

Delft University of Technology

Teacher-apprentices RL (TARL)
leveraging complex policy distribution through generative adversarial hypernetwork in
reinforcement learning
Tang, Shi Yuan; Irissappane, Athirai A.; Oliehoek, Frans A.; Zhang, Jie

DOI
10.1007/s10458-023-09606-9
Publication date
2023
Document Version
Final published version
Published in
Autonomous Agents and Multi-Agent Systems

Citation (APA)
Tang, S. Y., Irissappane, A. A., Oliehoek, F. A., & Zhang, J. (2023). Teacher-apprentices RL (TARL):
leveraging complex policy distribution through generative adversarial hypernetwork in reinforcement
learning. Autonomous Agents and Multi-Agent Systems, 37(2), Article 25. https://doi.org/10.1007/s10458-
023-09606-9
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1007/s10458-023-09606-9
https://doi.org/10.1007/s10458-023-09606-9
https://doi.org/10.1007/s10458-023-09606-9

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

Vol.:(0123456789)

Autonomous Agents and Multi-Agent Systems (2023) 37:25
https://doi.org/10.1007/s10458-023-09606-9

1 3

Teacher‑apprentices RL (TARL): leveraging complex policy
distribution through generative adversarial hypernetwork
in reinforcement learning

Shi Yuan Tang1,2 · Athirai A. Irissappane3 · Frans A. Oliehoek4 · Jie Zhang1

Accepted: 20 March 2023
© Springer Science+Business Media, LLC, part of Springer Nature 2023

Abstract
Typically, a Reinforcement Learning (RL) algorithm focuses in learning a single deploy-
able policy as the end product. Depending on the initialization methods and seed rand-
omization, learning a single policy could possibly leads to convergence to different local
optima across different runs, especially when the algorithm is sensitive to hyper-parameter
tuning. Motivated by the capability of Generative Adversarial Networks (GANs) in learn-
ing complex data manifold, the adversarial training procedure could be utilized to learn a
population of good-performing policies instead. We extend the teacher-student methodol-
ogy observed in the Knowledge Distillation field in typical deep neural network prediction
tasks to RL paradigm. Instead of learning a single compressed student network, an adver-
sarially-trained generative model (hypernetwork) is learned to output network weights of
a population of good-performing policy networks, representing a school of apprentices.
Our proposed framework, named Teacher-Apprentices RL (TARL), is modular and could
be used in conjunction with many existing RL algorithms. We illustrate the performance
gain and improved robustness by combining TARL with various types of RL algorithms,
including direct policy search Cross-Entropy Method, Q-learning, Actor-Critic, and policy
gradient-based methods.

Keywords Reinforcement learning · Hypernetwork · Generative model · Teacher-
apprentices

1 Introduction

With recent advancement of Generative Adversarial Networks (GANs), the use of gen-
erative models and adversarial training approaches are pervading in many areas involv-
ing deep neural networks. GAN [1] began to surface for image enhancement and synthesis
tasks to produce better illustrations [2, 3]. Over the years, advanced image-based applica-
tions for GANs have been explored, spanning from image segmentation, image restora-
tion [4], image noise reduction [4, 5], to generating 3D images from 2D images [6]. In

 * Shi Yuan Tang
 shiyuan002@e.ntu.edu.sg

Extended author information available on the last page of the article

http://orcid.org/0000-0001-7071-2888
http://crossmark.crossref.org/dialog/?doi=10.1007/s10458-023-09606-9&domain=pdf

 Autonomous Agents and Multi-Agent Systems (2023) 37:25

1 3

 25 Page 2 of 30

addition, other domains such as speech or music synthesis [7, 8], Natural Language Pro-
cessing (NLP) [9, 10] and even cross-domain applications (generating images from text)
[11, 12] have seen the increased adoption of GANs. Notably, the continuous adoption of
GANs within various Reinforcement Learning (RL) algorithms [13–15] shows the growing
consensus that GAN itself is versatile and modular to be incorporated to existing algo-
rithms with minimal changes, while the robustness of the original algorithm is improved in
return. Particularly, the underlying adversarial learning process of GAN in approximating
the complex data manifold tends to apply a data augmentation effect especially when the
amount of labeled data is scarce or limited [16]. The performance gain by incorporating
GAN is not surprising as it is widely used in semi-supervised or weakly supervised learn-
ing scenarios, which is similar to RL problems where limited experience is available in the
early learning cycles.

In a general RL problem setting, the algorithm learns a single deployable policy as the
end product. In many cases, the performance of different policies trained with the same
algorithm varies depending on the initialization methods and seed randomization. The
high hyper-parameter sensitivity of an algorithm could lead to convergence to different
local optima across different runs. Instead of learning a single policy, the robustness of the
policy could be improved by the collective decision of a population of good-performing
policies. This could be achieved through a highly effective ensemble model during deploy-
ment, in which ensembles have been widely shown to provide stabilizing effect and reliable
performance gain [17–19].

In this paper, we introduce a Teacher-Apprentice Reinforcement Learning (TARL)
framework to represent and learn a population of policies effectively. To represent the
population of policies, we use an adversarially-trained hypernetwork [20] to repre-
sent the policy distribution, bearing analogy to sampling a policy from a distribution,
which we refer to as the policy distribution.1 This adversarially-trained hypernetwork
is derived from the hybrid of GAN together with hypernetwork, which the genera-
tor outputs the weights of a policy network. In a recent work [21], we showed that
direct policy search RL algorithms like Cross-Entropy Method (CEM), which employ
a multivariate Gaussian distribution to represent the policy distribution, could benefit
from using hypernetwork as the representation. In the prior work, the CEM originally
adopts multiple policies during the policy search process and CEM-AH is used to
enhance the policy distribution representation. Different from the motivation of this
prior work, we recognize that single policy algorithms could observe the benefits of
GAN and multi-policy ensemble methods with the teacher-guiding mechanism. In this
work, we generalise this framework and introduce the architecture to extend algo-
rithms from single policy to multiple policies, by transforming the goal from learning
a policy into learning the distribution of policies.

Figure 1 illustrates the overall workflow, highlighting the difference between a typical
single policy approach and our proposed TARL multiple policies approach. Since adver-
sarial learning is involved to train the hypernetwork, a guiding teacher network �teacher
co-learns with the hypernetwork using a base RL algorithm. The teacher policy network
provides intermediate guiding labels to facilitate hypernetwork’s training process and the
knowledge is transferred through adversarial learning.

1 Not to be confused with action distribution, which typically refers to the policy itself.

Autonomous Agents and Multi-Agent Systems (2023) 37:25

1 3

Page 3 of 30 25

Fig. 1 Overall Workflow of Typical Single Policy Approach vs Proposed TARL Multiple Policies Approach

 Autonomous Agents and Multi-Agent Systems (2023) 37:25

1 3

 25 Page 4 of 30

This is resemblance to the teacher-student framework in Knowledge Distillation (KD) in
supervised learning domain, but with several key differences. First, the motivation of KD
is focusing on network compression, producing a single student network which is smaller
in size compared to teacher network, while our motivation is focusing on improving the
robustness and overall performance by learning a population of policy networks, in the
context of deep RL. Second, in stark contrast with supervised learning regime in KD which
the teacher is pre-trained before training the student network, the teacher in RL is acting
as soft label guidance for the adversarial hypernetwork and learning in parallel with the
apprentices (students). This hybrid combination of teacher-guided adversarial hypernet-
work allows an effective way to learn the complex policy distribution (via hypernetwork).
During deployment, as policy distribution is learned through the TARL framework, a batch
of good-performing policies �apprentice could be sampled. Subsequently, ensemble methods
could be employed to boost the performance and improve robustness over the base algo-
rithm, as illustrated at the bottom of Fig. 1.

Our approach can achieve better performance with limited tuning, showing reduced
hyper-parameter sensitivity, as well as consistently producing better exploration during
early stages of training or in scenarios which experience is limited. Our main contributions
are:

• We introduce an innovative framework to effectively learn a population of good
performing policies in an end-to-end procedure. Instead of learning a single policy
network, the distribution of the policy network weights is learned to resemble the
policies (which we refer it as the policy distribution in this paper). Naturally, a
method to represent the potentially complex and multi-modal policy weight dis-
tributions is desired, which we employed an adversarially-trained hypernetwork
[22–24] to achieve this. By introducing better policy distribution representation
capability along with uncertainty in the policy network weights [25] during the
adversarial training process, our approach exhibits improved robustness, less sensi-
tive to hyper-parameters and increased overall performance compared to the guid-
ing teacher network.

• Our approach is modular and compatible with existing RL algorithms regardless
of the optimization method. This is because only the behaviours of the teacher net-
work is required, which acts as the intermediate real sample labels for the adversar-
ial training. This is possible through the use of a replay buffer to store only the elite
policy behaviours from the guiding teacher and use them to train the hypernetwork.
The elite policy behaviours are also carefully assessed before being added to the
replay buffer to prevent premature sub-optimal convergence. It also improves sam-
ple efficiency, especially compared to direct policy search method [26] since not all
samples are discard after every iteration.

• Our proposed method borrows and extends the methodology of teacher-student frame-
work in supervised learning domain to RL domain. At the same time, our proposal dif-
fers where a separate procedure to pre-train the teacher network is not required. Instead,
the teacher is co-trained with the apprentice adversarial hypernetwork incrementally.

• We conduct experiments on discrete and continuous action problems. Results shows
that: (1) our approach enables richer policy representation, outperforming the guiding
teacher policy network by up to 16.5% in rewards; (2) our approach is less sensitive to
hyper-parameters tuning and sampling a population of apprentice policies followed by
an ensemble output only results in minimal impact to inference time.

Autonomous Agents and Multi-Agent Systems (2023) 37:25

1 3

Page 5 of 30 25

2 Related works

2.1 Sampling policies in direct policy search methods

A policy could be defined and optimized using different approaches, while following the
generalized objective in RL of maximizing the expected return. To be specific, direct pol-
icy search (gradient-free method) or policy gradient method (such as REINFORCE) are the
two major distinct families. In direct policy search algorithms, the policy parameters are
sampled from a distribution. Cross-Entropy Method (CEM) and Evolutionary Algorithms
are examples of direct policy search methods. In CEM [27], the policy parameters � are
generally sampled from a multivariate Gaussian distribution, �i.i.d.

∼ N(�,Σ) , where � and
Σ represent the mean and covariance. The core idea of our proposal involves learning the
distribution of good-performing policy network weights, and representing the policy distri-
bution using a multi-modal complex distribution, instead of using a restrictive uni-modal
Gaussian distribution.

The adversarial hypernetwork (generator) in our approach is analogous to the Gauss-
ian distribution in direct policy search method which the parameters are sampled from.
However, the similarity ends here. The optimization method for learning these distribution
are fundamentally different. Direct policy search methods are non-gradient based method
which updates the policy distribution directly towards the elite parameters, whereas our
approach optimizes through gradient descent of loss functions.

In recent years, there are several hybrid approaches being introduced, which combine
CEM with deep-RL techniques to improve training stability. CEM-RL [26] combines CEM
and TD3 to reduce hyper-parameter sensitivity. Qt-Opt [28] is a CEM guided Q-learning
method for continuous actions. In Qt-Opt, there is no policy being learned directly and
CEM is only used for action selection based on an estimated Q-value from the Q-network.
Qt-Opt+DDPG [29] further extends Qt-Opt by learning a separate policy to approximate
the CEM action selection process, which lowers the inference time. All the methods above
use multivariate Gaussian to represent the CEM policy distribution. Our method shares
the idea of using a base algorithm (teacher) to guide the training process, which the above
methods utilize CEM as the teacher to benefit from its training stability. Our method could
be utilized to improve a base algorithm, but not limited to assigning CEM as the teacher.
The teacher could be substituted by any RL algorithm. In addition, as explained earlier,
when CEM is used as the base algorithm, our method could enhance the CEM method
by using a more complex policy distribution representation by adopting a hypernetwork,
instead of a restrictive multivariate Gaussian.

2.2 Hypernetwork

Hypernetwork refers to network which is designed to generate the weights of a primary
network. Usually, the primary network is the network which is responsible to perform the
actual task [20]. This formulation could be viewed as an extension to standard neural net-
works, similar to how attention layers and batch normalisation layers were implemented on
top of standard neural network architectures [30]. Since hypernetworks promotes knowl-
edge sharing when learning the weight generation sub-task, it is well-suited to be incorpo-
rated with meta-learning, neural architecture search [31, 32] and hyper-parameter selection
[33]. Recent work from Galanti et al. [30] also shows that the total number of trainable

 Autonomous Agents and Multi-Agent Systems (2023) 37:25

1 3

 25 Page 6 of 30

parameters in a hypernetwork is much smaller than that of a corresponding standard neural
network, further showing hypernetwork’s improved capacity efficiency compared to stand-
ard neural networks.

Naturally, adversarial learning is used to enhance weight generation capabilities of the
hypernetwork to match the primary network’s task. Adversarially-trained hypernetworks
were seen in image classification tasks [34], where the hypernetwork generates weights
for multiple classification models. It is also seen in decoder architectures for continuous
image generation [35]. In our work, we use an adversarially-trained hypernetwork to gener-
ate weights for policy network. However, unlike the supervised image problems, there is
no ground-truth available for our RL case where continuous exploration is needed. Instead,
we rely on a carefully evaluated replay buffer to store only the elite policy behaviours
from the guiding teacher. These elite past experiences are used as soft-labels to train the
hypernetwork.

2.3 Knowledge distillation

Knowledge Distillation (KD) originates from the model compression topic [36] and
the topic was introduced by the investigation of how supervision of soft-targets pro-
vides superior regularization in the process [37]. The idea has been expanded from
distilling the function of a powerful model or teacher into a single neural network [36,
37], to distilling powerful yet easy-to-train larger networks in to smaller but harder-to-
train student networks that could outperform the teacher [38]. The first introduction
of teacher-student framework was popularised by Hinton et al. [37]. A lower-capacity
student network is trained to imitate the outputs produced by a pre-trained high-capac-
ity teacher network together with the one-hot ground-truth labels. Since the teacher-
student framework was introduced, many KD variants have been proposed [38–44] that
utilizes feature mapping, attention mapping and deep supervision from the hidden lay-
ers of teacher network to that of the student network as extra hints for KD supervision.
All these methods were built on top of the same teacher-student framework, which the
teacher network is pre-trained before the student network is trained. More recently,
instead of the one-way knowledge transfer in KD, a two-way Deep Mutual Learning
[45] is introduced so that both the teacher and student networks are incrementally
trained to mutually improve the performances. In this paper, we maintain our focus
in the one-way knowledge transfer as we first extend the methodology of teacher-stu-
dent framework in supervised learning domain to RL domain. Our proposal also differs
from the regular teacher-student framework where a separate procedure to pre-train the
teacher network is not required. At the same time, although it is a one-way knowledge
transfer, the teacher is co-trained with the apprentice adversarial hypernetwork in par-
allel and incrementally.

2.4 Generative adversarial imitation learning (GAIL)

At the motivation level, our approach shares the core idea with other approaches that incor-
porate multi-modality in behaviors. For instance, in the imitation learning domain, GAIL
[46] aims to produce a diverse set of actions that aims to be consistent with the expert’s

Autonomous Agents and Multi-Agent Systems (2023) 37:25

1 3

Page 7 of 30 25

behaviour. GAIL’s extension using InfoGAN such as InfoGAIL [47] and Triple-GAIL [48]
aim to improve the quality of the generator’s behavior by maximizing the mutual informa-
tion between the observed state-action pairs and latent variables. Similarly, our approach
intends to exploit GAN’s ability to generate diverse policy behaviors. However, there are
several differences between our approach and GAIL-based methods.

The application context and problem settings of GAIL-based methods are different.
In imitation learning, the goal is to learn a policy that mimics the behavior of an expert
based on observed demonstrations. These methods are catered towards applications that
are costly to deviate significantly from human expert’s behaviours and exploration is sec-
ondary. Consequently, the generator’s similarity with the expert’s behaviour is prioritized,
whereas exploration is secondary and achieved through regularizations.

Different from the context of imitation learning, our approach operates in the context
of learning from scratch without ground truths. The GAN relies on the behaviours from
a guiding teacher policy learning in parallel, therefore a varied behaviour from the non-
expert teacher policy is welcomed to encourage exploration. The above coupled with an
elite behaviour replay buffer ensures continuous improvement in the generator. GAIL
prefers learning behaviours which are close to the shown expert behaviours. On the other
hand, our approach prefers a more diverse set of behaviours for exploration purposes.

Due to the reasons above, the architectures to model diversity in behaviours between
GAIL and our approach are different; and specifically, the difference lies in the generator
(policy). In GAIL, the generator network takes an input noise and state and generates the
actions; whereas the generator in our approach does not generate the actions directly. It
comprises two components, a hypernetwork and the main policy network. The input noise
is passed to the hypernetwork to generate network weights of the main policy network,
which subsequently takes an input state and outputs the actions. The use of adversarial
hypernetwork adds further flexibility and capacity for modelling diversity. We defer further
details to Sect. 4.3.

3 Preliminaries

Generally, an RL problem consists of interactions of agent(s) with an environment, and
is often described by a standard Markov Decision Process (MDP), modeled by the tuple
(S,A, r, T , �) , where S is a set of states s ∈ S , A is a set of actions a ∈ A , T defines transi-
tion distribution in the form T

(
st+1 ∣ st, at

)
 which describes the dynamics of the system,

r ∶ S ×A → ℝ defines the state- and action-dependent reward function, and � ∈ (0, 1]
is a scalar discount factor. The total returns of an episode or trajectory is defined as
Gt =

∑∞

t=0
r
�
st, at

�
 . Discounted returns are often incorporated to accommodate infinite

horizon, t → ∞ . The aim of RL is to maximize the expectation of the sum of discounted
returns following a policy � [49], written as:

This is regarded as the standard maximum expected reward objective. A policy could
be defined differently and optimized following the generalized objective above. For

(1)

J(�) = �
t→∞

[
Gt

]

= �

[
∞∑

t=0

� tr
(
st, at

)
]
∣ at ∼ �

(
⋅ ∣ st

)
, st+1 ∼ T

(
⋅ ∣ st, at

)

 Autonomous Agents and Multi-Agent Systems (2023) 37:25

1 3

 25 Page 8 of 30

approaches where only action distribution is learned as the policy, a direct policy search
(gradient-free method) or policy gradient method (such as REINFORCE) could be used.

Since our method is suitable to improve the base algorithm regardless whether it
belongs to direct policy search method or policy gradient method, we give a brief over-
view to highlight the distinction of core ideas of both methods. It is noteworthy that the
policy used in both direct policy search method and policy gradient method could be
defined similarly using the same policy parameters. The main difference between the two
methods are in their optimization procedures.

3.1 Direct policy search

Cross-Entropy Method (CEM) and Evolutionary Algorithms are examples of direct
policy search methods. In CEM [27], the policy parameters � are generally sampled
from a multivariate Gaussian distribution, �i.i.d.

∼ N(�,Σ) , where � and Σ represent the
mean and covariance. Each policy �� is evaluated based on the rewards obtained from
episodes sampled following the policy. After ranking the policies based on the epi-
sodic rewards, the elite policies ��[�����] are identified by choosing the top � percentile of
the sorted list of policies. The multivariate Gaussian policy distribution N(�,Σ) is then
updated towards the distribution of the rare elite policies. This optimization family
considers sampling the policy parameters as the core optimization procedure.

3.2 Policy gradients

The most straightforward gradient-based method to optimize the RL objective in Eq. 1 is to
estimate its gradient based on returns:

Equation 2 is regarded as REINFORCE [50], which is the vanilla policy gradient method.
The returns Gt are simply estimated with Monte Carlo samples, where the rewards are
summed up over time steps of a sampled trajectory. Subsequently, other methods are devel-
oped to replace Gt in Eq. 2 with other return estimators. For example, instead of expected
return Gt , an estimate of the expected return Qt (from a Q-function) or the an advantage
value could be used. Equation 3 shows the definition of a typical advantage function, out-
putting an advantage value which represents how much better an action is with respect to
an “average action” at a given state. The “average action” corresponds to a baseline value
b(st) , which could be either estimated using the average reward over the sampled trajectory,
or by definition, the state value V.

(2)∇�J(��) = ���

[
∇� log��(at ∣ st)Gt

]

(3)

A
(
st, at

)
= Q

(
st, at

)
− b(st)

= Q
(
st, at

)
− V

(
st
)

= rt+1(st+1, at+1) + �V(st+1) − V(st)

Autonomous Agents and Multi-Agent Systems (2023) 37:25

1 3

Page 9 of 30 25

4 From single policy to batch policy learning

Generally, in a typical RL problem setting, a single policy is learned and deployed as
the end product. The caveat of learning a single policy is reflected in the inconsist-
ency of reproducing similar results across different training runs. In other words, the
performance of the same algorithm could be impacted drastically through different
initialization and seed randomization, leading to different local optima across differ-
ent runs. Instead of learning a single policy, we propose a framework to learn a batch
or population of good-performing policies using a complex distribution representation
(for the policy distribution) with the following motivations. First, the hyper-parameter
sensitivity and the effect of initialization methods could be reduced since the batch
policy could be viewed as multiple initialization instances. Second, the robustness
and the overall performance could be improved during inference (or testing), utilizing
the collective decision of the batch policies using ensemble models. Third, in addition
to enable the policy population is diverse, leveraging a complex policy distribution
could directly improve the performance when sampling is used to optimize the policy
in the base algorithm, as in direct policy search methods.

To help with further elaboration on the third argument, we first give a brief overview on
the CEM algorithm since it adopts a basic an easy to understand policy parameters sampling
and updating procedure. Next we illustrate the how the distribution representation capability
directly impacts the optimization process through a complex objective function in Sect. 4.2.1.

4.1 Cross‑entropy method (CEM)

A detailed CEM training process is shown in Algorithm 1. CEM tries to optimize the
policy’s parameters towards those with higher episodic rewards. Each policy param-
eter is sampled from its own distribution, and usually, a uni-modal Gaussian is used
to represent these distributions. We collectively call the set of distributions as pol-
icy distribution. Formally, the policy parameters (represented using � ⊂ ℝ

d) is a vec-
tor of dimension d = |s| × |a| , where |s| and |a| denote the dimensions of state and
action spaces. The parameters are sampled from a multivariate Gaussian distribution,
�
i.i.d.
∼ N(�,Σ) , where � and Σ represent the mean and covariance matrices. We assume

Σ to be a diagonal matrix, signifying independence between each uni-modal Gaussian.
During the evaluation phase, each CEM policy ��

���
 is evaluated based on the episodic

rewards obtained using the sampled policy. The elite policies �
���[�����] of each iteration

are identified by choosing the top � percentile (or the elite fraction) of the sorted list of
policies, based on which the multivariate Gaussian distribution mean and covariance
matrices are updated.

At the start of the CEM policy learning, a d-dimensional Gaussian distribution
N(�,Σ) with zero mean and unit covariance is initialised. During each iteration i (Line
3), parameters �i are sampled from the policy distribution and added to the popula-
tion (Line 4). For each sample policy ��i

���
 , defined by the parameters �i , we sample

actions and obtain rewards until the episode terminates (Line 5–9), and the total epi-
sodic reward Ri for the policy ��i

���
 is stored for ranking the policies subsequently. A

total of N episodes are sampled, each corresponds to a different policy. Naturally, the

 Autonomous Agents and Multi-Agent Systems (2023) 37:25

1 3

 25 Page 10 of 30

average of multiple episodes could also be used to evaluate a policy more thoroughly.
At the end of each iteration, policies are sorted based on R ∈ R and the � top-percentile
are filtered as the elite policies (Lines 11–12). The policy distribution is then updated
based on the mean and covariance of the elite policies (Lines 13–14).

4.2 Limitation of restrictive distribution representation

The major limitation of using multivariate Gaussian distribution as the policy dis-
tribution representation is it imposes overly severe constraints on the �i values that
could be sampled, especially after the first few updates. The uni-modal restriction
limits the ability to explore the search space and properly guide the search. This
constrain of multivariate Gaussian, or any similar parametric distributions, is more
pronounce in the case of policy networks, whose parameters (weights) are continu-
ous. When such restrictive distribution representation is used in conjunction with the
overly greedy rare-event probability maximization nature of CEM updates, the search
space quickly shrinks to a much smaller neighbourhood, causing subsequent distri-
bution updates difficult to escape from a local optimum and limiting further explo-
rations. This amplifies the likelihood of converging to different local optima across
different runs. Even with greedy updates, this behaviour could be alleviated if there is
capability in handling multiple modes [51].

Autonomous Agents and Multi-Agent Systems (2023) 37:25

1 3

Page 11 of 30 25

4.2.1 Example: non‑convex, multi‑modal optimization surface

We illustrate the above limitations through a maximization problem using a negative of
Schwefel function [52], optimized through multivariate Gaussian CEM. The negative
Schwefel function2 is defined by

The function is non-convex and complex, with multiple local optima. These optima
are deliberately made to be geometrically distant. The function is great to evalu-
ate whether an optimization algorithm is susceptible to being trapped in local optima,
and how well the algorithm could navigate to the global optimum. For illustration pur-
poses, the dimension of parameter space i = 2 is chosen, with the search range defined as
xi ∈ [−500, 500],∀xi . The global maximum in this range is f (x∗) = 0 with a solution of
x∗ = (420.968746, 420.968746) . Figure 2 illustrates the configuration described above.

Two parameters x1 and x2 (two-dimensional Schwefel) are used. The color gradient of
red to black represents low to high function values. The black regions thus represent max-
ima and the red regions represent minima. Transferring the 3D plot Fig. 2 into a 2D plan
view, we show the detailed contour plots of all iterations in Fig. 3. The contour plots show
the convergence process of CEM across a sequence of iterations. The global optimum is
marked with a yellow star and the blue dots represents the sampled values from the distri-
bution. Using a 2-layer neural network architecture (1 input, 1 output), We ran the CEM
optimization using the following parameters: for CEM, N=100, �=90, batch size=100 and
learning rate=10−4.

The (uni-modal) multivariate Gaussian distribution quickly collapses into a narrow dis-
tribution along the x2-axis during the 10th iteration. This quickly eliminates any further
exploration along x2 , and subsequently converges to a point mass distribution at a local
optimum within 15 iterations. Further, multivariate Gaussian assumes i.i.d (independent

(4)f (x) = −418.982889 ⋅ n −

n�

i=1

xi ⋅ sin
√
�xi�.

Fig. 2 Schwefel Objective Func-
tion

2 We included a negative in the function to change from the original minimization to maximization prob-
lem.

 Autonomous Agents and Multi-Agent Systems (2023) 37:25

1 3

 25 Page 12 of 30

and identically distributed) parameters, implying that the convergence favours a parameter
value which leads to high f(x) score independent of other parameters. In Fig. 3, this means
that the relatively high f(x) scores when x1 ∈ [375, 425] and x2 ∈ [−200, 200] will be elimi-
nated early from candidate solutions and will not be explored. The low f(x) scores from
x1 ∈ [−425,−375] decreases the favourability of selecting x2 ∈ [−200, 200].

To incorporate multi-modality, Gaussian mixture models can be used. However, it
requires user-defined assumptions on the number of modes [53]. Also, with the interven-
tion of heuristic parameter, there is no guarantee that it performs better than the uni-modal
counterpart at all times [54]. It is also noteworthy that the Gaussian mixture extension still
belongs to the parametric distribution family.

4.2.2 Leveraging adversarial hypernetwork (AH) for distribution representation

As part of the proposed TARL framework, we utilize an adversarially-trained hypernetwork
as the generator of policy weights. The adversarial hypernetwork could thus be interpreted
as the policy distribution representation. Figure 4 shows the contour plots Ah-enhanced
CEM algorithm (CEM-AH) instead of using multivariate Gaussian. Our approach does not
require assumptions on the number of modes or the underlying probability distribution. We

Fig. 3 Convergence of Uni-modal Multivariate Gaussian CEM

Fig. 4 Convergence of multi-modal hypernetwork

Autonomous Agents and Multi-Agent Systems (2023) 37:25

1 3

Page 13 of 30 25

notice that multiple modes can be maintained across iterations. In addition, the sampled
values are spread out in the search space while concentrated near different local maxima.
As a side effect, the algorithm needs to be trained longer with lower sample efficiency
while the distribution space moves slowly towards the global maximum (yellow star) by
iteration 99.

4.3 Teacher‑apprentices reinforcement learning (TARL)

To reiterate, the motivation is to enable batch policy learning through the use of complex
policy distribution representation, bearing analogy to sampling a policy from a distribu-
tion. As hypernetworks can learn high-dimensional distributions mapped from a lower-
dimensional weight space [55, 56] and can be used to model complex multi-modal weight
posteriors [22–24], such flexibility would allow us to maintain multiple modes in the pol-
icy distribution across update. Our proposed framework uses adversarial hypernetwork to
model multi-modal distribution for its superior weight generation capability. However, a
challenge exists in applying adversarial learning in reinforcement learning (RL). Ground-
truths are typically present in adversarial learning for supervised tasks. For example, real
samples of images are essential and used for training the discriminator for GAN in the
image domain. On the other hand, since there is no knowledge of optimal actions in RL
settings, the ground-truths are absent. To overcome this, a teacher policy is trained in paral-
lel to guide the adversarial learning process. The teacher policy (or the base algorithm) is
modular and could be derived from any RL algorithm. We name our proposed framework
Teacher-Apprentices Reinforcement Learning (TARL) as the population of apprentices
(policies) are guided through the soft-label behaviours of the teacher policy. This hybrid
combination of teacher-guided adversarial hypernetwork allows an effective way to learn
the complex policy distribution.

The architecture for our proposed TARL framework is shown in Fig. 5a. The adver-
sarial hypernetwork (AH) is implemented similar to a GAN, consisting of generator G and
discriminator D components. The generator is made up of two neural networks, the hyper-
network and the main policy network, which collectively correspond to the apprentice
component in TARL. The hypernetwork, denoted by h(� ∣ z;�) is conditioned by Gaussian
input noise z along with network parameters � , and represents the policy distribution. It
generates the network weights � for the (main) policy network, denoted by �(a ∣ s;�) . The
policy network in turn predicts the action probabilities for a given state s. The teacher com-
ponent is a separate policy network optimized through any RL algorithms. In Sect. 5, we
conducted experiments by comparing of several RL methods with AH-enhanced version
trained through the TARL framework, including CEM, REINFORCE, DQN, DDPG and
PPO.

Figure 5b shows the weights � generation by hypernetwork h(� ∣ z;�) when a policy
network � is sampled. We also adopted the following hypernetwork architecture in our
experiments in Sect. 5. When a policy � is sampled, a Gaussian noise vector z of size
100 is first sampled and input to a noise encoder (with 4 dense layers). The output of
the noise encoder is then passed through two weight-generators (w1, w2) which gener-
ate the weights for the policy network � . For this specific implementation, the policy
network � consists of an input layer (with state space dimension |s| nodes), a hidden
dense layer with Nh = 200 nodes and an output layer (with action space dimension |a|
nodes). w1 generates weights for the connections between the input layer and the hidden
layer and w2 generates weights for the connections between the hidden layer and the

 Autonomous Agents and Multi-Agent Systems (2023) 37:25

1 3

 25 Page 14 of 30

output layer. Depending on the depth of the desired main policy network, the number of
weight-generators could be increased as required. All layers except the last layer are fol-
lowed by RELU activation. A tanh activation is used in the last layer to ensure compat-
ibility with continuous action problems, which the actions could be normalised between
(− 1, 1). The policy network � is then used to infer action probabilities for a given state
s. A different policy is sampled by feeding a different noise vector z.

The training data for AH is a set of tuples of the form x = ⟨s, a⟩ , which are the behav-
iours of a policy. As part of the adversarial learning process, the discriminator D(x;�) ,
with parameters � is tasked to categorise a tuple x to real or fake categories. A teacher
policy �

�������
 is used to guide the training of AH. Real tuples are obtained through the

guiding teacher policy, i.e., xreal = ⟨s,�
�������

(s)⟩ . The fake tuples are generated using
randomly sampled policies from the hypernetwork Xfake = ⟨s,�(s;h(z))⟩ with the same

Fig. 5 Architecture of Teacher-Apprentices Reinforcement Learning. The guiding policy network’s behav-
iours (actions) act as real labels for the adversarial learning process

Autonomous Agents and Multi-Agent Systems (2023) 37:25

1 3

Page 15 of 30 25

set of states used to obtain the real tuples. To improve sample efficiency, a same state s
is used to generate both xreal and xfake during training.

Algorithm 2 shows the training routine of TARL framework. The guiding teacher
policy and its AH-enhanced counterpart are trained sequentially. At each training itera-
tion, the teacher policy �

�������
 is updated by its own algorithm procedure after gather-

ing the initial samples by exploring the environment following the teacher policy, with

 Autonomous Agents and Multi-Agent Systems (2023) 37:25

1 3

 25 Page 16 of 30

or without replay buffer depending on the algorithm (Line 4). The TARL framework
contains a separate replay buffer Φbuf which stores the real tuples used for the adver-
sarial training. After the teacher policy update in each iteration, we generate several
real tuples ⟨sreal,����(sreal)⟩ using the states sreal observed and actions output from the
�
�������

(sreal) . Only the real tuples from the high episodic rewards (top � percentile of
policies) are added to Φbuf to ensure it captures the behaviours of elite policies in each
iteration (Line 5–6). To be more specific, for a given train iteration t, the real tuples are
only added to the replay buffer when the mean reward of the elite policies �

�������[�����]
used to sample these real tuples is greater than or equal to mean reward of the policies
for the tuples already present in Φbuf . Using replay buffer also improves sample effi-
ciency as the same set of state s is used to generate the fake samples xfake (Line 11). The
Φbuf follows first-in-first-out (FIFO) principle of removing old tuples when its maxi-
mum capacity is reached.

Before the adversarial training, the generator is pre-trained (Lines 8-14) for an
advantage against the discriminator. For this, a set of real states Sreal from Φbuf (Line
9) to create a new set of real tuples Xreal using the updated teacher policy �

�������
 (Line

10). Also, a set of fake tuples Xfake are generated using the same set of real states Sreal
(Line 11). The procedures to generate fake tuples are defined in function GenerateFake
(Lines 30-38). The states Sreal are divided into M sets and M different policy networks
�i , i = 1,… ,M are sampled by feeding M different noise vectors zi to the hypernet-
work h(zi) . Each policy network �i then generates fake tuples ⟨sreal,�i(sreal;h(zi))⟩ for the
divided sets of Si

real
 states. Mean Squared Error (MSE) loss between the real and corre-

sponding fake tuples, i.e., the error between �
���

(sreal) and �(sreal;h(z)) is used to update
the generator parameters with learning rate � (Lines 12–13). Pre-training the generator
every time there is a change in the replay buffer Φbuf (updating the guiding �

�������
) sta-

bilizes the adversarial training process, as demonstrated in ablation experimental results
in Fig. 10.

During adversarial training, the discriminator D and generator G are trained in
sequence. The discriminator, parameterized with � is updated using the cross-entropy loss
(Eq. 5) which maximizes the log probability for categorising the corresponding real tuples
Xreal and fake tuples Xfake (Lines 15–21). To improve convergence stability, the discrimina-
tor is updated more often than the generator, i.e., D-Adv > G-Adv during initial training. A
decaying noise is also added to the discriminator input to improve its generalization capa-
bility [57]. The generator is updated using the loss LG (Eq.. 6), which is based on how well
the discriminator identifies real and fake tuples (Lines 22–27).

The replay buffer Φbuf is crucial to increase the likelihood of apprentices outperforming the
teacher as it is only filled with global elite samples from �

�������[�����] encountered through-
out the training process when the distribution is being updated. To reiterate, the generative
hypernetwork h(� ∣ z;�) learns a mapping from a sampled noise vector zi ∼ Nz(0, 1) to a
target policy distribution such that the sampled apprentice policies produce optimal actions
(similar to those suggested by �

�������[�����]). This allows multiple actions which lead to high
reward to be captured. From a different view, AH learns multiple ways of accomplishing a
task. This aligns with the motivation of learning a the distribution of policies instead of a
single policy.

(5)∇LD ←��� �real∇�[logD�(Xreal)] + �fake∇�[log(1 − D�(Xfake)]

(6)∇LG ←��� �fake∇�[− log(D�(Xfake)]

Autonomous Agents and Multi-Agent Systems (2023) 37:25

1 3

Page 17 of 30 25

4.4 Leveraging ensemble techniques with AH

Learning a population of high reward policies using AH-enhanced TARL allows more
robust policy behaviour by using bagging ensemble method during deployment, thereby
boosting overall performance. Ensembles are known to provide stabilizing effect on the
final output and are able to achieve reliable performance gain [17–19]. A collection of
randomly sampled policies from the policy distribution could be used to obtain a reli-
able action.

During the deployment (inference) or any evaluation phase of the AH policy, only
the generator component (apprentices) from Fig. 5a is used. A batch of M apprentice
policies is randomly sampled Πi = {�i

(
a ∣ s;�i

)
;�i = h(zi) , i = 1,… ,M} by feeding M

random noise vectors zi , i = 1,… ,M to the hypernetwork h of the generator, generating
the respective policy weights and thus the corresponding policies. An ensemble of the
M policies, �

��
 = ensemble(Πi) is implemented after the outputs of the apprentice poli-

cies to obtain the final policy, as illustrated in Fig. 6.
In discrete action settings, ensemble techniques including majority voting, rank vot-

ing, Boltzmann multiplication and Boltzmann addition are generally used to combine
the actions derived from each policy [58]. However, insufficient work serves to inves-
tigate the performance of these ensemble methods for continuous action problems. In
addition, to the best of our knowledge, many ensemble-related works mainly operates
in the Actor-Critic framework and focus on combining different Q-value algorithms to
attain a more accurate estimator (critic), with the actor remains a single policy. In con-
trast for TARL, as the batch of policies are sampled from a learned policy distribution,
the ensemble technique is applied directly on the policies.

Investigating the effect of different ensemble methods is not within the scope for this
paper. We opted to demonstrate the complementary benefit of learning a distribution of
policies using the Boltzmann addition ensemble method. This is because the Boltzmann
distribution function is identical to softmax used in stochastic policy to transform the
policy network outputs into probabilities, which we employ in the discrete experiment
problem as:

Fig. 6 Inference: sampling a batch of apprentice policies from adversarial hypernetwork (AH)

 Autonomous Agents and Multi-Agent Systems (2023) 37:25

1 3

 25 Page 18 of 30

At the same time, implementation consistency could be maintained by retaining the same
ensemble layers in the network architecture for continuous action problems, and only
required to replace the softmax layer with a pooling layer, which essentially is an averaging
(mean) formulation:

Intuitively, we note that there may be circumstances where averaging may yield undesir-
able results in continuous action problems, which will be discussed in Sect. 6.1 along with
suggestions of possible remedies.

From a practical point of view, this opens up to several highly scalable and computa-
tionally effective strategies. First, the policy sampling procedure is relatively cheap. Differ-
ent noise vectors zi could be sampled in parallel using tensors, which effectively produces a
batch of apprentice policies in a single pass, thereby do not impact the inference time dur-
ing deployment compared to single policy implementation. Second, sampled policies are
independent to each other before passing to the ensemble, this could be deployed in distrib-
uted systems if larger batch is needed or more thorough policy evaluations are needed dur-
ing the training phase. Naturally, efficiency strategies used in distributed training systems
like shard buffers and multiple teacher policies could be explored in future works.

5 Experiments

Experiments were conducted on both discrete and continuous action problems using RL
algorithms including CEM, REINFORCE, DQN, DDPG and PPO together with their
TARL AH-enhanced counterparts. The output of the policies could be interpreted differ-
ently in these different problems. In continuous control tasks, the output acts as control
values of each action, whereas in discrete actions, the policy could be interpreted as a sto-
chastic policy and the output is interpreted as the probability distribution over actions.

For discrete actions, a fully observable maze [59]3 environment with sparse rewards is
used. The maze is a 7 × 7 grid with state space dimension of 243 and action space dimen-
sion of 3. The agent is required to reach the goal, with shorter path translates to higher
episodic rewards in the end. The state vector encodes information about the presence of
a wall, empty space, presence of the agent/goal, color and agent’s orientation on differ-
ent channels of the image grid. The environment is configured so that the agent’s actions
include moving forward, turning left and right, each having a small negative reward of
−0.1 . Reaching the goal gives a large reward of 1000, with a 10, 000 maximum time-steps
per episode.

For continuous actions, several Pybullet-Gym [60]4 dense reward environments were
used, including reacher, ant and walker. The reacher environment consists of a robotic arm

(7)ensemble(Πi) = softmax

[
∑

i

�i(a ∣ s)

]

(8)ensemble(Πi) =
1

M

∑

i

�i(a ∣ s)]

3 Code could be found at https://github.com/maximecb/gym-minigrid.
4 This is an open source implementation of Roboschool and MuJoCo environments.

Autonomous Agents and Multi-Agent Systems (2023) 37:25

1 3

Page 19 of 30 25

with 2 rotary joints, centered in the environment. The reacher’s state space has a dimension
of 8, consisting of x, y coordinates of end-effector’s initial and target locations. The action
space dimension is 2, representing a continuous angle value for the 2 joints. The reacher is
required to move the end-effector to reach a target. The reacher environment is configured
with a 100 maximum time-steps per episode and the reward is calculated using the inverse
distance between end-effector and the target. Pybullet-Gym’s default settings with 1000
maximum of time-steps per episode are used in ant and walker environments. Both require
controlling an agent to travel as fast as possible. The ant’s state space and action space
have dimensions of 28 and 8 respectively. For the walker, the dimensions are 22 and 6
respectively.

For hyper-parameters tuning and selection, learning rate, batch size and number of neu-
ral network layers are the major ones being considered. Specifically, tuning was performed
with respect to learning rate ∈ {0.001, 0.005, 0.0001} (using Adam optimizer), batch size
∈ {50, 100, 1000} , and number of neural network layers ∈ {2, 3} . The 3-layer policy net-
work architecture is the same as shown in Fig. 5. For a 2-layer policy network, the weight
generator w2 in the hypernetwork is also removed along with the corresponding hidden
layer in the policy network. The result of the best performing combination of architecture
and hyper-parameters for each algorithm is shown in Fig. 5 and Table 1.

5.1 Evaluation and results

For evaluation, we measure the mean episodic rewards during training as well as the test-
ing5 performance (averaged over 10 episodes) of the learned policy after every training
iteration. The purpose is to compare the actual quality of the learned policy and the rate of
convergence, since most algorithms have varied exploration and exploitation strategies. For
example, CEM and PPO may use a stochastic policy implementation during training, while
decreased stochasticity during testing; REINFORCE and DQN use epsilon-greedy strat-
egy for exploration during training, while they use absolute greedy policy during testing;
DDPG use a Q-network with output noise for exploration during training while a separate
actor network is used during testing.

Figure 7 shows the mean episodic rewards during training and testing with the best
performing set of hyper-parameters for each method, along with the standard deviation
(shaded region) across 3–7 runs. A final numerical result is also presented in Table 1,6
along with the training and testing time per episode. For the maze problem, all AH
counterparts have better test performance than the base algorithm except for PPO,
which the difference with PPO-AH is relatively small. More importantly, we notice sig-
nificantly improved performance and consistency in the early training stages across all
AH algorithms compared to their corresponding base algorithms. This shows that the
richer policy representation successfully captured the behaviours of elite policies and
the ensemble model has further boosted the test performance. We notice that the per-
formance of REINFORCE drops considerably after 40k episodes, which REINFORCE-
AH successfully prevented attributed to the elite behaviour buffer and multi-modality
of the policy distribution. Similar observation is present in the case of DDPG, which
achieves a higher reward of 931.31 after 38k episodes, but later dropped to 854.44. For

5 The term is also used interchangeably with deployment or inference.
6 The results align with the findings of Pybullet-Gym benchmark [61].

 Autonomous Agents and Multi-Agent Systems (2023) 37:25

1 3

 25 Page 20 of 30

algorithms involving a Q-network such as DQN and DDPG, we concatenate the action
probabilities instead of continuous action values along with the state to the input of
Q-network, as it is a discrete problem. This stochastic nature for discrete actions makes
Q-network training difficult, resulting to relatively noisy training process.

Compared to maze environment, the performance in the continuous environments
(Fig. 7b–d) have noticeable larger standard deviations, especially for DDPG. Similarly,
we observe improved test performance in AH algorithms during early iterations. As
the policy search space is relatively low-dimensional and less complex, similar perfor-
mances between the base and AH algorithms are observed at convergence. For higher-
dimensional problems like ant and walker, REINFORCE and DDPG learns much slower
and REINFORCE struggles to learn effectively in both problems. Both ant and walker
involve controlling the joints of an agent for walking movements and are more unstable.
Consequently, the advantage of AH algorithms compared to the base algorithms is more
pronounce. Larger performance gains are observed in AH algorithms attributed to bag-
ging actions through ensemble inference.

Fig. 7 Performance comparison on: a Maze; b Reacher; c Ant; d Walker2D in Pybullet-Gym environment

Autonomous Agents and Multi-Agent Systems (2023) 37:25

1 3

Page 21 of 30 25

Table 1 Performance comparison of various base algorithms with AH-enhanced TARL algorithms

Scores are obtained after 50k training episodes. The algorithms which achieve the highest testing score
across each environment are bolded. The highest training scores in each environment are also bolded. Over-
all, the testing score of all AH-enhanced TARL algorithms perform consistently better during testing than
during training using ensemble of a sampled batch policies. In contrast, the testing performance of base
algorithms do not always outperform the training scores. Additionally, AH-enhanced algorithms almost
always outperform the base algorithms with the exception of the case in reacher environment
1 DQN and DQN-AH are discrete action RL algorithms. They were only used in Maze, which is a discrete
action environment

Environment Algorithm Training Testing Train Time (s) Test Time (s)

Maze CEM 820.43 821.44 0.84 ± 0.13 0.84 ± 0.30
CEM-AH 888.66 894.65 4.03 ± 1.60 2.79 ± 0.48
REINFORCE 622.30 620.23 3.85 ± 0.37 3.64 ± 0.20
REINFORCE-AH 702.34 711.23 5.63 ± 2.63 3.77 ± 0.62
DQN1 805.47 798.38 2.18 ± 0.14 1.95 ± 0.79
DQN-AH1 804.67 873.93 4.34 ± 1.68 2.09 ± 0.44
DDPG 909.90 854.44 2.67 ± 0.72 2.55 ± 0.51
DDPG-AH 911.45 912.45 4.67 ± 2.72 2.65 ± 0.54
PPO 905.72 908.35 2.52 ± 0.66 2.66 ± 0.14
PPO-AH 905.43 905.89 4.77 ± 1.99 2.86 ± 0.34

Reacher CEM 73.71 73.32 0.64 ± 0.63 0.54 ± 0.71
CEM-AH 73.63 72.61 4.32 ± 1.60 2.47 ± 0.18
REINFORCE 51.56 51.11 1.85 ± 0.57 1.93 ± 0.31
REINFORCE-AH 55.45 57.25 3.85 ± 2.34 2.91 ± 0.21
DDPG 59.47 60.79 1.62 ± 0.32 1.67 ± 0.51
DDPG-AH 66.23 67.32 3.42 ± 1.98 2.87 ± 0.42
PPO 18.76 18.33 1.77 ± 0.55 1.79 ± 0.33
PPO-AH 18.53 18.34 3.68 ± 2.23 2.63 ± 0.59

Ant CEM 740.23 739.59 2.52 ± 1.33 2.32 ± 0.31
CEM-AH 741.33 845.51 6.70 ± 1.60 2.55 ± 0.48
REINFORCE 85.34 85.34 3.85 ± 0.37 3.64 ± 0.20
REINFORCE-AH 88.35 88.15 7.21 ± 2.10 4.02 ± 0.47
DDPG 242.31 242.31 1.64 ± 0.26 1.55 ± 0.41
DDPG-AH 288.34 289.57 3.34 ± 2.04 2.02 ± 0.38
PPO 775.28 754.34 1.87 ± 0.85 1.95 ± 0.21
PPO-AH 895.35 893.87 3.89 ± 2.51 2.14 ± 0.33

Walker CEM 550.78 547.68 3.84 ± 2.13 3.24 ± 0.26
CEM-AH 640.54 643.44 11.82 ± 1.60 4.07 ± 0.49
REINFORCE 7.01 7.10 4.75 ± 0.68 4.72 ± 0.56
REINFORCE-AH 7.14 7.46 10.71 ± 2.42 5.12 ± 0.37
DDPG 19.52 18.46 2.32 ± 0.62 2.45 ± 0.41
DDPG-AH 20.54 25.56 7.31 ± 2.89 2.62 ± 0.19
PPO 612.64 603.46 2.61 ± 0.89 2.32 ± 0.31
PPO-AH 601.35 708.34 8.55 ± 1.93 3.02 ± 0.59

 Autonomous Agents and Multi-Agent Systems (2023) 37:25

1 3

 25 Page 22 of 30

In addition, the testing score of all AH-enhanced TARL algorithms perform consist-
ently better during testing than during training using ensemble of a sampled batch poli-
cies. In contrast, the testing performance of base algorithms do not always outperform the
training scores. Additionally, AH-enhanced algorithms almost always outperform the base
algorithms, with minimal difference in the exception cases. Overall, we notice significantly
improved performance, lesser hyper-parameter sensitivity (refer to Sect. 5.3) and higher
consistency in the early training stages across all AH algorithms compared to their corre-
sponding base algorithms. This is especially true when the training of the base algorithm is
relatively stagnant and slow as we notice in ant and walker.

5.2 Effect of hypernetwork on the distribution of policy network weights

The hypernetwork component allows more flexible and richer representation of the policy
distribution to be learned. This is important in enabling the motivation to leverage the ben-
efits of multiple policies, which may concentrate to different modes during the learning
process, as illustrated in Fig. 4. To further illustrate the idea of the effect of hypernetwork
on the policy network weights compared to using a uni-modal multivariate Gaussian, we
visualize the histogram of weights value within the policy networks. Comparison is done
between CEM (multivariate Gaussian) and CEM-AH (hypernetwork) as CEM is the only
base algorithm that adopts multiple policies during its direct policy search process; other
base algorithms are single policy in nature.

A total of 100 samples were collected from each CEM and CEM-AH distribution on
the maze problem and the histogram for 3 randomly selected policy weights were shown
in Fig. 8. The sampled weights are discretized through binning and the approximate dis-
tribution shape were fitted through kernel density estimation and shown with dashed lines

Fig. 8 Weight distribution of CEM-AH vs CEM

Autonomous Agents and Multi-Agent Systems (2023) 37:25

1 3

Page 23 of 30 25

for better visibility. Within short training of 2k episodes, we observe that CEM quickly
converges to a narrow distribution in Fig. 8a, whereas with the generative hypernetwork,
CEM-AH maintains a relatively well-spread distribution that could exhibit multi-modal
characteristics; despite the base algorithm CEM is using a uni-modal Gaussian distribu-
tion. This is because the knowledge transfer between the teacher and apprentices is indi-
rect, at the same time, the selective process for adding past experience in the replay buffer
further decouples the performance restriction from the teacher base algorithm, allowing
the apprentices to outperform the teacher.

Only after longer training episode of 50k episodes, majority of sampled weights from
CEM-AH converge to a narrow distribution, as shown in Fig. 8b. However, we can also
observe a mixture of Dirac deltas for Weight 1 even after the performance converged at 50k
episodes. The well-spread and multi-modal characteristics of hypernetwork contributed in
retaining better exploration, especially during the early stages of training.

5.3 Hyper‑parameter sensitivity and ablation study

As mentioned in Sect. 5, we perform hyper-parameter tuning with respect to learning rate
∈ {0.001, 0.005, 0.0001} , batch size ∈ {50, 100, 1000} , and number of neural network lay-
ers ∈ {2, 3} . An illustration is available in Fig. 9, the AH-enhanced algorithms are less sen-
sitive to hyper-parameters, in contrast with algorithm like DQN. During the hyper-param-
eter tuning process, we notice that DQN failed abruptly in several runs due to the difficult
sparse rewards scenario, while this is not observed in DQN-AH. Also, DDPG learns only
with a 3-layer network, however, its convergence speed varies significantly with respect
to different configurations. While the guiding base algorithms do affect the performance
of its AH-enhanced counterparts, all AH algorithms do exhibit significantly improved

Fig. 9 Hyper-parameter sensitivity: a CEM-AH; b DQN

 Autonomous Agents and Multi-Agent Systems (2023) 37:25

1 3

 25 Page 24 of 30

performance and stability in the early training stages regardless to the selection of appren-
tice-related hyper-parameters.

We would like to clarify that the choice of teacher algorithm will affect and limit the per-
formance of apprentices. The abrupt cases which certain hyper-parameter combinations in
teacher that results in complete failure of the teacher learning would also limit the perfor-
mance of apprentices; due to the reliance in teacher for exploration. However, the performance
of apprentices is less sensitive to the choice of hyper-parameters within itself, and performance
boost is generally observed regardless of the choice of batch size, learning rate and network
layers for the hypernetwork training, as shown in Fig. 9a. In parallel, the selective process for
adding past experience in the replay buffer also contributed to the result of apprentices out-
performing the teacher. Consequently, when the performance difference due to the choice of
hyper-parameter within the teacher base algorithm is not large, TARL further minimizes this
hyper-parameter sensitivity that originally could be observed within the teacher.

Ablation study is performed on the CEM-AH algorithm for discrete action problem (maze)
to demonstrate the significance of adversarial learning and its pre-training procedure, as
shown in Fig. 10a. Similarly, ablation is performed on PPO-AH for continuous action problem
(ant) and shown in Fig. 10b. Without pre-training and the added prior advantage for the gener-
ator, AH performs significantly worse and suffers from convergence issues during adversarial
training. On the other hand, the performance drops slightly when the hypernetwork is trained
without the adversarial component (without the discriminator).

Fig. 10 Ablation Study: a CEM-AH; b PPO-AH

Autonomous Agents and Multi-Agent Systems (2023) 37:25

1 3

Page 25 of 30 25

6 Limitations

6.1 Choice of ensemble method may affect performance

Although mean (or averaging) was used as the ensemble method for continuous action
problems in this paper, it is merely a demonstration of a cheap and straightforward
approach that is architecturally compatible with the Boltzmann addition ensemble
method we used for discrete action problem; which the softmax layer is replace with
pooling layer. As noted in Sect. 4.4, there may be circumstances where averaging may
yield undesirable results.

For example, imagine driving a vehicle and the continuous action represents the
degree of turning the steering wheel. An obstacle at the center would require the control
of steering left or right. However, if averaging were to be used and an equal number of
policies were to suggest turning in both directions, a “centered” result may be produced
and resulting in a slower turn or no turning in the worst case. As a suggested remedy for
this scenario, median ensemble could be used with an odd number of policies as:

The reasoning is twofold; first, median could effectively reduce the effect of outliers, and
second, the median ensemble method would not modify the policy outputs (with odd num-
ber of policies), which could address the “centering” scenario. A comparison between
mean and median ensemble approach is shown in Fig. 11. We found that there is only
noticeable difference in the early stages of training and both methods converge to identical
performance towards the later stages of training. At early stages, we observed that com-
pared to mean ensemble method, the median ensemble method would improve the per-
formance in the reacher problem, but equal or negligible performance drop for the walker
problem. This may suggest that mean ensemble would work better for path or position

(9)ensemble(Πk) = �k(a ∣ s), k = 2i + 1 and i ∈ ℤ

Fig. 11 Performance Comparison Between Mean and Median Ensemble Approaches on: a Reacher; b
Walker

 Autonomous Agents and Multi-Agent Systems (2023) 37:25

1 3

 25 Page 26 of 30

control tasks like reacher. Although, more throughout investigations should be conducted
to draw a better conclusion.

We would like to reiterate that investigating the best ensemble approach is not within
the scope of this paper. The intention is to show the complementary benefit of learning a
distribution of policies, which could be sampled cheaply and increasing the overall perfor-
mance through ensemble techniques.

6.2 Increased computational resources and time during training process

Training and testing time per episode are included in Table 1, showing the computation
cost differences between the single policy base algorithm and AH batch policy approaches.
A dual core Intel Xeon Gold 6148 CPU @ 2.40GHz with a Tesla V100 GPU workstation is
used. We observe longer training time in AH algorithms due to co-training of teacher and
apprentices. Although, we note that the training time can be improved by parallelizing the
policy and episode sampling processes in AH.

The performance boosting effect is significant during early stages of training compared
to single policy method, suggesting that the method is suitable when there are limited sam-
ples or exploration remains needed, while performance is at the same time of great impor-
tance, especially in sparse rewards scenarios. At the same time, although an overall higher
performance could potentially be obtained at convergence, significant computational time
and resources during the training stage are required. Due to the above, the method would
not be recommended when cost-effectiveness is the main consideration of the application.

On the other hand, as explained in Sect. 4.4, the testing time of AH algorithms remains
comparable to the corresponding base algorithms as the sampling procedure is lightweight
and executed in parallel. The increase in computational resources is negligible during
deployment when convergence is achieved, suggesting that the method could be useful for
scenarios where environment is relatively static and less frequent training is required, pro-
vided that performance boosting is desired.

7 Concluding remarks

We present Teacher-Apprentices RL (TARL), a framework which is modular and utilizes
an adversarially-trained hypernetwork as a complex policy distribution to learn a popu-
lation of good-performing policies effectively. We demonstrated how adopting a richer
policy distribution representation (using a hypernetwork) would maintain a well-spread
distribution and exhibits capability of capturing multiple modes. We overcome the chal-
lenges of adversarial learning in RL with the lack of ground truth by employing a guiding
teacher policy which provides intermediate soft-labels. Since the knowledge transfer from
the teacher to apprentices is through adversarial learning, it could be employed with any
RL algorithm as the teacher. We have shown that performance boost could be achieved by
combining the outputs of apprentices using ensemble techniques. Experiments demonstrate
that AH algorithms exhibits improved robustness, lowered hyper-parameter sensitivity, and
improved overall performance especially in the early training stages across all AH algo-
rithms compared to their corresponding base algorithms, without significant impact to the
inference time.

Even though the performance of apprentices is less sensitive to the choice of hyper-
parameters within itself, we noted that the choice of teacher algorithm will affect and limit

Autonomous Agents and Multi-Agent Systems (2023) 37:25

1 3

Page 27 of 30 25

the performance of apprentices due to the reliance in teacher for exploration. Nevertheless,
the performance of apprentices (AH algorithms) is less sensitive to the choice of hyper-
parameters within itself, and performance boost is generally observed using ensemble. It
is notable that the indirect knowledge transfer from teacher to apprentices through adver-
sarial learning, coupled with the selective process for adding past experience in the replay
buffer contributed in allowing apprentices to outperform the teacher. Although it is beyond
the scope of this paper, we noted that the choice of ensemble method may affect the AH
performance in the early stages of training in certain continuous action problems and sug-
gested that median could be used to alleviate the issue.

As such, future research could investigate the effect of the choice of ensemble in greater
detail, including majority voting, rank voting, Boltzmann multiplication, Boltzmann addi-
tion and more sophisticated technique like ensemble networks. On the other hand, although
the teacher co-learns in parallel with the apprentices, the knowledge transfer is one-way
from teacher to the apprentices, which they do not have influence over the teacher’s learn-
ing process. Another line of research could thus explore a two-way mutual learning process
between the teacher and apprentices policy networks.

Acknowledgements Shi Yuan Tang acknowledges support from the Alibaba Group and the Alibaba-NTU
Singapore Joint Research Institute.

References

 1. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., &
Bengio, Y. (2014). Generative adversarial nets. In Advances in neural information processing systems
27 (NIPS).

 2. Jin, Y., Zhang, J., Li, M., Tian, Y., & Zhu, H. (2017). Towards the high-quality anime characters gen-
eration with generative adversarial networks. In Proceedings of the machine learning for creativity and
design workshop at NIPS.

 3. Chen, Y., Shi, F., Christodoulou, A.G., Xie, Y., Zhou, Z., & Li, D. (2018). Efficient and accurate MRI
super-resolution using a generative adversarial network and 3D multi-level densely connected network.
In International conference on medical image computing and computer-assisted intervention (pp.
91–99). Springer.

 4. Zhou, H., Cai, R., Quan, T., Liu, S., Li, S., Huang, Q., Ertürk, A., & Zeng, S. (2020). 3d high reso-
lution generative deep-learning network for fluorescence microscopy imaging. Optics Letters, 45(7),
1695–1698.

 5. Zhang, S., Wang, L., Chang, C., Liu, C., Zhang, L., & Cui, H. (2020). An image denoising method
based on BM4D and GAN in 3D shearlet domain. Mathematical Problems in Engineering, 2020,
1–11.

 6. Li, C., & Wand, M. (2016). Precomputed real-time texture synthesis with Markovian generative adver-
sarial networks. In European conference on computer vision (pp 702–716). Springer.

 7. Kumar, K., Kumar, R., de Boissiere, T., Gestin, L., Teoh, W. Z., Sotelo, J., de Brébisson, A., Bengio,
Y., & Courville, A. C. (2019). Melgan: Generative adversarial networks for conditional waveform syn-
thesis. In Advances in neural information processing systems 32.

 8. Latifi, S., & Torres-Reyes, N. (2019). Audio enhancement and synthesis using generative adversarial
networks: A survey. International Journal of Computer Applications, 182(35), 27.

 9. Croce, D., Castellucci, G., & Basili, R. (2020). Gan-bert: Generative adversarial learning for robust
text classification with a bunch of labeled examples. In Proceedings of the 58th annual meeting of the
association for computational linguistics (pp. 2114–2119).

 10. Hu, Z., Luo, F., Tan, Y., Zeng, W., & Sui, Z. (2019). WSD-GAN: Word sense disambiguation using
generative adversarial networks. In Proceedings of the AAAI conference on artificial intelligence (vol.
33, pp. 9943–9944).

 11. Mokhayeri, F., Kamali, K., & Granger, E. (2020). Cross-domain face synthesis using a controllable
GAN. In Proceedings of the IEEE/CVF winter conference on applications of computer vision (pp.
252–260).

 Autonomous Agents and Multi-Agent Systems (2023) 37:25

1 3

 25 Page 28 of 30

 12. Spick, R., Demediuk, S., & Alfred Walker, J. (2020). Naive mesh-to-mesh coloured model generation
using 3D GANs. In Proceedings of the Australasian computer science week multiconference (pp. 1–6).

 13. Gao, R., Xia, H., Li, J., Liu, D., Chen, S., & Chun, G. (2019) DRCGR: Deep reinforcement learning
framework incorporating CNN and GAN-based for interactive recommendation. In 2019 IEEE inter-
national conference on data mining (ICDM) (pp. 1048–1053). IEEE.

 14. Tian, Y., Wang, Q., Huang, Z., Li, W., Dai, D., Yang, M., Wang, J., & Fink, O. (2020). Off-policy
reinforcement learning for efficient and effective GAN architecture search. In European conference on
computer vision (pp. 175–192). Springer.

 15. Wang, Q., Ji, Y., Hao, Y., & Cao, J. (2020). GRL: Knowledge graph completion with GAN-based rein-
forcement learning. Knowledge-Based Systems, 209, 106421.

 16. Sandfort, V., Yan, K., Pickhardt, P. J., & Summers, R. M. (2019). Data augmentation using genera-
tive adversarial networks (cycleGAN) to improve generalizability in CT segmentation tasks. Scientific
Reports, 9(1), 1–9.

 17. Hans, A., & Udluft, S. (2011). Ensemble usage for more reliable policy identification in reinforcement
learning. In ESANN.

 18. Duell, S., & Udluft, S. (2013). Ensembles for continuous actions in reinforcement learning. In ESANN.
 19. Elliott, D., Santosh, K., & Anderson, C. (2020). Gradient boosting in crowd ensembles for Q-learning

using weight sharing. International Journal of Machine Learning and Cybernetics, 11, 2275–2287.
 20. Ha, D., Dai, A. M., & Le, Q. V. (2017). Hypernetworks. In International conference on learning repre-

sentations (ICLR).
 21. Tang, S. Y., Irissappane, A. A., Oliehoek, F. A., & Zhang, J. (2021). Learning complex policy distribu-

tion with CEM guided adversarial hypernetwork. In AAMAS (pp. 1308–1316).
 22. von Oswald, J., Henning, C., Sacramento, J., & Grewe, B. F. (2020). Continual learning with hypernet-

works. In International conference on learning representations (ICLR).
 23. Louizos, C., & Welling, M. (2017). Multiplicative normalizing flows for variational bayesian neural

networks. In International conference on machine learning (ICML), (pp. 2218–2227).
 24. Pawlowski, N., Rajchl, M., & Glocker, B. (2017). Implicit weight uncertainty in neural networks. In

Bayesian deep learning workshop, advances in neural information processing systems (NIPS).
 25. Blundell, C., Cornebise, J., Kavukcuoglu, K., & Wierstra, D. (2015). Weight uncertainty in neural net-

work. In International conference on machine learning (ICML) (pp. 1613–1622).
 26. Pourchot, A., & Sigaud, O. (2018). Cem-rl: Combining evolutionary and gradient-based methods for

policy search. arXiv preprint arXiv: 1810. 01222.
 27. Mannor, S., Rubinstein, R. Y., & Gat, Y. (2003). The cross entropy method for fast policy search. In

International conference on machine learning (ICML) (pp. 512–519).
 28. Kalashnikov, D., Irpan, A., Pastor, P., Ibarz, J., Herzog, A., Jang, E., Quillen, D., Holly, E.,

Kalakrishnan, M., Vanhoucke, V, & Levine S. (2018). Scalable deep reinforcement learning for vision-
based robotic manipulation. In Conference on robot learning (CoRL) (pp. 651–673).

 29. Simmons-Edler, R., Eisner, B., Mitchell, E., Seung, S., & Lee, D. (2019). Q-learning for continuous
actions with cross-entropy guided policies. In RL4RealLife workshop, international conference on
machine learning (ICML).

 30. Galanti, T., & Wolf, L. (2020). On the modularity of hypernetworks. Advances in Neural Information
Processing Systems, 33, 10409–10419.

 31. Zhang, C., Ren, M., & Urtasun, R. (2018). Graph hypernetworks for neural architecture search. In
International Conference on Learning Representations.

 32. Brock, A., Lim, T., Ritchie, J., & Weston, N. (2018). Smash: One-shot model architecture search
through hypernetworks. In International conference on learning representations.

 33. Navon, A., Shamsian, A., Fetaya, E., & Chechik, G. (2020). Learning the pareto front with hypernet-
works. In International conference on learning representations.

 34. Henning, C., von Oswald, J., Sacramento, J., Surace, S. C., Pfister, J. -P., & Grewe, B. F. (2018).
Approximating the predictive distribution via adversarially-trained hypernetworks. In Bayesian deep
learning workshop, advances in neural information processing systems (NeurIPS).

 35. Skorokhodov, I., Ignatyev, S., & Elhoseiny, M. (2021). Adversarial generation of continuous images.
In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp.
10753–10764).

 36. Buciluǎ, C., Caruana, R., & Niculescu-Mizil, A. (2006). Model compression. In Proceedings of the
12th ACM SIGKDD international conference on knowledge discovery and data mining (pp. 535–541).

 37. Hinton, G., Vinyals, O., & Dean, J. et al. (2015). Distilling the knowledge in a neural network. arXiv
preprint arXiv: 1503. 02531

 38. Adriana, R., Nicolas, B., Ebrahimi, K. S., Antoine, C., Carlo, G., & Yoshua, B. (2015). Fitnets: Hints
for thin deep nets. In Proc. ICLR (pp. 1–13).

http://arxiv.org/abs/1810.01222
http://arxiv.org/abs/1503.02531

Autonomous Agents and Multi-Agent Systems (2023) 37:25

1 3

Page 29 of 30 25

 39. Yim, J., Joo, D., Bae, J., & Kim, J. (2017). A gift from knowledge distillation: Fast optimization, net-
work minimization and transfer learning. In Proceedings of the IEEE conference on computer vision
and pattern recognition (pp. 4133–4141).

 40. Lee, S. H., Kim, D. H., & Song, B. C. (2018). Self-supervised knowledge distillation using singular
value decomposition. In Proceedings of the European conference on computer vision (ECCV) (pp.
335–350).

 41. Komodakis, N., & Zagoruyko, S. (2017). Paying more attention to attention: Improving the perfor-
mance of convolutional neural networks via attention transfer. In ICLR.

 42. Kim, J., Park, S., & Kwak, N. (2018). Paraphrasing complex network: Network compression via factor
transfer. In Advances in neural information processing systems 31.

 43. Sun, D., Yao, A., Zhou, A., & Zhao, H. (2019). Deeply-supervised knowledge synergy. In Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition (pp. 6997–7006).

 44. Tian, Y., Krishnan, D., & Isola, P. (2019). Contrastive representation distillation. In International con-
ference on learning representations.

 45. Zhang, Y., Xiang, T., Hospedales, T. M., & Lu, H. (2018). Deep mutual learning. In Proceedings of the
IEEE conference on computer vision and pattern recognition (pp. 4320–4328).

 46. Ho, J., & Ermon, S. (2016). Generative adversarial imitation learning. In Advances in neural informa-
tion processing systems 29.

 47. Li, Y., Song, J., & Ermon, S. (2017). Infogail: Interpretable imitation learning from visual demonstra-
tions. In Advances in neural information processing systems 30.

 48. Fei, C., Wang, B., Zhuang, Y., Zhang, Z., Hao, J., Zhang, H., Ji, X., & Liu, W. (2020). Triple-gail:
A multi-modal imitation learning framework with generative adversarial nets. In: Bessiere, C. (ed.)
Proceedings of the twenty-ninth international joint conference on artificial intelligence, IJCAI-20, pp.
2929–2935. International Joint Conferences on Artificial Intelligence Organization. https:// doi. org/ 10.
24963/ ijcai. 2020/ 405. Main track.

 49. Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: an introduction. MIT press.
 50. Williams, R. J. (1992). Simple statistical gradient-following algorithms for connectionist reinforce-

ment learning. Machine Learning, 8(3–4), 229–256.
 51. Faury, L., Calauzenes, C., Fercoq, O., & Krichen, S. (2019). Improving evolutionary strategies with

generative neural networks. arXiv preprint arXiv: 1901. 11271.
 52. Schwefel, H.-P. (1981). Numerical optimization of computer models. John Wiley & Sons Inc.
 53. Kurtz, N., & Song, J. (2013). Cross-entropy-based adaptive importance sampling using Gaussian mix-

ture. Structural Safety, 42, 35–44.
 54. Geyer, S., Papaioannou, I., & Straub, D. (2019). Cross entropy-based importance sampling using

Gaussian densities revisited. Structural Safety, 76, 15–27.
 55. Deutsch, L. (2018). Generating neural networks with neural networks. arXiv preprint arXiv: 1801.

01952.
 56. Ukai, K., Matsubara, T., & Uehara, K. (2018). Hypernetwork-based implicit posterior estimation and

model averaging of CNN. In Asian conference on machine learning (pp. 176–191).
 57. Roth, K., Lucchi, A., Nowozin, S., & Hofmann, T. (2017). Stabilizing training of generative adver-

sarial networks through regularization. In Advances in neural information processing systems (NIPS)
(pp. 2018–2028).

 58. Wiering, M. A., & Van Hasselt, H. (2008). Ensemble algorithms in reinforcement learning. IEEE
Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 38(4), 930–936.

 59. Chevalier-Boisvert, M., Willems, L., & Pal, S. (2018). Minimalistic Gridworld Environment for Ope-
nAI Gym. GitHub.

 60. Ellenberger, B. (2018). Pybullet Gymperium, Open-source implementations of OpenAI Gym MuJoCo
environments. GitHub.

 61. Sung, J.-c. (2018) Benchmark results for TD3 and DDPG using the PyBullet reinforcement learning
environments. GitHub.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

https://doi.org/10.24963/ijcai.2020/405
https://doi.org/10.24963/ijcai.2020/405
http://arxiv.org/abs/1901.11271
http://arxiv.org/abs/1801.01952
http://arxiv.org/abs/1801.01952

 Autonomous Agents and Multi-Agent Systems (2023) 37:25

1 3

 25 Page 30 of 30

Authors and Affiliations

Shi Yuan Tang1,2 · Athirai A. Irissappane3 · Frans A. Oliehoek4 · Jie Zhang1

 Athirai A. Irissappane
 athirai@uw.edu

 Frans A. Oliehoek
 f.a.oliehoek@tudelft.nl

 Jie Zhang
 zhangj@ntu.edu.sg

1 School of Computer Science and Engineering, Nanyang Technological University, Singapore,
Singapore

2 Alibaba-NTU Singapore Joint Research Institute, Singapore, Singapore
3 Computer Science Department, University of Washington, Seattle, USA
4 Department of Intelligent Systems, Delft University of Technology, Delft, Netherlands

http://orcid.org/0000-0001-7071-2888

	Teacher-apprentices RL (TARL): leveraging complex policy distribution through generative adversarial hypernetwork in reinforcement learning
	Abstract
	1 Introduction
	2 Related works
	2.1 Sampling policies in direct policy search methods
	2.2 Hypernetwork
	2.3 Knowledge distillation
	2.4 Generative adversarial imitation learning (GAIL)

	3 Preliminaries
	3.1 Direct policy search
	3.2 Policy gradients

	4 From single policy to batch policy learning
	4.1 Cross-entropy method (CEM)
	4.2 Limitation of restrictive distribution representation
	4.2.1 Example: non-convex, multi-modal optimization surface
	4.2.2 Leveraging adversarial hypernetwork (AH) for distribution representation

	4.3 Teacher-apprentices reinforcement learning (TARL)
	4.4 Leveraging ensemble techniques with AH

	5 Experiments
	5.1 Evaluation and results
	5.2 Effect of hypernetwork on the distribution of policy network weights
	5.3 Hyper-parameter sensitivity and ablation study

	6 Limitations
	6.1 Choice of ensemble method may affect performance
	6.2 Increased computational resources and time during training process

	7 Concluding remarks
	Acknowledgements
	References

