

Delft University of Technology

Cooperative Task Execution for Object Detection in Edge Computing
An Internet of Things Application
Amanatidis, Petros; Karampatzakis, Dimitris; Iosifidis, George; Lagkas, Thomas; Nikitas, Alexandros

DOI
10.3390/app13084982
Publication date
2023
Document Version
Final published version
Published in
Applied Sciences (Switzerland)

Citation (APA)
Amanatidis, P., Karampatzakis, D., Iosifidis, G., Lagkas, T., & Nikitas, A. (2023). Cooperative Task
Execution for Object Detection in Edge Computing: An Internet of Things Application. Applied Sciences
(Switzerland), 13(8), Article 4982. https://doi.org/10.3390/app13084982

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.3390/app13084982
https://doi.org/10.3390/app13084982

Citation: Amanatidis, P.;

Karampatzakis, D.; Iosifidis, G.;

Lagkas, T.; Nikitas, A. Cooperative

Task Execution for Object Detection

in Edge Computing: An Internet of

Things Application. Appl. Sci. 2023,

13, 4982. https://doi.org/10.3390/

app13084982

Academic Editor: Juan A.

Gómez-Pulido

Received: 11 March 2023

Revised: 6 April 2023

Accepted: 12 April 2023

Published: 15 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Cooperative Task Execution for Object Detection in Edge
Computing: An Internet of Things Application
Petros Amanatidis 1 , Dimitris Karampatzakis 1,* , George Iosifidis 2 , Thomas Lagkas 1

and Alexandros Nikitas 3,*

1 Department of Computer Science, International Hellenic University, Agios Loukas, 65404 Kavala, Greece;
peamana@cs.ihu.gr (P.A.); tlagkas@cs.ihu.gr (T.L.)

2 Delft University of Technology, Van Mourik Broekmanweg 6, 2628 XE Delft, The Netherlands;
g.iosifidis@tudelft.nl

3 Department of Logistics, Marketing, Hospitality and Analytics, Huddersfield Business School,
University of Huddersfield, Huddersfield HD1 3DH, UK

* Correspondence: dkara@cs.ihu.gr (D.K.); a.nikitas@hud.ac.uk (A.N.)

Abstract: The development of computer hardware and communications has brought with it many
exciting applications in the Internet of Things. More and more Single Board Computers (SBC) with
high performance and low power consumption are used to infer deep learning models at the edge of
the network. In this article, we investigate a cooperative task execution system in an edge computing
architecture. In our topology, the edge server offloads different workloads to end devices, which
collaboratively execute object detection on the transmitted sets of images. Our proposed system
attempts to provide optimization in terms of execution accuracy and execution time for inferencing
deep learning models. Furthermore, we focus on implementing new policies to optimize the E2E
execution time and the execution accuracy of the system by highlighting the key role of effective
image compression and the batch sizes (splitting decisions) received by the end devices from a server
at the network edge. In our testbed, we used the You Only Look Once (YOLO) version 5, which is one
of the most popular object detectors. In our heterogeneous testbed, an edge server and three different
end devices were used with different characteristics like CPU/TPU, different sizes of RAM, and
different neural network input sizes to identify sharp trade-offs. Firstly, we implemented the YOLOv5
on our end devices to evaluate the performance of the model using metrics like Precision, Recall,
and mAP on the COCO dataset. Finally, we explore optimal trade-offs for different task-splitting
strategies and compression decisions to optimize total performance. We demonstrate that offloading
workloads on multiple end devices based on different splitting decisions and compression values
improves the system’s performance to respond in real-time conditions without needing a server or
cloud resources.

Keywords: edge AI; task offloading; YOLOv5; edge computing; object detection system; Internet
of Things

1. Introduction

The swift advancement of computing resources and storage of the Internet of Things
devices has made significant progress in a wide range of applications, leading to an era in
which computing and processing of data are flowing from the cloud to the edge [1,2]. Many
cloud-based applications that were executed previously in the cloud are now delivered by
edge devices such as tablets, wearable IoT devices, or smartphones [3]. According to recent
literature [4,5] the number of connected devices is expected to reach 150 billion by the year
2025. Moreover, almost 70% of the computing workloads will be executed at the edge of
the network in the next years. The concept of edge computing involves performing data
processing at the edge devices, resulting in improving the performance of the applications
by using an edge server which provides many benefits like reducing computational latency

Appl. Sci. 2023, 13, 4982. https://doi.org/10.3390/app13084982 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13084982
https://doi.org/10.3390/app13084982
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-8481-6087
https://orcid.org/0000-0003-0203-0476
https://orcid.org/0000-0003-1001-2323
https://orcid.org/0000-0002-0749-9794
https://orcid.org/0000-0002-6384-9031
https://doi.org/10.3390/app13084982
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13084982?type=check_update&version=3

Appl. Sci. 2023, 13, 4982 2 of 19

and energy consumption. A great effort has been made by many researchers to develop
different optimization tools to minimize energy consumption and latency and to maximize
the performance of edge computing applications.

In addition, Artificial Intelligence, defined as a powerful vehicle for the optimization of
machines’ interpretation, learning, and task-performing capacity [6], has already expanded
in a wide range of applications, including reinforcement learning and computer vision.
Furthermore, real-time applications like autopilot-assisted driving and, in a few years,
connected and autonomous vehicles depend on the fast processing of incoming data, which
makes Cloud AI not the best solution. Edge AI is a promising solution to face these
problems [7,8]. This solution accommodates not only the inference but also the training of
the AI models to the edge. Avoiding the transmission of the data to the cloud mitigates
latency, privacy, and traffic load problems. The training of a deep learning model requires
intensive computing resources. Nonetheless, the explosive evolution of the hardware and
the processing power of the edge devices can provide these intensive computing resources
which are required to develop an AI application at the edge [9,10].

The core concept behind edge computing is to provide Cloud-like functionalities closer
to the end device and the user. In other words, a Cloud-like device should be capable
of transferring (offloading) the computationally-intensive task to a close-edge device,
to reduce, for example, latency and power consumption. This approach is also called task
offloading, which allows lower latency, improved energy consumption, and much better
reliability. Task offloading has gained much attention from the academic community and
the industry. Many studies were published in recent years addressing task offloading, for
example, Wang et al. in 2017 and Ai Yuan et al. in 2018 made an effort to classify the various
types of task offloading. The aspects on which this body of literature is particularly focused
are architecture, resource allocation, communications, algorithms, etc. [11–14].

In this paper, we study a cooperative task execution of an edge-assisted object detection
system. In more detail, we chose to use the official pre-trained YOLOv5 [15] object detector
using the COCO dataset as workload. This was offloaded to every end device to get the
object detector evaluation metrics like mAP, precision, recall, and also execution time,
and other metrics for every end device. We used the YOLO object detector and the COCO
dataset because they can bench-mark the performance of real-time object detection systems.
Moreover, we study two natural criteria for selecting how to compress the images and how
to split the image set across the available end devices. We searched experimentally for
the optimal trade-off among these metrics to provide optimization in terms of execution
accuracy and execution time. In our testbed, we highlight optimal trade-offs between
the E2E execution time and execution accuracy of our object detection system. We also
show the effect of image compression on transmission delay and, of course, execution
time. Our main contribution after taking our experimental results and measurements is to
develop a statistical model based on our performance metrics which can be used according
to the needs of the user. In other words, the user can tailor the system’s operation to
minimize the execution time or maximize the accuracy of the Edge-Assisted object detector.
The exploration of the delay and accuracy trade-off in edge computing has been explored
in the past, for example, see [16] and references therein, our work is the first to study this
problem in the context of task splitting from servers to end devices. It is noteworthy to
point out that this is a new type of offloading architecture, where larger or bigger devices (a
server, in this case) splits and outsources their load to many smaller devices (the end nodes,
in this case).

This paper follows the following structure: In the next section, we present related
works regarding task execution and deep learning application aiming at the optimization of
an edge computing system. In Section 3, we present the architecture and system evaluation
of our testbed. In Section 4, we focus on the design of equations and task allocation policies
that were used to get the results. In Section 5, we demonstrate a discussion with results
about the performance of our proposed system. We finally conclude this work in the last
section acknowledging limitations and proposing future research directions.

Appl. Sci. 2023, 13, 4982 3 of 19

2. Related Works

Previous research was presented by Kuanishbay et al. which focuses on optimizing the
methods for offloading computations in edge computing networks [17]. More specifically,
the authors studied six different optimization methods: convex optimization, Lyapunov
optimization, heuristic techniques, machine learning, and game theory method. For each
of these methods, the authors focused on the objective functions (minimizing energy
consumption, minimizing latency, and minimizing the system utility and the system cost),
the application areas, for example, MEC or MCC, the types of offloading methods, and the
evaluation methods (simulation or real-world dataset). To conclude, this paper provided a
summary of some optimization methods for offloading computations in edge computing
networks which can support scholars in their computational offloading research.

A comprehensive survey that provides a thorough examination of computational
offloading in MEC, covering various objectives such as minimizing delay, reducing energy
consumption, maximizing revenue, maximizing system utility, applications, and offloading
approaches, was presented by Chuan Feng et al. [18]. In more detail, the authors conducted
a thorough review of the benefits of computation offloading techniques in MEC networks.
They analyzed existing works from various perspectives to categorize them based on the
application offloading objectives. The authors provide an analytical comparison of various
computation offloading techniques, including mathematical solvers, heuristic algorithms,
Lyapunov optimization, game theory, the Markov Decision Process, and Reinforcement
Learning. They discuss the advantages and disadvantages of each method. Addition-
ally, the paper concludes by highlighting the different challenges faced in computation
offloading within MEC networks which must be studied and researched.

Some authors like Wang Xiaofei et al. [19] have also provided a comprehensive survey
of edge computing and deep learning. This survey first discusses the fundamentals of
this technology, giving some paradigms of edge computing. The concepts discussed
are the Cloudlet and micro data centers, mobile edge computing (MEC), fog computing,
and collaborative end-edge-cloud-computing. In addition, potential hardware chips for
edge AI applications are described. Lastly, the researchers discuss the challenges of the
possibility of DL applications being executed on edge devices, focusing on inference,
training, and optimization. The contribution of this paper is the provision of insights on
how to identify the most suitable edge computing architecture that can optimize deep
learning performance for both training and inference and also address challenges like
energy consumption, latency, and network communications.

Another promising line of research was introduced by Yuanming Shi et al. [20] which
emphasizes the difficulties and solutions of communications in edge AI. The main in-
formation that this work is providing is a summary of the communications algorithms
for distributed training of various AI models that can be deployed on edge nodes, such
as zeroth-order, first-order, second-order, and federated optimization algorithms. Addi-
tionally, the authors aim to classify different system architectures of an edge AI system,
including partition-based and model partition-based edge training systems. In addition,
this paper reviews works based on computation offloading and inferencing at the edge of
the network. Finally, different edge AI systems were introduced with discussions focusing
on the challenges and solutions of the communications in these systems.

The implementation of deep learning algorithms in edge computing has garnered
increasing attention in recent years. Jiasi Chen et al. in [21] presented an analytical review
that provides an overview of deep learning applications like computer vision, natural
language processing, augmented reality, etc. which are used in edge computing. This work
firstly introduces the benefits of bringing the data processing closer to the network edge
in other words to the edge nodes or the edge devices. Then the authors provide context
for measuring the performance of deep learning models and outline some frameworks for
training and inference. The overall purpose of this article was to introduce edge computing
and deep learning and present methods for accelerating and evaluating a deep learning
inference on edge devices.

Appl. Sci. 2023, 13, 4982 4 of 19

Earlier studies also focused on object recognition applications at the network edge.
Chu-Fu et al. [22] suggested a cooperative framework for image object recognition, which
integrates the process of AIoT devices. They also formulated a task-offloading network
optimization problem for this environment and solved it using a heuristic algorithm based
on PSO. The testbed that was used in this paper was a practical surveillance system for
monitoring human flow, and a technique for detecting error data were also introduced.
The encouraging results of the proposed approach could be applied in a real-world surveil-
lance system.

Scholars also discuss how edge computing technology would improve the perfor-
mance of IoT. Wei Yu et al. in [23] conducted an analytical survey to investigate the
relationship between edge computing and the Internet of Things, and how the integration
of edge computing can enhance the overall performance of IoT networks. More specifically,
this study lists the benefits and divides various edge computing architectures into several
categories. In terms of response time computation, capacity, and storage space, it also
compares these categories’ performance analytically. The performance of IoT devices in
the cloud versus edge computing was also compared, and an analytical analysis of the
edge computing architecture’s performance, task scheduling, security, and privacy was
presented. The study outlined the overbalance of edge computing concerning transmission,
storage, and computation and provides a discussion about new challenges such as system
integration resource management security, and privacy.

Additional studies to understand more completely the key differences between AI for
Edge and AI on Edge were introduced by Shuiguang Deng et al. [24]. The authors defined
AI for Edge as a potential research direction for giving solutions in terms of optimization
problems in edge computing. On the other hand, AI on Edge is a research direction on
studying how to run an AI model on Edge. In other words, it is a framework that has been
designed to carry out both training and inference operations, with the aim of achieving
a particular objective such as optimal algorithm performance, cost savings, privacy, etc.
Moreover, in this paper, the authors categorize research efforts in edge computing to
certain topologies, content, and services and introduce how to initiate an edge computing
application with intelligence.

Researchers also proposed an intelligent and cooperative approach to edge comput-
ing in IoT networks, which seeks to achieve a mutually beneficial integration of AI and
edge computing [25]. The authors’ focus was on redesigning the AI-related modules of
edge computing to enable the distribution of AI’s core functions from the cloud to the
edge. In more detail, the authors introduced a new approach to intelligent and cooperative
edge computing in an IoT system, which enables edge computing and AI collaboration.
The authors presented different scenarios for their proposed approach. In the first sce-
nario, the edge-AI enables collaboratively efforts between the cloud and the edge. This
is accomplished through the implementation of a novel data schema for storage where
data are kept locally to ensure privacy. The additional scenario builds a smart edge by
leveraging locally adaptive AI. Reservation-based approach for computation offloading
that is able to adapt to AI predictions of time sequences. The simulation results indicated
that this method not only allowed for the execution of the complete AI model (rather than
a simplified version), but also achieved significantly lower latency and higher caching
ratios at the edge. These results imply that establishing an edge computing ecosystem as
a component of an intelligent Internet of Things system based on services and interfaces
helpful to the developers is viable.

In addition, Zhou Zhi et al. [26] have published on edge intelligence. In more de-
tail, this work is offering the background of edge AI, in other words, the architectures,
frameworks, and deep learning technologies that are used at the network edge. This paper
introduces the basic concepts of AI focusing on deep learning, which is the most popular
sector of AI, but also describes the motivation and gives definitions of edge intelligence.
This work is essentially an analytical review of the architectures, systems, and framework

Appl. Sci. 2023, 13, 4982 5 of 19

for training edge intelligence models that concludes by identifying future directions and
challenges of edge intelligence.

In 2019, a framework named Edgent, which utilizes device-edge synergy for collabora-
tive inference in deep neural networks (DNN), with the aim of achieving high inference
accuracy and low latency was developed by En Li et al. [27]. The authors after developing
this framework implemented it on a desktop PC and a Raspberry Pi and evaluated it based
on real work data, and pointed out the efficacy of the Edgent framework. This framework
has the ability to compress existing models to accelerate the DNN inference.

To address the issue of task offloading, Firdose Saeik et al. offered a thorough examina-
tion of how the edge and cloud may join their computational resources [28]. Its discussions
revolve around artificial intelligence, mathematical, and control theory optimization ap-
proaches. These can be utilized to meet diverse constraints, limitations, and dynamic
problems pertaining to end-to-end application execution. Unlike other studies, this work
on task offloading contributes in a twin way. Firstly, it presents a survey on task offloading
that covers three sub-fields, namely optimization algorithms, artificial intelligence tech-
niques, and control theory. Secondly, it categorizes the discussed techniques based on
various factors, such as the objective functions, granularity level, utilization of edge and
cloud infrastructures, and incorporation of mobility depending on the type of edge devices.

As far as collaborative task execution goes, Galanopoulos et al. developed a framework
that enables a collaborative task execution on edge devices [29]. This task execution is
based on an auction algorithm that aims to optimize the accuracy and the execution delay.
The author of this paper implemented and evaluated the system performance in relation
to accuracy and execution delay by implementing a facial recognition application on a
Raspberry Pi. The proposed algorithm outperforms several benchmark policies.

Among many object recognition models, one of the most popular is the YOLO network
which can implement a real-time application at the network edge. Haogang Feng et al. [30]
presented a benchmark evaluation and analysis of the YOLO object detector on edge class
devices. In this work the YOLO object detector was implemented with an NVIDIA Jetson
Xavier, an NVIDIA Jetson Nano, and a Raspberry Pi 4 in conjunction with a USB neural
network compute processor. Four versions of the YOLO object detector were tested on the
three edge devices using videos with different input-size windows. The findings indicated
that the Jetson Nano achieves optimal performance compared to the other two edge devices
in terms of high performance and cost. In particular, the Jetson Nano gets 15 FPS while
running YOLOv4 tiny model.

A recent study by Galanopoulos et al. developed an object detection system at the
network edge that identifies the system-level trade-offs between E2E latency and execution
accuracy [16]. The authors developed methods that optimize the system’s transmission
delay and highlight the impact of the image encoding rate and size of the neural network.
Their results were based on a real-time object recognition application. They showed that
the image level compression as well as their neural network size are key parameters that
affect object recognition accuracy and also latency from one end to the other.

A mobile augmented reality for real-time object detection for was introduced by
Luyang Liu et al. [31]. This system can achieve accurate object detection for commodity
AR/MR with a frame rate of 60 fps. The authors of this work demonstrated that using low-
latency offloading techniques can effectively decrease the offloading latency and the amount
of bandwidth consumed. The authors prototyped an E2E system that is implemented and
used on mobile devices. The results showed that the system after using smart offloading
techniques and fast object detection methods to sustain the detection accuracy can reduce
the false detection rage by 27–38% and increase the detection rate by 20–34%.

Cheng Dai et al. [32] presented an enhanced object detection system for an edge-based
Internet of Vehicles (IoV) system, aiming to reduce latency. They proposed a new method
for object detection based on a video key-frame, which can achieve a compression ratio of
60% with an error rate of only 10%. The proposed method can also accelerate the processing
of frames in the edge IoV system.

Appl. Sci. 2023, 13, 4982 6 of 19

Finally, Dong-Jin-Shin et al. [33] presented an analytic deep-learning performance
evaluation using the YOLO object detector in the NVIDIA Jetson platform. The authors used
general deep learning frameworks like TensorRT and TensorFlow-Lite on embedded and
mobile devices to get an analytic performance evaluation. The evaluation was performed
on the NVIDIA Jetson AGX Xavier platform employing CPU and GPU utilisation, latency,
energy consumption, and accuracy. The evaluation model was the YOLOv4 object detector
using COCO, PASCAL, and VOC Datasets. The findings indicated that the implementation
of a deep learning model on a mobile device using the TensorFlow-Lite framework is the
best solution. On the contrary, when implementing a deep learning model on an embedded
system with a built-in Tensor core the most effective framework is the TensorRT framework.

All in all, the studied literature provides evidence that the processing of the computing
workloads is flowing from the cloud to the edge and that AI workload in edge computing
architectures is a rapidly emerging research field. Moreover, a great effort has been made by
the research community in designing optimization algorithms to improve the performance
of edge computing systems. The most common solution in task offloading approaches
is that the workload is transferred to local servers which are making the computation.
Our work is, as far as we know, the first study that explores the problem of executing the
workloads by splitting the task from servers to end devices.

3. Architecture and System Evaluation
3.1. Hardware and Software Setup

We propose an edge computing topology that consists of an edge server, a Wi-Fi access
point, and three end devices. The end devices are three Raspberry Pi’s 4 B models, two
with 4 GB RAM and one with 2 GB RAM. The first Raspberry Pi with 2 GB RAM has a
Google Coral TPU accelerator as an inference machine and the other two have a CPU-based
TensorFlow-Lite inference machine. The edge server software is written in Python and it
is responsible for offloading object detection tasks to the three end devices based on the
needs of the user. Specifically, the server sends sets of images to the end devices to apply
an object detector on the transmitted images. The end devices send the results (i.e., labels
for every processed image and the bounding boxes) back to the server. The object detection
is performed by YOLOv5 [15], which is a deep learning object detector [30]. The YOLO
model takes as input an n x n array of image pixels. Each pixel is a float or int value, which
down-samples the array by a specific number to give a grid. These grid cells propose the
labels and the bounding boxes for every object contained in the dataset. As a result, a set
of bounding boxes of the recognised objects along with their labels and their confidence
values are generated. The proposed edge computing topology consists of an edge server
which is a laptop with an i7-6700HQ CPU processor with 8 GB RAM, the three Raspberry
Pi’s described above, and a wireless access point which are shown in Figure 1.

Figure 1. An illustration of our testbed.

Appl. Sci. 2023, 13, 4982 7 of 19

3.2. The Need for Edge Server Offloading

Our work looks into the concept of offloading the processing of the workload optimally
on multiple end devices to achieve faster processing, or high-accuracy object detection of
the images. In other words, we tried to utilize all the processing resources that are close to
the server to achieve all the benefits provided by edge computing technology. We used the
YOLOv5 version of the object detector, which can be easily implemented into Raspberry
Pi along with different task-splitting strategies and compression decisions, which attempt
to offload the workload to the end devices optimally. The offloading of the workload
is done by the edge server using TCP Sockets. We used this API (Sockets) for network
communication to ensure reliable data transfers.

3.3. Measurements of the Different Delay Components

Our first priority was to measure all the systems’ E2E latency components and see how
the encoding rate q and network status impact them. The E2E latency when processing the
set of images is determined by the slowest subtask execution. Namely, when we partition
the image set, we essentially create different subtasks and we assign each of them to a
different end device. The completion of each subtask requires the respective images to be
sent to that device, processed there, and the results (bounding objects and labels) to be
returned to the server. Given the different hardware specifications of the end devices and
the volatility of the wireless channels, these delays are challenging to predict or capture
analytically as a function of the splitting and compression decisions. Our goal was to find
the right encoding rate q in which the image set sizes are as small as possible to minimize
the transmission delay or more specifically the time needed to offload the images to the
end devices and affect the performance of the YOLO model on every end device as less
as possible.

3.3.1. Encoding Delay

The edge server makes the JPEG compression before the transmission (offloading) to
the end devices. Image encoding is a very important step in our system because it makes
the size of the image sets much smaller which has an enormous effect on the transmission
delay. The compression of the image sets is made by the encoding rate value q [10,95]. The
higher the encoding rate value the bigger the image set sizes. Figures 2–5 present how the
encoding rate affects the encoding delay and how much the encoding delay affects the
image set sizes.

Figure 2. Image size for different batch sizes (1500 COCO images) for encoding rate q = [50,75,95].

Appl. Sci. 2023, 13, 4982 8 of 19

Figure 3. Encoding delay for every batch size (q = 50).

Figure 4. Encoding delay for every batch size (q = 75).

Figure 5. Encoding delay for every batch size (q = 95).

Appl. Sci. 2023, 13, 4982 9 of 19

3.3.2. Transmission Delay

Next, we presented the impact of the channel conditions and the encoding rate on the
transmission delay of different image sets (batch sizes). The size of the transmitted image
sets was between 6–230 MB. Figures 6–8 present how the transmission delay is affected by
the encoding rate value. Our measurements were performed with three different channel
conditions. The conditions of the three channels as shown in Figures 6–8 are good, medium,
and bad channel conditions respectively. As expected the higher the encoding rate value
q, the bigger the transmission delay. As mentioned before we proposed to develop a
technique in which we minimize the transmission delay by sacrificing the least possible
accuracy of the Edge-Assisted object detection system. In more detail, we suggested a
method to minimize transmission delay while maintaining high accuracy in the Edge-
Assisted object detection system. Through our testing, we have determined that the most
effective value for q, which achieves minimal transmission delay without compromising
system accuracy is q = 50 which is clearly shown in Table 1. The accuracy is affected by
the compression in a non-deterministic, and a priori unknown, fashion. Indeed, as prior
studies have shown, the detection accuracy depends on how well the training data match
the test data, the efficacy of the particular ML library we use, and several other latent
factors. Hence, whether the compression affects significantly the accuracy on top of all
these factors, or whether it is less important, is something that we cannot assess in advance,
and it is not realistic to assume that we have an analytical expression (i.e., function) for
its effect.

Figure 6. Transmission delay for different batch sizes with good channel conditions.

Appl. Sci. 2023, 13, 4982 10 of 19

Figure 7. Transmission delay for different batch sizes with medium channel conditions.

Figure 8. Transmission delay for different batch sizes with bad channel conditions.

3.4. Evaluation Scenario

For the evaluation of the system’s performance, we used the COCO dataset [34]
which consists of a big collection of images and objects with corresponding ground truth
annotations. For the evaluation of the models performance, we used the precision, recall,
and mean average precision metrics for a range of intersection over unit values (IoU).
The detection was considered successful as a true positive if the intersection of the unit value
was bigger than 0.5. The edge server included all of the COCO images data, and using a
Python script, the server sent subsets of those data to the end devices. We used 1500 images
from this validation set; images were divided into subsets of images and sent for processing
to different end devices, with different hardware and/or inference machines, and different
network conditions. This allows us to have a better understanding of the system’s operation
in diverse scenarios. Apart from revealing the trade-offs and challenges of this problem,
our results can also be us to create look-up tables with the best configurations for different
systems and cases. Furthermore, for the evaluation of the system’s performance, we used
metrics that measure the time needed to process every subset; in other words inference

Appl. Sci. 2023, 13, 4982 11 of 19

processing. We also used metrics that measure the CPU utilization for the processing of
every image subset [33] as shown in Section 3.6.

3.5. Inference Metrics

Metrics for measuring machine learning inference performance are presented in recent
works [35,36]. In our study, the following metrics were used to conduct our experiment:

• Transmission delay: is the length of time needed to transfer the images to a destina-
tion device.

• True Positive (TP): In the context of image classification, a true positive is when
the model correctly predicts that an image belongs to a certain class, and the image
actually belongs to that class.

• True Negative (TN): A true negative is when the model correctly predicts that an
image does not belong to a certain class, and the image actually does not belong to
that class.

• False Positive (FP): A false positive is when the model incorrectly predicts that an
image belongs to a certain class, when in fact it does not.

• False Negative (FN): A false negative is when the model incorrectly predicts that an
image does not belong to a certain class, when in fact it does.

• Precision: is the fraction of total True positives predictions of our model divided by
the sum of True Positive and False Positive predictions, as presented in the follow-
ing equation:

Precision =
TP

TP + FP
(1)

• Recall: is the fraction of total True positives predictions of our model divided by the sum
of True Positive and False Negative predictions, as presented in the following equation:

Recall =
TP

TP + FN
(2)

• Mean Average Precision (mAP): is a metric used in object detection tasks to evaluate
the model’s performance. More specifically, mAP is calculated by finding the Average
Precision (AP) for each class (i) and then the average over a number of classes. N is
the total number of classes. The accuracy of the object detector is obtained by this
metric:

mAP =
1
N

n

∑
i=1

APi (3)

• Execution Time: is the time for processing every image set.

3.6. Comparative Analysis and Evaluation of the YOLOv5 Inference Using the COCO Dataset

As mentioned Table 1 presents map values for all q values used. Tables 1–4 present
the results of measuring the YOLOv5 inference performance through 15 image sets taken
from the validation set of the COCO Dataset [34]. Every image set consists of 100 images.
The used YOLO models have different input image sizes and precisions. Moreover, they
are implemented into various end devices with different inference machines to reveal sharp
trade-offs. Firstly, in Table 2, we implemented the YOLO model with input image size
224 × 224 × 3 and INT8 precision into a Raspberry Pi 4 with the TensorFlow-Lite inference
machine. Secondly, in Table 3, the Raspberry Pi 4 with 2 GB RAM and the google coral
TPU using the edge TPU inference machine have also implemented the YOLO model
with input image size 224 × 224 × 3 and INT8 precision. Finally, in Table 4, the last end
device has implemented the YOLO model with input image size 320 × 320 × 3 and float32
precision. Comparing the results from the three tables we observe that the edge TPU
inference machine executes the same workload almost 8 times faster than the TensorFlow-
Lite inference machine with NN input size 320 × 320 × 3 and almost 2 times faster than
the TensorFlow-Lite inference machine with NN input size 224 × 224 × 3.

Appl. Sci. 2023, 13, 4982 12 of 19

Table 1. Map values for all q values used (1500 COCO images).

Inference Machine NN Size mAP for q = 50 mAP for q = 75 mAP for q = 95

TensorFlow-Lite 224 × 224 × 3 0.46 0.46 0.47

TensorFlow-Lite 320 × 320 × 3 0.54 0.55 0.55

Edge-TPU 224 × 224 × 3 0.44 0.44 0.45

Table 2. Evaluation of the YOLOv5 with TensorFlow-Lite Inference using the COCO Dataset and NN
size 224 × 224 × 3.

Image Set Execution Time (s) Average CPU Utilization (%) Precision Recall mAP

Image Set1 23.3 27.5 0.67 0.42 0.47

Image Set2 23.6 27.9 0.69 0.34 0.41

Image Set3 23.5 28.1 0.66 0.40 0.47

Image Set4 23.1 26.8 0.57 0.38 0.41

Image Set5 23.0 24.8 0.74 0.44 0.52

Image Set6 23.4 26.2 0.55 0.42 0.45

Image Set7 23.3 26.5 0.61 0.42 0.46

Image Set8 24.0 27.2 0.67 0.40 0.46

Image Set9 23.0 28.2 0.49 0.44 0.45

Image Set10 23.2 28.9 0.57 0.40 0.45

Image Set11 23.5 27.2 0.60 0.35 0.41

Image Set12 23.1 27.4 0.55 0.38 0.42

Image Set13 23.3 27.7 0.59 0.38 0.44

Image Set14 23.3 27.5 0.57 0.36 0.43

Image Set15 23.1 27.8 0.61 0.39 0.44

Table 3. Evaluation of the YOLOv5 with Edge TPU Inference Machine using the COCO Dataset and
NN size 224 × 224 × 3.

Image Set Execution Time (s) Average CPU Utilization (%) Precision Recall mAP

Image Set1 9.6 29.8 0.66 0.41 0.46

Image Set2 9.0 33.2 0.54 0.36 0.40

Image Set3 9.9 32.8 0.65 0.46 0.47

Image Set4 9.1 32.2 0.53 0.38 0.41

Image Set5 9.4 34.2 0.58 0.52 0.55

Image Set6 9.4 33.6 0.71 0.38 0.44

Image Set7 9.0 34.1 0.67 0.39 0.45

Image Set8 9.8 32.5 0.58 0.43 0.45

Image Set9 9.2 31.5 0.63 0.38 0.45

Image Set10 9.4 32.0 0.70 0.37 0.48

Image Set11 9.3 30.9 0.71 0.35 0.41

Image Set12 8.7 31.2 0.54 0.40 0.42

Image Set13 8.9 32.5 0.56 0.43 0.43

Image Set14 9.2 30.9 0.59 0.35 0.40

Image Set15 9.3 34.2 0.58 0.42 0.45

Appl. Sci. 2023, 13, 4982 13 of 19

Table 4. Evaluation of the YOLOv5 with TensorFlow-Lite Inference Machine using the COCO Dataset
and NN size 320 × 320 × 3.

Image Set Execution Time (s) Average CPU Utilization (%) Precision Recall mAP

Image Set1 83.3 27.1 0.71 0.53 0.6

Image Set2 81.1 29.3 0.77 0.43 0.56

Image Set3 82.1 29.2 0.73 0.50 0.54

Image Set4 83.6 28.1 0.6 0.49 0.55

Image Set5 83.4 28.5 0.71 0.55 0.62

Image Set6 81.3 29.6 0.6 0.48 0.52

Image Set7 81.6 29.8 0.76 0.5 0.55

Image Set8 81.7 28.8 0.75 0.5 0.56

Image Set9 82.6 29.6 0.47 0.55 0.55

Image Set10 83.1 29.3 0.54 0.53 0.54

Image Set11 82.1 28.4 0.62 0.48 0.51

Image Set12 82.8 30.3 0.67 0.47 0.51

Image Set13 81.1 28.5 0.6 0.49 0.50

Image Set14 81.4 27.2 0.57 0.49 0.51

Image Set15 81.5 27.8 0.62 0.52 0.58

4. Design of Algorithms and Decision Variables

The goal of our experiments was to develop an edge-assisted object detection system
that is tailored around the needs of the user to minimize the E2E execution time or to
maximize the accuracy of the system. Hence, in this paper, we follow an experimental
approach where we use our testbed to evaluate an exhaustive list of possible configurations,
i.e., different splitting decisions and compression values, with respect to accuracy and
delay criteria. This analysis sheds light on the dependencies and conflicts of these two
criteria and allows one to select, offline, a strategy that optimizes the criterion of their
preference. To make this clear, we also introduce the respective optimization problems,
albeit without providing analytical expressions for the metrics, for the reasons we explained
above. The aim of this research was to find the optimal trade-off of the metrics to improve
E2E execution time and the accuracy of the system. The key decisions here are how to split
and offload the set of images, across the end devices. This decision is taken at the server,
based on the solution of our properly defined optimization problems. In the experiments,
we demonstrated that the parameters which affect and improve the operation of the system
are the encoding rate q (compression value) and the batch sizes (splitting decisions) of the
delivered images to every device. More specifically based on our measurements (Tables 1–4
and Figures 2–10) we argue that the parameters which affect the accuracy and execution
time are: the encoding delay Tenc, the transmission delay Ttx, the inference delay Tin f
and Tdl depend on decision variables q and the percentage of the total amount of images
transmitted to each device ai. Therefore, the decision variables of our system are the
encoding rate q and a1, a2, a3.

It should be noted that we define our functions and our parameters in Table 5; these
parameters were used for constructing our optimization problem. In more detail, we define:

3

∑
i=1

ai = 1 with ai ∈ [0, 1] (4)

bi = ai ∗ L (5)

Appl. Sci. 2023, 13, 4982 14 of 19

Tdl(q, ai) = max([Tenc(q) + Ttx(q) + Tin f (a1);

Tenc(q) + Ttx(q) + Tin f (a2);

Tenc(q) + Ttx(q) + Tin f (a3);)])

(6)

Table 5. Definitions of variables and functions.

Description Parameter

Total number of images L

Percentage of the total number of images for every device i ai

Number of images sent for processing to every device i bi

Inference machine of end device i in f i

Time to process the images send Tin f

Time to encode the images Tenc

Time to transmit the images Ttx

Time to process all the images for the three devices Tdl

Total execution time Ttotal

Systems execution accuracy Sacc

In Equation (6), we calculate the three values of time from which we keep the largest
value. More specifically offloading to every device in a workload means that we calculate
three values of time from which we keep the time value from the device which ended
the processing of the images last. In this work, we formulate two research questions
or optimization problems. The first one refers to the case Q1 where we minimize the
E2E execution time. The second Q2 refers to the case, where we maximize accuracy.
The optimization problems can be written as:

Q1 : minimize Ttotal(q, ai) (7)

Q2 : maximize Sacc(q, ai)

and Ttotal > Tmin
(8)

from Equations (4)–(6) we define:

Ttotal(q, ai) = Tdl(q, ai) (9)

Taking into account our evaluation results of the YOLOv5 using the COCO dataset
in Tables 1–4, and also Figures 9 and 10, we reveal that the edge TPU inference machine
makes the processing of the workload faster than the other two inference machines, so the
common logic says to send most of the images to the edge TPU inference and lesser images
to the other two inference machines to answer to research question Q1. On the other hand,
to answer Q2 we have to offload the specific batches of images to get maximized accuracy.

Appl. Sci. 2023, 13, 4982 15 of 19

Figure 9. E2E execution time values for every device and batch size.

Figure 10. Accuracy values for every device and batch size.

5. Results and Discussion

In this section, we present our results that solve the two optimization problems
“manually” by finding the optimal values of the decision variables ai and q. We define
for i = 1 the edge TPU inference machine, i = 2 the TensorFlow-Lite inference machine
with 224 × 224 × 3 NN input size, and i = 3 the TensorFlow-Lite inference machine with
320 × 320 × 3 NN input size. Tmin is the target execution time requested by the user.

Appl. Sci. 2023, 13, 4982 16 of 19

In Figure 11, we observe that the Pareto plot depicts the most efficient solutions for
our two optimization problems. Every solution in the Pareto plot combines three ai values.
Regarding the optimal value for the encoding rate, it is clearly shown in Figures 6–8 that
the optimal value for the encoding rate is q = 50. To answer Q1 according to the Pareto,
the optimal solution to get the minimum E2E execution time is Ttotal = 110 s. The most
optimal values for ai are a1 = 0.7, a2 = 0.3, a3 = 0. For Q2, we define it as Tmin = 400 (s),
which means that all the feasible solutions can not be greater than 400 s. According also
to the Pareto plot, the most optimal solution for Q2 achieves Sacc = 0.53 and Ttotal = 342 s.
The values for ai which achieve the maximum accuracy a1 = 0, a2 = 0.8, a3 = 0.2.

Figure 11. Most best solutions (Pareto front) for Q1, Q2.

The main idea of this paper was to develop a cooperative task execution of an edge-
assisted object detection system. In our edge computing system, we used the You Only
Look Once (YOLO) version 5. We first evaluate the performance of the YOLOv5 on every
end device using metrics like Precision, Recall, and mAP on the COCO dataset. The
goal of our work was to offload the workload (batch of images) to three end devices that
are in our testbed and try to get the minimum execution time or the maximum accuracy.
We noticed that the parameter-decision variables, which affect the E2E execution time,
and execution accuracy are: the encoding rate q (compression value); and the batch sizes
(splitting decisions) sent to every device.

More specifically, we explored the optimal trade-offs between the parameters and
decision variables to solve optimization problems “manually”. We found that the key
parameter which affects an edge-assisted object detection system is the encoding rate
(compression value) along with the neural network input size and the precision (INT8,
float32) and also the batch sizes (splitting decisions) sent to every end device.

Actually, the effectiveness of image compression on object recognition accuracy has
recently gained much attention from many researchers. The authors in [37] showed the
significance of the effectiveness of image compression or better encoding rate q on the object
detection accuracy. The system-level trade-offs between E2E latency and deep learning
accuracy were recently introduced in [16]. We tried to learn from these lessons and add
value to the relevant literature.

Appl. Sci. 2023, 13, 4982 17 of 19

The contribution of our work is that we propose an edge-assisted object detection
system that offloads the workload from the edge server to the end devices based on the
needs of the user rather than offloading the workload from the end devices to the edge
server and the cloud [32,37].

This approach has not been previously explored. In our work, we highlight the optimal
trade-offs between E2E execution time and accuracy in an edge computing architecture that
other researchers have also studied. Our work, however, goes beyond that by providing
a real-time edge-assisted object detection system that is tailored made according to the
needs of the user by offloading the workload to the three devices. Our proposed offloading
strategies can easily be implemented on end devices, which means that the latency of our
system can be reduced much more.

A natural next step in this line of work is to devise algorithms that can select the
configuration decisions (splitting and compressing) in a dynamic fashion. Another future
research direction associated with our subject of work could be about addressing the
challenge of finding more effective image compression methods like autoencoders aiming
to get better results in transmission delay and also to study ways to improve the accuracy
metric with other Deep Learning techniques like distillation. Therefore, it would be useful
to study autoencoders as image compressors and the distillation method and see how these
affect the accuracy and execution time in an edge-assisted object detection system.

The limitation we faced in this work was, as said before, that the proposed system
cannot make the splitting and compression decisions in a dynamic fashion which means
that the user has to take into account all the feasible solutions and choose manually the
optimal decision variables the get the minimized execution time or the maximized accuracy.

6. Conclusions

In this work, we proposed and developed a cooperative task execution of an edge-
assisted object detector system and presented how to optimal deliver (offload) batches of
images to minimize the E2E latency or maximize the execution accuracy of the system.
Our purpose was to design an edge-assisted object detection that is tailored around the
needs of the user to minimize the E2E execution time or to maximize the accuracy. After
presenting our two optimization problems to solve them, we followed an experimental
approach by testing all the possible configurations of the parameter which affect the system
performance (execution time, accuracy). After testing all the possible configurations of the
parameters which are presented in the Pareto plot, we found the optimal trade-offs of our
parameters, which solve the two optimization problems “manually”. It is concluded that
the parameters which affect the E2E execution time and accuracy of the system are the
encoding rate q (compression value) and the batch sizes (splitting decisions), which are sent
to every end device. The key contribution of this study is that we highlight the optimal
trade-offs of our parameters, which can be applied according to the needs of the user to
minimize E2E latency or maximize the execution accuracy of the system. We demonstrated
that offloading the workload on multiple end devices based on different splitting decisions
and compression values can improve the system’s performance to respond in real-time
conditions without the need for a server or cloud resources.

Author Contributions: Conceptualization, D.K. and P.A.; methodology, D.K., G.I. and A.N.; soft-
ware, P.A.; validation, G.I., T.L. and D.K.; formal analysis, D.K., T.L. and P.A.; data curation, P.A.;
writing—original draft preparation, P.A. and D.K.; writing—review and editing, G.I., T.L. and A.N.;
visualization, D.K. and P.A.; supervision, D.K. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

Appl. Sci. 2023, 13, 4982 18 of 19

Abbreviations
The following abbreviations are used in this manuscript:

AI Artificial Intelligence
AIoT Artificial Internet of Things
AR Augmented Reality
COCO Common Objects in Context
CPU Central Processing Unit
E2E End-to-End
EC Edge Computing
FPS Frames Per Second
IoT Internet of Things
IoU Intersection over Unit
IoV Internet of Vehicles
mAP mean Average Precision
MCC Mobile Cloud Computing
MEC Mobile Edge Computing
s Seconds
SBC Single Board Computer
TCP Transmission Control Protocol
TPU Tensor Processing Unit
YOLO You Only Look Once

References
1. Shi, W.; Cao, J.; Zhang, Q.; Li, Y.; Xu, L. Edge Computing: Vision and Challenges. IEEE Internet Things J. 2016, 3, 637–646.

[CrossRef]
2. Khan, W.Z.; Ahmed, E.; Hakak, S.; Yaqoob, I.; Ahmed, A. Edge computing: A survey. Future Gener. Comput. Syst. 2019,

97, 219–235. [CrossRef]
3. Varghese, B.; Wang, N.; Barbhuiya, S.; Kilpatrick, P.; Nikolopoulos, D.S. Challenges and Opportunities in Edge Computing. In

Proceedings of the 2016 IEEE International Conference on Smart Cloud (SmartCloud), New York, NY, USA, 18–20 November 2016;
pp. 20–26. [CrossRef]

4. Cao, K.; Liu, Y.; Meng, G.; Sun, Q. An Overview on Edge Computing Research. IEEE Access 2020, 8, 85714–85728. [CrossRef]
5. Shi, W.; Pallis, G.; Xu, Z. Edge Computing [Scanning the Issue]. Proc. IEEE 2019, 107, 1474–1481. [CrossRef]
6. Nikitas, A.; Michalakopoulou, K.; Njoya, E.T.; Karampatzakis, D. Artificial Intelligence, Transport and the Smart City: Definitions

and Dimensions of a New Mobility Era. Sustainability 2020, 12, 2789. [CrossRef]
7. Zhu, G.; Liu, D.; Du, Y.; You, C.; Zhang, J.; Huang, K. Toward an Intelligent Edge: Wireless Communication Meets Machine

Learning. IEEE Commun. Mag. 2020, 58, 19–25. [CrossRef]
8. Sze, V.; Chen, Y.H.; Yang, T.J.; Emer, J.S. Efficient Processing of Deep Neural Networks: A Tutorial and Survey. Proc. IEEE 2017,

105, 2295–2329. [CrossRef]
9. Mao, Y.; You, C.; Zhang, J.; Huang, K.; Letaief, K.B. A Survey on Mobile Edge Computing: The Communication Perspective.

IEEE Commun. Surv. Tutorials 2017, 19, 2322–2358. [CrossRef]
10. Mach, P.; Becvar, Z. Mobile Edge Computing: A Survey on Architecture and Computation Offloading. IEEE Commun. Surv. Tutor.

2017, 19, 1628–1656. [CrossRef]
11. Wang, S.; Zhang, X.; Zhang, Y.; Wang, L.; Yang, J.; Wang, W. A Survey on Mobile Edge Networks: Convergence of Computing,

Caching and Communications. IEEE Access 2017, 5, 6757–6779. [CrossRef]
12. Ai, Y.; Peng, M.; Zhang, K. Edge computing technologies for Internet of Things: A primer. Digit. Commun. Netw. 2018, 4, 77–86.

[CrossRef]
13. Rodrigues, T.K.; Suto, K.; Nishiyama, H.; Liu, J.; Kato, N. Machine Learning Meets Computation and Communication Control in

Evolving Edge and Cloud: Challenges and Future Perspective. IEEE Commun. Surv. Tutor. 2020, 22, 38–67. [CrossRef]
14. Jiang, C.; Cheng, X.; Gao, H.; Zhou, X.; Wan, J. Toward Computation Offloading in Edge Computing: A Survey. IEEE Access 2019,

7, 131543–131558. [CrossRef]
15. GitHub—Ultralytics/Yolov5. Available online: https://github.com/ultralytics/yolov5 (accessed on 25 June 2020).
16. Galanopoulos, A.; Valls, V.; Iosifidis, G.; Leith, D.J. Measurement-driven Analysis of an Edge-Assisted Object Recognition System.

In Proceedings of the 2020 IEEE International Conference on Communications (ICC), Dublin, Ireland, 7–11 June 2020 ; p. 7.
17. Sadatdiynov, K.; Cui, L.; Zhang, L.; Huang, J.Z.; Salloum, S.; Mahmud, M.S. A review of optimization methods for computation

offloading in edge computing networks. Digit. Commun. Netw. 2022.
18. Feng, C.; Han, P.; Zhang, X.; Yang, B.; Liu, Y.; Guo, L. Computation offloading in mobile edge computing networks: A survey. J.

Netw. Comput. Appl. 2022, 202, 103366. [CrossRef]

http://doi.org/10.1109/JIOT.2016.2579198
http://dx.doi.org/10.1016/j.future.2019.02.050
http://dx.doi.org/10.1109/SmartCloud.2016.18
http://dx.doi.org/10.1109/ACCESS.2020.2991734
http://dx.doi.org/10.1109/JPROC.2019.2928287
http://dx.doi.org/10.3390/su12072789
http://dx.doi.org/10.1109/MCOM.001.1900103
http://dx.doi.org/10.1109/JPROC.2017.2761740
http://dx.doi.org/10.1109/COMST.2017.2745201
http://dx.doi.org/10.1109/COMST.2017.2682318
http://dx.doi.org/10.1109/ACCESS.2017.2685434
http://dx.doi.org/10.1016/j.dcan.2017.07.001
http://dx.doi.org/10.1109/COMST.2019.2943405
http://dx.doi.org/10.1109/ACCESS.2019.2938660
https://github.com/ultralytics/yolov5
http://dx.doi.org/10.1016/j.jnca.2022.103366

Appl. Sci. 2023, 13, 4982 19 of 19

19. Wang, X.; Han, Y.; Leung, V.C.M.; Niyato, D.; Yan, X.; Chen, X. Convergence of Edge Computing and Deep Learning: A
Comprehensive Survey. IEEE Commun. Surv. Tutor. 2020, 22, 869–904. [CrossRef]

20. Shi, Y.; Yang, K.; Jiang, T.; Zhang, J.; Letaief, K.B. Communication-Efficient Edge AI: Algorithms and Systems. arXiv 2020,
arXiv:2002.09668.

21. Chen, J.; Ran, X. Deep Learning With Edge Computing: A Review. Proc. IEEE 2019, 107, 1655–1674. [CrossRef]
22. Wang, C.F.; Lin, Y.K.; Chen, J.C. A cooperative image object recognition framework and task offloading optimization in edge

computing. J. Netw. Comput. Appl. 2022, 204, 103404. [CrossRef]
23. Yu, W.; Liang, F.; He, X.; Hatcher, W.G.; Lu, C.; Lin, J.; Yang, X. A Survey on the Edge Computing for the Internet of Things. IEEE

Access 2018, 6, 6900–6919. [CrossRef]
24. Deng, S.; Zhao, H.; Fang, W.; Yin, J.; Dustdar, S.; Zomaya, A.Y. Edge Intelligence: The Confluence of Edge Computing and

Artificial Intelligence. IEEE Internet Things J. 2020, 7, 7457–7469. [CrossRef]
25. Gong, C.; Lin, F.; Gong, X.; Lu, Y. Intelligent Cooperative Edge Computing in Internet of Things. IEEE Internet Things J. 2020,

7, 9372–9382. [CrossRef]
26. Zhou, Z.; Chen, X.; Li, E.; Zeng, L.; Luo, K.; Zhang, J. Edge Intelligence: Paving the Last Mile of Artificial Intelligence With Edge

Computing. Proc. IEEE 2019, 107, 1738–1762. [CrossRef]
27. Li, E.; Zeng, L.; Zhou, Z.; Chen, X. Edge AI: On-Demand Accelerating Deep Neural Network Inference via Edge Computing.

arXiv 2019, arXiv:1910.05316.
28. Saeik, F.; Avgeris, M.; Spatharakis, D.; Santi, N.; Dechouniotis, D.; Violos, J.; Leivadeas, A.; Athanasopoulos, N.; Mitton, N.;

Papavassiliou, S. Task offloading in Edge and Cloud Computing: A survey on mathematical, artificial intelligence and control
theory solutions. Comput. Netw. 2021, 195, 108177. [CrossRef]

29. Galanopoulos, A.; Salonidis, T.; Iosifidis, G. Cooperative Edge Computing of Data Analytics for the Internet of Things. IEEE
Trans. Cogn. Commun. Netw. 2020, 6, 1166–1179. [CrossRef]

30. Feng, H.; Mu, G.; Zhong, S.; Zhang, P.; Yuan, T. Benchmark Analysis of YOLO Performance on Edge Intelligence Devices.
Cryptography 2022, 6, 16. [CrossRef]

31. Liu, L.; Li, H.; Gruteser, M. Edge Assisted Real-time Object Detection for Mobile Augmented Reality. In Proceedings of the 25th
Annual International Conference on Mobile Computing and Networking, Los Cabos, Mexico, 21–29 October 2019 ; pp. 1–16.
[CrossRef]

32. Dai, C.; Liu, X.; Chen, W.; Lai, C.F. A Low-Latency Object Detection Algorithm for the Edge Devices of IoV Systems. IEEE Trans.
Veh. Technol. 2020, 69, 11169–11178. [CrossRef]

33. Shin, D.J.; Kim, J.J. A Deep Learning Framework Performance Evaluation to Use YOLO in Nvidia Jetson Platform. Appl. Sci.
2022, 12, 3734. [CrossRef]

34. COCO—Common Objects in Context. Available online: https://cocodataset.org/ (accessed on 10 March 2023).
35. Hui, Y.; Lien, J.; Lu, X. Early Experience in Benchmarking Edge AI Processors with Object Detection Workloads. In Benchmarking,

Measuring, and Optimizing; Gao, W., Zhan, J., Fox, G., Lu, X., Stanzione, D., Eds.; Springer International Publishing: Cham,
Germany, 2020; Volume 12093, pp. 32–48. [CrossRef]

36. Torelli, P.; Bangale, M. Measuring Inference Performance of Machine-Learning Frameworks on Edge-Class Devices with the
MLMark™ Benchmark. Available online: https://www.eembc.org/mlmark/ (accessed on 10 March 2023).

37. Ren, J.; Guo, Y.; Zhang, D.; Liu, Q.; Zhang, Y. Distributed and Efficient Object Detection in Edge Computing: Challenges and
Solutions. IEEE Netw. 2018, 32, 137–143. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/COMST.2020.2970550
http://dx.doi.org/10.1109/JPROC.2019.2921977
http://dx.doi.org/10.1016/j.jnca.2022.103404
http://dx.doi.org/10.1109/ACCESS.2017.2778504
http://dx.doi.org/10.1109/JIOT.2020.2984887
http://dx.doi.org/10.1109/JIOT.2020.2986015
http://dx.doi.org/10.1109/JPROC.2019.2918951
http://dx.doi.org/10.1016/j.comnet.2021.108177
http://dx.doi.org/10.1109/TCCN.2020.3019610
http://dx.doi.org/10.3390/cryptography6020016
http://dx.doi.org/10.1145/3300061.3300116
http://dx.doi.org/10.1109/TVT.2020.3008265
http://dx.doi.org/10.3390/app12083734
https://cocodataset.org/
http://dx.doi.org/10.1007/978-3-030-49556-5_3
https://www.eembc.org/mlmark/
http://dx.doi.org/10.1109/MNET.2018.1700415

	Introduction
	Related Works
	Architecture and System Evaluation
	Appendix 3.1
	Appendix 3.2
	Appendix 3.3
	Encoding Delay
	Transmission Delay

	Appendix 3.4
	Appendix 3.5
	Comparative Analysis and Evaluation of the YOLOv5 Inference Using the COCO Dataset

	Design of Algorithms and Decision Variables
	Results and Discussion
	Conclusions
	References

