependency of the critical time-step size can
e mitigated by raising the polynomial to p ≥ s, or by incorporation the ghost-mass term. The latter approach is

confirmed to be effective in all plots, as indicated by the red markers, and the former approach is demonstrated in
Fig. 8(b). For unfavorably cut elements, both methods have the potential to increase the critical time-step size by
orders of magnitude. For the second-order equation, quadratic basis functions are sufficient to achieve this effect,
but quartic basis functions are required to eliminate the scaling for the fourth-order (shell-type) equation. In the
event that the use of such high-order basis functions is not feasible, the ghost-mass term serves as an alternative

solution.
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Fig. 10. Penalty formulations without ghost-stabilized mass for the second-order problem: second row and second column in Tables 1–5.
Critical time-step size dependency on the minimal element size fraction for 100 perturbations of the domain of Fig. 7.

5.1.2. Penalty formulations
If the cut-boundary is a Dirichlet boundary instead, and a penalty method is used for the enforcement of the

onstraints, then, according to Tables 4 and 9, the maximum eigenvalue scales with β̄. This is confirmed in Figs. 10
and 11 for basis functions with different polynomial orders for the second- and fourth-order problems, respectively.
For p ≤ s (s ∈ {2, 4} the order of the spatial differential operator) the first sliver-cut function (Tables 3 and 8)
also introduces a scaling of the critical time-step with χ

1
2 (s−p) in the same manner as for the Neumann boundary

ormulation. Both types of scaling are observed in the various subfigures: for p < s and small β̄ the markers follow
he black dotted line, but as β̄ is increased the second sliver-cut functions produce the highest eigenvalues and the
ependency on χ is no-longer dominant in the considered collection of cut cases.

We notice that the data-points in Fig. 11(c) are more scattered than those in the other figures, which can be
ttributed to the two types of scaling of the first sliver-cut function identified in Table 8. Additional dash-dotted

ines are added to highlight the second, (β̄
−

1
2

g χ
1
2 (3−p))-order, scaling.

Addition of the ghost-mass term only suppresses the χ
1
2 (s−p)-scaling, as it did for the pure Neumann formulation.

This means that significant critical time-step size improvements can be achieved for small β̄ values, or when p < s
(from Figs. 10(a) to 12(a), from Figs. 11(a) and 11(c) to Fig. 13(a), and from Figs. 11(b) and 11(d) to Fig. 13(b)),
but not for larger penalty values, or when p ≥ s.

5.1.3. Nitsche formulations
The results of the various Nitsche formulations are presented in Figs. 14 and 15 for the second- and fourth-order

problem, respectively. Figs. 14(a), 15(a) and 15(c) correspond to Nitsche formulations with penalty parameters that
are chosen per the inverse estimates of Eqs. (21), (40a) and (40b), which thus involve the local element size measure
hc = χ hK . The four functions on cut elements induce different scaling orders. According to Tables 1 and 6, the first
corner-cut function causes a (χ

1
2 (s−pd))-order scaling. For the considered combinations of s, p and d, this reduces to

scaling with χ0 for all cases. This zeroth-order scaling is observed in Figs. 14(a) and 15(c), but not in Fig. 15(a).
or the Nitsche formulation used in Fig. 15(a), the scaling induced by the second corner-cut function dominates, as
ound in Table 7. Furthermore, the first sliver-cut function induces a scaling of order χ

1
2 (s−p) according to Tables 3

nd 8, and the second sliver-cut function induces a scaling of order χ
1
2 (Figs. 14(a) and 15(c)) or χ

3
2 (Fig. 15(a))

according to Tables 4 and 9. These latter scalings are independent of p, and therefore increasing the polynomial
order will not improve the results. All predicted scaling trends are plotted in each of the three subfigures (sometimes
overlapping) confirming that they are indeed bounds of the obtained critical time-step size.

In Figs. 14(b), 15(b) and 15(d), the results are plotted for the Nitsche formulations with penalty parameter that
scale with the inverse of hK . These formulations incorporate a ghost-penalty term in the stiffness matrix to guarantee
a its positive definiteness. According to Tables 1 and 6, a function on a corner-cut element induces a detrimental
21
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T

Fig. 11. Penalty formulations without ghost-stabilized mass for the fourth-order problem: second and fourth row and second column in

ables 6–10. Critical time-step size dependency on the minimal element size fraction for 100 perturbations of the domain of Fig. 7.

Fig. 12. Penalty formulations with ghost-stabilized mass for the second-order problem: second row and third column in Tables 1–5. Critical
time-step size dependency on the minimal element size fraction for 100 perturbations of the domain of Fig. 7.

cut-size dependency of the critical time-step size of order χ
1
2 (pd+d). Similarly, the first sliver-cut function causes

a scaling of the order χ
1
2 (p+1) as stated in Tables 3 and 8. Both these trends are plotted in each of the respective
22
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C

s

Fig. 13. Penalty formulations for both φ and ∇φ · n with ghost-stabilized mass for the fourth-order problem: second and fourth row and
third column in Tables 6–10. Critical time-step size dependency on the minimal element size fraction for 100 perturbations of the domain
of Fig. 7.

Fig. 14. Nitsche formulations for the second-order problem, for p = 1: third and fourth row and second and third column in Tables 1–5.
ritical time-step size dependency on the minimal element size fraction for 100 perturbations of the domain of Fig. 7.

ubfigures. The positive exponent p in these relations implies that this scaling will only worsen with increasing
polynomial order. However, the addition of the ghost-mass term eliminates the cut-size dependency altogether.
The highest eigenvalue does still scale with β̄χ0. In Fig. 15(b) we observe that the red markers exhibit a smaller
critical time-step size than the maximally achievable value indicated by the dashed-blue line. This indicates that the
penalty value required to stabilized the Nitsche formulation is not sufficiently small to avoid affecting the highest
eigenvalues.

5.2. Convergence of a linear pre-stressed membrane

The results of the analysis on the scaling of the critical time-step size with the cut-element size indicate that
addition of ghost-stabilized mass can, in certain cases, significantly increase the critical time-step size. In particular,
it enables a Nitsche formulation with a cut-size independent critical time-step size. Of course, the added ghost-
stabilized mass should not come at the cost of a severe accuracy reduction. In this section, we study the impact of
the added ghost-stabilized mass on the solution error for a linear pre-stressed membrane, i.e., for the second-order

wave equation of Section 3. We consider the same geometry description as before, depicted in Fig. 7, and take as
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Fig. 15. Nitsche formulations for the fourth-order problem, for p = 2: third, fourth and fifth row and second and third column in Tables 6–10.
Critical time-step size dependency on the minimal element size fraction for 100 perturbations of the domain of Fig. 7.

an exact solution a simple standing sine wave:

φexact(t, x, y) = cos(
√

2π t) sin(πx) sin(πy) , (42)

rom which we infer the required initial and boundary conditions. In the following, we compute one full period
f this oscillation, for which we use a Newmark-type central difference method for time integration. This limits
he optimal convergence rates to second-order, which, due to mass lumping, is the highest order of convergence
egardless [56,60].

First, we investigate the scenario where the entire cut-out represents a Neumann boundary. According to Table 5,
nd as verified in Fig. 8(a), the addition of ghost-stabilized mass only affects the critical time-step size for the p = 1

order of basis functions. Fig. 16 shows the convergence curves of the relative H 1
0 and L2-errors for the formulations

ith and without a ghost-mass term. The dashed-blue lines indicate the optimal orders of convergence. The numbers
ttached to the final markers in the L2-error graphs denote the total number of time steps required to carry out the
orresponding simulation. For this particular example, we observe a factor 3 reduction of the required number of
ime steps on the most refined grid. Despite this reduction, we observe that the addition of the ghost-mass term
oes not compromise the accuracy of the approximation.

Next, we consider penalty methods with different penalty factors, without ghost-stabilized mass. The error
onvergence curves for p = 1 and p = 2 are shown in Fig. 17. For both polynomial orders, the smallest chosen
enalty parameter only marginally impacts the critical time-step size, as may be ascertained from Fig. 10. As a result,
he p = 1 simulation on the most refined grid requires ∼ 5% more time steps than the corresponding Neumann
ase plotted in Fig. 16. At the same time, the error has increased significantly. This is in part due to the variational
24
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m

Fig. 16. Error convergence for a vibrating pre-stressed membrane on the domain of Fig. 7 after one full period of oscillation, for the
Neumann case with and without ghost-stabilized mass, with p = 1.

Fig. 17. Error convergence for a vibrating pre-stressed membrane on the domain of Fig. 7 after one full period of oscillation, for penalty
ethods with different penalty factors.
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Fig. 18. Error convergence for a vibrating pre-stressed membrane on the domain of Fig. 7 after one full period of oscillation, for Nitsche
or penalty enforcement of Dirichlet constraints.

inconsistency of the penalty formulation, which causes a loss of the optimal (spatial) convergence rate. The errors
may be reduced by several orders of magnitude by increasing the penalty parameter. However, an increase of the
penalty parameter comes at the cost of a reduced critical time-step size. In particular, we observe a factor 5 (for
p = 1) and 10 (for p = 2) increase of the required total number of time steps for a factor 100 increase in β̄. At the
highest penalty level, the optimal orders of convergence appear to be achieved in some of the subfigures, but these
convergence rates drop past a certain mesh refinement level. In Fig. 17(d), the optimal, third-order, convergence
rate is not attained due to the use of the second-order central-difference time stepping scheme and the use of mass
lumping.

Finally, we compare the performance of a penalty method with that of a Nitsche formulation. To ensure an
equitable comparison, both formulations are augmented with ghost-stabilized mass and make use of the same penalty
parameter values. As a result, the simulation with Nitsche’s method and the simulation with the penalty method
require a comparable number of times steps. The relative H 1

0 and L2-errors are plotted in Fig. 18, for p = 1 and
p = 2. For reference, the results of the penalty methods without ghost-stabilized mass from Fig. 17 are overlaid. As
nticipated, the addition of the ghost-stabilized mass to the penalty method for these moderate penalty parameter
alues reduces the required number of time steps significantly for p = 1 and only little for p = 2. In both cases,
he ghost-stabilized mass only marginally affects accuracy. A jump in solution quality is achieved by switching to
he Nitsche formulation. Due to the variational consistency of the formulation, both the H 1

0 and L2-errors converge

ptimally, yielding error reductions by orders of magnitude on the finer meshes. The exception is again Fig. 17(d),
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Fig. 19. Kirchhoff–Love shell model problem.

Fig. 20. Immersed domain and mesh of 30 × 30 elements, with filleted rectangular cut-out. Indicated points are measurement locations
eferenced in Fig. 23.

or which the rate of convergence is limited to two, owing to the second-order time-stepping scheme and the mass
umping. For p = 1, the error values even closely resemble those of the pure Neumann case in Fig. 16.

.3. Transient response of a linear Kirchhoff–Love shell

To demonstrate the practical applications of ghost-stabilized mass and Nitsche’s method, we examine their usage
n a transient simulation of a Kirchhoff–Love shell [7,61]. As a case study, we consider a pressure shock-wave
ropagating through a pipe-segment with pinned support on both ends. Fig. 19(a) shows the geometry, the material
arameters and the load-function. The shock-wave travels through the entire pipe-segment in 0.02 s. Fig. 19(b)
hows the resulting displacement field of a reference computation, computed on a 30 × 30 grid of p = 2 polynomial
-splines.

We then create a rectangular cut-out with corner fillets at the center of the cylinder, as depicted in Fig. 20,
nd treat the corresponding interior edges as immersed boundaries (or, trimmed patches). To repeat the simulation
f the traveling shock-wave, we use the reference solution depicted in Fig. 19(b) as the manufactured solution
or prescribing boundary conditions at these internal edges. Specifically, we extract the in-plane and out-of-plane
isplacement vectors and the normal rotation of the shell at the integration points around the cut-out. These
hree fields represent essential boundary conditions for the Kirchhoff–Love shell model. In the immersogeometric
omputations, we enforce all conditions with either a penalty method or with Nitsche’s method. The exact Nitsche

ormulation that we adopt can be found in [62].
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Table 11
Critical time-step sizes for the different Kirchhoff–Love shell simulations.

Method Uncut Penalty
formulation

Penalty formulation,
with ghost mass

Nitsche formulation,
with ghost mass

∆tcrit [ms] 0.475 0.0311 0.393 0.475

Fig. 21. Evolution of the error in the Bochner norm for the penalty and Nitsche formulations of the Kirchhoff–Love shell.

For both a penalty formulation and a Nitsche formulation, the three essential conditions all require a respective
enalty parameter; β1 for the out-of-plane displacement, β2 for the normal rotation, and β3 for the in-plane
isplacement. In [62], β1 is referred to as C S

pen,1, β2 as C S
pen,3, and β3 as C S

pen,4. In the subsequent numerical
xperiments, we choose these penalty parameters as β1 = 50, β2 = 15, and β3 = 2.5 for both the penalty
ormulations and the Nitsche formulation. The ghost penalty parameters for the contributions to the stiffness matrix
for the in-plane displacement as well as for the out-of-plane displacement field) and to the mass matrix are all set
o 0.1. These penalty values are obtained through the following procedure. First, the γK and β penalty parameters
re chosen excessively high, and the γM parameter is set to zero. Then, we reduce the β-penalty parameters until
hey reach a threshold past which the smallest system eigenvalue becomes negative. After fixing the β penalty
arameters at their respective values just above these threshold levels, we reduce the ghost-stiffness parameters to
heir lowest value for which positivity of the smallest eigenvalue is still retained. Finally, we increment γM until an
ncrease thereof no longer affects the maximum system eigenvalue.

Table 11 presents the critical time-step sizes for the various formulations for the example of Fig. 20, which
oncerns a background mesh consisting of 30 × 30 quadratic B-spline elements. As the critical time-step sizes in
he table show, the use of ghost-stabilized mass for the penalty method increases the critical time-step size by more
han 15 times. With the Nitsche formulation, we retrieve a critical time-step size equal to that of the uncut case,
hich is the optimal value.
The traveling shock-wave computations are executed at the respective critical time-step size of each formulation.

he evolution of the error over time is captured by the following time-dependent Bochner norm:

||u − uh
||Ω×(0,t) =

1
t

∫ t

0
||u(τ, ·) − uh(τ, ·)||L2(Ω) dτ . (43)

The progression of this error is plotted in Fig. 21 for both the penalty formulation and the Nitsche formulation.
The adoption of the Nitsche formulation results in a reduction of the error by well over an order of magnitude.
The manifestation of the error is depicted in Fig. 22 for time t = 0.045. The deviation from the expected physical
response is significantly more pronounced for the penalty formulation than for the Nitsche formulation (also note
the change in the range of the colorbar in this regard). In particular, the error distribution in Fig. 22(a) indicates
that penalty enforcement of the boundary conditions not only locally impacts the solution, but in fact disturbs the
complete solution field. In contrast, the far-field impact of the Nitsche-based weak boundary condition enforcement
is almost negligible, owing to its variational consistency.
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Fig. 22. Magnitude of the displacement error in mm, at t = 0.045s.

Fig. 23. Displacement magnitude over time at the three point locations indicated in Fig. 20.

It can also be inferred from the error distribution that the axisymmetric nature of the true solution, as depicted in
ig. 19(b), is lost in both finite element approximations. This loss is quantitatively assessed in Fig. 23, which plots

he displacement magnitudes at the three locations along the span of the cylinder indicated in Fig. 20. The results
or the penalty method are shown in Fig. 23(a), while those for the Nitsche formulation are shown in Fig. 23(a).
or the penalty method, the displacement magnitudes at the three points deviate increasingly from the reference
olution, and also diverge with respect to each other. This erroneous behavior is significantly suppressed when the
itsche formulation is adopted, as evidenced by the nearly overlapping displacement curves for all points.

. Conclusion and outlook

Immersogeometric explicit analysis offers a powerful framework for streamlining the design-to-analysis pipeline
or crash-test type simulations. To ensure a robust and reliable pipeline, it is imperative that the critical time-step size
f the explicit time-stepping scheme is not affected by the size of the cut (or “trimmed”) elements. In this article, we
ave studied the dependency of the critical time-step size on the cut-size for different types of boundary conditions
nd different methods of enforcement. The formulations that we investigated include a pure Neumann problem,
enalty enforcement of Dirichlet constraints, and Nitsche’s method for enforcement of Dirichlet constraints. To
nsure a positive definite stiffness matrix when Nitsche’s method is used, we considered a formulation where
he Nitsche penalty parameter is determined based on an element-local eigenvalue problem, leading to a cut-size
ependent penalty parameter, and a formulation with an additional ghost-penalty term, which then permits a cut-size
ndependent penalty parameter. For each formulation, we considered a consistent mass matrix and a row-sum lumped

ass matrix, both with and without additional ghost-penalty based mass scaling (“ghost-stabilized mass”).
We have found that a formulation with a consistent mass matrix, without any form of mass scaling, always
uffers from adverse scaling of the critical time-step size with element cut-size. As was first observed in [21], this
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problematic scaling is mitigated by row-sum mass lumping, but only when the polynomial order of the maximum
regularity splines is sufficiently high. Our analysis confirms this observation: for a second-order and a fourth-order
equation we show that mass lumping alone is insufficient when the order of the basis functions is lower than the
order of the spatial differential operator. To enable ‘lower-order’ discretization (i.e., up to cubics for shell-type
equations), an additional mass scaling is required. The cut-size dependency vanishes for our proposed addition of
ghost-stabilized mass.

Our analysis also shows that penalty enforcement of Dirichlet conditions suffers from the drawback that the
ritical time-step size scales with the penalty parameter after a threshold value, confirming the observations in [5,21].
espite this drawback, a penalty formulation combined with mass-lumping and spline basis functions of sufficiently
igh regularity is the only formulation for enforcement of Dirichlet conditions that does not require an additional
orm of mass scaling to mitigate the dependence on the cut-element size. While the critical time-step size also scales
inearly with the penalty parameter for Nitsche’s method for enforcement of Dirichlet conditions, the penalty factors
equired to achieve satisfactory results are generally significantly lower. Out of the different Nitsche formulations
hat we considered, the only formulation for which the critical time-step size is independent of the cut-element size
s one with ghost-stabilized stiffness and ghost-stabilized mass. For a linear wave equation and a linear Kirchhoff–
ove shell model, we have shown that the enforcement of Dirichlet conditions with this Nitsche formulation, as
pposed to a penalty method, may lead to reductions of the solution error by orders of magnitude at the same (or
igher) critical time-step size.

A favorable property of ghost-stabilized mass at the problematically cut elements in comparison to more
onventional mass-scaling methods, is that it does not suffer from severe variational inconsistency issues. With
umerical experiments, we have demonstrated that ghost-stabilized mass can be utilized without incurring negative
mpact on solution quality, despite a potentially substantial increase in the critical time-step size, sometimes by
rders of magnitude. The glaring defect of ghost-stabilized mass in its current form is that it impairs the diagonality
f the lumped mass matrix at cut boundaries. Such a diagonal structure is imperative for developing fast solvers,
s it guarantees a sparse inverse matrix that is trivial to compute. As the ghost-stabilized mass only acts on the
lements intersecting the boundary, which is generally a small fraction of the elements, it only locally affects the
parsity-level of the inverse matrix. Nevertheless, an open research question pertains to the efficient (approximate)
nversion of the mass matrix when ghost-stabilized mass is added to the formulation. A promising approach could
e to add the ghost-stabilized mass patchwise, with the aim of producing a block diagonal mass matrix with small
locks, facilitating explicit inversion with blockwise LU decomposition. Further suggestions have been made in
emark 2.
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