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Active Classification of Moving Targets With
Learned Control Policies

Álvaro Serra-Gómez , Eduardo Montijano , Member, IEEE, Wendelin Böhmer,
and Javier Alonso-Mora , Senior Member, IEEE

Abstract—In this paper, we consider the problem where a drone
has to collect semantic information to classify multiple moving
targets. In particular, we address the challenge of computing con-
trol inputs that move the drone to informative viewpoints, posi-
tion and orientation, when the information is extracted using a
“black-box” classifier, e.g., a deep learning neural network. These
algorithms typically lack of analytical relationships between the
viewpoints and their associated outputs, preventing their use in
information-gathering schemes. To fill this gap, we propose a novel
attention-based architecture, trained via Reinforcement Learning
(RL), that outputs the next viewpoint for the drone favoring the
acquisition of evidence from as many unclassified targets as possible
while reasoning about their movement, orientation, and occlusions.
Then, we use a low-level MPC controller to move the drone to the
desired viewpoint taking into account its actual dynamics. We show
that our approach not only outperforms a variety of baselines but
also generalizes to scenarios unseen during training. Additionally,
we show that the network scales to large numbers of targets and
generalizes well to different movement dynamics of the targets.

Index Terms—Machine learning for robot control, reactive and
sensor-based planning, surveillance robotic systems.

I. INTRODUCTION

IN SURVEILLANCE and tracking applications an au-
tonomous drone may be tasked with collecting relevant infor-

mation from multiple targets, e.g., recognize people with blue
eyes. Recent deep learning approaches show excellent results
at detecting and categorizing single and multiple elements with
images [1] or LiDAR [2]. However, these methods are generally
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not enough for active classification with a mobile drone, which
also requires planning of the drone’s movement and reasoning
over the targets’ future behavior.

The use of deep learning perception algorithms for informa-
tion gathering comes with its own challenges. On the one hand,
the “black-box” nature of these algorithms makes it difficult to
determine the position that would yield the most informative
data for classification. On the other hand, the drone also needs
to reason about the targets’ movement and orientation, as well
as the possible occlusions among them, to plan a trajectory that
will reveal the most information.

To overcome these issues, the main contribution of this paper
is a complete solution to the problem of active classification
of multiple moving targets. Differently to previous approaches,
our framework can handle dynamic targets without requiring
an explicit observation model, e.g., using a black-box classifier.
Our solution leverages Deep Reinforcement Learning (DRL) to
train a control policy that recommends informative viewpoints
using the relative position of the targets and their current class
probability estimations. We also propose a novel attention-based
permutation-invariant architecture for the DRL policy that gen-
eralizes to more targets that move differently from those seen
during training.

Moreover, to simplify the training, the policy is abstracted
from the low-level dynamics of the drone, which are instead con-
sidered inside a low-level MPC controller at test time. Finally,
the estimations are updated with an efficient information fusion
method, conflation, suited to be used with black-box perception
algorithms. A full overview of the method is shown in Fig. 1.
Experiments under different conditions show that our approach
outperforms a variety of baselines and is robust to scenarios
unseen during training.

II. RELATED WORKS

Our contributions build upon recent work in multi-view ac-
tive classification and learning for motion planning in dynamic
environments.

A. Multi-View Active Classification

The problem of active classification is typically solved by
pre-defining a set of viewpoints through which trajectories
are planned to gather sufficient information to solve an active
classification task. One-step greedy planners for active object
classification [3] select object-dependent viewpoints based on
class uncertainty and observation occlusions. Some non-myopic
methods [4] account for the cost of movement and information
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Fig. 1. Overview of our method for active classification. The objective is to
classify all targets into different classes, red and blue in the example. The method
has three parts. First, observable targets, targets 1 to 5, represented with white
back in the figure, are detected by the onboard sensor. We assume the existence of
a classification algorithm, e.g., a CNN, able to provide probability estimates for
each target (bars at the bottom right). Then, we use an efficient fusion mechanism,
conflation, to obtain the beliefs, bt, over the classes for each target. Finally, this
information, together with the observed probabilities and relative locations, ot,
is fed to a control algorithm that computes the recommended viewpoint,at, using
a novel deep learning architecture trained using Reinforcement Learning. The
recommended viewpoint is tracked with a low-level controller, which outputs
the robot control input ut.

gain between viewpoints to solve the problem of active classi-
fication. Others, e.g., [5], formulate the problem as a partially
observable Markov Decision Process (POMDP) and plans a path
over viewpoints while accounting for measurement costs, occlu-
sions and possible misclassifications. Similarly, [6] computes
plans using a variation of Monte Carlo tree search. However,
these methods generally require access to a model to estimate
viewpoint usefulness a priori. Learning methods are non-myopic
and allow to use black-box models. Recent works leverage the
use of DRL for static multi-target pose estimation and active
classification by learning a policy that moves the camera towards
viewpoints that reduce observation uncertainty [7] or maximize
information gain to enhance object classification [8]. Neverthe-
less, these methods assume that targets are static, which makes
them unsuitable for active classification with moving targets.
Although some works consider dynamic targets, they are often
limited to a pre-defined closed environment [9] or, as its the
case for aerial videography methods [10], [11], focus on target
information visibility which requires prior knowledge on where
this information is visible from.

B. Learning for Motion Planning in Dynamic Environments

Learning approaches in motion planning tasks have the poten-
tial to encode and identify patterns in complex motion planning
tasks. Recent advances in Deep Representation Learning show
promise in learning latent representations of the state space, cap-
turing the underlying structure and symmetries in dynamic envi-
ronments [12]. Recent works in learning-based motion-planning
policies rely on Convolutional Neural Networks (CNN) [13],
[14] for visual-based navigation, or encode the state of mul-
tiple static/dynamic elements in the environment using Graph
Convolutional Networks (GCN) [15], [16] or Long-Short Term
Memory layers (LSTMs) [17], [18].

Yet these strategies require a priori knowledge on the priority
order of the elements in the encoded sequence, or the structure of
the encoded graph [19]. Instead, DeepSets [20] and self-attention
based architectures [21], [22] are permutation invariant and en-
able encoding element sets without making further assumptions

on their structure. Most related to our approach, [23] uses a
combination of Self-attention [22] and DeepSets [20] to learn
a policy that coordinates a multi-robot system to track a set
of dynamic targets. However, DeepSets aggregate all targets’
information by assigning equal weights to them. In contrast, we
leverage the use of self-attention [22] and attention-based set-
function approximators [24] to effectively encode the dynamic
environment, learning the importance of each target in our future
decision.

III. PROBLEM FORMULATION

Consider a drone with statext at discrete time t, control inputs
ut and dynamics xt+1 = f(xt,ut), obtained for a sampling
time of τl seconds. The drone has to collect information from a
setJ = {1, . . .,M} ofM dynamic targets, whereyj

t is the state
of target j at time step t, represented in the drone’s reference
frame and Yt = {yj

t}j=1,...,M . The targets follow their own
dynamics, yj

t+1 = gj(yj
t ), which are unknown to the drone.

We assume that the drone flies above the targets, neglecting
physical collisions with them. Nevertheless, the targets can still
collide with each other and, more importantly, they can occlude
the visibility of others to the drone, depending on where they
are. Besides, we do not deal with how to measure and track
the targets’ relative information, assuming they are provided by
some external perception algorithm, e.g., [25]. For the sake of
simplicity, in the following we omit the t subscript, except when
needed.

We denote by C = {1, . . ., C} the set of classes, such that each
target in J belongs to one class in C (e.g., eye color). The objec-
tive of the drone is to classify all the targets. To do that, the drone
has a belief vector for each target, bj = {bj1, bj2, . . ., bjC},
where 0 ≤ bjc ≤ 1 denotes the belief the drone has of target
j belonging to class c at time t, and

∑C
c=1 b

jc = 1. Target j is
tagged as classified whenevermaxc∈C b

jc is above a pre-defined
threshold bmax. We use the Boolean variable lj , to specify
whether target j is classified or not at timestep t.

To compute the beliefs, every τh � τl seconds, the drone is
able to make an observation and use a black-box perception
algorithm (e.g., a pre-trained CNN classifier) to compute a
probability distribution over the class set for each target. We
denote that distribution as P = h(Y) = {pj}j=1,...,M , where
pj = (pj1, . . ., pjC) is the probability vector for target j, and pjc

is the probability of target j belonging to class c. For unobserved
targets, pj is a uniform distribution. As it happens with the
majority of real CNN classifiers, we assume the drone has no
available model to map how the relative positions relate to the
observed probability distributions. Beliefs are then computed
by fusing these measurements, bj

t = ζ(pj
1:t), where ζ is the

conflation operator [26], a function that models how the beliefs
can be computed from the history of classification probabilities
given by the black-box sensor (see Section IV-A).

Under these conditions, the problem considered in the paper
is to actuate the drone in such a way that it is able to classify
all targets as quickly as possible, i.e., make ljt true for all j in
the minimum possible value of t. To address it, we formulate
a sequential decision-making problem that the drone solves at
every time step t. The objective of this problem is to find the
actions over a time horizon T that minimize the accumulated
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entropy of all the targets’ beliefs,

min
u0:T

T∑
t=1

∑
j∈J

wHH[bj
t ] + wu ‖ut‖

s.t. xt+1 = f(xt,ut), yj
t+1 = gj(yj

t ), ∀t

Pt = h(Yt), bj
t = ζ(pj

1:t), ∀t ∝ τh/τl

j ∈ J , 0 ≤ t ≤ T−1 (1)

where H[bj
t ] denotes the entropy of belief bj

t , wH and wu are
scaling weights, and ∝ is the proportional sign.

IV. METHODOLOGY

The lack of information about h(Yt) and gj(yj
t ) hinders the

direct solution of problem (1). Instead, in the paper we leverage
Reinforcement Learning to train a control policy that implicitly
learns these quantities (Viewpoint Control Policy). The policy
πφ, parametrized byφ, operates at the perception low-frequency,
1
τh

, and computes informative viewpoints at for the drone.
The viewpoints are then tracked with an MPC controller that
generates the low-level control inputs,ut, at the necessary higher
frequency, 1

τl
. A positive side-effect of this decomposition in

two temporal abstraction levels is the possibility to neglect the
complex drone dynamics in the POMDP formulation used for
the RL algorithm. An overview of the proposed framework is
given in Fig. 1. To simplify the notation, in this section t denotes
time periods of τh, whereas the faster time steps of periods τl
are denoted by k in Section IV-C.

A. Target Class Observations and Belief Updates

An important aspect to consider is how to aggregate the
different observations made by the drone about each target’s
class to produce the class beliefs. The first issue to consider is that
standard Bayesian recursive estimation is not advisable because
the measurement likelihood model for the update, P (pj

t |bt−1),
is not available from a black-box sensor. To train and learn an
accurate pose-dependent model of the likelihood, a dense dataset
must be built first. Then, to use it for optimal viewpoint search all
targets and their occlusions must be considered. This process is
costly and scales badly. Instead, in this paper we propose to use a
mathematical method called conflation [26]. Conflation is used
to aggregate probability distributions obtained from measure-
ments over the same phenomena under different circumstances.
Notably, this technique has the property of minimizing the loss
of Shannon information when flattening multiple independent
probability distributions into a single one, that is, computing bj

t

given the measurements pj
0:t. In addition, it is a commutative

and associative operator, enabling easy and efficient recursive
computation and making it appealing for onboard computation.
The conflation is defined by

bj
t = ζ(pj

1:t) ≡ ζ(bj
t−1,p

j
t ) =

bj
t−1	pj

t

(bj
t−1)



pj

t

, (2)

where the Hadamard product 	 in the numerator is taken
component-wise, whereas the dot product is the normalization
factor. Beliefs are initialized at t = 0 with a uniform prior over
classes in C.

Lastly, although (2) considers all the measurements equally, it
can easily be extended to a weighted version using the weights as
powers of the probability distributions. This could be useful for
example in cases where the black-box also outputs a confidence
measurement over the class probabilities.

B. Viewpoint Control Policy

1) POMDP Formulation: We formulate the high-level view-
point recommendation problem as a POMDP, which is defined
by the tuple 〈S,A, T , Z,O, R〉. The states st ∈ S contain the
drone’s position qt and yaw orientation ψt, all targets’ states yj

t

and ground truth class, and the current beliefsbj
t and ljt , 1 ≤ j ≤

M . The action space, A, models the recommended viewpoints,
defined by displacements over the drone’s position and yaw,
at = (Δqt,Δψt). Recommended viewpoints are constrained to
a neighborhood and orientation from the current pose, which de-
pends on the maximum distance and angle the drone can traverse
in τh seconds. The transition probability function, T , simply
assumes that the drone is able to reach the output viewpoint
in time for the next measurement. The drone observes partial
environment information ot ∈ Z, according to the observation
function O. This observation is defined by ot = {oj

t}j=1,...,M ,
where oj

t := (yj
t ,H[bj

t ],H[pj
t ], l

j
t ) is the information available

from target j regarding its relative pose, velocity, normalized
entropy of the belief and the current measurement, and whether
it has already been classified. The use of the belief and mea-
surement entropy, instead of the probability distribution vector,
enables handling an arbitrary number of classes C and keep
track of how much information can still be gained by observing a
target. We also recall that for unobserved targets,pj

t is a uniform
distribution.

Finally, the reward function, R, is shaped based on the
problem described in (1), and additional factors that the policy
should take into account. First of all, there is a dense reward,
RH, proportional to how much the entropy of each belief, bj

t ,
has decreased each time step, t, due to the new information
gathered. Additionally, there is one sparse reward, denoted by
Rl, for individual target classifications, when any ljt changes
from zero to one at time t, and another, RJ , for completing the
classification of all of the existing targets, when

∑
j l

j
t =M .

On the other hand, to promote solving the task quickly and
efficiently, the reward includes a constant penalty associated
to the time required to classify the targets, Rt, and another one
proportional to the distance to the recommended viewpoint,Ra,
to favor small motions. The formal definition of all the reward
terms is

R(st,at, st+1) = RH(st, st+1) +Rl(st, st+1)

+RJ (st+1)−Rt −Ra(at),

where RH(st, st+1) = wH

M∑
j=1

(
H(bj

t )−H(bj
t+1)

)
,

Rl(st, st+1) = wl

M∑
j=1

(ljt+1 − ljt ),
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Fig. 2. Policy neural network architecture. The sequence of target information
is fed to the self-attention block (SAB) which encodes and identifies how each
target pose affects the visibility of the others from the drone’s perspective.
This information is fed to the pooling multi-head attention layer (PMA) and
mapped through a fully connected layer (FC) to obtain the policy viewpoint
recommendation.

RJ (st+1) =

{
wJ if

∑M
j=1 l

j
t+1 =M

0 otherwise
,

Rt = wt,

Ra(at) = wa(‖Δqt‖+ |Δψt|), (3)

with wH, wl, wJ , wt and wa weights that scale each term.
2) Architecture: The ability of any learned policy πφ(at|ot)

to generalize beyond the exact situations seen during training,
e.g., more targets or changing target behaviors, depends crucially
on the chosen neural architecture, shown in Fig. 2. We arrange
the information available of each target, oj

t , into a set ot. The
main challenge arises from the set being large and changing over
time. Inspired by Relational Graph Convolutional Networks [27]
and self-attention mechanisms [22] used on static knowledge
graphs, we implement a self-attention block (SAB) to identify
the relationship between the poses of all targets, i.e., at time t.
Thus, the first layer is,

ẽ1,hi = F (oi
t;W

1
q,h) +

∑
j∈J

λh
i,jF (o

j
t ;W

1
v,h) ,

e1i = LN
(
Res1

(
LN

(
concat

({
ẽ1,hi

}
h=1...H

))))
,

λh
i,j = softmax

(
1√
dh
F (oi

t;W
1
q,h)


F (ot;W
1
k,h)

)
j

, (4)

where i ∈ J , Resl(x) = x+ σ(F (x;Wl)), with σ being
a ReLU activation function and F a parametric affine
transformation. LN stands for Layer Normalization. WI ∈
Rdenc×(dhH+1) and W1

w,h ∈ Rdh×(din+1), w ∈ {v, q, k}, are
learnable parameters. din, dh, denc are the dimensionality of
the input, each head h, and the first layer. Note that each head
h encodes a different relation λh between targets. The purpose
of this first layer is to encode information such as target visi-
bility, perspective from which each target’s information can be
observed, occlusions, and possible simultaneous observations.

Next, we draw inspiration from Set Tranformers [24], used in
static set-structured data, to aggregate the features of all latent
target representations. We employ a pooling multi-head attention
mechanism (PMA) where a learned seed vector per head vh

s ∈
Rdh is employed to compute the attention weights for a single

query,

ẽ2,h = vh
s +

∑
j∈J

λh
jF (e

1
j ;W

2
v,h) ,

e2 = LN
(
Res2

(
LN

(
concat

({
ẽ2,h

}
h=1...H

))))
,

λh
j = softmax

({ 1√
dh

vh,

s F (e1j ;W

2
k,h)

}
j∈J

)
j

. (5)

This results in a latent vector e2 that is mapped, through a
fully connected layer, to the parameters μat

and log(σat
) of

a diagonal Gaussian distribution N (μat
, σat

) over viewpoints.
The learned policy πφ samples recommended viewpoints at
from this distribution. We use the Proximal Policy Optimization
(PPO) algorithm to train the network [28], [29]. As learning
algorithms like PPO also require an estimate of the state-value
V πφ(st) = E[

∑∞
t′=t γ

t′−tR(st′ ,at′)|st′ ∼ T ,at′ ∼ πφ], where
γ is the discount factor, another linear layer predicts V πφ(st) ≈
v

v e

2. The latter is only used during training to guide the policy.
We combine both the surrogate loss and KL-divergence term to
stabilize training. We also use an entropy regularization term to
encourage exploration [30]. We refer the reader to [28] for more
information on the algorithm equations and details.

C. Low-Level Controller

To account for the drone dynamics, the recommended view-
point position at is tracked with an MPC low-level con-
troller [31]. Let xat denote the viewpoint state output by the
policy in the world frame, obtained from the current drone state
and setting to zero the information that is not considered in at,
e.g., roll and pitch. Every τl seconds, the controller solves the
following receding horizon constrained optimization problem,

min
x1:N ,u0:N−1

N−1∑
k=0

Jk(xk,uk) + JN (xN ,xat)

s.t. x0 = xt, xk+1 = f(xk,uk)

uk ∈ U , 0 ≤ k ≤ N−1 (6)

where uk is the low-level control input sent to the robot, that
needs to be inside the possible values U , f(xk,uk) the internal
dynamics and Jk(xk,uk) = wu‖uk‖,

JN (xN ,xat) = wg
‖xN − xat‖
‖x0 − xat‖

, (7)

the stage and terminal costs, weighted by wu and wg respec-
tively. For more details we refer the reader to [31].

V. IMPLEMENTATION DETAILS

We train and test the proposed method both with simulated
perception and with a real classifier in a photo-realistic simu-
lator. The first environment has a simplified, computationally
efficient observation model and is used for comparison between
our method and the baselines introduced in Section VI-A. The
second environment is used to test the proposed method under
more realistic conditions.
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TABLE I
HYPERPARAMETERS FOR PPO TRAINING ALGORITHM

A. Simulated Perception Environment

1) Observation Model: We consider a synthetic pinhole cam-
era with focal length equal to 400 pixels that acquires images
of 640× 480 pixels. A target is modeled as visible if we can
draw a line between its center and the drone’s without any
collision. For each target we consider only the half part of the
cylinder that is facing forward and project it into the image
frame, if it is visible from the camera perspective. This generates
an image of a trapezoid with area and skew depending on the
relative position and orientation of the target (Fig. 1). We use
these two parameters to determine the probability distribution
of the observation over the class set, decreasing the probability
of the true class exponentially with the skew and increasing it
linearly with the area. We also penalize heavily trapezoids that do
not fit in the image. Our method does not have any knowledge
of neither the observation model nor the classification model,
which makes them black-box to it without loss of generality.

2) Training Conditions: Our high-level policy and the
learned baselines are trained in closed environments of 50×
50 m2 with simulation steps of τh = 0.25 s. As shown in Fig. 1,
targets are modeled as cylinders of 0.6m radius, 1.8 m of height,
with their class information only visible from the front. The
targets follow constant velocity dynamics and belong to either
class red or class blue. Targets’ speed in every axis is sampled
around 1 m/s and clipped at 1.5 m/s. Whenever targets collide
among themselves or against walls, they rebound conserving
kinetic energy and momentum.

The drone’s maximum angular and linear speed in each axis
is respectively ψ̇max = 60◦/s and 2 m/s. This is to ensure that
the drone can reach targets moving away from it. To reduce
computation costs, only during training we assume that the
drone follows first-order dynamics, and control its velocity to
guide the drone to the recommended viewpoint. Each episode,
each method is given 100 seconds to classify all targets (ljt = 1,
∀j ∈ J , bmax = 0.95). Episodes are finished after reaching
the timeout, or successfully classifying all targets. Values for
the reward weights are wJ = 100, wl = 5, wH = 1, wt = 0.3,
wa = 0.01.

B. Training Algorithm

The learning algorithm and the training of our policy are
implemented using the RLlib framework [29]. Table I shows
the hyperparameters tuned for training the PPO algorithm. We
tuned these hyperparameters because they regulate the speed and
quality of training and are more problem-specific. Other hyper-
parameters follow the default values provided by the framework.
We refer the reader to [28], [32], [33] for a detailed analysis on
the effect of these hyperparameters on the training algorithm and
how to tune them. State space exploration is enhanced [34] to
make the learned policy more robust at test time, by randomizing

the drone’s initial poses, and the targets’ initial poses, velocities
and beliefs over their classes. Some of the targets are randomly
selected and enforced to remain static.

We follow a two-phase training schedule. First, we train
the policy for the general case in scenarios, chosen randomly,
containing between 1 and 12 targets. Then we fine tune the
resulting policy by training it in scenarios containing only 1
to 6 targets. While counter-intuitive, this choice of schedule
is motivated by how the task of active classification changes
depending on the number of targets present in the environment.
There are two motion planning tasks that need to be solved
to perform active classification: simultaneous observations of
multiple targets and, if that is not possible, then focus on single
target high-quality viewpoints. We find that only learning both
tasks simultaneously in environments with 1-12 targets results
in a policy prioritizing simultaneous observations of multiple
targets. Such policy scales up well but at the expense of poor
choice of viewpoints when the number of targets is small.
This is why a second training phase to fine-tune the policy to
environments requiring single-target viewpoints is used.

The policy and value function (detailed in section IV-B)
were trained for 9.6e7 steps in environments containing up
to twelve targets, sampled uniformly (first phase). Then, they
were further trained for 3.2e7 steps in environments containing
a random number between one to six targets (second phase).
The training of the algorithm was done using an Intel i9-9900
CPU@3.10 GHz computer.

Computing the policy actions takes less than 4ms per time
step, which allows for a real-time implementation of the frame-
work with a fast control frequency.

VI. SIMULATED RESULTS

We analyze our high-level policy’s scalability and robustness
to different target dynamics in comparison with other hard-coded
and learned baselines.

A. Baselines

There are no existing approaches that address the problem of
active classification of dynamic targets without relying on an
available observation model. Therefore, the baselines used for
comparison are:
� Hand-crafted: Hard-coded policy that guides the drone to

a position 2 m in front of an unobserved target, pointing
the camera at it.

� Single-target (Ours): This is an ablation of our method.
A learned single-target policy is given the information of
an unobserved target and guides the drone to viewpoints
allowing it to classify it as fast as possible. It is trained in
scenarios with just one target.

� LSTM encoder [17], [18]: The self-attention and attention
pooling layers are substituted by a linear layer followed by
an LSTM. Every unclassified target is inversely sorted by
proximity to the drone. The first layer encodes each target’s
information, and the sequence is fed into the LSTM.

� DeepSets decoder [23]: We replace the attention pooling
layer by a mean pooling layer.

The latter two baselines are recently proposed scalable archi-
tectures employed in different, albeit similar [23], problems.
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Fig. 3. Top row) Experiments with targets following constant velocity dynamics, as in training. Bottom row) Experiments with targets following social forces
dynamics not seen during training. Left) Comparison of the percentage of targets classified before timeout in environments with 1 to 40 targets. The black
line denotes the maximum amount of targets seen during training. Center) Evolution of simultaneous observations along the episode in environments of 30
targets. Right) Classification speed in environments of 30 targets.

B. Test Conditions

At test time, the whole pipeline described in section IV is used,
including the drone dynamics and controller described in section
IV-C. We evaluate our method’s robustness under target behavior
both seen and unseen during training. Aside from constant veloc-
ity dynamics, we test our policy in environments where targets
follow social forces pedestrian dynamics [35]. As in training,
each method is given up to 100 seconds to classify all targets.
Each policy is trained with 5 different seeds. The results of all
seeds are averaged and shown with their standard deviations.
For every test, we evaluate and average each method’s results
over 50 episodes. Initial conditions of all evaluation episodes
are randomised but maintained equal across our method and all
baselines.

Since the first two methods are designed to classify one target,
the extension to multiple targets is done through their sequential
classification. Unclassified targets are ordered by their distance
to the drone. The drone classifies the first in the list before
moving on to the next one. Observations of other targets are still
accounted for in the information fusion and belief computation.

C. Scalability Analysis

We evaluate each method in environments containing up to 40
targets to test their scalability to larger number of targets than
seen during training. In Fig. 3-Left, we report each method’s
percentage of classified targets at the 75 s mark in environments
containing different numbers of targets. In general, as expected,
there is a drop in the percentage of targets that can be classified
when their quantity increases. This is due to the task theoretically
requiring more steps and an increase of occlusions generated
by other targets. The results show that our method is the one

able to generalize best to target dynamics unseen during training
and generally outperforms all other baselines in environments
containing much larger amounts of targets than seen during
training. While our method does not take any assumption on how
target information should be weighted, [17] relies heavily on the
priority order given to targets, as analysed in [18]. This is the
reason why, in our experiments, [17] shows similar scalability
results under target dynamics seen during training (Fig. 3, Top
row) but does not generalize as well as our method to unseen
dynamics (Fig. 3, Bottom row).

D. Policy Behavior

We provide an empirical analysis on each method’s behavior
and the effect on its performance. In Figs. 3-Center and 3-
Right, we test our policy in simulated perception environments
with 30 targets and report the number of unclassified targets
simultaneously observed along the episode. During the first half
of the episode, our method consistently is shown to observe
and provide classification estimates of more targets than other
baselines, which results in faster classification of targets. This
shows that our method is able to learn the effect of each target
on the observations of others and discover groups of simul-
taneously observable targets. The latter is difficult to achieve
by single-target classification baselines or methods that assume
distance-based relations among targets. Similarly, the lower per-
formance albeit similarly high simultaneous observations of the
DeepSets decoder baseline, especially at the end of the episode
when there are less targets to classify, suggest that the attention-
based pooling layer allows better aggregation of each target’s
latent information, effectively establishing a classification pri-
ority order. The sharp decline in simultaneous observations of
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Fig. 4. Pedestrian models, as seen from the drone’s perspective in the real-
istic environment. Each pedestrian is tracked using AirSim’s API. Its class is
represented by a red number in the front, classified using YoloV3.

unclassified targets is due to simultaneously observable targets
becoming classified, which results in a sparser distribution of
unclassified targets.

VII. PHOTO-REALISTIC RESULTS

To ascertain our framework’s capabilities under realistic con-
ditions, we test its performance in an environment generated
with Unreal Engine using AirSim [36] to simulate drone control
and perception. We simulate our targets using open-source 3D
human meshes, produced in MakeHuman [37], which move to
random goals while avoiding collisions in an environment of
50× 50m2. As shown in Fig. 4, to remain close to the use-case
shown in the earlier simpler environment, pedestrian classes are
denoted by a red number in their front.

1) Photo-Realistic Observation Model: We obtain the
cropped image of every pedestrian detected in the drone’s field
of view (FOV) using the AirSim API, avoiding the problem of
data association. Each image is resized, and everything other
than the painted number is filtered out.

An implementation of the YoloV3 [38] algorithm is used
to detect and classify the digit in each processed image. We
train the algorithm using a dataset of rotated, up-scaled and
down-scaled MNIST images. Both YoloV3 implementation and
the adapted dataset have been obtained from [39]. The output
of the algorithm consists in a set of bounding boxes, each one
associated to a detected digit and a normalized score stating
how sure the algorithm is of it’s detection. We rule out those
boxes containing a number of pixels smaller than a threshold
Ba = 2000 and take the box with the highest score. The nor-
malized score of the detected digit is used as the target class
probability estimate, distributing the remaining probability mass
among the other classes. The output is a uniform distribution
when no digits are detected, or the normalized score is below
the uniform distribution.

2) Training Conditions: We use the training setup explained
in Section V-A, using the realistic observation model. However,
to avoid the computational cost of running Unreal/Airsim and
YoloV3, for training we use AirSim to extract a dense library of
pedestrian observations of all classes in different relative poses
from the drone’s FOV. For each class, each pose-dependent
image is used to compute and save a probability distribution.
During training, for each target in the drone’s FOV, we use the
probability distribution of the library image whose pose is the
closest to the target’s current relative pose. Being in a controlled
environment, during training we monitor the output of the per-
ception system to detect classification errors, and substitute them
by a uniform probability. This enables our policy to prioritise

Fig. 5. Probability heat-map of the employed black-box classifier for a target
of class 1. For a robot placed at the bottom, facing upwards and a FOV of 90◦,
every plot shows the output probability of identifying the real class of the target
at different relative positions and a fixed relative orientation from the robot.

good over bad classification viewpoints, adding an additional
robustness mechanism to outlier classifications to the control
policy. An example of the resulting normalized classification
score is given in Fig. 5.

3) Real Perception Environment: This time we test our
method’s performance in the photo-realistic environment. In Fig.
6(a) and (b), we only analyze the performance of the viewpoint
recommendation policy without having AirSim’s different drone
dynamics and in-built controller affecting the results, which we
use for comparison in Fig. 6(c). We show results for our method
and how it compares in this new setting to the baselines presented
in Section VI-A.

As in section VI, we evaluate each method 50 times in
environments containing up to 40 targets for 75 and 100 seconds,
and show the resulting mean and standard error. In all our exper-
iments, the mean percentage of misclassifications was under 3%
with no significant differences among different methods. Fig. 6
shows that the results presented in Section VI hold in the new
photo-realistic environment, even when realistic drone dynamics
and control are used. Note that the different performance in
comparison to Fig. 3 is due to the different observation model
and the fact that we take measurements directly from the view-
points recommended by the DRL policy in Fig. 6(a) and (b). This
is very relevant from the Sim-to-Real perspective, considering
that the policy has been trained in a different environment with
a perception system approximated from the one used during
testing.

VIII. CONCLUSION

In this paper, we have introduced a framework for ac-
tive classification of multiple dynamic targets when the
information is extracted using a “black-box” classifier. The
proposed framework learns a policy that outputs viewpoints
through Deep Reinforcement Learning using an attention-based,
permutation invariant architecture. Then, a low-level MPC con-
troller moves the drone to the viewpoints taking care of the
complex dynamics at high-frequency. Sensor fusion of the black-
box sensor is done through conflation. The results have shown
that our policy outperforms multiple baselines, both in terms of
generalization to target dynamics not seen during training and
scalability to environments with more than double the amount
of targets experienced during training. However, there is a limit
to the number of targets one robot can classify under given time
constraints. In the future, multiple drones could be employed for
efficient dynamic active classification.
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Fig. 6. Mean and standard error over 50 experiments in the photo-realistic simulator. (a) Comparison of the percentage of targets classified before timeout of 75
seconds in environments with 1 to 40 targets, where measurements are directly taken from viewpoints that the DRL policy suggests. (b) Classification speed in the
experiment of (a) with 30 targets. (c) Classification speed in environments of 30 targets with realistic drone dynamics and AirSim’s controller.
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