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Abstract

Josephson junctions in a two-dimensional electron gas with spin-orbit coupling are a
promising candidate to realize topological superconductivity. While it is known that the
geometry of the junction strongly influences the size of the topological gap, the question
of how to construct optimal geometries remains unexplored. We introduce a greedy nu-
merical algorithm to optimize the shape of Majorana junctions. The core of the algorithm
relies on perturbation theory and is embarrassingly parallel, which allows it to explore
the design space efficiently. By introducing stochastic variations in the junction Hamil-
tonian, we avoid overfitting geometries to specific system parameters. Furthermore, we
constrain the optimizer to produce smooth geometries by applying image filtering and
fabrication resolution constraints. We run the algorithm in various setups and find that
it reliably produces geometries with increased topological gaps over large parameter
ranges. The results are robust to variations in the optimization starting point and the
presence of disorder, which suggests the optimizer is capable of finding global maxima.
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1 Introduction

Majorana bound states (MBS) are topologically protected edge states with non-abelian statis-
tics that can serve as a building block for fault tolerant quantum computers [1–4]. While
much of the experimental search for topological superconductivity has focused on proxim-
itized semiconducting nanowires [5–8], this system requires applying a sufficiently strong
magnetic field to drive a topological phase transition. Because magnetic fields suppress su-
perconductivity, the field compatibility of Majorana devices is an open problem. An alterna-
tive proposal—Josephson junctions in a two-dimensional electron gas (2DEG) with spin-orbit
coupling [9–13]—uses the phase difference across the junction to lower the critical magnetic
field.

The topological protection of MBS requires a spectral gap. Therefore, designing devices
with sufficiently large gaps is a necessary component of engineering Majorana states. In Ma-
jorana Josephson junctions, the gap is limited by long trajectories in the normal region that
do not come into contact with the superconducting terminals [14,15]. Eliminating these long-
flight trajectories by making the junction zigzag-shaped leads to an order of magnitude in-
crease in the topological gap [15]. The topological gap is also enhanced in other periodically
modulated geometries [16,17].

Optimizing a band gap is similarly relevant to photonic and acoustic crystals to design de-
vices such as filters, beam splitters, and waveguides [18]. A large body of research shows that
numerical optimization methods such as genetic algorithms [19, 20], semidefinite program-
ming [21, 22], and gradient-based strategies [23, 24] find geometries with large band gaps
despite performing a search in an exponentially large design space. More recent work demon-
strated that deep learning accelerates optimization by predicting effective tight-binding models
corresponding to microscopic geometries [25]. In the context of one-dimensional Majorana
nanowires, Boutine et al. [26] and Turcotte et al [27] used an algorithm based on GRAPE [28]
to minimize the Majorana localization length through spatially varying electrostatic potentials
and magnetic field textures.

While geometry was demonstrated to have a sizeable effect on the topological gap of Ma-
jorana junctions, the question of how to find optimal geometries remains open. Inspired by
the previous works in numerical geometry optimization, we develop the following greedy al-
gorithm to find optimal Majorana junction geometries. At each optimization step, we compute
a set of possible deformations to the shape of the superconducting regions. Using perturbation
theory we estimate how the gap changes with these deformations and select the one that yields
the largest improvement. We avoid overfitting geometries to specific parameters by randomly
varying the operating point throughout the optimization, similarly to stochastic gradient de-
scent. To ensure that the resulting geometries are within reach of fabrication techniques, we
incorporate smoothness and minimum feature size constraints. We benchmark our algorithm
on a variety of physical scenarios and find that it reliably produces geometries with increased
topological gaps over large system parameter ranges. Finally, we check the robustness of the
algorithm and discuss its potential generalizations.

2 Model and algorithm description

We consider a Josephson junction formed by proximitizing a Rashba 2DEG with two s-wave su-
perconductors (Fig. 1). We model the central normal region with a two-dimensional
Bogoliubov-de Gennes Hamiltonian

HN =

�

ℏ2

2m
(k2

x + k2
y)−µnormal +α(kyσx − kxσy)

�

τz + EZσx ,
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Figure 1: Schematic representation of two unit cells of a topological Josephson junc-
tion formed by covering a Rashba 2DEG with s-wave superconductors. An applied
magnetic field penetrates the normal region (grey) and breaks time-reversal symme-
try. The proximitized regions (yellow) experience an additional proximity-induced
pairing term and a superconducting phase difference of π.

where α and EZ parameterize the strength of the Rashba spin-orbit and Zeeman fields re-
spectively, µ is the chemical potential, and σi and τi are the Pauli matrices acting in spin
and electron-hole space. The proximitized regions experience an additional superconducting
pairing interaction and expel the applied magnetic field, yielding the Hamiltonian

HSC =

�

ℏ2

2m
(k2

x + k2
y)−µsc +α(kyσx − kxσy)

�

τz +∆(x , y)τx .

Following previous works [9, 10] we fix the superconducting phase difference to its optimal
valueφ = π, such that∆(x , y) =∆0—the induced superconducting gap—in the top supercon-
ductor and−∆0 in the bottom superconductor. This choice maximizes the area of the topologi-
cal region in parameter space, practically guaranteeing that the system stays in the topological
regime during the optimization. Because we are interested in determining bulk properties, we
consider a translationally invariant system with a supercell Hamiltonian H = HN + HS, which
we discretize using the Kwant software package [29]. Unless stated otherwise, we consider
a lattice constant of a = 20nm, and Hamiltonian parameters m = 0.02me (with me the free
electron mass), α= 20 meV nm, ∆0 = 1 meV and µnormal = µsc = µ.

Our core iterative algorithm starts by computing the band structure of the initial geometry
on a sufficiently fine grid of the supercell momenta κx using sparse diagonalization. Since
we are interested in low-energy behavior, we compute only a small set of the 2nb = 8 bands
closest to the Fermi level. We then compute a set of candidate perturbations to the geometry of
the junction. Using conventional image processing we determine the normal-superconductor
boundary and then consider two types of modifications: removing superconductivity from
boundary sites, and introducing superconductivity in normal sites immediately next to the
boundary (Fig. 2(b)). Limiting the geometry perturbations to the boundaries of the super-
conductors with the normal regions promotes the continuity of the shape evolution. In order
to implement fabrication constraints, we reject perturbations where the minimum distance
between superconductors is lower than a specified tolerance w = 100nm. Once we have col-
lected a set of perturbations, we use first order degenerate perturbation theory to estimate
how they change the dispersion relation (Fig. 2(c)). Finally, we modify the superconductors’
shape with the perturbation that yields the largest improvement in the gap and proceed to
another iteration (Fig. 2(d)). Because calculations of Bloch eigenstates at different κx as well
as computing the effect of different perturbations are independent, the algorithm is embar-
rassingly parallel. We leverage this by using the dask software package [30] to parallelize our
implementation.
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Figure 2: Summary of the core optimization algorithm. (a) We start from a dis-
cretized model of the junction. (b) At the start of an iteration we determine the
boundaries of each superconductor. We then consider perturbations that introduce
or remove superconductivity in sites at the boundary (circled in red). (c) Using per-
turbation theory, we compute how the gap changes with each geometry modifica-
tion. (d) Finally, we update the shape using the modification that yields the largest
improvement in the gap.

Although the core algorithm is already capable of finding improved geometries, it has the
following limitations:

• It is inefficient to fully recompute the dispersion relation after each iteration.

• Due to being greedy, the algorithm gets stuck in any local maximum.

• The resulting shapes tend to be irregular and contain features that vary on the scale of
the lattice constant.

We solve these problems by introducing epochs consisting of a handful of iterations each. In-
stead of exactly recomputing the dispersion relation at each iteration, we do it only at the be-
ginning of an epoch. Furthermore, at every epoch we select random values of EZ1 < EZ < EZ2
and µ1 < µ < µ2. This procedure is analogous to performing stochastic gradient descent to
optimize the average gap over a region in parameter space, and it ensures that the optimized
geometries are tolerant to variations in the junction Hamiltonian. Finally, we apply a median
filter to the superconductor shapes every few epochs, a standard technique in image process-
ing that reduces noise in images by replacing a pixel with the median value of its neighbors.
As we will show in the next section, periodically applying this filter constrains the optimizer
to explore shapes that vary smoothly in space.

3 Results

Having introduced the algorithm, we turn to investigate its performance, robustness, and the
relevance of its components. Unless noted otherwise we perform epochs with 5 iterations
per epoch and apply a median filter with a window size of 3a = 60nm. Reflection symmetry
x → Lx − x protects the gap from closing at finite momentum [31]. Therefore we consider
only mirror-symmetric geometries ∆(x , y) = ∆(Lx − x , y) and change the shape in pairs of
reflection-symmetric sites simultaneously.1

1We have verified that the first order perturbative estimate of the gap after adding or removing two supercon-
ducting sites is always within 3% of the exact value in the systems we study.
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Figure 3: Optimization run starting from a straight geometry with homogeneous
chemical potential and with parameter shifting and median filtering. (a) The blue
curve corresponds to the average gap evaluated at 16 different points in parameter
space, whose individual values we plot in orange. In panel (e) we mark these points
with red dots. (b-d) Geometries found at the epochs marked with vertical dashed
lines in panel (a). (e-f) Topological phase diagrams of the geometries in (b-d).

Figure 3 demonstrates our algorithm in action. We initialize the system with a straight
geometry where the normal and superconducting regions have initial widths W = 200 nm and
LSC = 500nm respectively. Further, we fix the unit cell length at Lx = 1300 nm (see App. A for
results of optimization runs at other values). We consider a parameter space of µ1 = 10 meV,
µ2 = 15 meV, EZ1 = 0.5meV, EZ2 = 1.5 meV, and apply the median filter every 5 epochs. In
Fig. 3(a) we show how the gap of 16 uniformly spaced points in the parameter space evolves
with epoch number. Although the gaps at fixed parameters fluctuate, the average increases
smoothly as the optimization proceeds, eventually converging to a value approximately 10
times larger than the initial one. In Fig. 3(b-d) we show geometries and corresponding Ma-
jorana wavefunctions at the beginning of the optimization, its middle, and at convergence.
Similar to the zigzag geometries explored in [15], the final shape has a strong spatial modu-
lation that eliminates long quasiparticle trajectories. Despite the algorithm imposing no such
constraints, the converged geometry has a periodicity of half of the supercell. The increase
in average gap leads to more localized Majorana wavefunctions, as is expected from the well-
known relation for the localization length ξM =

ℏvF
Egap

. Indeed, in the last iteration, the overlap
of the Majoranas is already negligible within a single supercell. In Fig. 3(e-g) we plot topologi-
cal phase diagrams as a function of µ and EZ and find that the algorithm significantly increases
the average gap both within the search window and in its vicinity.
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Figure 4: The effect of introducing median-filtering in the optimization algorithm.
The top panels (a) and (b) show optimized geometries when starting from a straight
junction with homogeneous and mismatched chemical potentials, respectively. The
bottom panels (c) and (d) show the geometries obtained when a median filter is
added. Each panel also shows the average gap over the range of µ and EZ used in
the optimization (see main text for exact parameters).

We study the importance of individual aspects of the algorithm by examining their im-
pact on the algorithm performance. To confirm the importance of the median filter, we check
that excluding it generates a discontinuous shape shown in Fig. 4(a). Turning to the ran-
dom sampling of parameters, we repeat the previous run with fixed parameters µ = 10meV
and EZ = 1 meV, along with a parameter-shifting run with µ1 = 9.5meV,µ2 = 10.5 meV,
EZ1 = 0.95 meV, EZ2 = 1.05meV.2 We plot the observed gaps at each epoch in Fig. 5. Both
runs result in geometries with significantly larger gaps than the straight junction. However, the
optimizer with fixed parameters gets stuck in a local maximum with a gap of approximately
0.2∆0. In contrast, the parameter-shifting optimizer avoids this local maximum and continues
exploring the geometry space until it converges to a shape with a gap of the order of 0.25∆0.

All of the previous simulations converged to the same geometry, which raises the natu-
ral question of whether the optimizer generalizes well to other physical scenarios. To ad-
dress this, we consider a modified version of the 2DEG junction with larger chemical potential
in the proximitized regions µsc = 15meV, and a parameter range of µnormal,1 = 9.5 meV,
µnormal,2 = 10.5 meV, EZ1 = 1.35meV, EZ2 = 1.65meV. The higher chemical potential in the
proximitized regions simulates the doping due to the work function difference [32,33]. Figure
4(b) shows the geometry obtained with a run of 800 epochs without filtering. Interestingly, the
optimizer converges to highly disordered superconductor shapes. This is in contrast with the
previous simulations, where the unfiltered geometries remain approximately smooth. Apply-
ing the median filter at every epoch restores the smoothness of the final geometry (Fig. 4(d)),
but results in a significant reduction in the average topological gap. We attribute the overall
lower gaps to the presence of normal scattering at the normal-superconductor interface caused
by the Fermi velocity mismatch [34,35]. This tends to reduce the induced superconducting gap
and complicate the optimization problem. We have briefly explored optimization in another

2We choose a parameter window smaller than in Fig. 3 to reduce the fluctuations of the gap across epochs. In
our simulations we found that the performance of the algorithms depends weakly on the window size, as long as
it is neither too big nor too small.
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Figure 5: A comparison of the behavior of the optimizer with fixed Hamiltonian pa-
rameters and with random fluctuations in the chemical potential and Zeeman field.
The blue curve shows the exact topological gap computed at each epoch for the opti-
mizer with fixed parameters. At approximately 130 epochs, the optimizer gets stuck
in a local maximum. In contrast, the optimization with parameter shifting (red curve)
avoids this local maximum and converges to higher gap values. Although the geom-
etry has converged, the observed gaps oscillate about their average value due to the
parameter shifting. The two inset plots show the converged geometries obtained at
each run.

setup consisting of a straight junction with electrostatic gates next to the superconductors.
Such a system would be less influenced by diamagnetic screening supercurrents that suppress
the amplitude of Andreev reflection amplitude and hence the induced gap [36]. However, we
did not obtain systematic results yet and thus we omit the discussion of these systems from
the manuscript.

To study the robustness of our algorithm, we introduce several modifications in the opti-
mization procedure and study how the results change in comparison with the reference ge-
ometry from Fig 3. In Fig. 6(a-b), we show results obtained with a different random seed
and in Fig. 6(c-d) when the optimization starts from a zigzag geometry [15] (width and
amplitude modulation of W = zy = 300 nm). In both scenarios, the optimization con-
verges to the reference up to 1–2 lattice sites. This suggests that the final result is inde-
pendent of the details of the simulation parameters and that it is likely that the algorithm
is converging to a global maximum in geometry space. Next, we allow the algorithm to
add a single site per iteration, thereby removing the mirror symmetry constraint. To main-
tain consistency in the number of sites added per epoch we perform 10 iterations. Remark-
ably, although the optimizer starts by exploring highly mirror-asymmetric configurations, it
eventually converges to the mirror-symmetric reference shape (Fig. 6(d-e)). Finally, we ex-
plore the effects of disorder in the junction Hamiltonian. We introduce an onsite potential
Vdisorder(x , y) = V0(x , y)τz , where V0(x , y) is uniformly distributed in [−W0, W0]. We set the
disorder strength at W0 = 1.7meV, which corresponds to a mean free path of a unit cell
length. To avoid overfitting to a specific disorder realization we sample a new set of V0(x , y)
every epoch. Disorder effectively renormalizes Hamiltonian parameters and hence plays a
similar role to parameter shifting. Therefore we opt for a smaller parameter window and set
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µ1 = 9.5meV,µ2 = 10.5meV, EZ1 = 0.95meV, EZ2 = 1.05 meV. Once again the resulting
shape differs from the reference by a few lattice sites (Fig. 6(g-h)).

(a) (b)

(c) (d)

(e) (f)

(g) (h)

|∆ref | − |∆opt|
−∆0 0 ∆0

Change random seed

Start from zigzag geometry

Allow mirror asymmetry

Add onsite disorder

Figure 6: Comparison of optimized geometries with a reference geometry obtained
by optimizing a straight junction with homogeneous chemical potential. In the pan-
els we plot the difference of the magnitude of the superconducting gap of the ref-
erence geometries and the optimized geometries. The left panels show the geome-
try obtained after 50 epochs, and the right panels after convergence. Panels (a-b)
correspond to geometries obtained with a different random seed, (c-d) starting the
optimization from a zigzag shape, (e-f) allowing the optimizer to choose mirror-
asymmetric perturbations, and (g-h) in the presence of onsite disorder.
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4 Summary and outlook

We have presented a greedy algorithm for finding Majorana junction geometries with large
topological gaps. Our algorithm relies on parallelization and perturbation theory to sample
geometry space efficiently and is compatible with minimum feature size and smoothness con-
straints. We validated our approach in different scenarios and showed that it is robust to
variations in the starting point and the presence of disorder.

There are several possible improvements to the algorithm. A straightforward optimiza-
tion would be to explore the hyperparameter space more systematically and find, for example,
the optimal number of iterations per epoch and parameter window size. Additionally, the
optimized geometries presented in the main text have periods shorter than our initial choice
of Lx . This suggests that allowing the optimizer to dynamically adjust the period of the unit
cell may increase performance. Another direction of further research would be to go beyond
our greedy strategy and implement more sophisticated algorithms to explore the tree of per-
turbations such as Monte Carlo tree search [37].

While our results look promising, they are not yet experimentally relevant. The state-of-
the-art experiments in 2DEG heterostructures do not offer sufficient insight into the material
properties to enable predictive simulations. On the theoretical side, we have neglected sev-
eral phenomena, namely electrostatics and magnetic field distribution, which will strongly
influence the optimal geometry shape. Including these effects in the simulation requires sig-
nificantly higher computational resources and is not justified without more knowledge about
the platform.

We expect that our algorithm applies to other Majorana devices, such as Majorana Joseph-
son junctions that only require phase gradients to break time-reversal symmetry [38, 39].
Geometry optimization can answer whether the previously reported small gaps in the high-
density regime are an inherent problem of this platform. While our initial experiments indi-
cate that the algorithm is directly suitable to gate shape optimization, more work is required
to achieve a reliable conclusion.

Considering geometry optimization beyond Majorana Josephson junctions, we believe that
the core ideas of our approach would apply to other inverse design problems in mesoscopic
quantum physics [40]. The stochastic nature of our algorithm safeguards it from overfitting,
but on the other hand makes it unsuitable to find sharp resonances or phenomena that are
sensitive to microscopic device details. This, however, is a natural setting in many experiments
where the control over the system is imprecise. The numerical efficiency of our approach
largely relies on the locality of the perturbation used to estimate the gradient of the target
function. Local control over microscopic Hamiltonians is far beyond current experimental
reach. A practical adaptation of our algorithm to nonlocal perturbations would approximate
those as local during most optimization steps and only recompute the precise observables at
the beginning of an epoch.
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A Investigating the role of the supercell size

In the optimization runs reported in the main text we kept the unit cell period fixed at
Lx = 1300nm and found that most runs converged to a geometry with a period of 650 nm.
To investigate the role of this parameter in the optimization, we repeat the runs of Fig. 3 with
different values of Lx . In Fig. 7(a-b) we show optimized geometries for unit cell periods of
Lx = 650nm and 1950nm. Interestingly, the resulting shapes are similar to those of Fig. 3
and have the same period of 650nm. In Fig. 7(c-d) we show results for two additional runs at
Lx = 975nm and 1625nm. Although the resulting shapes are qualitatively similar to the pre-
vious results, the optimizer is forced to choose a different period because the unit cell lengths
are incommensurate with 650 nm.

Figure 7: Optimized geometries starting from supercell sizes of (a) 650 nm, (b)
1950nm, (c) 975nm, and (d) 1625nm. The remaining optimization and Hamil-
tonian parameters are identical to those of Fig. 3. Each panel also shows the average
gap over the range of µ and EZ used in the optimization (see main text for exact
parameters).
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