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A B S T R A C T

Quantifying the magnitude and frequency of extreme precipitation events is key in translating climate
observations to planning and engineering design. Past efforts have mostly focused on the estimation of daily
extremes using gauge observations. Recent development of high-resolution global precipitation products, now
allow estimation of global extremes. This research aims to quantitatively characterize the spatiotemporal
behavior of precipitation extremes, by calculating extreme precipitation return levels for multiple durations on
the global domain using the Multi-Source Weighted-Ensemble Precipitation (MSWEP) dataset. Both classical
and novel extreme value distributions are used to provide insight into the spatial patterns of precipitation
extremes. Our results show that the traditional Generalized Extreme Value (GEV) distribution and Peak-
Over-Threshold (POT) methods, which only use the largest events to estimate precipitation extremes, are not
spatially coherent. The recently developed Metastatistical Extreme Value (MEV) distribution, that includes
all precipitation events, leads to smoother spatial patterns of local extremes. For durations of 5 and 10
days, however, there are less events per year to fit the distribution (37 and 22 on average, respectively),
leading to larger inter-annual variability and possible overestimation of the extremes. While the GEV and POT
methods predict a consistent shift from heavy to thin tails with increasing duration, the MEV method predicts
a relatively constant heaviness of the tail for any precipitation duration, opening up an important research
question on what is the ‘correct’ tail behavior of extreme precipitation for different durations. The generated
extreme precipitation return levels and corresponding parameters are provided as the Global Precipitation
EXtremes (GPEX) dataset. These data can be useful for studying the underlying physical processes causing the
spatiotemporal variations of the heaviness of extreme precipitation distributions.
1. Introduction

Extreme precipitation events are a major contributor to natural
disasters (CRED, 2019). Accurate estimates of the severity of intense
precipitation events are needed for an enhanced disaster risk under-
standing, such as that of floods and landslides. The urgency of this
is indicated as the first priority of the Sendai Framework for Disaster
Risk Reduction (UNSIDR, 2015). The accurate quantification of ex-
tremes is also necessary for infrastructure planning and design. Some
countries already provide spatiotemporal estimates of extreme precip-
itation based on extreme value distributions (EVDs), for example, for
Australia (Ball et al., 2019), the Netherlands (Beersma et al., 2018),
and the US (e.g., Perica et al., 2015, 2018). However, many countries

∗ Corresponding author at: Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Delft, Netherlands.
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and regions do not have sufficient local data available (Gründemann
et al., 2018; Kidd et al., 2017; van de Giesen et al., 2014), such that
spatially-distributed extreme precipitation estimates are not possible.

Several previous studies have developed global-scale datasets of ex-
treme precipitation. Courty et al. (2019) calculated intensity-duration-
frequency curves at the global domain and their scaling with different
event durations using reanalysis data and the Generalized Extreme
Value (GEV) distribution with fixed tail parameter. Dunn et al. (2020)
produced the HadEX3 dataset, which contains 29 generic precipitation
and temperature indices, although these indices are not based on
EVDs. Furthermore, this dataset has a coarse 1.25◦ latitudinal ×1.875◦
longitudinal resolution, with data-gaps due to insufficient available
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gauge data. Other global studies mostly focused on examining which
type of distribution is most suitable to capture the tail behavior of
extreme precipitation (Cavanaugh and Gershunov, 2015; Cavanaugh
et al., 2015; Papalexiou et al., 2013). In addition, the spatial patterns
of the parameter that controls the tail decay have been studied for the
GEV distribution (Papalexiou and Koutsoyiannis, 2013; Ragulina and
Reitan, 2017), and the Generalized Pareto (GP) distribution (Serinaldi
and Kilsby, 2014). However, several issues remain to be addressed
in order to obtain global-domain extreme precipitation return levels:
(1) the choice of the dataset, (2) the focus on daily extremes without
considering sub-daily extremes, (3) the choice of the time blocks over
which block-maxima are determined, and (4) the exploration of possi-
ble alternatives to the classical EVDs, especially with respect to the tail
behavior.

1. Several (quasi-)global gridded precipitation datasets have been
developed in recent years, each with strengths, weaknesses,
and uncertainties. See Sun et al. (2018), Beck et al. (2019a)
and Rajulapati et al. (2020) for recent overviews of available
datasets. Most of these datasets are based on gauge, reanaly-
sis, or satellite sensor data. Notable examples of gauge-based
datasets include GPCC-FDR (Becker et al., 2013; Schneider et al.,
2011) and REGEN (Contractor et al., 2020). However, gauges
are extremely unevenly distributed across the globe (Kidd et al.,
2017; Schneider et al., 2014), and the number of active gauges
has been declining in recent decades (Mishra and Coulibaly,
2009). Satellite-based products such as CMORPH (Joyce et al.,
2004), GSMaP (Ushio et al., 2009), IMERG (Huffman et al.,
2015), and PERSIANN (Hong et al., 2004) have a relatively
high spatio-temporal resolution. However, they do not cover
regions outside of 60◦N/S, and are only available from 2000
onwards, which significantly hinders their use for extreme value
analyses. Precipitation products with a true global coverage and
long records are reanalyses, such as ERA-5 (Hersbach et al.,
2020), JRA-55 (Kobayashi et al., 2015), and MERRA-2 (Gelaro
et al., 2017). However, reanalysis products tend to exhibit strong
local and systematic biases in the magnitude and frequency of
precipitation (Decker et al., 2012; Liu et al., 2018; Ménégoz
et al., 2013).

2. Global-scale analyses of precipitation extremes are generally
based on daily precipitation records (Cavanaugh et al., 2015;
Koutsoyiannis, 2004a,b; Nerantzaki and Papalexiou, 2019; Pa-
palexiou and Koutsoyiannis, 2013; Papalexiou et al., 2013; Rag-
ulina and Reitan, 2017; Serinaldi and Kilsby, 2014). In practice,
however, multiple durations are needed for the design of in-
frastructure (e.g., Nissen and Ulbrich, 2017) or urban drainage
networks (e.g., Mailhot and Duchesne, 2009). It is known that
precipitation extremes of different durations scale differently
with temperature (Wasko et al., 2015; Schleiss, 2018), but lit-
tle is known about the variation of EVD location, scale and
tail parameters for different temporal resolutions. Studies that
did derive extreme precipitation statistics for durations ranging
from minutes to a few days have mostly focused on small re-
gions (Zhao et al., 2022a,b; McGraw et al., 2019; Nissen and
Ulbrich, 2017; Overeem et al., 2008).

3. Studies estimating return levels of extreme precipitation by using
annual maxima typically use calendar years to delineate the
annual periods from which maxima values are extracted (e.g.,
De Paola et al., 2018; Marani and Zanetti, 2015; Papalexiou and
Koutsoyiannis, 2013; Ragulina and Reitan, 2017; Villarini et al.,
2011). When the variable of interest is river discharge instead
of precipitation, however, hydrological years are typically used
instead of calendar years (Ward et al., 2016). For discharge
values this is important, since peak discharge and flooding could
occur during the transition from 31 December to 1 January and
one event would be included in two calendar years. Although
2

not often considered, this could also happen for precipitation,
especially for longer duration extremes. The annual maxima
method could pick multiple values from a single rainy season
that may, for example, be highly influenced by the El Niño-
/Southern Oscillation, which is known to impact precipitation
extremes (Allan and Soden, 2008; Rasmusson and Arkin, 1993).

4. The Generalized Extreme Value (GEV) distribution, the most
widely used EVD, is typically fitted through one of two ap-
proaches: (a) using annual maximum precipitation series and
maximum likelihood (Coles, 2001) or L-moment (Hosking, 1990)
estimation approaches, or (b) using a Peak-Over-Threshold
(POT) method to fit a Generalized Pareto Distribution to excesses
above the threshold and a Poisson process to the sequence
of threshold exceedances (Coles, 2001). In contrast to GEV
and POT, the recently developed Metastatistical Extreme Value
(MEV) distribution is fitted using all events with recorded pre-
cipitation instead of only the most severe. The inclusion of more
events reduces the uncertainty due to sampling effects, which
is important when dealing with short time series (Hu et al.,
2020; Marani and Ignaccolo, 2015; Marra et al., 2018, 2019a;
Miniussi and Marani, 2020; Zorzetto et al., 2016; Zorzetto and
Marani, 2019). Additionally, GEV parameter estimation depends
heavily on a few large values, which makes it very sensitive to
the possible presence of outliers, a relatively common occurrence
in remote sensing estimates of precipitation amounts (Zorzetto
and Marani, 2020). The GEV tail behavior is controlled by its
shape parameter, which is very sensitive to sampling effects
and the choice of the method used for estimation. To over-
come these problems, some studies have suggested to use one
universal value of the shape parameter that is applicable to
the whole world Koutsoyiannis (2004a,b), or a shape parameter
value within a narrow range between exponential and heavy-tail
behavior (Papalexiou and Koutsoyiannis, 2013), or one shape
parameter per region, that is similar within climate types and
elevation ranges (Ragulina and Reitan, 2017).

In this study we aim to overcome these issues partly by (1) using
a precipitation dataset that merges gauge, reanalysis, and satellite
data, (2) estimating extremes for several event durations, (3) using
hydrological years in our analyses, and (4) comparing results from three
different extreme value methods (GEV, POT and MEV). Specifically,
we are interested in quantitatively characterizing the behavior of ex-
treme precipitation and the spatiotemporal variation of extreme value
distributional tails at the global domain.

2. Material and methods

2.1. Data

The global precipitation product used in this study is the Multi-
Source Weighted-Ensemble Precipitation (MSWEP-V2.2) dataset.
MSWEP is particularly suited for our purpose due to its global coverage,
long temporal span, high spatial and temporal resolution. We used
data from 1 January 1979 to 31 October 2017 at a 0.1◦ latitude
×0.1◦ longitude resolution at 3-hourly time steps. We selected all land-
cells between 90◦N and 58◦S for our analysis. MSWEP precipitation
estimates are derived by merging five different satellite- and reanalysis-
based global precipitation datasets. The dataset is one of the few
precipitation products with daily (as opposed to monthly) gauge cor-
rections, applied using a scheme that accounts for gauge reporting
times (Beck et al., 2019b). MSWEP has shown robust performance
compared to other widely used precipitation datasets (e.g., Alijanian
et al., 2017; Bai and Liu, 2018; Beck et al., 2017, 2019a; Casson et al.,
2018; Hu et al., 2020; Sahlu et al., 2017; Satgé et al., 2019; Zhang et al.,
2019), thus underlying its potential for improving the characterization
of extreme precipitation worldwide. We refer to Beck et al. (2019b) for
a comprehensive description of the dataset.



Journal of Hydrology 621 (2023) 129558G.J. Gründemann et al.

p
t
(

d
i
c
S
t
c

𝐻

2.1.1. Quality control
The integration of erroneous gauge observations into MSWEP-V2.2

can occasionally result in implausible precipitation values. Therefore,
we implemented a three-step quality control procedure on the 3-hourly
data prior to the analysis. We first discarded negative values, which are
physically impossible. The second step was to discard outliers, which
we defined as values deviating from the mean by more than 30 standard
deviations. The number of 3-hourly blocks containing outliers per grid
cell are included in Supplementary Material Section 1 Fig. S1. We also
discarded data surrounding the outliers for the same time step using a
11 × 11 grid-cell window, as erroneous gauge observations may have
influenced surrounding cells in the production of the MSWEP dataset.
The 11 × 11 grid-cell window was chosen based on the procedure used
in MSWEP to merge gauges and other rainfall products (Beck et al.,
2019b). In the third step, we removed all years with > 30 discarded
days or < 5 ‘wet’ 3-hourly periods, identified using a threshold of
0.2 mm 3 h−1 following Wasko et al. (2015). Finally, we only included
in the analysis data from grid cells with at least 30 years of data
remaining, as a minimum record length of 30 years is customary and
recommended for analyzing extremes (Arguez and Vose, 2011; Kendon
et al., 2018; Westra et al., 2013).

2.1.2. Durations and identification of independent events
The durations we selected for our analysis are 3, 6, 12 and 24 h,

and 2, 3, 5 and 10 days. In order to create statistically-independent
precipitation events for multiple durations, we first calculated the
running parameter, which is the minimum distance between two in-
dependent events (Fukutome et al., 2015). To separate 3-hourly events
and ensure independence for each precipitation event at each grid-cell,
we followed the declustering method to limit the autocorrelation of
the samples of Marra et al. (2018). In order to do so, we calculated
the temporal autocorrelation of the time series for each grid-cell, for
time lags up to 10 days. 10 days was deemed sufficient to allow the
autocorrelation to drop to very low values and remove the correlation
between two events. The long-lag noise for each time lag is the 75th
quantile of the autocorrelation as in Marra et al. (2018). The resulting
running parameter equals the first time lag at which the temporal auto-
correlation is comparable to the long-lag noise. The running parameter
is calculated for each grid-cell. For the 3-hourly duration, we removed
the blocks containing non-zero rainfall within a correlation window and
only kept the highest value. For longer durations, independent events
satisfy two conditions: (1) events are separated at least by the running
parameter (the length of the independence that was determined by
declustering); and (2) 3-hourly blocks are only included once. To ensure
this, 3-hourly blocks are summed together using moving windows to
create intensities for longer durations. Then, one of two cases arises:
(a) the running parameter is smaller than the duration: then the event
is already independent (condition 1). We simply take the highest inten-
sity in a moving window, and remove all overlapping ones to satisfy
condition 2; (b) the running parameter is greater than the duration: we
only take the highest value in the window of the running parameter
(condition 1), and remove all overlapping blocks (condition 2).

2.1.3. Hydrological year
A common challenge in global-scale assessments is the delineation

of the hydrological year, given the regional variability in the clima-
tological precipitation seasonality. We therefore developed an uniform
way to define the hydrological year. To avoid splitting one rainy season
over two different years, we computed the median of the monthly
precipitation for each grid-cell, and defined the start of the hydrological
year to be the first day of the driest month. Supplementary Material
Section 2 Fig. S2a shows the starting month of the hydrological year as
determined by this method. These data are also available in the GPEX
dataset (Gründemann et al., 2021). As MSWEP-V2.2 spans the interval
from 1 January 1979 to 31 October 2017, we discarded the data prior
3

to the start of the first hydrological year, thus keeping 38 complete
years. Only where the hydrological year starts in December there are
just 37 complete years, which occurs in 5.8% of the grid cells.

We also investigated whether there is a significant difference be-
tween the use of calendar and hydrological years for the estimated daily
extremes for GEV and MEV. The POT method is based on the values
over a high threshold, irrespective of when they occurred. Therefore,
there is by definition no difference in calculating the extremes using
hydrological or calendar years for the POT method. To determine the
difference for GEV and MEV, we first calculated the daily return levels
for normal calendar years, using the MSWEP data from 1979 to 2016.
Then, we calculated the return levels for the same distributions and the
same years, by removing the months before the start of the hydrological
year from the year 1979 and adding them to the year 2016. We did this
in order to use the exact same data and ensure that the differences in
the return level estimates are solely due to a different starting month.

2.2. Extreme value distributions

Three different extreme value distributions were fitted to the
MSWEP data to calculate extreme precipitation return levels, and to
provide an indication of dependence of the spread in return levels
as a function of the distribution used. These three extreme value
distributions are the GEV, POT and MEV. Annual (hydrological year)
maxima were used to estimate the three parameters of the GEV using
the L-moments approach, because of its robust performance for small
samples (Hosking, 1990). The GEV cumulative distribution function
(CDF) is given by:

𝐺(𝑧) =

⎧

⎪
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⎩

exp

{

−
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1 + 𝜉
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}

, 𝜉 ≠ 0

exp
{

−exp
[

−
(

𝑧−𝜇
𝜎

)]}

, 𝜉 = 0
(1)

with location parameter 𝜇 ∈ (−∞,∞), scale parameter 𝜎 > 0, and shape
arameter 𝜉 ∈ (−∞,∞). The annual extremes estimated by GEV are
ranslated into those of the parent distribution, following Koutsoyiannis
2004a, equation 3).

As a second EV model we used a Peaks Over Threshold approach,
escribing precipitation accumulations exceeding a high threshold us-
ng a GP distribution, while modeling the frequency of threshold ex-
eedances using a Poisson point process (Coles, 2001; Davison and
mith, 1990). This framework also yields GEV as the resulting ex-
reme value distribution, which is then used to determine the quantile
orresponding to a given return period. The GP CDF is given by:

(𝑦) =

⎧

⎪

⎨

⎪

⎩

1 −
(

1 + 𝜉𝑦
𝛽

)− 1
𝜉 , 𝜉 ≠ 0

1 − exp
(

− 𝑦
𝛽

)

, 𝜉 = 0
(2)

where 𝑦 > 0 are precipitation excesses over the threshold, with 𝛽 > 0
and 𝜉 ∈ (−∞,∞) the GP scale and shape parameters respectively. A
relevant aspect in applying the POT model is a suitable choice of the
threshold used to define precipitation exceedances. Our global-scale
application requires studying the distribution of precipitation extremes
across markedly different climatic regions, thus excluding the adoption
of a constant threshold value. We studied the effect of the threshold
choice using multiple selection methods on a global sample of grid
cells (see Supplementary Material Section 3 and Fig. S4). Our results
showed that the choice of the method had a limited effect on the
estimated return levels (Fig. S4a). We therefore chose to perform our
global analysis by selecting for each cell a threshold value such that it
is exceeded on average 3 times each hydrological year. Because of this
choice, the sample size available for fitting the GP distribution remains
constant across different precipitation durations. The method used to
fit the parameters of the GP distributions was the Probability Weighted
Moments (PWM; e.g., see Hosking and Wallis, 1987).

The third model we used is the MEV distribution (Hosseini et al.,
2020; Hu et al., 2020; Marani and Ignaccolo, 2015; Miniussi et al.,
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2020a,b; Zorzetto et al., 2016). In the MEV framework, all ‘ordinary’
precipitation events, i.e. all events above a small threshold, are used to
infer the EV distribution. The threshold we applied is 0.2 mm 3 h−1,
coinciding with the earlier defined ‘wet event’. Weibull parameters
were estimated for each hydrological year separately, based on all
wet events using the PWM method (Greenwood et al., 1979) as done
in Zorzetto et al. (2016). The MEV-Weibull CDF is given by:

𝜁𝑚(𝑥) =
1
𝑀

𝑀
∑

𝑗=1

{

1 − exp
[

−
(

𝑥
𝐶𝑗

)𝑤𝑗 ]}𝑛𝑗
(3)

where 𝑗 is the hydrological year (𝑗 = 1, 2,… ,𝑀), 𝐶𝑗 > 0 is the Weibull
scale parameter, 𝑤𝑗 > 0 is the Weibull shape parameter, and 𝑛𝑗 is
the number of wet events observed in hydrological year 𝑗 (Marani and
Ignaccolo, 2015).

2.2.1. Observed return periods
The MSWEP dataset analyzed here has 38 complete years of data.

Therefore, the empirical return period associated with the maximum
value on record computed according to the Weibull empirical frequency
estimate is 𝑇observed = 39 years. However, only 91% of all cells had
38 complete years of data, so the maximum observed return period
is sometimes lower: for 7% of the cells only 37 complete years were
available, and for 2% of the cells 36 years or less were available.
However, for simplicity we still refer to the corresponding maximum
return level as T39 in the results.

2.2.2. Study areas
In order to compare the three extreme value distributions, we

selected fourteen case study areas. They collectively cover a wide range
of climates and domain sizes, the locations of which can be found in
Fig. 3a. Within a single case study area, we expect the precipitation
estimates to be statistically homogeneous because of their precipitation
generating mechanisms (Cavanaugh and Gershunov, 2015; Cavanaugh
et al., 2015), elevation (Ragulina and Reitan, 2017), or average annual
rainfall.

2.2.3. Tail behavior
Both the GEV and MEV distributions are flexible and can describe

different tail behaviors. The interpretation of the tail parameter of the
two distributions differs, as illustrated in Supplementary Material Sec-
tion 4 Fig. S5 for different combinations of scale and shape parameters.
The shape parameter 𝜉 of the GEV distribution, obtained either through
the annual maxima or POT approach, encodes the nature of the tail of
the distribution. Based on the value of 𝜉, the GEV can take one of three
forms: a positive GEV shape parameter (𝜉 > 0, ‘‘Fréchet’’) corresponds to
a power-law tail, i.e., to a slowly-decaying probability of large events.
This heavy-tail behavior contrasts with the case of an exponential tail
(𝜉 = 0, ‘‘Gumbel’’), and with the case of a distribution with an upper
end point, which corresponds to negative values of the shape parameter
(𝜉 < 0, ‘‘inverse Weibull’’).

The MEV distribution assumes that precipitation events are Weibull-
distributed. The tail decay of this distribution is controlled by its shape
parameter: for 𝑤 < 1 its tail behavior is ‘‘sub-exponential’’, i.e., heavier
than that of an exponential (recovered for 𝑤 = 1), albeit with a
characteristic scale (Laherrere and Sornette, 1998; Wilson and Toumi,
2005). For 𝑤 > 1 the Weibull tail is super-exponential, with a fast
decaying tail, while still retaining an infinite upper end point. Hence,
the shape parameter of the Weibull distribution encodes the propensity
of a site to be subjected to large extreme events (Wilson and Toumi,
2005; Zorzetto et al., 2016). However, the tail decay of the MEV
distribution is not only dependent on that of ordinary values (through
𝑤) but is also affected by the yearly number of events (Marra et al.,
2018) and by the inter-annual variations of 𝐶𝑗 , 𝑤𝑗 and 𝑛𝑗 .

Whereas the tail behavior of GEV and POT can easily be inferred
from the shape parameter of their distributions, for MEV it depends
4

on multiple parameters, making direct comparison between MEV and
GEV/POT based on their parameters alone cumbersome. In an effort to
nonetheless compare these methods, we have come up with a measure
of heaviness that is based on the return levels themselves (Fig. 1).
It quantifies how much distributions differ from an exponential one.
For an exponential distribution, the 100-year return level (E100) is
as follows: E100 = T1 + 𝑏 + 𝑏. Where 𝑏 (blue arrows Fig. 1) is the
difference between the 10-year (T10) and 1-year (T1) return level, i.e.:
𝑏 = T10−𝑇 1. For any distribution that differs from a purely exponential
one, the difference between the 100-year return level (T100) and the
1-year return level (T1) can be described as:

T100 = T1 + 𝑏 + 𝑏 + 𝑎 (4)

In this equation 𝑎 (red arrow in Fig. 1) is the additional increase
caused by the heaviness of the tail, 𝑎 = T100 − T1 − 2𝑏 (Fig. 1). For
any given extreme value distribution (red dashed line in Fig. 1), a
positive 𝑎 is indicative of heavy tails, and a negative 𝑎 of thin tails. For
pure exponential tails (blue dotted line in Fig. 1) it holds that 𝑎 = 0.
The value for 𝑎 is highly dependent on the local precipitation systems,
so we defined the heaviness amplification factor ℎT1−T10−T100 to be a
normalization of 𝑎:

ℎ𝑇 1−𝑇 10−𝑇 100 =
𝑎
𝑏
=

𝑇 100 − 𝑇 1 − 2 × (𝑇 10 − 𝑇 1)
𝑇 10 − 𝑇 1

= 𝑇 100 − 2 × 𝑇 10 + 𝑇 1
𝑇 10 − 𝑇 1

= 𝑇 100 − 𝑇 10
𝑇 10 − 𝑇 1

− 1 (5)

In words, the meaning of ℎT1−T10−T100 is the fractional additional
increase between T100 and T10 that is more than the increase that
could be expected from a pure exponentially tailed distribution. A
distribution has a heavy tail for ℎ > 0 and a thin tail for ℎ < 0. Here,
we chose a range for the heaviness metric over return periods from 1 to
100 years, since these return levels are known to be mostly influenced
by the underlying data (Rajulapati et al., 2020). Yet, it should be
noted that this metric may easily be adjusted to other return periods
and other factors between the return periods. For GEV and POT the
heaviness metric is independent of the return period range as long as
the return periods are a factor 10 apart, because it is solely determined
by the shape parameter. Although for MEV this heaviness metric is
only valid for the return period range over which it is computed, using
other ranges (T2-T20-T200, T5-T50-T500, and T10-T100-T1000) did
not yield significant differences (Supplementary Material Section 5+6,
Fig. S7+8).

3. Results and discussion

3.1. Hydrological year

Fig. 2 shows the frequency distribution of 1000-year return levels
estimated using calendar and hydrological years for GEV and MEV.
The spatial distribution of the T1000 differences is presented in Sup-
plementary Material Fig. S2b for GEV and Fig. S2c for MEV, and
Fig. S3 presents the frequency distributions of all analyzed return
levels. The difference between the return levels estimated using cal-
endar or hydrological years is greatest when the hydrological year
starts around April–September, as in the Mediterranean, Middle-East,
Southern Africa, Brazil, Indonesia and Western US (see Supplementary
Material Fig. S2). This is the case because there are many different
events included in hydrological compared to calendar years, resulting
in different events and annual maxima and therefore differences in the
estimated extremes. For MEV the overall sensitivity in T1000 estimates
remains lower than that of GEV, suggesting that regional sensitivity to
the definition of block maxima can be quite significant for the GEV
approach.

On the other hand, we found that in the case of GEV quantiles
the fraction of sites characterized by differences within ±0.5% is larger
than for MEV. When the hydrological year starts around November-
February, it is only shifted by a few months so the annual maxima
mostly stay the same between the calendar and hydrological years. For
GEV this means that for many cells there is almost no difference in the
T1000 estimates, whereas for MEV the difference is small.
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h
t

Fig. 1. Illustration of our method to measure the tail heaviness for any distribution based on return levels only. E100 is the 100-year return level if the extreme value distribution
as an exponential tail. T100 is the 100-year return level for any extreme value distribution that differs from an exponential one. (For interpretation of the references to color in
his figure legend, the reader is referred to the web version of this article.)
Fig. 2. Weighted histogram showing the percentage difference in the values of T1000
quantiles calculated using calendar years and hydrological years. Included in the figure
are all cells where the start of the hydrological year is different than the calendar year
(i.e., the hydrological year does not start in January, see Supplementary Material Fig.
2a). A negative difference indicates that the T1000 estimate is larger using hydrological
years, whereas a positive difference indicates that the T1000 estimate is larger using
calendar years.
5

3.2. Extreme precipitation estimates

Fig. 3 shows the 100-year precipitation return levels for a 24-
hour duration. Extreme value estimates for other durations and re-
turn periods are featured in the Global Precipitation EXtremes (GPEX)
dataset (Gründemann et al., 2021). The spatial patterns of the extremes
estimated by GEV and MEV are similar to Zorzetto and Marani (2020,
their Figure 9), while the spatial pattern of the underlying GEV param-
eters are consistent with Courty et al. (2019, their Figure 1). The global
spatial pattern of return levels for the three EV methods is similar,
although large regional differences can be observed. The GEV and POT
results are similar in magnitude and show similar differences when
compared to MEV. The estimated precipitation extremes are generally
lower for both GEV and POT compared to MEV quantiles. MEV es-
timates exhibit smooth spatial patterns, whereas the spatial patterns
using GEV and POT are more irregular, consistent with the results
of Zorzetto and Marani (2020) for the conterminous US. Furthermore,
Fig. 3 reveals the presence of a large number of circular areas with
heavier extremes, corresponding to the location of gauges used for
correcting precipitation estimates in the MSWEP algorithm (Beck et al.,
2019b). The effect of these local corrections is much larger for tradi-
tional EV models (POT and GEV) than for MEV. The reduced spatial
coherence in patterns of extremes for GEV and POT is particularly
evident in the Great Plains of North America, and in Northern Russia,
Southeast Asia, and Central Africa.

In order to study the ability of the three distributions to capture
the spatial coherence of precipitation extremes, we calculated the
coefficient of variation (CV) for fourteen study areas, see Fig. 4. The
CV is the ratio of the standard deviation to the mean and is used to
compare the relative variation between the study areas. The higher
the CV, the higher the relative spread of the precipitation estimates
within a spatial domain. This figure shows quite similar behavior for

GEV and POT, though POT has a slightly lower spread. The CV for
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Fig. 3. Precipitation return levels with a duration of 24-hours for a 100-year return period for different extreme value distributions: (a) the Generalized Extreme Value (GEV)
distribution, (b) the Peak Over Threshold (POT) method, and (c) the Metastatistical Extreme Value (MEV) distribution. The colorbar has a logarithmic scale, where yellow and
purple colors respectively indicate low and very high 100-year precipitation return levels. The black rectangles in panel a are the case studies corresponding to the areas in Fig. 4.
Dry areas and cells with too many discarded values are masked in gray following the method in Section 2.1.1. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
MEV is generally lower, which points to more spatially coherent T100
precipitation estimates based on single point time series (with 38 years
of training data). The CV for all EVDs is higher for areas that are more
arid (e.g. Bolivia, Mongolia, Namibia and Oman).

To further investigate the global differences in magnitude between
the three methods, we examine the extremes for each distribution
using a spatially weighted mean over the global land surface. This is
displayed for multiple return periods and durations as depth-duration-
frequency curves (Fig. 5). We first compare the maximum precipitation
observed (T39 observed, the black dotted line in Fig. 5) in the dataset
to the precipitation predicted from each distribution. While locally the
6

empirical T39 estimate could be very different from the true return
level, we expect the global average of this value to be representative
of the true T39. For GEV and POT, we expected the estimated T39 to
be close to the observed value since only the largest values are used to
fit these distributions. For MEV, we did not necessarily expect a good
agreement for T39, but its performance should be better for return
levels greater than the length of the observation time series (Marra
et al., 2018, 2019b; Schellander et al., 2019; Zorzetto et al., 2016).
The results in Fig. 5 show that for the short duration events, the
observed T39 is close to the T39 for all three distributions. For in-
creasing durations, the deviation between empirically observed and EV
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Fig. 4. Coefficient of variation for the difference in estimated T100 quantiles for the three extreme value methods for 24-hour precipitation at selected case study areas. The
locations of the case study areas are displayed in Fig. 3a.
Fig. 5. Area-weighted average depth-duration-frequency curves for the global land surface (log–log scale). T39 Observed is the mean spatially weighted maximum precipitation
bserved in the MSWEP-V2.2 dataset.
odeled T39 quantiles increases, particularly for MEV. This could be
ecause a smaller number of events per year is used for the fit of MEV-
eibull, whereas the number of events used for the fit of GEV and

OT remains constant for all durations. Both GEV and POT show an
nderestimation and MEV an overestimation. This figure also shows
gain that the differences between GEV and POT are small. The global
verage estimated extremes for GEV and POT are notably lower than
or MEV, as was already visible from Fig. 3. This difference is more
ronounced for larger return periods and longer durations.

One reason the quantiles estimated using MEV are higher than
sing GEV and POT is related to the increase in estimation uncertainty
f Weibull parameters and higher inter-annual variability when the
umber of events per hydrological year is low (Miniussi and Marani,
020). This is especially relevant in arid regions and for long durations
Figs. 3 and 5). For instance, for 5 and 10-day durations the average
nnual number of events is 37 and 22 events respectively. It is therefore
ossible that this leads to an overestimation by MEV. To overcome
his, windows of two or more years could result in a better parameter
stimation (Miniussi and Marani, 2020).
7

3.3. Tail behavior

To better understand the differences between extremes estimated
using the three methods, we analyze their tail behavior using the
heaviness amplification factor ℎT1−T10−T100 (Eq. (5)). Fig. 6 presents
ℎT1−T10−T100 for a 24-hour duration worldwide for each of the three
distributions. We refer to Figs, S9-S15 in Section 7 in the supplementary
material for maps of ℎT1−T10−T100 for the other durations. Note that as
expected the heaviness metric gives a near-identical pattern for both
GEV and POT as compared to using their shape parameter directly,
but this is less similar for MEV and its yearly mean shape parameter
(compare Fig. 6 to Fig. S6).

Both GEV (Fig. 6a) and POT (Fig. 6b) exhibit a large spatial vari-
ability in addition to a low spatial coherence. This makes it difficult
to discern clear spatial patterns with the exception of a few notable
regions. For instance, in the Amazon, ℎT1−T10−T100 is mostly negative,
suggesting a tail with an upper limit, while in Eastern and Southern
Australia ℎT1−T10−T100 it is strongly positive, denoting strong heavy
tail behavior. This map roughly corresponds to the spatial patterns of
the GEV shape parameter for daily precipitation shown by Papalexiou
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Fig. 6. The heaviness amplification factor ℎT1−T10−T100 (Eq. (5)) for daily precipitation calculated for different extreme value methods: (a) GEV, (b) POT, (c) MEV. Red indicates
a thin tail, white an exponential tail, and blue a heavy tail. See Section 2.2.3 for more information on the heaviness metric, and Figures S8-S14 for maps of ℎT1−T10−T100 for the
other durations. Dry areas and cells with too many discarded values are masked in gray following the method in Section 2.1.1. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)
and Koutsoyiannis (2013, their Figure 13) and Ragulina and Reitan
(2017, their Figure 4) as well as a metric based on the mean excess
function Nerantzaki and Papalexiou (2019, their Figure 7a). Given the
more similar results between these studies, who used for a large part
the same data, we think that the differences with our maps are likely
caused by using different underlying data rather than the particular
heaviness metric. We also find that for the GEV and POT methods, grid
cells associated with heavy tails can be adjacent to cells with thin tails.
Furthermore, in 28% of the cells for daily precipitation GEV and POT
8

show a different type of tail, heavy/thin, in the same grid cells. This
highlights the large uncertainty associated with estimating reliable tail
parameters from short time series and the sensitivity of the GEV and
POT methods to sampling effects.

The heaviness of the MEV distribution (Fig. 6c) shows a more coher-
ent spatial pattern. At virtually all grid cells the heaviness amplification
factor ℎT1−T10−T100 (Eq. (5)) indicates heavy tail behavior and there
is a high consistency within geographic regions and for all durations
(Figures S8-S14). Based on previous studies (Cavanaugh et al., 2015;
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Fig. 7. Boxplot showing the distribution of the heaviness amplification factor ℎT1−T10−T100 (-) for different durations and extreme value methods: GEV, POT and MEV. The whiskers
enote the 1st and 99th percentiles. The top and bottom of the boxes represent the 75th and 25th percentiles, respectively. The dashed gray horizontal lines indicate exponential
ails. See Section 2.2.3 for more information on the heaviness metric.
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apalexiou and Koutsoyiannis, 2013; Papalexiou et al., 2013; Ragulina
nd Reitan, 2017; Nerantzaki and Papalexiou, 2019), this predomi-
antly heavy-tail behavior of daily precipitation was expected and is
ell captured by MEV. There are also topographical patterns visible

n the heaviness amplification factor (Fig. 6c), though they are not as
learly distinguishable as for the shape parameter itself (Fig. S6). The
eaviness tends to be higher in arid areas, and lower in mountainous
reas. Examples of arid areas with high heaviness include the Sahara,
he Namib and Kalahari in Africa, the Gobi, Thar and Taklamakan in
sia, the Atacama Desert in South America, large areas of Southwestern
ustralia, and the Arabian desert and other areas in the Middle East.
his same pattern is to a lesser extent also visible for the heaviness of
EV (Fig. 6a) and POT (Fig. 6b).

At high elevations a small ℎT1−T10−T100 is usually found for MEV
Fig. 6c). Examples include the Rocky Mountains and the Sierra Madres
n North America, the northern Andes and large areas of the Brazilian
ighlands in South America, the Ethiopian Highlands, the Scandinavian
ountains, and the Tibetan Plateau. These spatial patterns are in con-

rast with what Papalexiou et al. (2018, their Figure 6) found for hourly
eibull tails in the USA, where the heaviest tails are in the mountain-

us areas, and the thin tails are in the south-east. However, our results
orrespond well to Ragulina and Reitan (2017, their Figure 4), who
howed that heaviness decreases with elevation.

A comparison of the heaviness for different distributions and du-
ations is presented as a boxplot in Fig. 7. For spatial maps of the
eaviness for the different durations we refer to Figures S8-S14. For
EV and POT, predominantly heavy tails are observed for short du-

ations and thinner tails for long durations. Furthermore, GEV and
OT both show a decreasing variability in the heaviness for longer
urations, indicated by both shorter whiskers and boxes. The decrease
f the heaviness of the tails for increasing durations is in line with the
indings of Cavanaugh and Gershunov (2015), who found that longer
uration extremes exhibit thinner tails. For GEV and POT the longer
urations largely indicate tails with a finite upper end point, in half of
he cases for a duration of 10 days for GEV, and more than half for
OT. One implication of this finding is that, when computing return
evels for a single location (see Figures S4 and S15), it is possible for
he largest return periods that shorter duration quantiles estimate a
igher precipitation depth than the longer duration quantiles. This is
hysically impossible (see Fig. S16a,b,f and g), and we should thus be
xtremely careful when interpreting such results.
9

MEV, on the other hand, shows different heaviness patterns than
EV and POT (Fig. 7 and Figures S8-S14). MEV shows almost entirely
eavy-tail behavior, which remains consistent across the range of du-
ations examined. Furthermore, also the variability for MEV is constant
cross durations, though with a slight increase for longer durations.
his is in line with Fig. 5, where the difference between the T39
bserved and estimated with MEV increases for the longest durations. It
ould be that MEV is overestimating these return levels of these largest
urations. A possible way to improve the estimations would be to group
ultiple years together, as per Miniussi and Marani (2020).

The MEV distribution produces a spatially and temporally coherent
eavy tail behavior based on a 38 years calibration sample and a
ingle grid-cell analysis. This is a promising result, as MEV, in con-
rast to the traditional methods analyzed, provides a more spatially
oherent picture of precipitation extremes without any prior hypoth-
sis on its spatial structure, for example through a spatial clustering
cheme (Demirdjian et al., 2018). In fact, the spatial structure of the
ail heaviness obtained through the MEV analysis could be used as a
easure of statistical homogeneity for regionalization studies.

. Conclusions

The aim of this research was to quantitatively characterize the
patiotemporal variation of global precipitation extremes and their as-
ociated extreme value distribution tails. We have fitted three different
xtreme value methods (GEV, POT, and MEV) to a global precipitation
ataset, MSWEP V2.2, to estimate extreme precipitation return levels
or eight durations. In order to compare the tails of the three distribu-
ions, we introduced a novel heaviness amplification factor ℎT1−T10−T100
Eq. (5)). Instead of using calendar years to delineate between different
ears, we used hydrological years, the start of which we defined as the
riest month. We demonstrated that there is a substantial difference in
he extremes depending on the definition of yearly blocks used in the
xtreme value analysis (Fig. 2). Although there is no systematic bias,
e still recommend to apply the extreme value analyses for estimating
xtreme precipitation based on hydrological years in future studies. Our
nalysis indicates that this can be particularly relevant in the Southern
emisphere and in regions characterized by marked seasonal cycles.

It is well known that the traditional GEV and POT methods require
ery long data series for accurate estimation of the tail behavior, and
ur study confirms that there is a low spatial coherence for the tail
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properties of both distributions (Fig. 6a and b) using just 38 years of
training data. The tail properties of the MEV distribution are spatially
more coherent (Fig. 6c) and hence the estimated return levels are
more spatially coherent as well (Fig. 3c). This spatially coherent be-
havior, consistent with previous results obtained over the conterminous
US (Zorzetto and Marani, 2020), shows that the MEV distribution
is able to capture spatially consistent tail behavior from short time
series and by a single grid-cell analysis, without any prior information
on the spatial precipitation structures. The analysis of the MEV tail
behavior reveals distinct spatial patterns, as the heaviness appears to be
controlled by climate zones and orography. Heavier tails are observed
in arid areas, and thinner tails in mountainous regions. More in-depth
analyses are necessary to draw definite conclusions on what exactly
controls the heaviness of extreme value distribution tails. The perfor-
mance of MEV is promising for regions without long local precipitation
records. Furthermore, our study shows that the tail behavior captured
by MEV is coherent and heavy both spatially and temporally (Figs. 6,
7 and S8–S14). For GEV and POT, on the other hand, the tail behavior
decreases with increasing event duration, resulting in a thin tail with
a finite endpoint for about half of the cells for a duration of 10 days.
The ‘correct’ relationship between heaviness and precipitation duration
warrants further investigation.

We also conclude that both GEV and POT generally underestimate
the observed extremes, whereas MEV overestimates them (Fig. 5). This
occurs particularly for long-duration extremes and large return periods.
For MEV an explanation could be that there are fewer events per year
used for the yearly distribution fits, resulting in larger interannual
variability and thus overestimation of extremes. We do consider it
likely, however, that the results could be improved, for instance by
changing the event threshold or by fitting the Weibull distribution over
two or more years for dry areas (Miniussi and Marani, 2020), so as
to reduce inter-annual variability of the parameters due to samples
of limited length. Our results suggest that this issue is particularly
relevant at the longest durations examined. For GEV and POT the
spatial consistency of the results could also be improved by adopting
spatial extreme models (Davison et al., 2012; Huser and Wadsworth,
2020).

The data generated for this study are openly available as the GPEX
dataset (Gründemann et al., 2021). These data include extreme pre-
cipitation return levels and extreme value distribution parameters for
durations between 3 h and 10 days at a global gridded 0.1◦ resolu-
tion. They could be used by engineers as a reference of precipitation
extremes for data-scarce regions in particular. For scientific purposes,
all underlying parameters are also available and can be used to answer
several outstanding questions, such as: what are the controls on the tail
behavior of extremes, and what is driving the different changes in tail
heaviness with duration for GEV, POT, and MEV?

Data and code availability

The GPEX dataset is available at the 4TU repository (Gründemann
et al., 2021). The data included are the extremes estimated using the
different distributions, the observed extremes, and the parameters to
estimate the extremes. These data are available for all durations in-
cluded in this study. The resolution of the dataset is 0.1◦, the resolution
f the MSWEP-V2.2 dataset. For more information we refer to the
ataset Usage Notes in Section 8 of the supplementary material. The

cripts for creating the figures in this manuscript are available at https:
/doi.org/10.4121/21293760.
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