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With the advent of the Internet-of-Things (IoT) era, sensor nodes are 
required in almost all fields to achieve a better interaction between 
humans and the environment. Piezoelectric energy harvester (PEH), 
which exhibits an equivalent electrical model of an AC current source 
IP in parallel with the inherent capacitor CP, is a promising technology 
to resolve the energy problem of such sensor nodes. Recently, 
inductor-based rectifiers, capacitor-based rectifiers and hybrid 
rectifiers have been proposed to improve the energy extraction 
efficiency of PEH devices [1-5]. However, these structures all require 
the aid of additional capacitors or inductors to achieve bias-flip 
operation, as illustrated in Fig. 1. These extra passive devices are 
typically large, which can be a major bottleneck in system-volume-
constrained applications such as MEMS [4]. In response to the above 
problem, this work proposes a novel 8-phase self bias-flip PEH 
interface with charge recycling and reusing (SBFRR). By using the 
CP of 4 PEHs as flipping capacitors, this scheme achieves a high 
voltage flipping efficiency without using extra energy reservoirs. The 
4 CP can also serve as flying capacitors to achieve switched-PEH 
DC-DC (SPDC) conversion for MPPT, while maintaining a MOPIR 
of >3.5× with a PEH input voltage (Vp) from 0.78V to 4.9V. 

Fig. 1 shows the proposed system using 4 PEHs, with three 
operating states including energy harvesting (EH), zero-crossing 
(ZC), and MPPT. During the EH state, the 4 PEHs work as normal 
harvesters and flipping capacitors alternately to extract vibration 
power. The ZC state consists of the recycle phase (PHRYC), bias-flip 
phase (PHBF1~5), reuse phase (PHRUS) and rebalance phase (PHRB). 
For illustration purpose, we assign PEH<1,2> serve as conventional 
PEHs, and configure PEH<3,4> as flipping capacitors. Starting from 
PHRYC, PEH<3,4> transfer half of the charge to CRECT, followed by 
PHBF1 where the residual charge is completely discharged. The 
charge on PEH<1,2> is gradually flipped in 3 steps from PHBF2 to PHBF4, 
and then finally cleared in PHBF5. To improve the energy extraction 
efficiency, the previously recovered charge at CRECT is re-injected to 
PEH<1,2> in PHRUS, and the PEH voltage is then equalized in PHRB. 
As the duration of the ZC state is about 80μs which accounts for only 
1.6% of half the excitation cycle, PEH<3,4> can be regarded as flipping 
capacitors during this period without sacrificing the energy 
harvesting efficiency. The involvement of the charge recycle and 
reuse phases (i.e., PHRYC and PHRUS) can also theoretically improve 
the MOPIR from 3.88× to 5.13×.  

Fig. 2 presents the operation of the proposed SPDC at EH state, 
where the 4 PEHs serve as flying capacitors for DC-DC conversion 
to extend the input power range. It is composed of 3 phases 
(PHEH0~PHEH2). During PHEH0, the 4 PEHs transfer charges to CRECT 
through the active rectifier (AR), which is also responsible for zero-
crossing detection and IP polarity determination. At PHEH1, the PEH 
array and CRECT together form a SPDC to deliver charge to the load, 
with a total 4 possible voltage conversion ratios (VCRs) through 
SPDC reconfiguration. To prevent error during zero-crossing 
detection at PHEH0, the voltages on PEH<1,4> and CRECT are 
rebalanced in PHEH2. This can also prevent the PEH from deviating 
from the MPP. In this work, the time duration ratio of PHEH0~PHEH2 is 
3:1:2. The proposed system typically transits between the ZC and 
EH states. Upon the triggering of the external signal VMODE, the 
system will temporarily switch to the MPPT state. As observed in the 
system diagram, the AR outputs VCP<1,2> serve to generate the 
corresponding ZC/EH pulse sequences to control the analog switch 
array. Dual supply domains are employed in order to reduce power 
consumption. The chip occupies an active area of ~0.7mm2 as 
illustrated in the die micrograph. 

Fig. 3 depicts the schematics of the key circuit modules. The analog 
switches are sized according to the path current to increase the 
power density. In order to prevent oscillation of VCP<1,2> as induced 
by the comparator offsets, the proposed anti-oscillation technique 

ensures that only one transition of 
VCP<1,2> can occur per half 
excitation cycle. VCP<1,2> will be 
sampled at 2/3 the duration of 
PHEH0 to obtain VZC<1,2>, which is 
then processed by the ZC and EH 
sequencer to generate the required 
control sequence. The digital 
sequence generation blocks 
operate at 1.6V, and level shifters 
(LS) are employed to convert the 
4.8-V supply for driving the switch 
array. Each LS only consumes 0.53pJ per cycle. 

We explore the fractional open-circuit voltage (FVOC) method for 
MPPT, and employ a ratioed peak detector to prevent detection error 
or overshoot. Here, D1 is responsible for rectifying the PEH output, 
and R1 for reducing the impedance across the PEH terminals. The 
detected peak voltage VRPV is scaled to about 0.5VP. The 3-bit 
comparator outputs pulses according to VRPV for triggering DFF1 and 
DFF2, with the results further processed by the encoder to configure 
the VCR and fOSC_SLOW. 

Fig. 4 shows the measured waveform across the PEH terminals with 
VCR=2 at an excitation frequency of 100Hz. During the ZC state, 
after 8 phases of SBFRR operation, the PEH voltage is flipped from 
|2.5V| to |1.5V|, corresponding to a voltage flipping efficiency of 80%. 
At EH state, VPEH<1,4> is charged from the rebuilt voltage (VRBT), with 
the clock signal (fZCD_SAMPLE) triggering the sampling of VCP<1,2>. 
When VPEH<1,4> exceeds VRECT, AR is turned on, and the system 
starts to operate among the EH phases (PHEH0~PHEH2). If VPEH<1,4> 
is lower than VRECT, the system will reenter the ZC state, leading to 
a droop at VRECT as observed in Fig. 4 as induced by the charge 
injection in the PHRYC phase. This droop will be recovered in the 
PHRUS phase due to the connection to CRECT. 

Fig. 5 presents the MPPT results, where the system automatically 
switches from VCR=2 to VCR=1, with the driving clock fOSC_SLOW  also 
adaptively updated. Fig. 5 also depicts the relationship between 
PRECT versus VRECT under different VP, as well as POUT versus VP 
under different VCR. The test results show that the energy loss 
caused by the vibration mismatches of four PEHs can be ignored. 
The measured MOPIRRECT can be up to 4.98× when VP ~ 2.3V. The 
MOPIR is obtained by comparing the measured maximum output 
power with the calculated output power for an ideal full-bridge 
rectifier (with diode drop VD=0).  When VCR=1, the MOPIR of the 
system can reach 4.88×. As VCR increases, the MOPIR reduces due 
to the reduction of the zero-crossing accuracy. However, when 
VCR=4, the MOPIR can still reach 2.78×, which is a 39% 
improvement compared to the ideal switch-only rectifier. The entire 
system can maintain a MOPIR of >3.5× when VP is from 0.78V to 
4.9V. Fig. 6 shows the comparison of the proposed design with the 
state of the art. Compared to [4], this work achieves MPPT by using 
switched PEH converter while requesting a much smaller chip area. 
Compared to [1-3, 5], this work achieves the highest FoM without 
using external energy reservoirs, which is imperative to applications 
requiring an ultra-compact system volume. 
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Fig. 1. Comparison of the conventional technique with the proposed 
scheme (top); and operation of the zero-crossing state (bottom).  
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Fig. 2. Operation of the energy harvesting state (top); SPDC and 
system state machine; and the system architecture (bottom). 
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Fig. 3. Circuit implementation of switch array, oscillation preventive 
active rectifier and sequence generators. 
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Fig. 5. Measured MPPT operation (top left); PRECT vs. VRECT at 
1/1.5/2V VP (bottom left); measured POUT vs. VP under different VCR 
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