<]
TUDelft

Delft University of Technology

SFILES 2.0
an extended text-based flowsheet representation

Vogel, Gabriel; Hirtreiter, Edwin; Schulze Balhorn, Lukas; Schweidtmann, Artur M.

DOI
10.1007/s11081-023-09798-9

Publication date
2023

Document Version
Final published version

Published in
Optimization and Engineering

Citation (APA)

Vogel, G., Hirtreiter, E., Schulze Balhorn, L., & Schweidtmann, A. M. (2023). SFILES 2.0: an extended text-
based flowsheet representation. Optimization and Engineering, 24(4), 2911-2933.
https://doi.org/10.1007/s11081-023-09798-9

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

https://doi.org/10.1007/s11081-023-09798-9
https://doi.org/10.1007/s11081-023-09798-9

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!’ - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

Optimization and Engineering
https://doi.org/10.1007/511081-023-09798-9

RESEARCH ARTICLE

n

Check for
updates

SFILES 2.0: an extended text-based flowsheet
representation

Gabriel Vogel® - Edwin Hirtreiter' - Lukas Schulze Balhorn' .
Artur M. Schweidtmann’

Received: 26 July 2022 / Revised: 21 March 2023 / Accepted: 22 March 2023
© The Author(s) 2023

Abstract

SFILES are a text-based notation for chemical process flowsheets. They were origi-
nally proposed by d’Anterroches (Process flow sheet generation & design through a
group contribution approach) who was inspired by the text-based SMILES notation
for molecules. The text-based format has several advantages compared to flowsheet
images regarding the storage format, computational accessibility, and eventually for
data analysis and processing. However, the original SFILES version cannot describe
essential flowsheet configurations unambiguously, such as the distinction between top
and bottom products. Neither is it capable of describing the control structure required
for the safe and reliable operation of chemical processes. Also, there is no publicly
available software for decoding or encoding chemical process topologies to SFILES.
We propose the SFILES 2.0 with a complete description of the extended notation
and naming conventions. Additionally, we provide open-source software for the auto-
mated conversion between flowsheet graphs and SFILES 2.0 strings. This way, we
hope to encourage researchers and engineers to publish their flowsheet topologies
as SFILES 2.0 strings. The ultimate goal is to set the standards for creating a FAIR
database of chemical process flowsheets, which would be of great value for future data
analysis and processing.

Keywords Flowsheet graph - Process flow diagram - Artificial intelligence -
FAIR data - STRING notation

B Artur M. Schweidtmann
a.schweidtmann @tudelft.nl

Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629 HZ
Delft, The Netherlands

Published online: 02 May 2023 @ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s11081-023-09798-9&domain=pdf

G.Vogel et al.

1 Introduction

Chemical process flowsheets, also known as process flow diagrams (PFDs) ISO (2010,
2015), are the current standard for depicting and communicating the topology of unit
operations in chemical processes (see Fig. 1a). PFDs are used in industry and academia
during conceptual process design and consequently there exists at least one PFD for
every chemical process in the world. Besides process flow diagrams, Piping and Instru-
mentation Diagrams (P&IDs) ISO (2010, 2015) are a central representation class
of chemical processes. They include additional information about instrumentation,
valves, control structures, and piping Towler and Sinnott (2008). Due to contained
process-specific knowledge P&IDs provide valuable details for a deep understanding
of the chemical process. Therefore, P&IDs are interdisciplinary employed at every
stage of a chemical plant: from engineering and design, to hazard and operability
studies (HAZOP), to operation and tracking changes during maintenance Toghraei
(2019). Currently, PFDs and P&IDs are usually drawn in computer programs and
exported as images or PDF documents. Despite some recent efforts in Smart P&IDs
and open data exchange formats Wiedau et al. (2019), it seems that the information con-
tent of flowsheet diagrams in documents often remains inseparable from the medium,
like hieroglyphs carved in stone. The main reason for this development is that PFDs
and P&IDs in the form of images or PDFs are widely utilized as an interdisciplinary
communication tool for easily exchanging first process ideas, but also advanced plant
designs between experts from different domains (e.g. process engineers, material sci-
entists, management, etc.). Also, proprietary process simulation software often does
not facilitate interoperability and data exchange. However, the document-based com-
munication of flowsheet information hinders the development of findable, accessible,
interoperable, and reusable (FAIR) Wilkinson et al. (2016) data. This also has con-
sequences for the use of advanced data analysis and data processing tools. Currently,
some aspects of chemical process design can be tedious and repetitive, while FAIR pro-
cess data could enable automated data processing. In our previous work, we also argue
that the lack of structured data is a major hurdle for advances of artificial intelligence
in chemical process engineering (Schweidtmann et al. 2021).

Chemical flowsheets can be represented as directed graphs (Zhang et al. 2018;
Zheng et al. 2022). The flowsheet graph (see Fig. 1b) consists of nodes that represent
the unit operations and directed edges that represent the stream connections. Graphs are
computationally accessible and further offer the possibility to store additional process
information as node or edge attributes. However, using the graph as flowsheet repre-
sentation usually requires knowledge of programming languages and graph libraries,
both for the process designer and for engineers who want to reuse the flowsheet.

Text-based representations are a promising alternative to graph representations for
the communication of flowsheet information. In 2006, d’ Anterroches (2006) proposed
the Simplified Flowsheet Input-Line Entry-System (SFILES) which is a text-based
notation to represent flowsheet topologies. The SFILES is inspired by the Simplified
Molecule Input-Line Entry-System (SMILES) (Weininger et al. 1989) notation, which
has become a standard storage and exchange format for molecules. Using SFILES as
flowsheet storage and exchange format brings several advantages compared to images
and graphs. Standardization of the text-based representation is one advantage over

@ Springer

SFILES 2.0: an extended text-based flowsheet representation

flowsheet images that usually vary due to different drawing software. Furthermore,
the text-based representation is an efficient exchange format that can be included in
publications and directly used for data analysis and processing, which sets it apart
from the graph representation.

SFILES have already enabled the development of advanced data processing tech-
niques on flowsheets. Tula et al. (2019a,b) used it to compare process flowsheets
for a given synthesis problem. Their approach enabled them to find more sustainable
process alternatives. In other work, the SFILES notation was slightly modified and
used for pattern recognition in chemical process flowsheets Zhang et al. (2018; 2022).
With the help of sequence alignment algorithms, the authors successfully identified
common design patterns in chemical process flowsheets. Nevertheless, previous work
does not include a complete description of the connectivity and the stream paths when
dealing with unit operations with multiple in- and outlet streams, i.e., the distinction
between top and bottom products or stream paths through multi-stream heat exchang-
ers. Furthermore, the SFILES notation in previous work is limited to PFDs, neglecting
important information contained in P&IDs, such as control structures. To the best of
our knowledge, there is also no publicly available software for the automated conver-
sion between flowsheet graphs and SFILES 2.0 strings.

In this work, we propose the SFILES 2.0 and provide a comprehensive description
of the extensions and modifications compared to previous work. Moreover, we sug-
gest naming conventions to pave the way toward standardized SFILES strings. The
extensions in this paper include a set of rules for the flowsheet graph representation,
specifying a new way to unambiguously represent multi-stream heat exchangers and
unit operations with top and bottom in- and outlet streams in the flowsheet graph. Sub-
sequently, we modified and extended the original SFILES notation rules, which allow
an unambiguous string representation and enable a reversible conversion between a
flowsheet graph and its corresponding SFILES 2.0 string. Eventually, it should be pos-
sible to describe flowsheet topologies of higher complexities while still encoding all
necessary topological information in the SFILES 2.0 string. Additionally, we address
the inclusion of control structures contained in P&IDs in the flowsheet graph and
SFILES 2.0 notation. Moreover, we implemented a conversion algorithm in Python
and made it openly accessible in a GitHub repository Vogel et al. 2022 with illustrative
examples, encouraging researchers to publish their future chemical process flowsheets
with the corresponding SFILES 2.0 strings. This way, we hope to contribute to cre-
ating and continuously extending a machine-readable SFILES 2.0-based database of
chemical process flowsheet topologies.

2 Background

The following outlines previous work on the flowsheet graph representation and
SFILES notation rules, which lays the foundation for our work.

@ Springer

G.Vogel et al.

prod-1

dist-1

splt-1
prod-2

(a)

(ntaw—rl 2%»1 hrex»rl Ej h{prod—})

b5 N N Ve N oy N N e N
‘\raw-z) pp—l > r-1) (mix-1 — 7v—17 /ﬁ‘\crllst—rly/e

T L(splt-1 :M:prod—zj

T

(b)

Fig.1 a Simple chemical process flowsheet with branches and one recycle stream. b Graph representation
of the flowsheet in (a)

2.1 Flowsheet graph representation

A graph is a data structure that consists of nodes, also called vertices, and edges.
Edges are connections between nodes and can be either directed or undirected, defining
whether the graph is directed or undirected. The original description of the SFILES
string (d’ Anterroches 2006) uses a directed flowsheet graph with process groups as
nodes and the connections between these process groups as edges. The process groups
can either represent one unit operation or a set of unit operations. Herein, we focus on
single unit operations in flowsheets, similar to the work in Zhang et al. (2018) defining
unit operations as nodes and the connecting streams as edges. Figure 1a shows an
exemplary flowsheet with two inlet streams, a reactor, a distillation column (reboiler
and condenser included), a recycle of the bottom product, and two product streams.
The used abbreviations are based on the standardized unit operation names in Table 2.
When constructing the corresponding flowsheet graph in Fig. 1b, the nodes need to
be numbered to obtain a unique definition of nodes and their associated edges. We
can distinguish the graph nodes using their in- and out-degree, whereby the in-degree
is the number of edges directed towards a node, and the out-degree is the number of
edges directed away from a node. Inlet nodes with the name raw always exhibit an
in-degree=0, and outlet nodes with the name prod always have an out-degree=0. A
node with an in-degree>1 means that graph branches are converging at that node (in
Fig.1b r-1, mix-1), and a node with an out-degree>1 indicates a new branching
at the considered node (in Fig. Ibdist-1, splt-1).

@ Springer

SFILES 2.0: an extended text-based flowsheet representation

2.2 Original SFILES notation

The original SFILES notation rules (d’ Anterroches 20006) are outlined in this section
using the flowsheet graph in Fig. 1b. Starting with the inlet node raw-1 the correspond-
ing SFILES string of this flowsheet graph is

(raw-1) (hex-1) (r-1) [<(pp-1)<(raw-2)] (mix-1)<1(v-1)
(dist-1) [(prod-1)1] (splt-1)1 (prod-2).

Process groups, or in this example, abbreviations for the unit operations are noted in
parenthesis. The SFILES string is read from left to right and two consecutive unit
operations in parenthesis imply a connection, e.g., (raw-1) (hex-1) implies a
connection from (raw-1) to (hex-1). In the case of branching in the graph, e.g.,
after the distillation system (dist-1) in Fig. 1a, all except the last considered branch
during the conversion from flowsheet graph to string (see Sect.4.1), are noted in
square brackets. In the case of converging branches at a node with an in-degree>1,
the original definition d’Anterroches (2006) uses square brackets and < for back-
ward connections in the SFILES string. Converging branches always occur when
the described chemical process comprises multiple input streams. Consequently, the
sequence (r-1) [<(pp-1)<(raw-2)] implies the connections from (raw-2)
to (pp-1) and (pp-1) to (r-1).Thelastimportant notation rule applies to recycle
connections, such as the one from (splt-1) backto (mix-1). Similar to cycles in
molecules in the SMILES notation, a number # is used to indicate the start of a recycle
(here: (splt-1)1), and <# is used to indicate the end of the directed recycle connection
(here: (mix-1)<1). Given the flowsheet graph, the SFILES string generation consists
of two steps (d’ Anterroches 2006):

1. Calculation of a unique graph invariant.
2. SFILES generation by traversing the graph with initial node selection and branch-
ing decisions based on the graph invariant.

The graph invariant calculation is based on the flowsheet graph structure and is used
to assign a unique rank to each node (see Sect. 4.1). Based on the node ranks, an initial
node for the graph traversal is chosen and branching decisions are made. This ensures
the generation of a unique SFILES string.

The numbers in a SFILES string are adopted from the node names in the flowsheet
graph but do not contain any essential process knowledge. For this reason, in previous
work Zhang et al. (2018; 2022) for pattern recognition in flowsheets, the authors
used a generalized version of the SFILES string without the unit operation numbers.
Removing the numbering in the SFILES string of the example in Fig. 1b yields the
generalized SFILES

(raw) (hex) (r) [<(pp)<(raw)] (mix)<1(v) (dist) [(prod)]
(splt) 1l (prod) .

@ Springer

G.Vogel et al.

3 SFILES 2.0

In this section, we describe our proposed modifications and extensions of the origi-
nal SFILES notation. We call this modified version SFILES 2.0. Section 3.1 clarifies
minor modifications of the syntax and proposes extensions to unambiguously rep-
resent multi-stream heat exchangers and unit operations with complex connectivity,
such as separation columns. Thereafter, Sect. 3.2 describes the notation details that are
required to represent the control structure contained in P&IDs. Additionally, we pro-
pose standardized naming conventions for commonly used unit operations in Sect. 3.3.
Finally, to enhance the usability for other researchers in the field, we created Tables
3 and 4 in Sect.3.5 summarizing the SFILES 2.0 syntax and notation rules. In the
following, we use generalized SFILES as the standard notation (see Sect.2.2).

3.1 Extension of notation

For complex chemical processes, the corresponding flowsheets can get quite large,
containing a high number of unit operations and process branches. For a more robust
notation of complex converging branches (multiple input streams), we suggest the fol-
lowing modification: When reaching a node with an in-degree>1 during the graph
traversal (see Sect.4.2), the original SFILES definition uses a backward notation
containing < signs for converging branches. In the SFILES 2.0, we note converg-
ing branches surrounded by <&l and |, whereby we insert an additional &-sign next
to the node that is connected to the considered node with an in-degree>1. Using this
notation for the example in Fig. 1b yields the generalized SFILES

(raw) (hex) (r)<&| (raw) (pp) &| (mix)<1(v) (dist) [(prod)] (splt)
1 (prod)

Iteliminates the backward notation containing < signs and, more importantly, enables a
more robust notation of complex converging branches that consist of several branches
themselves. An example that illustrates the necessity of this modification is shown
in the flowsheet in Fig.2. Using the conversion algorithm described in Sect.4.2 the
SFILES 2.0 string for this flowsheet is:

(raw) (pp) (r)<&| (raw) (mix)<1(dist) [(hex)&] (splt) 1l (prod) |
(hex) (prod)

The process branch that converges into the reactor is marked dark red in the SFILES 2.0
string and in the figure. According to the notation rules it is surrounded by <& | and
| (highlighted in dark blue). The additional & sign indicates which node of the dark
red branch is connected to the reactor.

Furthermore, the following extensions in the SFILES 2.0 compared to previous
work focus on how to describe the connectivity and the stream paths when dealing
with unit operations with multiple in- and outlet streams. A common process character-
istic that illustrates the importance of the connectivity information is heat integration,
resulting in multi-stream heat exchangers. For instance, cryogenic processes such as
air separation often comprise multi-stream heat exchangers. Other examples exhibit-
ing complex connectivity are distillation columns with top and bottom products or

@ Springer

SFILES 2.0: an extended text-based flowsheet representation

branch in the SFILES 2.0 string
consisting of a branching itself.
It illustrates the necessity of our
modification of adding a & sign
to encode how the branches are
connected

hex

Fig.2 Flowsheet with multiple

branchings.The branch in dark raw

red colour is a converging pp 4’@(—’|::> prod
hex g

mix
raw I:: > E,i dist

splt
prod

3-stream

- < :j, heat exchanger —
prod-2 ii\prod-2>
raw-1 dist-1 \ l—l

hex 1 é (raw-1—— hex-1)——(dist-1)

Ve Y
prod-3 ‘\ptojil/‘

raw-2

YY

c'/ - \\
prod-1 N\

(a) (b)

Fig.3 Flowsheet with complex connectivity characteristics. a PFD, b graph representation

even several inlet and outlet streams. The information on how the different streams
are connected to the unit operations and are further processed is essential and must
be included in the SFILES 2.0 string to enable a reversible reconstruction of the flow-
sheet graph. The example process in Fig. 3 consists of a 3-stream heat exchanger and a
distillation column with top and bottom products. Essential information, in this case,
is that the inlet raw-1 is connected to the column via the heat exchanger and the top
product is returned to the heat exchanger.

Converting the flowsheet to a directed graph and to the generalized SFILES string
without connectivity information yields

(raw) (hex)<1<&|(raw) &|[(prod)][(prod)] (dist) 1 (prod) .

Using this SFILES string for the conversion back to a flowsheet graph would be
ambiguous in terms of tracking the stream paths through the heat exchanger and the
information of which separation product is heat-integrated with the heat exchanger.
There are several possibilities to include the necessary information in the SFILES.
Our strategy starts with modifying the flowsheet graph representation derived from
the concept of State-Equipment Networks (SEN) (Zhang et al. 2018; Yeomans and
Grossmann 1999) for the representation of the superstructure of chemical processes.

@ Springer

G.Vogel et al.

Fig.4 Flowsheet graph with Equipment name:
modified node structure of heat hex-1
exchanger and connectivity

’
attributes for distillation column :
1
1
1
1

As shown in Fig.4, we replaced the heat exchanger node with three single nodes
that represent the accommodated streams in the heat exchanger equipment. Each node
represents one heating or cooling task in that heat exchanger, meaning that the streams
are not in direct contact but only transfer heat. We distinguish the node names in the
graph by adding a / #. Consequently, it is possible to have multiple separate mass trains
resulting in multiple unconnected sub-graphs in the flowsheet graph. For instance,
one sub-graph for the main process and one sub-graph for a refrigeration cycle. We
will use the prefix n| in the SFILES string to indicate an independent mass train.
In our example, one independent mass train is the connection from raw-2 through
hex-1/3 to prod-3. In the numbered SFILES string, the node names of the heat
exchangers contain the heat integration information. In the generalized SFILES string,
we need to add this information after removing the numbers. The authors in Zhang
et al. (2018) used the recycle notation for heat integrated heat exchangers. However,
the streams in heat exchangers do not mix, hence, formally this is not a recycle and
we propose an alternative notation. Next to each heat exchanger node of the same heat
exchanger equipment, we insert the same number # in braces ({#}). In the case of
heat exchangers (heaters and coolers) without heat integration (node has in-degree=1
and out-degree=1), we do not encode this information. Including the new rules for
multi-stream heat exchangers, the following string results:

(raw) (hex) {1} (dist) [(prod)] (hex) {1} (prod)n| (raw) (hex)
{1} (prod) .

We also need to encode additional information for other unit operations, such as
distillation columns with at least one top and one bottom product as outlet streams.
We use tags in the SFILES string to indicate the top product branch and the bottom
product branch. The difference between, for example, a column and a splitter is that
the branched streams after a splitter have the same properties, whereas this, in general,
does not hold for separation units. As a result, it is crucial information of the flowsheet
topology which process branch results from which separation product. We will use
braces to encode that additional connectivity information in the following manner.
Given a graph edge from node u to node v with a stream tag x, the connection will
be noted as 1. in case of a normal connection, 2. in case of branching, 3. in case of a
recycle, and 4. in case of a converging branch.

(u) {x
(u) [{x}(v)] or (u)l...]l{x}(v)

N =

@ Springer

SFILES 2.0: an extended text-based flowsheet representation

ti tout
in (Outlet gas)

(Inlet liquid)

abs-1 Absorption
column

bin
(Inlet gas)

raw-2

~—

bout -

(Outlet liquid)

(a)

Fig. 5 a Absorption column with two inlets and two outlets. b Flowsheet graph of a with connectivity
stream tags

3. (v)<l...(u){x}1
4. (v)<&|...(u) {x}&]|

The stream tags must be saved as edge attributes in the flowsheet graph, e.g., the top
and bottom outlet stream tags in Fig.4. Combining the rules related to multi-stream
heat exchangers and stream tags, the final SFILES 2.0 string results in

(raw) (hex) {1} (dist) [{bout} (prod)] {tout} (hex) {1} (prod)n|(
raw) (hex) {1} (prod) .

The SFILES 2.0 string now enables the reconstruction of the flowsheet graph without
loss of information and ultimately the reproduction of the PFD in Fig.3. The stream
tags can also be applied to other unit operations such as absorption or extraction
columns. Figure 5a shows an absorption column with two inlet and two outlet connec-
tions. The necessary topological information is contained in the tags {bin}, {tin},
{tout}, and {bout}, which are stored as edge attributes in the flowsheet graph in
Fig. 5b. The SFILES 2.0 string for this hypothetical process is

(raw) {bin} (abs) <&| (raw) {tin}&|[{tout} (prod)] {bout} (prod) .

The same can be applied to all other units operation nodes where the connectivity
information is considered essential for the flowsheet topology. Table 1 lists the defined
tags.

3.2 Description of control structures

To extend the described text-based notation of PFDs to P&IDs, a representation of the
control structure is required. There are three important cases to consider for this: (i) A
sensor on a stream controlling a unit operation, (ii) a sensor on a unit operation control-
ling another unit operation, and (iii) cascading sensors. We introduce the SFILES 2.0
notation for control structure by three illustrative examples in Fig. 6. The first example
(i) in Fig.6a consists of a sensor measuring the flow rate of a stream and control-
ling the subsequent valve with this information. Since material streams are implicitly

@ Springer

G.Vogel et al.

Table1 Set of stream and control tags used in SFILES 2.0. A complete list of possible control tags according
to DIN EN 62424 can be found in Winter and Bckelmann (2015)

Connectivity information Stream tag in flowsheet graph and SFILES 2.0
Bottom inlet bin

Top inlet tin

Bottom outlet bout

Top outlet tout

Multi-stream heat exchanger identifier # (unique number per heat exchanger)

Control structure information Control tag in flowsheet graph and SFILES 2.0
Flow control FC

Level control LC

Pressure control PC

Temperature control TC

represented in the SFILES 2.0 notation, the measurement of stream information is
included by adding the control unit (abbrev. C) between the two unit operations (here
raw and prod), where the state of a stream is required. The control unit is stored as a
node like a unit operation. The type of the control unit, which is indicated in the P&ID
with a letter code (acc. to DIN EN 62424) Winter and Bockelmann (2015), is stored in
braces next to the node (here {FC} for flow control). Similar to material recycle con-
nections, we represent signal connections to previous unit operations with <_# and _#.
The underscore is used to easily distinguish material recycles and signal connections.
Furthermore, we use upper case letters for control elements to illustrate the difference
to unit operations. These notation rules result in the following generalized SFILES 2.0
for Fig. 6a:

(raw) (C) {FC}_1(v)<_1(prod).

The second example (ii) in Fig. 6b shows a tank whose level is controlled. The direct
connection of the instrument to the unit operation is represented as branching at the
corresponding node. In the same way as for the first example, the letter code of the
control unit is stored as a tag and the instrument is connected to the valve using the
signal connection terminology:

(raw) (tank) [(C) {LC}_1] (v)<_1(prod).

The third example (iii) in Fig.6¢ of a control cascade illustrates a combination of
the first two cases. The level of the tank is transmitted to a flow controller, which
regulates a subsequent valve. The flow transmitter is represented as a branching node
at the corresponding unit operation and the flow controller is placed between the tank
and valve since its task is to measure the flow rate between the tank and the valve.
The connection of the two instruments and the valve is represented with the signal
connection notation. Tags store again the letter code of the control units. This results
in the following generalized SFILES 2.0 string for Fig. 6c:

(raw) (tank) [(C) {LT}_1]1(C) {FC}_2<_1(v)<_2(prod).

@ Springer

SFILES 2.0: an extended text-based flowsheet representation

Fig.6 PFD and flowsheet graph of simple control loops. a Flow control of material stream, b Level control
of tank, ¢ Level control of tank with control cascade

3.3 Unit operations

This section provides an overview of unit operations in chemical process flowsheets
and the abbreviations used in the SFILES 2.0. The selection of unit operations in
Table 2 represents commonly used unit operations and is based on the ontology Onto-
CAPE (Morbach et al. 2009). Some of the terms in Table 2 are a refined classification of
the OntoCAPE ontology, which we performed to include more specific unit operation
categories. With increasing access to more flowsheet data, the list of unit operations
might need further extension or refinement. The naming conventions, i.e., the abbre-
viations, should also be followed in the flowsheet graph construction when using
the provided code for the conversion from a flowsheet graph to its corresponding
SFILES 2.0 string.

3.4 Limitations of SFILES 2.0

Nevertheless, there remain limitations of the SFILES 2.0 notation in the case of very
complex process topologies. In the set of standardized stream tags for separation
columns, we only consider top and bottom in- and outlets. The latter certainly covers
the most common arrangements of unit operations in processes. Still, more complex
examples such as the air separation process can contain columns with far more than two
in- and outlets, respectively. For such complex unit operations, the current SFILES 2.0
notation rules do not suffice to ensure a reversible conversion between the SFILES
string and the flowsheet in terms of the order of in- and outlets. At this point, we
would like to mention that all types of flowsheets can be converted to an SFILES string.

@ Springer

G.Vogel et al.

[4 I T[LIpmbry 1971 uonenyy pmbry
< 1< IoSueyoxXgIeoq XoH IoSueyoX9 JBOH
4 1 QUOOAJ0IpAH 1°4oH QuO[IA20IpAH
4 I IoNLyseD 9O uonenyy sen
[4S 1 nunyse ysey yseld
4 T JUNUOTORIIXT nxg uonoenxy

I I wJopuedxg puedxg Iopuedxyg

4 I Jiun SUIUeI[D)SLH LI uea[osyg Surueso ses [eo1no9[g
=< 1< wsASuone[nsIq 181 (19SUIPUOD puE II[I0QI “[OUI) UONB[NSIJ
z 1 QUOTIAD 194D QUOTIAD
0< 1< [onuo) o) jrun [onuo)
4 1 heNiEhlive) puoD (Sumrds ‘[our) Iesuspuo))

1 1 wJossaxdwo) dwo) Jossaidwo)

4 1 JunuonesSnJIIua)) nuo) uonesnJIua)

I I LJomorg mig omorg

4 4 uwnjo)uondiosqy sqQy uondiosqy
Qa13ap-no eordAy, Qa13op-ur [eordAy, w1} gV DoMQ UONRIAIQQY uonerado jun

(6002 'Te 10 yorqio[A) £S0[01u0 IV DO0WQ Uo paseq ('g SHIIS UI suoneraaiqqe pue suonerado jun g ajqel

pringer

as

SFILES 2.0: an extended text-based flowsheet representation

UOoMRIIaWNI0p FJVIO0IQ [BUISLIO Y} Ul 10U pue A30[01U0 FJV 0N Y} JO UOISUXS INo Jo Jred ST wia) Sy,

—

I\ A~
A Al v Al AL Al

—_ - = = o Al

— a Al —~

Al

o —~ A

— = = = Al

+OATPA
LJUNA3eI01S
LwAsAg3urdding
nunSumids
yjunuoneredog
I2qqnIoS
wAISASUONLIYNINY
I9[109°Y
[eLISTR I MEBY
1010BIY[BOTWAYD)
jonpoigindinQ
Ldung

wPdid

+918[d9oYLI0

N FuIXIN

X
A
yue],
dmng
nds
dog
qniog
JREN|
NEX|
mey
I
poid
dd
adig
Ju0
XIA

JIun umouu)

QATRA

J3e101§

Suidding

Sumnds

(uonyeoyroads-qns 1eying ou) uoneredog
Suiqqniog

(19SUSPUO0D PUR IS[I0GAI [OUI) UOTIBOYIIOY
(Sumuids “our) Jo10qY

[elIdlRW MeY

10108y

weans 1onpoid

duing

adig

Jrerd 2oyLIO

SuIXIy

9a13ap-no [eordAy,

Qa13ap-ur [eordAy,

wid) JVI0NO

UONBIAIGQY

uonerado jiun

panunuod g ajqel

pringer

As

G.Vogel et al.

However, with a possible loss of information due to missing tags and, therefore, no fully
reversible conversion back to the actual flowsheet. Theoretically, it would be possible to
extend the notation to encode more complex information, e.g., by changing the stream
tags to positions relative to the height of columns (betweenOand 1, e.g., {1.0_out}
for the top outlet). Another approach could be to further divide equipment into several
nodes, similarly to the SEN-based method for multi-stream heat exchangers. The
braces notation could optionally also store flowsheet information beyond the topology
in the SFILES 2.0. For instance, additional stream-related process information like
the pressure, temperature, or components can be stored as edge attributes.

Additionally, information describing a unit operation, such as the geometrical
dimensions or operating conditions are currently not stored in the SFILES 2.0 string.
When desired, it could be stored as node attributes in the flowsheet graph and included
in braces within the parentheses notation for unit operations. However, in this context,
it must be pointed out that this information results in continuous variables which are
not essential for describing the topology of flowsheets.

Furthermore, a more detailed description of the control structure, e.g., whether the
instrument is a field-mounted or shared display device, is currently not provided.

3.5 Summary of SFILES 2.0 rules

This subsection provides a summary of the SFILES 2.0 rules, i.e., Table 3 summarizes
the general rules, whereas Table 4 shows the notation rules specifically defined for
P&IDs.

4 SFILES 2.0 generation algorithm

This section describes the conversion algorithm between flowsheet graphs and
SFILES 2.0 strings. Our implementation consists of the conversion algorithm from
flowsheet graphs to SFILES 2.0 strings as well as the algorithm for the conversion of
SFILES 2.0 strings to the corresponding flowsheet graphs and is publicly available in
a GitHub repository Vogel et al. 2022. Similar to the original SFILES notation algo-
rithm (see Sect. 2.2), the two major steps for the SFILES 2.0 string generation are the
determination of the graph invariant (Sect.4.1) and the graph traversal (Sect.4.2). If
a control structure is present in the flowsheet graph the nodes of the control units are
treated as unit operation nodes. Only the signal connections (dashed line in P&IDs)
are removed before determining the graph invariant and the graph traversal, to ensure
complete interoperability between SFILES 2.0 generated from P&IDs and PFDs. The
signal connections are added afterward using the notation mentioned in Sect.3.2.

4.1 Determination of graph invariant
The graph invariant aims to yield a unique rank for each node. The determination

of this graph invariant is also known as graph canonization. The first step in our
implementation is based on the Morgan algorithm (Morgan 1965), similarly to the

@ Springer

SFILES 2.0: an extended text-based flowsheet representation

Table 3 Summary of SFILES 2.0 rules: PFD and P&ID related

SFILES 2.0 sequence Simplified graph Rule explanation

(u)(v) Two subsequent unit opera-
tions in parenthesis (u) and (v)
imply a directed connection
from (u) to (v)

W[W)](w) Square brackets indicate a
branching. The unit operation
(u) has two outlet connections
to (v) and (w). Every branch
except the last one (here, (w)
is not in brackets) is noted in

brackets.

w(v)<l(w)(x)1 The symbols <# and # (# is
a number) indicate a recycle
connection. In this case the
recycle connection is from (x)
to (V).

(W)(X)(v)<&l(u)&l Incoming new branches are
denoted between <&l and &lI.
In this example the incoming
branch at (v) starts from a new
inlet node (w); the & sign indi-
cates the connection from (x)
to (v).

iR
;

© @
0

(W)(v)nl(w)(x) The nlindicates a new separate
process (w)(x) with no mate-
rial stream connection to the
previous process (u)(v).

The notation # after a heat
exchanger unit is used for
multi-stream heat exchang-
ers to identify which streams
share a specific heat exchanger
(heat integration).

W(hex){1}(v) nl(w)hex){1}(x)

|
1
1
1
’

~

|

~

’
1
1
1
1

(w)[{tout}(v)]{bout}(w) Stream tags are noted in

tout braces, e.g. {tout} for top out-
let, which is used to store
information for unit opera-
tions with multiple in-/outlet
streams, where the position of
in-/outlet is important for the
process description (e.g. distil-
lation, absorption,...).

¥

bout

description in Zhang et al. (2018). As illustrated in Fig.7, the initialization starts with
assigning all nodes a corresponding node value of 1. Next, each node value is updated
with the sum of all neighbor’s node values. After the first update, the node values equal
their connectivity in the graph. This step aims to increase the variable val_set which
is defined as the number of unique node values in the graph. The procedure is repeated

@ Springer

G.Vogel et al.

Table4 Summary of SFILES 2.0 rules: only P&ID related

SFILES 2.0 sequence Simplified graph Rule explanation

W(C){X}(v) Control units C for measuring
o @ o the state of a stream, e.g. a

flow indicator (FI), are noted

between the two unit opera-

tions u and v where the mea-

surement takes place. The let-

ter code X is noted in braces

directly after the control unit

C, which is noted in parenthe-

S18.

WHO{X}Iv) @ The control unit C with the
letter code X noted in square
brackets indicate that the con-

o o trol unit, e.g. a level control
(LC), is directly connected to
a unit operation (here, u).

W(O{X}_1(v)<_1 Signal connections between

control units or control units
o @ o and unit operations are indi-
cated with <_# and _#. The
smaller than sign defines the
direction: here, the control unit
C with the letter code X is con-
nected to the unit operation v.

until val_set does not increase for max_1iter iterations. Finally, the nodes are
ranked based on their values. In case there are multiple sub-graphs, as described in
Sect. 3.1, the graph invariant is determined for both graphs separately. The sub-graph
with fewer nodes will be assigned a lower priority and noted last in the SFILES 2.0
string.

The Morgan algorithm does not yield unique ranks in all cases. Especially in the
case of symmetric graphs, there are often multiple nodes with the same value. However,
the SFILES 2.0 string generation algorithm requires all nodes to have a unique rank.
For this reason, we introduce a rule-based approach for breaking the ties of equally
ranked nodes. We use the following procedure to break the ties.

1. Rank (small is higher priority): Control node < Outlet node < Inlet node < Other
nodes
2. Rank according to the number of successors' in the graph

(a) Outlet/Control nodes: does not apply
(b) Inlet nodes: the higher the number of successors the lower the rank
(c) Other nodes: the lower the number of successors the lower the rank

3. String comparison (smaller rank for earlier appearance in alphabet) of equally
ranked node names (unit operation abbreviations) and associated edges

! The length of the depth first search tree of the node in the graph is used.

@ Springer

SFILES 2.0: an extended text-based flowsheet representation

Initial graph invariant:
Assign value of 1 to each graph node
counter = 0, temp val set =1

i

Update each node value:
node value is sum of neighbor's node values

l

counter = 0 val set = number of unique node values
temp val set = val set counter += 1
A

A4

Yes

val set > temp_val_ set

counter < max iter

No

Graph invariant
after Morgan algorithm

Fig.7 Morgan algorithm for graph invariant determination

Table 5 Node ranks for flowsheet graph in Fig. 1b

raw-1 raw-2 prod-1 prod-2 hex-1 pp-1
1 2 3 4 5 6
v-1 dist-1 r-1 splt-1 mix-1

7 8 9 10 11

4. Ranking by graph node (unit) numbering

In steps 1-3, we only use the generalized SFILES because the SFILES string should
only be dependent on the intrinsic graph structure but not the numbering of the unit
operations. Step 2 is subdivided into inlet and other nodes to improve the readability of
the resulting SFILES string. Nodes still tied after step 3 can be exchanged arbitrarily
without a resulting change in the generalized SFILES string. Therefore, in step 4, the
nodes are ranked by their unique node names with unit numbering. Table 5 shows the
node ranking for the example in Fig. 1b.

@ Springer

G.Vogel et al.

4.2 Graph traversal

The SFILES string results from traversing the graph after determining its invariant.
We will use the depth-first search (DFS) algorithm to traverse the flowsheet graph
and write the SFILES string. Starting from an initial inlet node, the DFS algorithm
explores the graph branches sequentially as far as possible (until reaching an outlet
node or previously visited node) before backtracking to the last branching point. Both
the initial node selection as well as the branching decisions are made based on the
node ranking, i.e., nodes with lower ranks are selected first. In the case of multiple
inlet nodes or sub-graphs, one DFS traversal does not visit all nodes. To mitigate
this problem a virtual node is inserted to which all initial nodes (in-degree=0) are
connected. Since cycle processes do not exhibit a distinct initial node, the node with
the lowest rank, which is not an outlet node (out-degree=0), is selected and connected
to the virtual node. After ensuring that every node present in the flowsheet is linked
to the virtual node, one graph traversal starting from the virtual node is sufficient.

Using the example in Fig. 1b, we will explain how the DFS algorithm and the
SFILES string generation work. According to Fig. 1b, the nodes raw-1 and raw-2
with an in-degree=0 are connected to the virtual node and the graph traversal is started
from there. Since raw-1, according to Table 5, has the lowest rank, the DFS visits
thisinlet node first. The successor nodes, in specifichex-1, r-1, mix-1, v-1,
dist-1, are visited one after another and noted in parentheses. After dist-1 the
top branch continues with prod-1 (rank 3) and thereafter the bottom branch with
(splt-1) (rank 10). Thus, the top branch starting with prod-1 is visited first. The
bottom branch leads to the mixer and after the second product prod-2, the first graph
traversal ends. The resulting generalized SFILES 2.0 string is:

(raw) (hex) (r) (mix)<1(v) (dist) [{tout} (prod)] {bout} (splt)
1 (prod) .

The next node for the second graph traversal from the virtual node is raw-2. The
branch converges in the reactor node r-1 and the final generalized SFILES string is

(raw) (hex) (r)<&| (raw) (pp) &| (mix)<1(v) (dist) [{tout}
(prod)] {bout} (splt)l (prod)

Cycle processes are a special case of flowsheet topologies with no inlet nodes
(in_degree=0). The cycle process can be either the complete flowsheet graph or a
sub-graph, such as a refrigeration cycle. Assuming a refrigeration cycle instead of the
stream from raw-2 to prod-3 in the example in Fig. 4 yields the modified graph in
Fig.8. The graph traversal starting from the virtual node first explores the sub-graph
containing the distillation system and results in

(raw) (hex) {1} (dist) [{bout} (prod)] {tout} (hex) {1} (prod) .

Since the nodes of the refrigeration cycle are still not visited, we need another
DFS in this sub-graph. Because there is no inlet node in the refrigeration cycle, the
node with the lowest rank which is not an outlet node (out-degree=0), in this case,
hex-1/3, is connected to the virtual node and selected as the initial node. The final
SFILES 2.0 string is

@ Springer

SFILES 2.0: an extended text-based flowsheet representation

Fig.8 PFD graph with Equipment name:
refrigeration cycle as sub-graph hex-1

W o

(raw) (hex) {1} (dist) [{bout} (prod)] {tout} (hex) {1} (prod)n| (
hex) <1 (comp) (hex) {1} (v)1

4.3 Conversion from SFILES 2.0 string to flowsheet graph

The conversion of the SFILES 2.0 string back to a flowsheet graph is done by traversing
the string and adding the nodes and edges according to the SFILES 2.0 notation rules.
Note that the node numbering happens before the string traversal and is according
to the order of occurrence in the SFILES 2.0 string. The latter implies that the node
numbers of the original flowsheet graph and the reconstructed version might differ.
However, the topology of the translated flowsheet information is preserved.

5 Illustrative examples

This Section provides additional examples of flowsheets with a higher number of unit
operations and control structures. Figure 9 shows the process flow diagram for the
production of maleic anhydride from benzene which was extracted from a DWSIM
simulation file. The corresponding flowsheet graph contains 22 nodes. Converting the
flowsheet graph to the SFILES 2.0 representation yields:

(raw) (pp) (hex) {1} (mix) <&| (raw) (mix) <&| (raw) &| (comp) &| (hex)
(mix)<1(r) [(hex)1l] (hex) (mix)<2<&|(raw) &| (sep) [{tout}
(prod)] {bout} (dist) {bout}2{tout} (prod)n| (raw) (hex)
{1} (prod).

Fig. 10 shows the PFD of a natural gas processing unit with many branches. The
corresponding SFILES 2.0 string is:

(raw) (hex) (flash) [{bout} (prod)] {tout} (hex) (flash) [{tout}
(turb) (flash) [{bout} (hex) (mix) <2 (hex) (dist) [{bout}
(dist) [{tout} (prod)] {bout} (dist) [{bout} (prod)] {tout}
(prod)] {tout} (mix)<1 (hex) (comp) (comp) (prod)] {tout}
(hex)1] {bout} (hex) 2

@ Springer

G.Vogel et al.

Fig.9 Process flow diagram for maleic anhydride production from benzene. (Badodekar n.d.). CC BY-SA
4.0

Fig. 10 Process flow diagram of a natural gas processing unit. (Shah et al. 2018). CC BY-SA 4.0

Fig. 11 shows a P&ID of a distillation column with a high number of unit operations
and control structures. The corresponding SFILES 2.0 string is:

(raw) (C) {FC}_1(v)<_1(mix)<&|(raw) (C) {FC}_2 (v) &<_2]| (hex)
{1} (C){TC}_3(dist)<l<2[(C){PC}_4]1[(C){LC}_b5]1[{tout}
(hex) (sep) [(C) {LC}_6]1[(v)<_4(prod)] (splt) [(C){FC}_7
(v)<_T7(prod)] (v)l<_6]{bout} (splt) [(v)<_5(prod)] (hex)
{2}2n]|(raw) (splt) [(hex) {1} (mix) <3 (prod)] (v)3<_3n|(raw)
(C){FC}_8(v)<_8(hex) {2} (prod) .

Fig. 12 shows the P&ID of a two-stage flash process with control structures. The
corresponding SFILES 2.0 string is:

(raw) (C) {FC}_1(v)<_1(hex) {1} (C){TC}_2 (sep) [(C){PC}_3]
[(C){LC}_4]1[(v)<_3(prod)] (C){FC}_5<_4(v)<_5(sep)
[(C){PC}_6]1[(C){LC}_7]1[(v)<_6(prod)] (C){FC}_8<_7(Vv)
<_8(prod)n|(raw) (v)<_2 (hex) {1} (prod) .

@ Springer

SFILES 2.0: an extended text-based flowsheet representation

splt-1
® -0
! ; hex-1
: -1
raw-1 > ‘ < mlx‘ —> dist-1

prod-3

v-4 splt-2

Fig. 11 Process flowsheet of a distillation column with control structure

v-2

prod-3

prod-4

Fig. 12 Two-stage flash process flowsheet with control structure

6 Conclusions

This paper is a proposition of the SFILES 2.0, containing modifications and exten-
sions of the previously used SFILES. The development aims to include all essential
topological information of flowsheets in the SFILES representation, such as a distinc-
tion between top- and bottom branches of unit operations. Moreover, the SFILES 2.0
includes a concept to describe control structures, which are mandatory for the oper-
ation of chemical plants. This extends the applicability of SFILES 2.0 from PFDs to
P&IDs, which are the predominant diagram types utilized during the development and
operation of chemical plants. To leverage the full potential regarding future databases,
the SFILES 2.0 notation comes with naming conventions for the unit operations and a
set of standardized stream tags. Eventually, the implementation of the reversible con-

@ Springer

G.Vogel et al.

version between flowsheet graph and SFILES 2.0 strings is openly accessible to enable
researchers and engineers to write or read SFILES 2.0 strings. This work attempts to
lay the foundation for creating an SFILES 2.0-based database for PFDs and P&IDs,
ideally containing a large variety of chemical processes.

Acknowledgements This publication is part of the project “ChemEng KG - The Chemical Engineering
Knowledge Graph” with project number 203.001.107 of the research programme “Open Science (OS) Fund
2020/2021” which is (partly) financed by the Dutch Research Council (NWO).

OpenAccess Thisarticleis licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Badodekar S (n.d.) Production of Maleic Anhydride from benzene. DWSIM. https://dwsim.fossee.in/
flowsheeting-project/dwsim-flowsheet-run/83

d’Anterroches L (March 2006) Process flow sheet generation & design through a group contribution
approach. PhD thesis, Technical University of Denmark

for Standardization 10 (2010) Specifications for diagrams for process industry - Part 1: general rules. ISO,
Geneva, Switzerland

for Standardization 10 (2015) Specifications for diagrams for process industry - Part 2: measurement and
control. ISO, Geneva, Switzerland

Morbach J, Wiesner A, Marquardt W (2009) Ontocape-a (re)usable ontology for computer-aided process
engineering. Comput Chem Eng 33(10):1546-1556. https://doi.org/10.1016/j.compchemeng.2009.
01.019. (Selected Papers from the 18th European Symposium on Computer Aided Process Engineering
(ESCAPE-18))

Morgan HL (1965) The generation of a unique machine description for chemical structures-a technique
developed at chemical abstracts service. J] Chem Document 5(2):107-113. https://doi.org/10.1021/
¢160017a018

Schweidtmann AM, Esche E, Fischer A, Kloft M, Repke J-U, Sager S, Mitsos A (2021) Machine learning
in chemical engineering: a perspective. Chemie Ingenieur Technik 93(12):2029-2039. https://doi.org/
10.1002/cite.202100083

Shah D, Hemanth R, Aditya D (2018) Natural Gas Processing Simulation. DWSIM. https://dwsim.fossee.
in/flowsheeting-project/dwsim-flowsheet-run/122

Toghraei M (2019) Piping and instrumentation diagram development. John Wiley & Sons, Hobo-
ken, New Jersey, USA. https://www.ebook.de/de/product/36019424/moe_toghraei_piping_and_
instrumentation_diagram_development

Towler GP, Sinnott RK (2008) Chemical engineering design - principles. Practice and Economics of Plant
and Process Design. Elsevier/Butterworth-Heinemann, Amsterdam and Boston

Tula AK, Eden MR, Gani R (2019a) ProCAFD: Computer-aided tool for sustainable process synthesis,
intensification and hybrid solutions. In: computer aided chemical engineering, pp 481-486. Elsevier,
Amsterdam, Netherlands. https://doi.org/10.1016/b978-0-12-818634-3.50081-3

Tula AK, Eden MR, Gani R (2019b) Hybrid method and associated tools for synthesis of sustainable process
flowsheets. Comput Chem Eng 131:106572. https://doi.org/10.1016/j.compchemeng.2019.106572

Vogel G, Balhorn LS, Hirtreiter E, Schweidtmann AM (2022) Process-intelligence-research/SFILES2:
V1.0.0. https://doi.org/10.5281/zenodo.6901932

Weininger D, Weininger A, Weininger JL (1989) SMILES. 2. algorithm for generation of unique SMILES
notation. J Chem Inf Comput Sci 29(2):97-101. https://doi.org/10.1021/¢i00062a008

@ Springer

http://creativecommons.org/licenses/by/4.0/
https://dwsim.fossee.in/flowsheeting-project/dwsim-flowsheet-run/83
https://dwsim.fossee.in/flowsheeting-project/dwsim-flowsheet-run/83
https://doi.org/10.1016/j.compchemeng.2009.01.019
https://doi.org/10.1016/j.compchemeng.2009.01.019
https://doi.org/10.1021/c160017a018
https://doi.org/10.1021/c160017a018
https://doi.org/10.1002/cite.202100083
https://doi.org/10.1002/cite.202100083
https://dwsim.fossee.in/flowsheeting-project/dwsim-flowsheet-run/122
https://dwsim.fossee.in/flowsheeting-project/dwsim-flowsheet-run/122
https://www.ebook.de/de/product/36019424/moe_toghraei_piping_and_instrumentation_diagram_development
https://www.ebook.de/de/product/36019424/moe_toghraei_piping_and_instrumentation_diagram_development
https://doi.org/10.1016/b978-0-12-818634-3.50081-3
https://doi.org/10.1016/j.compchemeng.2019.106572
https://doi.org/10.5281/zenodo.6901932
https://doi.org/10.1021/ci00062a008

SFILES 2.0: an extended text-based flowsheet representation

Wiedau M, von Wedel L, Temmen H, Welke R, Papakonstantinou N (2019) ENPRO data integration:
extending DEXPI towards the asset lifecycle. Chemie Ingenieur Technik 91(3):240-255. https://doi.
org/10.1002/cite.201800112

Wilkinson MD, Dumontier M, Aalbersberg 1J, Appleton G, Axton M, Baak A, Blomberg N, Boiten J-W, da
Silva Santos LB, Bourne PE, Bouwman J, Brookes AJ, Clark T, Crosas M, Dillo I, Dumon O, Edmunds
S, Evelo CT, Finkers R, Gonzalez-Beltran A, Gray AJG, Groth P, Goble C, Grethe JS, Heringa J, t’
Hoen PAC, Hooft R, Kuhn T, Kok R, Kok J, Lusher SJ, Martone ME, Mons A, Packer AL, Persson
B, Rocca-Serra P, Roos M, van Schaik R, Sansone S-A, Schultes E, Sengstag T, Slater T, Strawn G,
Swertz MA, Thompson M, van der Lei J, van Mulligen E, Velterop J, Waagmeester A, Wittenburg P,
Wolstencroft K, Zhao J, Mons B, (2016) The FAIR guiding principles for scientific data management
and stewardship. Sci Data. https://doi.org/10.1038/sdata.2016.18

Winter H, Bockelmann M (2015) Prozessleittechnik in chemieanlagen, vol 5. Verlag Europa-Lehrmittel
Nourney Vollmer, Haan-Gruiten

Yeomans H, Grossmann IE (1999) A systematic modeling framework of superstructure optimization in
process synthesis. Comput Chem Eng 23(6):709-731. https://doi.org/10.1016/s0098-1354(99)00003-
4

Zhang T, Sahinidis NV, Siirola JJ (2018) Pattern recognition in chemical process flowsheets. AIChE J.
65(2):592-603. https://doi.org/10.1002/aic.16443

Zheng C, Chen X, Zhang T, Sahinidis NV, Siirola JJ (2022) Learning process patterns via multiple sequence
alignment. Comput Chem Eng. https://doi.org/10.1016/j.compchemeng.2022.107676

Publisher’'s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

@ Springer

https://doi.org/10.1002/cite.201800112
https://doi.org/10.1002/cite.201800112
https://doi.org/10.1038/sdata.2016.18
https://doi.org/10.1016/s0098-1354(99)00003-4
https://doi.org/10.1016/s0098-1354(99)00003-4
https://doi.org/10.1002/aic.16443
https://doi.org/10.1016/j.compchemeng.2022.107676

	SFILES 2.0: an extended text-based flowsheet representation
	Abstract
	1 Introduction
	2 Background
	2.1 Flowsheet graph representation
	2.2 Original SFILES notation

	3 SFILES 2.0
	3.1 Extension of notation
	3.2 Description of control structures
	3.3 Unit operations
	3.4 Limitations of SFILES 2.0
	3.5 Summary of SFILES 2.0 rules

	4 SFILES 2.0 generation algorithm
	4.1 Determination of graph invariant
	4.2 Graph traversal
	4.3 Conversion from SFILES 2.0 string to flowsheet graph

	5 Illustrative examples
	6 Conclusions
	Acknowledgements
	References

